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Introduction: Within the context of “dual carbon,” exploring the characteristics of
the spatial network structure of regional agricultural carbon emission reduction
capacity (ACERC) is beneficial to improve regional sustainable development
capacity.

Methods: Taking Sichuan Province as the case area, this research evaluates the
regional ACERC and analyzes its spatial and temporal evolution characteristics
by collecting agricultural-related data from 2010 to 2021 from all cities in
Sichuan Province using the EWM-TOPSIS model. Combined with the modified
gravity model, this paper investigates the spatial correlation strength of regional
ACERC. Then, using social network analysis (SNA), the spatial network structure
and its formation mechanism are explored.

Results and discussion: The research findings indicate that: (1) The ACERC of
most cities in Sichuan shows a declining trend, with distinct regional clustering
characteristics. The spatial effects of ACERC have transcended geographical
proximity to form a complex spatial network. (2) The spatial network structure
of ACERC in Sichuan exhibits strong connectivity and a loosening hierarchical
structure, but network stability is declining. (3) Cities such as Neijiang, Zigong,
and Mianyang occupy central positions within the network, playing the role
of central actors. (4) Differences in information-level, rural residents’ income,
governmentimportance, and agricultural labor force contribute to the formation
of the spatial association network of ACERC. The findings of this study can assist
decision-makers in identifying the interconnections and formation mechanisms
of ACERC among cities, providing a reference basis for agricultural regional
collaborative carbon emission reduction measures.

KEYWORDS

agricultural carbon emission reduction capacity, modified gravity model, social
network analysis, spatial correlation characteristic, Sichuan Province

1 Introduction

Global warming is one of the most serious challenges facing humanity at present, and the
multiple hazards to food, water resources and ecological security brought about by climate
warming seriously threaten humanity’s survival (Zhou et al., 2024; Toor et al., 2024). As one
of the main drivers to climate warming, carbon emissions are now the focus of environmental
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regulation, and reducing carbon emissions has become a key
worldwide concern (Xu et al., 2023; Shen and Wang, 2023). According
to “The National Strategy for Adaptation to Climate Change 2035,
China’s average temperature has continued to rise from 1951 to 2020,
by an average of 0.26 °C each decade, which has exceeded the world’s
average rate of increase. To this end, the Chinese government has
made several attempts and proposed a phased approach to achieving
the “dual-carbon” target (Zhu et al., 2024). However, this ambitious
goal faces significant challenges in the agriculture sector. Agriculture
is the world’s second largest source of carbon emissions after industry,
with carbon dioxide emissions from agricultural production activities
accounting for between 20 and 35 per cent of agricultural greenhouse
gas emissions (Frank et al., 2019). China is a large agricultural country
and has always relied on agriculture to support its national economy,
with agricultural carbon emissions accounting for 17% of total carbon
emissions (Liu et al., 2021). According to the data released by the Food
and Organization of the United Nations (Figure 1), in 2021, China’s
agricultural carbon emissions are 1,322 million tons, an increase of
approximately 211 million tons from 2010, showing an upward trend
with an average annual growth rate of approximately 1.6%. The
majority of carbon emissions from agriculture are generated by
agricultural material inputs, agricultural energy consumption, and
agricultural plowing, and so on. The extensiveness and universality of
agricultural activities make it impossible to avoid agricultural carbon
emissions. Improving the utilization rate of agricultural resources,
reducing energy consumption, and enhancing ACERC are all efficient
ways to achieve low-carbon development in agriculture.

“Ability to reduce emissions” refers to the level of social
development, political support, economic structure and technology
that enables effective carbon emission reductions (IPCC, 2007).
Promoting ACER is a critical link in the overall emission reduction
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aim (Huan et al, 2025), and its success directly influences the
achievement of the dual-control carbon reduction target.
Consequently, researchers have developed methods to quantify
ACERC, which generally fall into three categories: (1) Characterizing
the ACERC by assessing the efficiency of agricultural carbon
emissions using DEA; (2) Calculating a carbon emission reduction
potential index to measure the ACERC while keeping equity and
efficiency in mind; (3) Constructing an evaluation index system to
quantify the ACERC. However, economic, energy, industrial
structure, efficiency, and demographic (Shi and Chang, 2023; Huang
X. et al., 2024; Wei and Chen, 2024; Li and Gao, 2024) all have an
impact on the ACERC. The first two methods use a single indicator
to characterize the ACERC, neglecting the impact of other
There are few studies that use
multidimensional indicators to measure the ACERC, with most

multidimensional variables.

concentrating on low-carbon agriculture (Song and Dou, 2024),
agricultural carbon peaking (Xu et al., 2022), and agricultural carbon
neutrality (Chen et al., 2024). In addition, some scholars have further
explored the spatial pattern of agricultural carbon emission reduction
(Hou M. Y. et al., 2024), spatial distribution characteristics (Ve et al.,
2024) and so on. A large number of studies have shown that
agricultural carbon emission reduction presents obvious regional
differences. However, the study of regional agricultural carbon
emission reduction should not be limited to the differences in spatial
distribution, but should also further consider its spatial correlation.

The spatial correlation of ACERC refers to the spatial influence
of ACERC in different regions through exchanges and other forms.
Exchanges and collaboration between cities have increased in
frequency as interregional cooperative development has deepened
(Zhang X. etal., 2024; Huang H. et al., 2024). The spatial correlation
is not only reflected in the economy, but also in the agricultural
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FIGURE 1
China's agricultural carbon emissions and growth rate from 2010 to 2021.
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carbon emissions. It has been demonstrated that agricultural carbon
emissions exhibit a spatial association, mostly due to production
factors and technology (Wang et al., 2024). Agriculture in many
locations has been driven to intense and large-scale production as a
result of market demand, economic development, and government
guidance, leading in agricultural industry agglomeration (Wang
H.etal, 2023). On the one hand, large-scale, centralized operations
can lower carbon emissions by improving crop cultivation,
optimizing industrial structure, and sensibly allocating and using
agricultural resources. On the other hand, agricultural industrial
agglomeration may promote information exchange and technical
innovation. In agricultural cluster areas, advanced technology is
easier to implement, and new technologies can reduce greenhouse
gas emissions during production while increasing the efficiency of
agricultural production resources (Zhang S. et al., 2024). In order to
lower agricultural greenhouse gas emissions, cities in the
agglomeration area compete to introduce technologies from the
technology demonstration area. This encourages the spatial spillover
effect of agricultural resource elements and provides a pathway for
the development of the spatial correlations in the
ACERC. Additionally, cities in an area would be subject to
comparable environmental regulations, and their approaches to
reducing carbon emissions would coincide, leading to “emission
reduction imitation” or “emission reduction confrontation” (He
et al,, 2022). The development of synergistic carbon emission
reduction among areas will reinforce the construction of the
geographical correlation of ACERC, in addition to the coordinated
deployment of higher-level governments. The interaction of the
ACERC is not only limited to the neighboring regions, but also
exceeds the geographic boundaries to achieve inter-regional
interaction. Therefore, the study of ACERC should also consider its
spatial correlation, in order to explore the new characteristics of the
ACERC under the regional synergistic development.

