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Introduction: Within the context of “dual carbon,” exploring the characteristics of 
the spatial network structure of regional agricultural carbon emission reduction 
capacity (ACERC) is beneficial to improve regional sustainable development 
capacity.
Methods: Taking Sichuan Province as the case area, this research evaluates the 
regional ACERC and analyzes its spatial and temporal evolution characteristics 
by collecting agricultural-related data from 2010 to 2021 from all cities in 
Sichuan Province using the EWM-TOPSIS model. Combined with the modified 
gravity model, this paper investigates the spatial correlation strength of regional 
ACERC. Then, using social network analysis (SNA), the spatial network structure 
and its formation mechanism are explored.

Results and discussion: The research findings indicate that: (1) The ACERC of 

most cities in Sichuan shows a declining trend, with distinct regional clustering 

characteristics. The spatial effects of ACERC have transcended geographical 

proximity to form a complex spatial network. (2) The spatial network structure 

of ACERC in Sichuan exhibits strong connectivity and a loosening hierarchical 

structure, but network stability is declining. (3) Cities such as Neijiang, Zigong, 

and Mianyang occupy central positions within the network, playing the role 

of central actors. (4) Differences in information-level, rural residents’ income, 

government importance, and agricultural labor force contribute to the formation 

of the spatial association network of ACERC. The findings of this study can assist 

decision-makers in identifying the interconnections and formation mechanisms 

of ACERC among cities, providing a reference basis for agricultural regional 

collaborative carbon emission reduction measures.

KEYWORDS

agricultural carbon emission reduction capacity, modified gravity model, social 
network analysis, spatial correlation characteristic, Sichuan Province

1 Introduction

Global warming is one of the most serious challenges facing humanity at present, and the 
multiple hazards to food, water resources and ecological security brought about by climate 
warming seriously threaten humanity’s survival (Zhou et al., 2024; Toor et al., 2024). As one 
of the main drivers to climate warming, carbon emissions are now the focus of environmental 
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regulation, and reducing carbon emissions has become a key 
worldwide concern (Xu et al., 2023; Shen and Wang, 2023). According 
to “The National Strategy for Adaptation to Climate Change 2035,” 
China’s average temperature has continued to rise from 1951 to 2020, 
by an average of 0.26 °C each decade, which has exceeded the world’s 
average rate of increase. To this end, the Chinese government has 
made several attempts and proposed a phased approach to achieving 
the “dual-carbon” target (Zhu et al., 2024). However, this ambitious 
goal faces significant challenges in the agriculture sector. Agriculture 
is the world’s second largest source of carbon emissions after industry, 
with carbon dioxide emissions from agricultural production activities 
accounting for between 20 and 35 per cent of agricultural greenhouse 
gas emissions (Frank et al., 2019). China is a large agricultural country 
and has always relied on agriculture to support its national economy, 
with agricultural carbon emissions accounting for 17% of total carbon 
emissions (Liu et al., 2021). According to the data released by the Food 
and Organization of the United Nations (Figure 1), in 2021, China’s 
agricultural carbon emissions are 1,322 million tons, an increase of 
approximately 211 million tons from 2010, showing an upward trend 
with an average annual growth rate of approximately 1.6%. The 
majority of carbon emissions from agriculture are generated by 
agricultural material inputs, agricultural energy consumption, and 
agricultural plowing, and so on. The extensiveness and universality of 
agricultural activities make it impossible to avoid agricultural carbon 
emissions. Improving the utilization rate of agricultural resources, 
reducing energy consumption, and enhancing ACERC are all efficient 
ways to achieve low-carbon development in agriculture.

“Ability to reduce emissions” refers to the level of social 
development, political support, economic structure and technology 
that enables effective carbon emission reductions (IPCC, 2007). 
Promoting ACER is a critical link in the overall emission reduction 