With regard to the spatial relevance of the ACERC, some scholars
have revealed the spatial spillover effect of the ACERC based on
exploratory spatial analysis methods and spatial measurement
models (He et al,, 2021). However, most of these studies are based on
the geographical proximity perspective, which lacks a holistic
approach, does not take into account the possible impacts of
‘non-neighboring’ areas, and is limited to ‘attribute data, with obvious
regional limitations (Gao and Gao, 2024; Cheng et al,, 2024). In
response, some scholars have introduced SNA. SNA is an
interdisciplinary analysis method that uses mathematical methods
and graph theory tools to explore the impact of relationship results
on structural composition or the whole from the perspective of
‘relationship’ (Benitez-Andrades et al., 2020), and it can achieve
quantitative analysis of complex network relationships between
nodes based on ‘relational data. The quantitative analysis of complex
network relationships between nodes can be achieved based on
‘relational data, which is now widely used in the fields of economy,
tourism, carbon emission, environmental pollution, etc. (Liu P. et al,
2023; Tan et al., 2024; Shi et al., 2024; Chen et al., 2023). Relevant
studies have analyzed the spatial network characteristics of carbon
emissions or carbon emission efficiency from the perspectives of
overall network characteristics, individual network characteristics,
and the block model by building a carbon emission or carbon
emission efficiency correlation matrix (Huang H. et al., 2024; Sun
et al,, 2024). On this basis, some scholars have investigated the
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driving factors of spatial correlation networks, such as economic
level, spatial distance, technological level, urbanization, and
population size (Ji and Zhang, 2023; Zhang Z. et al., 2024), providing
a theoretical foundation for the research of ACERC’s spatial
correlation network characteristics.

In summary, there are some limitations in the existing studies. In
the context of regional development strategy, there is an urgent need to
analyze the spatial correlation of ACERC based on the perspective of
complex network and breaking through the limitation of geographical
proximity. In terms of ACERC, the existing literature is limited to the
use of a single indicator to measure the ACERC, and ignores the spatial
correlation of ACERC. In view of this, this research takes Sichuan
Province as the research object. Based on EWM-TOPSIS, we measure
the ACERC in Sichuan Province from 2010 to 2021. The modified
gravity model and SNA are then utilized to investigate the spatial
structure of ACERC in Sichuan, clarify the correlation effect and
interaction mechanism of ACERC between regions. The Quadratic
Assignment Procedure (QAP) is used to explore the driving forces of the
spatial correlation network. The primary contributions of this study are
as follows: (1) Considering five dimensions, namely, agricultural
economic development level, agriculture industry structure, agriculture
technology progress, agricultural input, and agricultural carbon
emission level, the paper comprehensively evaluates ACERC of cities in
Sichuan, and enriches the literature on the evaluation of ACERC. (2) By
integrating theories related to ACERG, spatial correlation network, and
regional agricultural development, a theoretical framework has been
constructed that systematically reveals the spatial correlation of regional
ACERC. Based on this theoretical framework, a comprehensive
examination of the spatial relationship and driving mechanisms between
the ACERC of “adjacent” and “non-adjacent” cities has been conducted,
providing support for the formulation of regional agricultural
collaborative carbon emission reduction policies in the future.

The following is a summary of the rest of the study: section 2
presents an overview of the study area, the data sources, and the
research methodology; section 3 describes the findings of the research
as well as the analytical process; section 4 is a discussion of the results
of the analysis; and section 5 summarizes the conclusions of the
analysis and provides corresponding policy implications.

2 Materials and methodologies
2.1 Research framework

In this study, Sichuan Province is taken as the study region, and data
related to agriculture in each city of Sichuan Province from 2010 to 2021
are collected. An assessment system of ACERC is constructed based on
five key dimensions, namely, agricultural development level, agricultural
industrial structure, agricultural technological progress, agricultural
inputs and agricultural carbon emissions level, and the EWM-TOPSIS
model is utilized to assess the regional ACERC. Based on the assessment
results and the modified gravity model, the spatial correlation strength
of the regional ACERC is calculated. Then, the overall characteristics and
individual characteristics of the spatial association network of ACERC
are analyzed using SNA, and the roles played by cities in the spatial
network are examined based on the outputs of the block model and
core-edge. Finally, the spatial network formation mechanism is explored
using QAP regression analysis. The detailed steps are shown in Figure 2.
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2.2 Study area and data

Sichuan Province is located in southwestern China, at the upper
reaches of the Yangtze River, between latitude 26°03'-34°19" north and
longitude 97°21'-108°12" east (Figure 3). It covers a total area of
486,000 square kilometers, with 18 prefecture-level cities and 3
autonomous prefectures under its jurisdiction. One of the 13 main
grain-producing regions of China, Sichuan Province is a traditional
agricultural province that is crucial to the country’s agricultural
modernization and food security. Because of the governments careful
monitoring and the community’s combined efforts, Sichuans
agricultural development has yielded remarkable results throughout the
past 40 years of reform and opening up. In 2021, grain output reached
35.821 million tons, ranking tenth in the nation, while the primary
industry’s added value reached 566.19 billion yuan, ranking second in
“10 + 3”7 industrial
strategy has also yielded remarkable results, turning the province from

>

the nation after Shandong Province. Sichuan’s

a large agricultural area into a potent one. However, a considerable
amount of carbon emissions has also been produced in spite of
agriculture’s continuous advancements. Taking the plantation industry
as an example, the carbon emissions from the plantation industry in
Sichuan in 2021 are 23,585,100 tons. Currently, there is a situation of
small-scale agricultural production, irrational industrial structure, and
low fertilizer utilization rate in Sichuan Province. Sichuan Province is
facing a serious situation in agricultural carbon emission reduction. To
this end, the Sichuan Provincial Department of Agriculture and Rural
Development, in conjunction with the Provincial Development and
Reform Commission, has triggered the Implementation Plan for

10.3389/fsufs.2025.1660573

Emission Reduction and Carbon Sequestration in Rural Agriculture in
Sichuan Province, which sets out various rural emission reduction and
carbon sequestration targets and calls for the realization of a green
transformation of agriculture. Reducing carbon emissions from
agriculture is a critical component of achieving peak carbon and carbon
neutrality in Sichuan, as well as supporting China’s dual carbon goal.