aim (Huan et  al., 2025), and its success directly influences the 
achievement of the dual-control carbon reduction target. 
Consequently, researchers have developed methods to quantify 
ACERC, which generally fall into three categories: (1) Characterizing 
the ACERC by assessing the efficiency of agricultural carbon 
emissions using DEA; (2) Calculating a carbon emission reduction 
potential index to measure the ACERC while keeping equity and 
efficiency in mind; (3) Constructing an evaluation index system to 
quantify the ACERC. However, economic, energy, industrial 
structure, efficiency, and demographic (Shi and Chang, 2023; Huang 
X. et al., 2024; Wei and Chen, 2024; Li and Gao, 2024) all have an 
impact on the ACERC. The first two methods use a single indicator 
to characterize the ACERC, neglecting the impact of other 
multidimensional variables. There are few studies that use 
multidimensional indicators to measure the ACERC, with most 
concentrating on low-carbon agriculture (Song and Dou, 2024), 
agricultural carbon peaking (Xu et al., 2022), and agricultural carbon 
neutrality (Chen et al., 2024). In addition, some scholars have further 
explored the spatial pattern of agricultural carbon emission reduction 
(Hou M. Y. et al., 2024), spatial distribution characteristics (Ye et al., 
2024) and so on. A large number of studies have shown that 
agricultural carbon emission reduction presents obvious regional 
differences. However, the study of regional agricultural carbon 
emission reduction should not be limited to the differences in spatial 
distribution, but should also further consider its spatial correlation.

The spatial correlation of ACERC refers to the spatial influence 
of ACERC in different regions through exchanges and other forms. 
Exchanges and collaboration between cities have increased in 
frequency as interregional cooperative development has deepened 
(Zhang X. et al., 2024; Huang H. et al., 2024). The spatial correlation 
is not only reflected in the economy, but also in the agricultural 

FIGURE 1

China’s agricultural carbon emissions and growth rate from 2010 to 2021.
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carbon emissions. It has been demonstrated that agricultural carbon 
emissions exhibit a spatial association, mostly due to production 
factors and technology (Wang et al., 2024). Agriculture in many 
locations has been driven to intense and large-scale production as a 
result of market demand, economic development, and government 
guidance, leading in agricultural industry agglomeration (Wang 
H. et al., 2023). On the one hand, large-scale, centralized operations 
can lower carbon emissions by improving crop cultivation, 
optimizing industrial structure, and sensibly allocating and using 
agricultural resources. On the other hand, agricultural industrial 
agglomeration may promote information exchange and technical 
innovation. In agricultural cluster areas, advanced technology is 
easier to implement, and new technologies can reduce greenhouse 
gas emissions during production while increasing the efficiency of 
agricultural production resources (Zhang S. et al., 2024). In order to 
lower agricultural greenhouse gas emissions, cities in the 
agglomeration area compete to introduce technologies from the 
technology demonstration area. This encourages the spatial spillover 
effect of agricultural resource elements and provides a pathway for 
the development of the spatial correlations in the 
ACERC. Additionally, cities in an area would be  subject to 
comparable environmental regulations, and their approaches to 
reducing carbon emissions would coincide, leading to “emission 
reduction imitation” or “emission reduction confrontation” (He 
et  al., 2022). The development of synergistic carbon emission 
reduction among areas will reinforce the construction of the 
geographical correlation of ACERC, in addition to the coordinated 
deployment of higher-level governments. The interaction of the 
ACERC is not only limited to the neighboring regions, but also 
exceeds the geographic boundaries to achieve inter-regional 
interaction. Therefore, the study of ACERC should also consider its 
spatial correlation, in order to explore the new characteristics of the 
ACERC under the regional synergistic development.

With regard to the spatial relevance of the ACERC, some scholars 
have revealed the spatial spillover effect of the ACERC based on 
exploratory spatial analysis methods and spatial measurement 
models (He et al., 2021). However, most of these studies are based on 
the geographical proximity perspective, which lacks a holistic 
approach, does not take into account the possible impacts of 
‘non-neighboring’ areas, and is limited to ‘attribute data’, with obvious 
regional limitations (Gao and Gao, 2024; Cheng et  al., 2024). In 
response, some scholars have introduced SNA. SNA is an 
interdisciplinary analysis method that uses mathematical methods 
and graph theory tools to explore the impact of relationship results 
on structural composition or the whole from the perspective of 
‘relationship’ (Benítez-Andrades et  al., 2020), and it can achieve 
quantitative analysis of complex network relationships between 
nodes based on ‘relational data’. The quantitative analysis of complex 
network relationships between nodes can be  achieved based on 
‘relational data’, which is now widely used in the fields of economy, 
tourism, carbon emission, environmental pollution, etc. (Liu P. et al., 
2023; Tan et al., 2024; Shi et al., 2024; Chen et al., 2023). Relevant 
studies have analyzed the spatial network characteristics of carbon 
emissions or carbon emission efficiency from the perspectives of 
overall network characteristics, individual network characteristics, 
and the block model by building a carbon emission or carbon 
emission efficiency correlation matrix (Huang H. et al., 2024; Sun 
et  al., 2024). On this basis, some scholars have investigated the 