The research time span of this research is from 2010 to 2021,
focusing on 21 cities in Sichuan Province. The data used in this
research come from the Sichuan Provincial Statistical Yearbook, the
Sichuan Provincial Science and Technology Yearbook, the statistical
yearbooks of prefectural-level cities, the administrative reports of
prefectural-level city governments, and the statistical bulletins of
national economic and social development. For missing data on
fertilizer application and pesticide application in Ganzi, Aba and
Liangshan in 2021, linear interpolation was used to fill in the gaps.
Distances between municipalities were calculated using the distance
function in Arcgis. Carbon emissions from agriculture are calculated
according to the methodology provided in the 2006 IPCC Guidelines
for National Greenhouse Gas Inventories.

2.3 Methods

2.3.1 Construction of an indicator system for
ACERC

The current agricultural development pattern, which is
marked by high investment, rapid growth, and high resource
usage, is no longer feasible in light of the “dual carbon” goals.
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FIGURE 2
Research frame diagram.
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Agricultural expansion must align with national “dual carbon”
policies and progressively transition to a low-carbon and green
model in order to achieve the “dual carbon” goals. Numerous
factors affect agricultural carbon emissions, and the effects of the
economy, industrial structure, technological advancement, and
other factors must be taken into account in order to reduce
agricultural carbon emissions (Huang Y. et al., 2024; Zheng et al.,
20245 Ji et al., 2024). Thus, this study is founded on the scholars’
research findings (Chen et al., 2023; Liu Y. et al., 2023; Li et al.,
2023; Cai et al, 2025).
comprehensiveness, accessibility,

Following the principles of

representativeness, and
scientificity in the selection of indicators, this paper establishes an
indicator system based on five aspects: agricultural development
level, agricultural industry structure, agricultural technology
progress, agricultural inputs, and the level of agricultural carbon

emissions, as shown in Table 1.

2.3.2 Calculation of ACERC

Regarding the calculation of indicator weights, most of the
existing literature uses methods such as hierarchical analysis (Dutta
et al., 2024), principal component analysis (Liu et al., 2024), and
CRITIC (Ke et al., 2022). However, these methods are flawed in that
they ignore the nature of weights, lack objectivity in evaluation
outcomes, and are sensitive to outliers. The EWM is an objective
weighting method that reduces subjectivity and bias in results by
determining objective weights depending on the degree of indicator
variability. The TOPSIS method uses a simple, intuitive approach and
little processing effort to determine the distance between each
measurement object and the optimal and subpar solutions. The
TOPSIS and EWM are combined in the EWM-TOPSIS technique. It
considers the correlations between features when determining
attribute weights and expresses these correlations using information
entropy, which enhances model accuracy and enables a more detailed
analysis of how characteristics affect decision outcomes. The results

Frontiers in Sustainable Food Systems

are also more accurate since it considers both indication weights and
how close assessment items are to the ideal solution. The
EWM-TOPSIS model is suitable for sample data that contains a
variety of evaluation objects and indicators, enabling strong
comparability evaluation conclusions, despite a number of constraints
in its application technique. Consequently, it has had extensive use
across numerous industries (Miao et al., 2025; Wang J. et al., 2023;
Zhang et al., 2022).

The panel data should be converted into cross-sectional data using
the indicator dimensions, with the weights of the indicators being the
same in each year, to ensure that the outcomes are comparable across
time periods. Comparing outcomes across time periods is ensured by
setting a consistent reference object. To ascertain the ACERC of every
Sichuan city at the prefecture level, this study uses EWM-TOPSIS. The
following is the precise formula.

1. Since there are obvious differences in the units of
measurement of the various indicators, the indicators are
standardized. Positive indicators are calculated using
Equation 1, and negative indicators are calculated using
Equation 2:

’ x,'j—minx,j
=t ——— )
max x;; —minx;;

' max xtj - X,]
xl] -_—

)

max Xjj — min Xjj

where i represents the city, j represents the indicator, max x;; and
min X;jj represent thf: maximum and minimum values of the indicator,
respectively, and x;; represents the standard value of the j indicator
for the city.
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TABLE 1 Evaluation system of ACERC.

First-level indicators

Second-level indicators

Indicators

10.3389/fsufs.2025.1660573

Attributes Reference

Agricultural development level | Growth rate of gross agricultural output (A1) | Growth rate of gross agricultural output + -
GV Agricultural share in GDP (A2) Gross agricultural output/GDP + Zhou et al. (2025)
Agricultural economic growth (A3) Primary industry value added + Wang et al. (2020)
Agricultural industrial structure | Industrial integration (B1) Added-value of agricultural service industry/ + Chen et al. (2022)
(B) total output of the primary sector
Planting structure (B2) Grain sown area/crop planting area + Wang et al. (2024)
Agricultural industry structural adjustment (1-gross agricultural output)/total output of the + Wei et al. (2023)
index (B3) primary sector
Percentage of livestock (B4) Gross output of animal husbandry/gross output - Hao et al. (2022)
of agriculture, forestry, animal husbandry, and
fishery
Agricultural technological Agricultural technological human resources | Agricultural specialist personnel count/primary + Wu et al. (2024)
progress (C) (C1) sector employment
Agricultural R&D investment (C2) Agricultural R&D investment + Chandio et al. (2023)
Agricultural inputs (D) Pesticide application intensity (D1) Pesticide consumption/crop sown area - Song et al. (2023)
Fertilizer application intensity (D2) Fertilizer consumption/crop sown area - Ma et al. (2024)
Agricultural carbon emission Agricultural carbon emission intensity (E1) Agricultural carbon emissions/Gross - -
level (E) agricultural output
Agricultural carbon emission density (E2) Agricultural carbon emissions/Crop planting - -
area

2. Calculate the entropy value of the j indicator using Equation 3:

€j=

1 & X

Inn 4

n
Yy
i=1

3)

Ci=—2
d,’ +d,'

5. Calculate the relative progress C, using Equation 8:

di (8)

where C; represents ACERC. The closer its value is to 1, the higher

3. Calculate the weight W; of the j indicator using Equations 4, 5:

Ej=l-¢; ()

f— (5)
Z j:lEj

4. Calculate the Euclidean distances d; and d;” between each
evaluation object and the positive ideal solution Z;" and

negative ideal solution ZJT, respectively, using
Equations 6, 7:
(6)
(7)

Frontiers in Sustainable Food Systems

the agricultural carbon reduction capacity of the city i.