driving factors of spatial correlation networks, such as economic 
level, spatial distance, technological level, urbanization, and 
population size (Ji and Zhang, 2023; Zhang Z. et al., 2024), providing 
a theoretical foundation for the research of ACERC’s spatial 
correlation network characteristics.

In summary, there are some limitations in the existing studies. In 
the context of regional development strategy, there is an urgent need to 
analyze the spatial correlation of ACERC based on the perspective of 
complex network and breaking through the limitation of geographical 
proximity. In terms of ACERC, the existing literature is limited to the 
use of a single indicator to measure the ACERC, and ignores the spatial 
correlation of ACERC. In view of this, this research takes Sichuan 
Province as the research object. Based on EWM-TOPSIS, we measure 
the ACERC in Sichuan Province from 2010 to 2021. The modified 
gravity model and SNA are then utilized to investigate the spatial 
structure of ACERC in Sichuan, clarify the correlation effect and 
interaction mechanism of ACERC between regions. The Quadratic 
Assignment Procedure (QAP) is used to explore the driving forces of the 
spatial correlation network. The primary contributions of this study are 
as follows: (1) Considering five dimensions, namely, agricultural 
economic development level, agriculture industry structure, agriculture 
technology progress, agricultural input, and agricultural carbon 
emission level, the paper comprehensively evaluates ACERC of cities in 
Sichuan, and enriches the literature on the evaluation of ACERC. (2) By 
integrating theories related to ACERC, spatial correlation network, and 
regional agricultural development, a theoretical framework has been 
constructed that systematically reveals the spatial correlation of regional 
ACERC. Based on this theoretical framework, a comprehensive 
examination of the spatial relationship and driving mechanisms between 
the ACERC of “adjacent” and “non-adjacent” cities has been conducted, 
providing support for the formulation of regional agricultural 
collaborative carbon emission reduction policies in the future.

The following is a summary of the rest of the study: section 2 
presents an overview of the study area, the data sources, and the 
research methodology; section 3 describes the findings of the research 
as well as the analytical process; section 4 is a discussion of the results 
of the analysis; and section 5 summarizes the conclusions of the 
analysis and provides corresponding policy implications.

2 Materials and methodologies

2.1 Research framework

In this study, Sichuan Province is taken as the study region, and data 
related to agriculture in each city of Sichuan Province from 2010 to 2021 
are collected. An assessment system of ACERC is constructed based on 
five key dimensions, namely, agricultural development level, agricultural 
industrial structure, agricultural technological progress, agricultural 
inputs and agricultural carbon emissions level, and the EWM-TOPSIS 
model is utilized to assess the regional ACERC. Based on the assessment 
results and the modified gravity model, the spatial correlation strength 
of the regional ACERC is calculated. Then, the overall characteristics and 
individual characteristics of the spatial association network of ACERC 
are analyzed using SNA, and the roles played by cities in the spatial 
network are examined based on the outputs of the block model and 
core-edge. Finally, the spatial network formation mechanism is explored 
using QAP regression analysis. The detailed steps are shown in Figure 2.
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2.2 Study area and data

Sichuan Province is located in southwestern China, at the upper 
reaches of the Yangtze River, between latitude 26°03′–34°19′ north and 
longitude 97°21′–108°12′ east (Figure  3). It covers a total area of 
486,000 square kilometers, with 18 prefecture-level cities and 3 
autonomous prefectures under its jurisdiction. One of the 13 main 
grain-producing regions of China, Sichuan Province is a traditional 
agricultural province that is crucial to the country’s agricultural 
modernization and food security. Because of the government’s careful 
monitoring and the community’s combined efforts, Sichuan’s 
agricultural development has yielded remarkable results throughout the 
past 40 years of reform and opening up. In 2021, grain output reached 
35.821 million tons, ranking tenth in the nation, while the primary 
industry’s added value reached 566.19 billion yuan, ranking second in 
the nation after Shandong Province. Sichuan’s “10 + 3” industrial 
strategy has also yielded remarkable results, turning the province from 
a large agricultural area into a potent one. However, a considerable 
amount of carbon emissions has also been produced in spite of 
agriculture’s continuous advancements. Taking the plantation industry 
as an example, the carbon emissions from the plantation industry in 
Sichuan in 2021 are 23,585,100 tons. Currently, there is a situation of 
small-scale agricultural production, irrational industrial structure, and 
low fertilizer utilization rate in Sichuan Province. Sichuan Province is 
facing a serious situation in agricultural carbon emission reduction. To 
this end, the Sichuan Provincial Department of Agriculture and Rural 
Development, in conjunction with the Provincial Development and 
Reform Commission, has triggered the Implementation Plan for 