2.3.3 Modified gravity model

The gravity model is widely acknowledged as one of the feasible
methods. The new economic geography theory believes that spatial
distance has an impact on the inter-city interaction relationship and
follows the principle of distance decay. The traditional gravity model
lacks knowledge of the urban system and is difficult to reflect the
spatial correlation between cities. Based on the above considerations,
the traditional gravity model was modified by incorporating regional
agricultural economic factors, drawing on the previous literature
(Hou G. J. et al., 2024). The modified formulas are presented in
Equations 9, 10:

ACERC; x ACERC;
Rj=ky——————1 9)
Djj
8i—&j
ag:
kyj=—81__ (10)
ag; +agj
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where i and j represent cities i and j respectively; R; represents the
spatial correlation strength of ACERC between city i and city j;
ACERC represents agricultural carbon emission reduction capacity;
k; represents the contribution of city to the spatial correlation intensity
of agricultural carbon emission reduction capacity between city i and
city j; D; represents geographical distance between city i and city j; g
represents the per capita gross value of agricultural output; ag
represents the gross value of agricultural output.

2.3.4 SNA model

The SNA method is an interdisciplinary approach to analyzing
“relational data?” It uses relationships as the basic unit of analysis and
construct models by quantifying the relationships between places in
the region. Based on the spatial correlation network matrix, this
research adopts the SNA method to explore the member relationships
in the network, and comprehensively reveals the structure of the
spatial correlation network and its attribute characteristics of the
ACERC of each city in Sichuan Province.

1. Overall structural characteristics. In this survey, network
efficiency, hierarchy, density and connectedness are selected to
characterize the overall structure of the ACERC of cities in
Sichuan Province. Among them, network density is used to
reflect the correlation strength of each node within the spatial
correlation network. Network efficiency reflects the stability of
the spatial correlation network. Network connectedness is
used to reflect whether there is an unreachable logarithm in
the spatial correlation network of ACERC. Network hierarchy
reflects the status difference of each node in the spatial
network structure. The lower its value is, the smaller the gap
between the hierarchies within the network is, and the more
balanced the effect of each node on the spatial correlation
network of ACERC. The detailed formula for each indicator
are presented in Table 2.

TABLE 2 Description of overall network characterization indicators.

Indicators Formula

N k densi
etwork density DoV / |:N N (N B 1)]

V is the number of network associations. N is the total correlation number between cities.

10.3389/fsufs.2025.1660573

2. Individual structural characteristics. The individual structural

characteristics of the spatial association network are mainly
analyzed using three indicators: degree centrality, closeness
centrality and betweenness centrality. In the study, when the
degree centrality of a node is higher, it indicates that the node
is closer to the center of the spatial correlation network and has
a stronger effect on the rest of the network nodes. When the
closeness centrality of a city is higher, it indicates that it is
closer to the other cities in the spatial correlation network. The
betweenness centrality of a city is higher, the stronger the city’s
controlling and regulating effect on the other cities in the
spatial correlation network is. The detailed formula for each
indicator are presented in Table 3.

. Core-periphery structural characteristic. The core-periphery

structure is a special structure formed by the interconnection
of regions with a compact center and a loose periphery, which
characterizes the status or importance of a region in the spatial
association network. Therefore, this research utilizes the core-
periphery structure to identify the core and edge actors in the
spatial linkage network of ACERC in Sichuan.

. Block model. The basic method for spatial clustering analysis

in SNA is the block model. To arrive at a coefficient matrix with
values of 1 or —1, clustering analysis is carried out iteratively,
which entails computing the correlation coefficients of each
row in the network matrix. People who have the same
coefficients are divided into two groups. The clustering
structural features of ACERC throughout 21 Sichuan cities are
investigated in this study using the block model, with an
emphasis on the roles and functions of each block within the
spatial association network of ACERC across 21 cities. This
study classifies the 21 cities into four categories: bidirectional
spillover, net benefit, net spillover, and broker. The attributes of
each block are determined based on the ratio of internal and
external reception and emission relationships within the block

Indicator instruction

Network efficiency E=1-S/max(S)

S is the number of redundant lines in the network.

Network connectedness

C=1-L/[Nx(N-1)/2]

L is the number of point pairs unreachable symmetrically in the network.

Network hierarchy

H=1-K/max(K)

K is the number of point pairs reachable symmetrically in the network.

TABLE 3 Description of individual network characterization indicators.

Indicators Formula Indicator instruction
Degree centrality Dc =m/(M-1) m is the number of cities directly related with a particular city in the network; M is the total correlation
number between cities.
Closeness centrality M Dj is the shortest distance between cities i and j.
Cc = ZD,]‘
i=1
Betweenness centrality mem3jk (1) g« is the number of shortest paths that exist between city j and city k. ¢ is the number of cities.
oy My m Ik
9jk
Bo=—7—F—""—
(t-1)(t-2)
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TABLE 4 Block model sectioning rules.

Proportion of
relationships within

Proportion of relationships
received by a block

a block %
>(gk -1)/(g-1) Bidirectional spillover Net benefit
<(9k -1)/(9-) Net spillover Agent

and the number of members within the block. The classification
criteria are shown in Table 4.

2.3.5 QAP analysis

Identifying the driving factors of the spatial correlation network
of ACERC is crucial for regional agricultural carbon emission
reduction efforts. The QAP can identify the influencing factors of
the spatial association network of independent variables based on
QAP does
independence and normal distribution assumptions and can

“relationship data” Furthermore, not require
overcome the collinearity problem between variables (Li et al.,
2024). Consequently, the results of utilizing the QAP to analyze
relationship data are more reliable than those of standard regression
analysis. In order to better understand the factors influencing the
spatial correlation network evolution of ACERC across 21 Sichuan
cities, this study uses the QAP approach. Based on previous research
findings (Chen et al., 2022; Yang and Su, 2024; Yang and Zhu, 2025),
the selected driving factors are as follows: (1) Information-level
difference matrix (inf), represented by the total volume of postal
and telecommunications services in each region. (2) Rural residents’
income difference (inc), represented by the difference in per capita
disposable income of rural residents. (3) Economic level difference
matrix (gdp), represented by the difference in regional GDP. (4) The
government importance difference matrix (gov), represented by
differences in expenditures on agriculture, forestry, and water
affairs. (5) Agricultural labor force difference matrix (lab),
represented by differences in the number of agricultural workers.
(6) Transportation level difference matrix, represented by
differences in regional highway freight volume (tran). (7)
Urbanization level difference matrix (urb), represented by
differences in urbanization rates.

3 Results
3.1 Weight analysis of ACERC

The EWM is used to calculate the weights of various indicators
affecting the ACERC, with the results shown in Figure 4. Among the
first-level indicators, the indicator with the highest weight is
agricultural industrial structure at 0.2797, indicating that improving
the ACERC requires a focus on optimizing the agricultural industry
structure. Among the secondary indicators, the highest weight value
is for pesticide application intensity in agricultural input, at 0.0996;
followed by agricultural technical talent resources and agricultural
share in GDP, at 0.0968 and 0.0948, respectively. The weighting
results show that indicators with lower weights are focused in
agricultural carbon emission levels.
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3.2 Spatial and temporal characteristics of
ACERC

3.2.1 Temporal evolutionary characteristics of
ACERC

With the help of the EWM-TOPSIS, the annual ACERC of 21 cities
in Sichuan Province from 2010 to 2021 is measured and analyzed, and
the results are shown in Figure 5. The average level of ACERC in all cities
fall from 0.476 in 2010 to 0.456 in 2021, showing an overall negative
trend in ACERC. Chengdu has the highest ACERC value, at 0.548. Aba
and Nanchong come next. The three cities with the lowest ACERC are
Luzhou, Panzhihua, and Suining, with 0.392, 0.375, and 0.367,
respectively. Ziyang have the highest average annual growth rate, at 2.6%.
Guangan have the slowest growth rate, with an average annual growth
rate of 0.06% for the research period. The majority of cities see negative
growth, with Ganzi having the biggest fall in ACERC, with an average
annual growth rate of —2.75%. This could be due to Ganzi’s move to
modern agriculture, which includes increased investment in production
materials to raise agricultural productivity and hence increase
agricultural carbon emissions. However, Ganzi’s total agricultural carbon
emissions are rather low. As a result, when carbon emissions increase by
a given level, ACERC tends to drop.

3.2.2 Spatial evolutionary characteristics of
ACERC

To better understand the spatial characteristics of ACERC in
Sichuan Province cities, this survey selects 2010, 2014, 2018, and 2021
as the study period, and uses ArcGIS software to draw the spatial
differentiation map of the level of ACERC in each region (Figure 6). In
2010, Sichuan has a high ACERC, with cities clustered together. Because
of the influence of various factors on ACERC, surrounding cities
typically have comparable agricultural production settings, resulting in
ACERC convergence. Sichuan’s overall ACERC declines somewhat in
2014, with minor changes in distribution characteristics compared with
2010. Cities along the province’s north-south axis have slightly higher
overall ACERC:s than cities in other regions. In 2018, the ACERC of
most cities decreases dramatically, but the number of cities with Grade
I ACERC climb significantly. At that time, Sichuan was experiencing
unprecedented growth. Population growth and economic development
increased demand for grain and agricultural products, resulting in an
expansion of agricultural production. However, in the early phases,
agricultural production methods in some cities were rather extensive,
resulting in a huge amount of agricultural carbon emissions, causing the
ACERC to fall behind the rate of agricultural emissions. In 2021, the
ACERC of cities in Sichuan improves compared to 2018. This could
be because Sichuan aggressively supported agricultural supply-side
structural reforms and low-emission agricultural production
techniques, in response to the Chinese government’s proposal to
promote green agricultural development.

3.3 Overall network characteristic of
ACERC

Using the modified gravity model, the spatial correlation of
ACERC in Sichuan Province is determined. To dipict the spatial
correlation strength as well as the path of ACERC in Sichuan Province,
2010 and 2021 are chosen as time nodes to be visualized with the
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FIGURE 4
The weight of indicators affecting ACERC.

assistant of Arcgis, and the spatial correlation strength is separated
into three levels utilizing the natural break method, as shown in
Figure 7. Generally speaking, the spatial network structure of ACERC
is obvious, showing the characteristic of “sparse in the west and dense
in the east” Over time, the strength of inter-city spatial linkages has
been increasing. The geographical barrier between cities has been
gradually eliminated, communication and interaction have been
strengthened, thus promoting the synergistic development of
agricultural carbon emission reduction. In 2010, Aba, Chengdu and
Meishan form a triangle of strong links, as do Guangyuan, Bazhong,
Nanchong, and Guang’an. Chengdu, being the leading city in Sichuan
Province, plays an obvious siphoning role in the region, and has a
certain intensity of radiation effect on most of the surrounding cities.
In 2021, Neijiang and Ziyang present a “twin-star” structure, with
strong spatial linkages. It is worth noting that the spatial pattern with
Chengdu as the core has changed, with Neijiang taking over Chengdu’s
central position in the network.

In order to analyze the overall network characteristics of ACERC
in Sichuan Province, the network density, network hierarchy, network
closeness and network efficiency of the spatial correlation network in
Sichuan Province from 2010 to 2021 are measured using Ucinet. The
results are shown in Table 5.