Emission Reduction and Carbon Sequestration in Rural Agriculture in 
Sichuan Province, which sets out various rural emission reduction and 
carbon sequestration targets and calls for the realization of a green 
transformation of agriculture. Reducing carbon emissions from 
agriculture is a critical component of achieving peak carbon and carbon 
neutrality in Sichuan, as well as supporting China’s dual carbon goal.

The research time span of this research is from 2010 to 2021, 
focusing on 21 cities in Sichuan Province. The data used in this 
research come from the Sichuan Provincial Statistical Yearbook, the 
Sichuan Provincial Science and Technology Yearbook, the statistical 
yearbooks of prefectural-level cities, the administrative reports of 
prefectural-level city governments, and the statistical bulletins of 
national economic and social development. For missing data on 
fertilizer application and pesticide application in Ganzi, Aba and 
Liangshan in 2021, linear interpolation was used to fill in the gaps. 
Distances between municipalities were calculated using the distance 
function in Arcgis. Carbon emissions from agriculture are calculated 
according to the methodology provided in the 2006 IPCC Guidelines 
for National Greenhouse Gas Inventories.

2.3 Methods

2.3.1 Construction of an indicator system for 
ACERC

The current agricultural development pattern, which is 
marked by high investment, rapid growth, and high resource 
usage, is no longer feasible in light of the “dual carbon” goals. 

FIGURE 2

Research frame diagram.
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Agricultural expansion must align with national “dual carbon” 
policies and progressively transition to a low-carbon and green 
model in order to achieve the “dual carbon” goals. Numerous 
factors affect agricultural carbon emissions, and the effects of the 
economy, industrial structure, technological advancement, and 
other factors must be  taken into account in order to reduce 
agricultural carbon emissions (Huang Y. et al., 2024; Zheng et al., 
2024; Ji et al., 2024). Thus, this study is founded on the scholars’ 
research findings (Chen et al., 2023; Liu Y. et al., 2023; Li et al., 
2023; Cai et  al., 2025). Following the principles of 
comprehensiveness, accessibility, representativeness, and 
scientificity in the selection of indicators, this paper establishes an 
indicator system based on five aspects: agricultural development 
level, agricultural industry structure, agricultural technology 
progress, agricultural inputs, and the level of agricultural carbon 
emissions, as shown in Table 1.

2.3.2 Calculation of ACERC
Regarding the calculation of indicator weights, most of the 

existing literature uses methods such as hierarchical analysis (Dutta 
et al., 2024), principal component analysis (Liu et al., 2024), and 
CRITIC (Ke et al., 2022). However, these methods are flawed in that 
they ignore the nature of weights, lack objectivity in evaluation 
outcomes, and are sensitive to outliers. The EWM is an objective 
weighting method that reduces subjectivity and bias in results by 
determining objective weights depending on the degree of indicator 
variability. The TOPSIS method uses a simple, intuitive approach and 
little processing effort to determine the distance between each 
measurement object and the optimal and subpar solutions. The 
TOPSIS and EWM are combined in the EWM-TOPSIS technique. It 
considers the correlations between features when determining 
attribute weights and expresses these correlations using information 
entropy, which enhances model accuracy and enables a more detailed 
analysis of how characteristics affect decision outcomes. The results 

are also more accurate since it considers both indication weights and 
how close assessment items are to the ideal solution. The 
EWM-TOPSIS model is suitable for sample data that contains a 
variety of evaluation objects and indicators, enabling strong 
comparability evaluation conclusions, despite a number of constraints 
in its application technique. Consequently, it has had extensive use 
across numerous industries (Miao et al., 2025; Wang J. et al., 2023; 
Zhang et al., 2022).

The panel data should be converted into cross-sectional data using 
the indicator dimensions, with the weights of the indicators being the 
same in each year, to ensure that the outcomes are comparable across 
time periods. Comparing outcomes across time periods is ensured by 
setting a consistent reference object. To ascertain the ACERC of every 
Sichuan city at the prefecture level, this study uses EWM-TOPSIS. The 
following is the precise formula.

	 1.	 Since there are obvious differences in the units of 
measurement of the various indicators, the indicators are 
standardized. Positive indicators are calculated using 
Equation 1, and negative indicators are calculated using 
Equation 2:

	

′ −
=

−

min
max min

ij ij
ij

ij ij

x x
x

x x 	
(1)

	

′ −
=

−

max
max min

ij ij
ij

ij ij

x x
x

x x 	
(2)

where i represents the city, j represents the indicator, max ijx  and 
min ijx  represent the maximum and minimum values of the indicator, 
respectively, and '

ijx  represents the standard value of the j indicator 
for the city.

FIGURE 3

Overview map of the study area.
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	 2.	 Calculate the entropy value of the j indicator using Equation 3:

	

=

=

= − ∑
∑1
1

1
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n
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j n
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ij
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x
e

n
x

	

(3)

	 3.	 Calculate the weight Wj of the j indicator using Equations 4, 5:

	
= −1j jE e

	 (4)

	 =

=
∑ 1

j
j m

jj

E
W

E
	

(5)

	 4.	 Calculate the Euclidean distances +
id  and −

id  between each 
evaluation object and the positive ideal solution +

iZ  and 
negative ideal solution −

jZ , respectively, using 
Equations 6, 7:

	
( )+ +

=
= −∑

2

1

m

i j j ij
j

d w Z Z
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( )− −

=
= −∑

2

1

m

i j j ij
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d w Z Z
	

(7)

	 5.	 Calculate the relative progress Ci, using Equation 8:

	

−

+ −
=

+
i

i
i i

dC
d d 	

(8)

where Ci represents ACERC. The closer its value is to 1, the higher 
the agricultural carbon reduction capacity of the city i.

2.3.3 Modified gravity model
The gravity model is widely acknowledged as one of the feasible 

methods. The new economic geography theory believes that spatial 
distance has an impact on the inter-city interaction relationship and 
follows the principle of distance decay. The traditional gravity model 
lacks knowledge of the urban system and is difficult to reflect the 
spatial correlation between cities. Based on the above considerations, 
the traditional gravity model was modified by incorporating regional 
agricultural economic factors, drawing on the previous literature 
(Hou G. J. et  al., 2024). The modified formulas are presented in 
Equations 9, 10:

	

×
=

 
  − 

2
i j

ij ij
ij

i j

ACERC ACERC
R k

D
g g 	

(9)

	
=

+
i

ij
i j

agk
ag ag 	

(10)

TABLE 1  Evaluation system of ACERC.

First-level indicators Second-level indicators Indicators Attributes Reference

Agricultural development level 

(A)

Growth rate of gross agricultural output (A1) Growth rate of gross agricultural output + −

Agricultural share in GDP (A2) Gross agricultural output/GDP + Zhou et al. (2025)

Agricultural economic growth (A3) Primary industry value added + Wang et al. (2020)

Agricultural industrial structure 

(B)

Industrial integration (B1) Added-value of agricultural service industry/

total output of the primary sector

+ Chen et al. (2022)

Planting structure (B2) Grain sown area/crop planting area + Wang et al. (2024)

Agricultural industry structural adjustment 

index (B3)

(1-gross agricultural output)/total output of the 

primary sector

+ Wei et al. (2023)

Percentage of livestock (B4) Gross output of animal husbandry/gross output 

of agriculture, forestry, animal husbandry, and 

fishery

− Hao et al. (2022)

Agricultural technological 

progress (C)

Agricultural technological human resources 

(C1)

Agricultural specialist personnel count/primary 

sector employment

+ Wu et al. (2024)

Agricultural R&D investment (C2) Agricultural R&D investment + Chandio et al. (2023)

Agricultural inputs (D) Pesticide application intensity (D1) Pesticide consumption/crop sown area − Song et al. (2023)