(1) During the study period, the network density of ACERC
decreases from 0.2476 to 0.2238. The average value of network density
is 0.1956, which is relatively low overall, indicating that the inter-
municipal spatial connection of ACERC is not strong. This is because
there are regional differences in the ability of municipalities to access
and exchange agricultural capital, technology, and labor. There are
barriers to inter-municipal interconnections. (2) The network
connectedness consistently maintains its level of 1, suggesting that
there is no isolated development among cities, and that any city could
be integrated into the spatial network of ACERC through direct or
indirect links with other cities. The spillover effect between cities is
obvious, and they influenced each other. (3) The network hierarchy
decreases from 0.3333 to 0.1810, indicating that the degree of network
inequality in the spatial correlation network gradually decreases and
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develops in the direction of equalization, and the synergistic effect of
agricultural carbon emission reduction in each region is obvious.
Mainly influenced by market, information, policy and other factors,
agricultural labor, capital, agricultural technology and other factors
related to agricultural carbon emission reduction are able to achieve
coordinated allocation within the province, reducing regional
differences. (4) In the spatial correlation network, network efficiency
shows a fluctuating upward trend, rising from 0.7632 to 0.8158,
indicating that the spatial correlation between the ACERC of various
cities and is decreasing and the stability of the network is declining.

3.4 Individual network characteristic of
ACERC

The overall network characteristics only reflect the overall
situation of the spatial correlation network of ACERC in Sichuan
Province. To further reveal the position and role of each city in the
network, this paper measures and analyzes three individual network
characteristic indicators, namely, degree centrality, betweenness
centrality and closeness centrality of each city in 2021. The results are
shown in Figure 8.

1. The average degree centrality for 2021 is 5.238. Six cities,
including Neijiang, Zigong, and Mianyang, have degree
centrality values higher than the average. It indicates that
these cities have significant spatial connections with other
cities and occupy central positions in the network, playing a
leading role in enhancing Sichuan’s ACERC. Due to the
differences in inter-city connections, the ACERC of cities
form a directed spatial network. In-degree and out-degree
reflect a city’s radiation and aggregation effects on other cities.
In 2021, eight cities, including Nanchong, Deyang, Mianyang,
Chengdu, and Liangshan, have higher in-degree than
out-degree. These cities are predominantly economically
developed regions that benefit greatly from the spatial
association network of ACERC. They effectively attract and
promote resources and elements conducive to agricultural
carbon emissions reduction, converting them efficiently to
enhance their own ACERC.

2. In 2021, Sichuan’s average betweenness centrality value is
21.99. Six cities have betweenness centrality scores higher
than the average, including Neijiang, Mianyang, Zigong,
Meishan, and others. These cities dominate the network
structure and can effectively regulate and control the
ACERGC:s in other regions. These cities serve as the primary
conduits for the majority of network connectivity. Some of
them, such as Meishan and Ya’an, are located in central
Sichuan, allowing them to effectively aggregate various
agricultural resources from neighboring cities, absorb
advanced agricultural technologies, funds, and talent from
developed cities, and export these resources to cities with
lower ACERC. Neijiang, as a transportation hub in Sichuan
Province, has a well-developed transportation network that
strengthens direct connections with other cities, facilitating
the flow of relevant resources and elements. Therefore, it can
serve as an “intermediary” and “bridge” within the spatial
association network.

frontiersin.org


https://doi.org/10.3389/fsufs.2025.1660573
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Lietal. 10.3389/fsufs.2025.1660573
06 -1 6
B Average Value & Growth Rate(%)
05 - 4
04 -2
s ~
>
2,03 Ho £
< <)
q) -
> O
z
02 4 -
0.1 4 -4
i NObN<HN2RNasDEZ <mo b o
%mooooood»—lngzzﬁm:»ENN
FIGURE 5

Average value and growth rate of ACERC from 2010 to 2021.

3. Interms of closeness centrality, Sichuan’s average value in 2021
is 52.66. Nine cities have values above the average, indicating
that they are ‘active participants’ in the spatial association
network, capable of receiving and transmitting relevant
elements and thereby influencing other cities ACERC. In
comparison to other cities, Mianyang has a strong agricultural
industry base, with a well-developed agricultural industrial
chain, high agricultural production value, and modern
agriculture technology and facilities. It can provide other cities
with green and low-carbon technologies and related green and
low-carbon production knowledge. Ganzi’s high closeness
centrality stems mostly from policy support. Under the support
of policies such as the Western Development Initiative, the
more developed regions in eastern Sichuan have provided
Ganzi with various elements such as funds, talent, and
technology. The inflow of these elements has enhanced Ganzi’s
closeness centrality.

3.5 Spatial clustering characteristics of
ACERC

This paper uses the CONCOR in Ucinet6 to explore the roles of
each sector in the spatial correlation network of ACERC in Sichuan in
2021 within the network structure, dividing it into four sectors. The
members within each sector are listed in Table 6.

As shown in Table 7, block I gets 9 external relationships and
sends out 13 others. The number of external relationships receives is
less than the number sent out, and there are few internal relationships
inside the sector, hence it falls under the broker sector. Members of
this sector include Aba, Panzhihua, and Ya'an, who serve as a “bridge”
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in ACERC’s spatial association network. Block II has an expected
internal relationship ratio of 20%, however the actual ratio was 9.52%.
The number of received relationships and overflow relationships are
26 and 38, respectively, indicating a net overflow block. This block
includes Guang’an, Bazhong, Dazhou, Suining, and Guangyuan. These
cities primarily export labor and other factors to other blocks. Block
III has an actual internal relationship ratio greater than the expected
internal relationship ratio, with the number of relationships receiving
spillover from other blocks far exceeding the number of relationships
sent to other blocks, thus qualifying as a net beneficiary block. The
cities within this block are Nanchong, Deyang, Mianyang, Zigong, and
Neijiang. These cities either have well-developed agriculture or
advanced transportation infrastructure, primarily benefiting from
factor inputs from other blocks. Region IV has more connections with
external regions than with its internal members, with both incoming
and outgoing relationships being relatively high. Therefore, this region
also belongs to the broker region, which includes eight cities such as
Liangshan, Ganzi, and Yibin.