Fertilizer application intensity (D2) Fertilizer consumption/crop sown area − Ma et al. (2024)

Agricultural carbon emission 

level (E)

Agricultural carbon emission intensity (E1) Agricultural carbon emissions/Gross 

agricultural output

− −

Agricultural carbon emission density (E2) Agricultural carbon emissions/Crop planting 

area

− −
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where i and j represent cities i and j respectively; Rij represents the 
spatial correlation strength of ACERC between city i and city j; 
ACERC represents agricultural carbon emission reduction capacity; 
kij represents the contribution of city to the spatial correlation intensity 
of agricultural carbon emission reduction capacity between city i and 
city j; Dij represents geographical distance between city i and city j; g 
represents the per capita gross value of agricultural output; ag 
represents the gross value of agricultural output.

2.3.4 SNA model
The SNA method is an interdisciplinary approach to analyzing 

“relational data.” It uses relationships as the basic unit of analysis and 
construct models by quantifying the relationships between places in 
the region. Based on the spatial correlation network matrix, this 
research adopts the SNA method to explore the member relationships 
in the network, and comprehensively reveals the structure of the 
spatial correlation network and its attribute characteristics of the 
ACERC of each city in Sichuan Province.

	 1.	 Overall structural characteristics. In this survey, network 
efficiency, hierarchy, density and connectedness are selected to 
characterize the overall structure of the ACERC of cities in 
Sichuan Province. Among them, network density is used to 
reflect the correlation strength of each node within the spatial 
correlation network. Network efficiency reflects the stability of 
the spatial correlation network. Network connectedness is 
used to reflect whether there is an unreachable logarithm in 
the spatial correlation network of ACERC. Network hierarchy 
reflects the status difference of each node in the spatial 
network structure. The lower its value is, the smaller the gap 
between the hierarchies within the network is, and the more 
balanced the effect of each node on the spatial correlation 
network of ACERC. The detailed formula for each indicator 
are presented in Table 2.

	 2.	 Individual structural characteristics. The individual structural 
characteristics of the spatial association network are mainly 
analyzed using three indicators: degree centrality, closeness 
centrality and betweenness centrality. In the study, when the 
degree centrality of a node is higher, it indicates that the node 
is closer to the center of the spatial correlation network and has 
a stronger effect on the rest of the network nodes. When the 
closeness centrality of a city is higher, it indicates that it is 
closer to the other cities in the spatial correlation network. The 
betweenness centrality of a city is higher, the stronger the city’s 
controlling and regulating effect on the other cities in the 
spatial correlation network is. The detailed formula for each 
indicator are presented in Table 3.

	 3.	 Core-periphery structural characteristic. The core-periphery 
structure is a special structure formed by the interconnection 
of regions with a compact center and a loose periphery, which 
characterizes the status or importance of a region in the spatial 
association network. Therefore, this research utilizes the core-
periphery structure to identify the core and edge actors in the 
spatial linkage network of ACERC in Sichuan.

	 4.	 Block model. The basic method for spatial clustering analysis 
in SNA is the block model. To arrive at a coefficient matrix with 
values of 1 or −1, clustering analysis is carried out iteratively, 
which entails computing the correlation coefficients of each 
row in the network matrix. People who have the same 
coefficients are divided into two groups. The clustering 
structural features of ACERC throughout 21 Sichuan cities are 
investigated in this study using the block model, with an 
emphasis on the roles and functions of each block within the 
spatial association network of ACERC across 21 cities. This 
study classifies the 21 cities into four categories: bidirectional 
spillover, net benefit, net spillover, and broker. The attributes of 
each block are determined based on the ratio of internal and 
external reception and emission relationships within the block 

TABLE 2  Description of overall network characterization indicators.

Indicators Formula Indicator instruction

Network density
( ) = × − / 1D V N N

V is the number of network associations. N is the total correlation number between cities.

Network efficiency ( )= −1 / maxE S S S is the number of redundant lines in the network.

Network connectedness
( ) = − × − 1 / 1 / 2C L N N

L is the number of point pairs unreachable symmetrically in the network.

Network hierarchy ( )= −1 / maxH K K K is the number of point pairs reachable symmetrically in the network.

TABLE 3  Description of individual network characterization indicators.