The identification of core-periphery structures also holds
significant practical implications for spatial network structures.
This study utilized the Core/Periphery function in Ucinet to map
the core-periphery structure diagrams of Sichuan’s ACERC for
2010 and 2021 (Figure 9), analyzing the evolutionary characteristics
of the core-periphery structure. In 2010, the core areas are
primarily located in the northern part of Sichuan, including
Chengdu, Deyang, Zigong, and Nanchong. In 2021, the core
regions have undergone changes, with Suining, Yibin, and Aba no
longer part of the core region, as their agglomeration functions and
attractiveness have weakened. Additionally, Ganzi, Neijiang,
Meishan, Guang’an, and Ziyang have become part of the core
region. During the study period, the core area shows an expanding
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TABLE 5 The overall characteristics of ACERC in Sichuan.
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FIGURE 8
Spatial distribution of cities' centrality in 2021.

2010 0.2476 0.7632 0.3333 1
2011 0.2225 0.6579 0.1818 1
2012 0.2005 0.7778 0.1909 1
2013 0.2000 0.7778 0.2727 1
2014 0.1907 0.8012 0.2804 1
2015 0.1711 0.8480 0.2727 1
2016 0.1687 0.8737 0.2609 1
2017 0.1687 0.8789 0.3333 1
2018 0.1687 0.8842 0.3333 1
2019 0.1614 0.8953 0.2609 1
2020 0.2286 0.8105 0.1810 1
2021 0.2238 0.8158 0.1810 1
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trend, with the number of core area cities increasing from 8 in 2010
to 10 in 2021. This may be attributed to the rapid economic
development of Sichuan under the impetus of the Chengdu-
Chongqing Metropolitan Area initiative, which has led to the
further improvement of infrastructure such as transportation and
information technology, as well as more frequent exchanges of
technology, capital, and experience between cities, thereby
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enhancing connectivity among them. Additionally, Sichuan has
divided its territory into different functional zones based on
resource endowments and industrial characteristics, such as the
Chengdu Plain Agricultural Zone and the Southern Sichuan Hilly
Ecological Zone. Through policy guidance, core cities are leading
the development of low-carbon agricultural technologies in
peripheral cities.
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TABLE 6 Cities within each block.

Block City

1 Aba, Panzhihua, Yaan

II Guangan, Bazhong, Dazhou, Suining, Guangyuan

111 Nanchong, Deyang, Mianyang, Zigong, Neijiang

v Leshan, Meishan, Liangshan, Chengdu, Yibin, Ziyang, Luzhou,

Ganzi

3.6 Driving factors of the spatial correlation
network

This study uses Ucinets QAP regression analysis, setting the
number of random permutations to 5,000, to analyze the factors
impacting ACERC’s spatial correlation network in2021. The results are
shown in Table 8.

(1) The regression coeflicient of the information-level difference
matrix is significantly positive, indicating that the greater the
difference in the information level among cities, the more conducive
it is to the formation of a spatial association network for ACERC. This
may be because cities with the higher information level concentrate
various elements within the spatial association network for ACERC,
thereby promoting the flow of elements within the network. (2) The
regression coefficient of the rural inhabitants’ income difference
matrix is strongly negative, suggesting that the smaller the difference
in farmer income across regions, the easier it is to create a spatial
association network for ACERC. When there is a small difference in
rural residents’ income levels across regions, technical exchanges and
cooperation among farmers become more common, and they are
more willing to share experiences and learn from one another,
allowing the flow of agricultural elements such as technology across
regions and thus strengthening the spatial connections in ACERC. (3)
The government importance difference matrix is significantly positive,
implying that the higher the difference in government importance
between cities, the better the chances of ACERC forming a spatial
connection network. Governments that prioritize agricultural growth
often invest more budgetary resources, such as R&D funding, in the
sector. Thus, high-importance regions may have more sophisticated
but
low-importance regions, due to technological limitations, must

agricultural carbon emission reduction technologies,
actively promote exchanges with high-importance regions, thereby
improving regional spatial connectivity. (4) The agricultural labor
force difference matrix is significantly positive, meaning that the
higher the gap in the number of agricultural workers between cities,
the easier it will be for ACERC to establish a spatial correlation
network. Differences in the number of agricultural workers lead to the
labor mobility and resource-sharing networks among regions. Regions
with surplus labor can move labor resources to regions with labor
shortages, and technology can be transmitted to new areas via labor

mobility, resulting in geographic interconnection.

4 Discussion

Since the reform and opening up, under the intensive input of
agricultural production factors, China’s agricultural development has
experienced a high-speed growth phase for nearly 40 years (Hu, 2024).
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During this period, Chinese agriculture has transitioned from a
planned economy to a market economy, realizing the historical change
from traditional to modernized agriculture. Over the transformation
process, the inputs of agricultural production factors have changed
dramatically, and agricultural carbon emissions have shown a
continuous upward trend (Liu and Yang, 2021). Because of the uneven
development of urban agriculture, there are significant regional
difference in agricultural carbon emissions (Cui et al., 2021). At the
same time, there is also an imbalance in ACERC between regions.
Carbon dioxide is a public good, and the local governance pattern
based on administrative division has limited effect. Synergistic
governance is required to fundamentally solve the problem of
agricultural carbon emissions (Yao et al., 2024). Therefore, realizing
the synergistic effect of regional agricultural carbon emission
reduction has received increasing attention.

This study systematically uncovers the regional and temporal
evolution characteristics of the ACERC, as well as the structural
characteristics of the spatial correlation network and its driving
variables in Sichuan between 2010 and 2021. According to the study’s
findings, the ACERC in Sichuan is on the decline, with some room for
improvement. During the study period, there is an imbalance in the
ACERC of cities in Sichuan, which may be due to inter-regional
variability in the basic conditions of agricultural production, the level
of economic development, and the implementation of policies (He
et al,, 2021), however, the difference in the ACERC of the cities
decreases over time, which is indirectly confirmed by the findings of
Zhang and Shen (2025). Under the ‘dual carbon’ target, inputs such as
pesticides, chemical fertilizers, and agricultural films should
be decreased to improve ACERC at its source. The government should
also enhance R&D and investment in agricultural science and
technology, expedite the adoption of low-carbon technologies, and
improve the agriculture industry’s structure.