Indicators Formula Indicator instruction

Degree centrality ( )= −/ 1D m MC m is the number of cities directly related with a particular city in the network; M is the total correlation 

number between cities.

Closeness centrality
=

=
∑
1

C D
M

C ij
i

Dij is the shortest distance between cities i and j.

Betweenness centrality ( )

( ) ( )
=

− −

∑ ∑2

1 2

g i

g
B

t t

jkm m
j k jk

C

gjk is the number of shortest paths that exist between city j and city k. t is the number of cities.
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and the number of members within the block. The classification 
criteria are shown in Table 4.

2.3.5 QAP analysis
Identifying the driving factors of the spatial correlation network 

of ACERC is crucial for regional agricultural carbon emission 
reduction efforts. The QAP can identify the influencing factors of 
the spatial association network of independent variables based on 
“relationship data.” Furthermore, QAP does not require 
independence and normal distribution assumptions and can 
overcome the collinearity problem between variables (Li et  al., 
2024). Consequently, the results of utilizing the QAP to analyze 
relationship data are more reliable than those of standard regression 
analysis. In order to better understand the factors influencing the 
spatial correlation network evolution of ACERC across 21 Sichuan 
cities, this study uses the QAP approach. Based on previous research 
findings (Chen et al., 2022; Yang and Su, 2024; Yang and Zhu, 2025), 
the selected driving factors are as follows: (1) Information-level 
difference matrix (inf), represented by the total volume of postal 
and telecommunications services in each region. (2) Rural residents’ 
income difference (inc), represented by the difference in per capita 
disposable income of rural residents. (3) Economic level difference 
matrix (gdp), represented by the difference in regional GDP. (4) The 
government importance difference matrix (gov), represented by 
differences in expenditures on agriculture, forestry, and water 
affairs. (5) Agricultural labor force difference matrix (lab), 
represented by differences in the number of agricultural workers. 
(6) Transportation level difference matrix, represented by 
differences in regional highway freight volume (tran). (7) 
Urbanization level difference matrix (urb), represented by 
differences in urbanization rates.

3 Results

3.1 Weight analysis of ACERC

The EWM is used to calculate the weights of various indicators 
affecting the ACERC, with the results shown in Figure 4. Among the 
first-level indicators, the indicator with the highest weight is 
agricultural industrial structure at 0.2797, indicating that improving 
the ACERC requires a focus on optimizing the agricultural industry 
structure. Among the secondary indicators, the highest weight value 
is for pesticide application intensity in agricultural input, at 0.0996; 
followed by agricultural technical talent resources and agricultural 
share in GDP, at 0.0968 and 0.0948, respectively. The weighting 
results show that indicators with lower weights are focused in 
agricultural carbon emission levels.

3.2 Spatial and temporal characteristics of 
ACERC

3.2.1 Temporal evolutionary characteristics of 
ACERC

With the help of the EWM-TOPSIS, the annual ACERC of 21 cities 
in Sichuan Province from 2010 to 2021 is measured and analyzed, and 
the results are shown in Figure 5. The average level of ACERC in all cities 
fall from 0.476 in 2010 to 0.456 in 2021, showing an overall negative 
trend in ACERC. Chengdu has the highest ACERC value, at 0.548. Aba 
and Nanchong come next. The three cities with the lowest ACERC are 
Luzhou, Panzhihua, and Suining, with 0.392, 0.375, and 0.367, 
respectively. Ziyang have the highest average annual growth rate, at 2.6%. 
Guang’an have the slowest growth rate, with an average annual growth 
rate of 0.06% for the research period. The majority of cities see negative 
growth, with Ganzi having the biggest fall in ACERC, with an average 
annual growth rate of −2.75%. This could be due to Ganzi’s move to 
modern agriculture, which includes increased investment in production 
materials to raise agricultural productivity and hence increase 
agricultural carbon emissions. However, Ganzi’s total agricultural carbon 
emissions are rather low. As a result, when carbon emissions increase by 
a given level, ACERC tends to drop.