From the perspective of spatial network, the spatial network
connection of ACERC in Sichuan is relatively loose and sparse during
the study period, and the stability of the network is decreasing. It
might be because Nanchong, Dazhou, and other cities are all large
agricultural cities, agricultural products are homogenized, and the
cities’ agriculture has developed a competitive relationship that has
somewhat hampered inter-city trade. On the other hand, the network
rank results indicate that the disparity across cities is progressively
closing and is comparatively low. In the ACERC network, Nanchong,
Neijiang, Zigong, and other central cities serve as “middlemen” and
have direct connections to other cities. Because of their superior
agricultural base, advanced agricultural technology, and efficient
transportation, the majority of these cities may readily become
“bridges” in the network. Stronger relationships with nearby cities are
a result of the abundance of agricultural technology experts and
agricultural carbon emission influencers found in cities with high
agricultural development (Wei and Chen, 2024). As resources, labor,
and technology travel to neighboring cities via transportation,
transportation infrastructure also plays a significant role in the
creation of spatial links. To achieve synergistic carbon emission
reduction in regional agriculture, it is necessary to give full play to the
role of such cities to promote agriculture to achieve cross-regional
carbon emission reduction, which is consistent with the findings of
Shang et al. (2022).

From the perspective of the ACERC’ influencing factors, the
information-level, rural residents’ income, government priority, and
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TABLE 7 Block model analysis of ACERC network in Sichuan.
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Relationships Receive Number of External Internal Expected Actual internal
members internal relationship
I I v relationship (%)
(%)

I 3 4 15 20 5 38 26 20 9.52
111 1 10 3 0 5 11 20 20 21.42
v 5 15 0 2 8 20 27 35 9.09
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FIGURE 9

Core-periphery structure of spatial correlation network of ACERC in 2010 and 2021.
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TABLE 8 QAP regression analysis of ACERC spatial correlation network in Sichuan.

Variable Non-standardized Standardized Significance Proportion as Proportion as
coefficient coefficient large small

Intercept —-0.070 0.000

inf 0.263 0.086 0.045 0.045 0.955

inc —0.169 —0.187 0.004 0.997 0.004

gdp 0.049 0.055 0.206 0.206 0.795

gov 0.086 0.088 0.095 0.095 0.906

tran 0.020 0.022 0.374 0.374 0.627

urb —0.035 —0.041 0.309 0.691 0.309

lab 0.098 0.113 0.091 0.091 0.910

agricultural labor force have the biggest effects on the spatial
correlation of ACERC in Sichuan. This is in line with the findings of
He et al. (2024). The spatial correlation network of ACERC in Sichuan
is not close enough or stable enough, according to the paper’s findings,
which suggests that there is insufficient ACERC spatial spillover
between cities. In order to strengthen the spatial correlation of inter-
regional ACERC, on the one hand, it is necessary to raise rural
residents’ incomes, increase their consumption capacity, and cultivate
green product consumption habits, as well as to encourage workers in
labor resource areas to move to labor-scarce areas in search of more
opportunities to achieve labor mobility in the interregional area. On
the other hand, the government should prioritize the development of
inter-regional coordinated emission reduction activities, as well as
organize inter-regional low-carbon agricultural technology training
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and experience exchange activities focused on regions with high
ACERC, while also improving the level of regional information
technology communication, in order to create conditions for the flow
of agricultural carbon emission reduction factors.

The study has the following drawbacks. To begin, given the limited
availability of data, the assessment indicator system may be insufficient
to include more representative indicators, and future study should
include a broader variety of indicators. Second, the EWM-TOPSIS
approach was employed to evaluate the ACERC, although it was not
well verified for sensitivity and robustness. Finally, this paper only
investigated the breadth and direction of the involvement of the
drivers of the ACERC spatial correlation network in Sichuan, and
future research is needed to understand the role mechanism of
driver interaction.
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5 Conclusions and policy implications

Taking Sichuan Province as the study area, in this paper, the
EWM-TOPSIS model is used to assess the ACERC of cities in
Sichuan, and with the help of gravity model and social network
analysis, the structural characteristics of the spatial correlation
network of the ACERC in Sichuan are revealed, and the driving
factors for the formation of spatial correlation network are
investigated by using the QAP regression analysis method. The
main conclusions are as follows:

1. According to the comprehensive evaluation results of
EWM-TOPSIS, it can be seen that the overall level of ACERC
of 21 cities in Sichuan is not high, and most of the cities’
ACERC is showing a decreasing trend, which has a certain
space for progress. During the study period, the areas with
higher levels of ACERC in the cities of Sichuan are distributed
in a piecemeal manner.

. The closeness of the spatial correlation relationship of ACERC
among cities in Sichuan is not high, there is no hierarchical
structural feature, and the synergistic trend of ACERC is
obvious. However, the stability of the network shows a
decreasing trend, and the network structure needs to be further
optimized. The network shows a core-edge structure, with the
cities of Nanchong, Neijiang, Zigong and Chengdu at the
center of the network, controlling the flow of factors influencing
ACERC. Cities located in central Sichuan are the main
destinations of spatial spillovers from the spatial correlation
network of ACERC.

. The results of the driver analysis show that the information-
level, rural residents’ income, government importance and
agricultural labor force have an important influence on the
formation of the spatial correlation network of ACERC. Among
them, similar levels of information-level, government attention
and agricultural labor force can promote the formation of the
network; differences in rural residents’ income also promote
the formation of the spatial correlation network.

Based on the preceding findings, this study makes the
following suggestions: first, the analysis demonstrates that there
is a broad spatial correlation between Sichuan citiess ACERC, but
the network as a whole is insufficiently connected and unstable.
The government should not only monitor the ACERC in city-level
cities, but also consider their geographical correlation. In the
future, the Sichuan government should fully exploit the role of the
market, strengthen interregional agricultural exchanges and
cooperation, encourage the accelerated flow of agricultural-
related resources and elements, and fully exploit ACERC’s spatial
spillovers to improve the tightness and stability of the linkage
network. Second, it is essential to concentrate on the key cities and
acknowledge the various functions and places that each city plays
in the spatial connection network. In particular, cities in the
network’s core area, such as Nanchong and Neijiang, should fully
utilize their advantages and promote and drive the improvement
of other cities” ACERC:s. Cities in the network’s periphery should
improve communication and collaboration with the local
communities and actively participate in the planning of the
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synergistic development of Sichuan’s agricultural carbon emission
reduction. The government can gradually close the ACERC gap
across cities by developing targeted initiatives based on the spatial
correlation network building mechanism of ACERC in Sichuan.
The positive effects of information technology and agricultural
labor force should be brought into full play to increase the
communication channels of information, accelerate the transfer
and sharing of labor force, and drive the correlation and
coordination of urban ACERC.
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