3.2.2 Spatial evolutionary characteristics of 
ACERC

To better understand the spatial characteristics of ACERC in 
Sichuan Province cities, this survey selects 2010, 2014, 2018, and 2021 
as the study period, and uses ArcGIS software to draw the spatial 
differentiation map of the level of ACERC in each region (Figure 6). In 
2010, Sichuan has a high ACERC, with cities clustered together. Because 
of the influence of various factors on ACERC, surrounding cities 
typically have comparable agricultural production settings, resulting in 
ACERC convergence. Sichuan’s overall ACERC declines somewhat in 
2014, with minor changes in distribution characteristics compared with 
2010. Cities along the province’s north–south axis have slightly higher 
overall ACERCs than cities in other regions. In 2018, the ACERC of 
most cities decreases dramatically, but the number of cities with Grade 
I ACERC climb significantly. At that time, Sichuan was experiencing 
unprecedented growth. Population growth and economic development 
increased demand for grain and agricultural products, resulting in an 
expansion of agricultural production. However, in the early phases, 
agricultural production methods in some cities were rather extensive, 
resulting in a huge amount of agricultural carbon emissions, causing the 
ACERC to fall behind the rate of agricultural emissions. In 2021, the 
ACERC of cities in Sichuan improves compared to 2018. This could 
be  because Sichuan aggressively supported agricultural supply-side 
structural reforms and low-emission agricultural production 
techniques, in response to the Chinese government’s proposal to 
promote green agricultural development.

3.3 Overall network characteristic of 
ACERC

Using the modified gravity model, the spatial correlation of 
ACERC in Sichuan Province is determined. To dipict the spatial 
correlation strength as well as the path of ACERC in Sichuan Province, 
2010 and 2021 are chosen as time nodes to be visualized with the 

TABLE 4  Block model sectioning rules.

Proportion of 
relationships within 
a block

Proportion of relationships 
received by a block

≈0 >0

( ) ( )≥ − −1 / 1g gk
Bidirectional spillover Net benefit

( ) ( )< − −1 / 1g gk
Net spillover Agent
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assistant of Arcgis, and the spatial correlation strength is separated 
into three levels utilizing the natural break method, as shown in 
Figure 7. Generally speaking, the spatial network structure of ACERC 
is obvious, showing the characteristic of “sparse in the west and dense 
in the east.” Over time, the strength of inter-city spatial linkages has 
been increasing. The geographical barrier between cities has been 
gradually eliminated, communication and interaction have been 
strengthened, thus promoting the synergistic development of 
agricultural carbon emission reduction. In 2010, Aba, Chengdu and 
Meishan form a triangle of strong links, as do Guangyuan, Bazhong, 
Nanchong, and Guang’an. Chengdu, being the leading city in Sichuan 
Province, plays an obvious siphoning role in the region, and has a 
certain intensity of radiation effect on most of the surrounding cities. 
In 2021, Neijiang and Ziyang present a “twin-star” structure, with 
strong spatial linkages. It is worth noting that the spatial pattern with 
Chengdu as the core has changed, with Neijiang taking over Chengdu’s 
central position in the network.

In order to analyze the overall network characteristics of ACERC 
in Sichuan Province, the network density, network hierarchy, network 
closeness and network efficiency of the spatial correlation network in 
Sichuan Province from 2010 to 2021 are measured using Ucinet. The 
results are shown in Table 5.

(1) During the study period, the network density of ACERC 
decreases from 0.2476 to 0.2238. The average value of network density 
is 0.1956, which is relatively low overall, indicating that the inter-
municipal spatial connection of ACERC is not strong. This is because 
there are regional differences in the ability of municipalities to access 
and exchange agricultural capital, technology, and labor. There are 
barriers to inter-municipal interconnections. (2) The network 
connectedness consistently maintains its level of 1, suggesting that 
there is no isolated development among cities, and that any city could 
be integrated into the spatial network of ACERC through direct or 
indirect links with other cities. The spillover effect between cities is 
obvious, and they influenced each other. (3) The network hierarchy 
decreases from 0.3333 to 0.1810, indicating that the degree of network 
inequality in the spatial correlation network gradually decreases and 

develops in the direction of equalization, and the synergistic effect of 
agricultural carbon emission reduction in each region is obvious. 
Mainly influenced by market, information, policy and other factors, 
agricultural labor, capital, agricultural technology and other factors 
related to agricultural carbon emission reduction are able to achieve 
coordinated allocation within the province, reducing regional 
differences. (4) In the spatial correlation network, network efficiency 
shows a fluctuating upward trend, rising from 0.7632 to 0.8158, 
indicating that the spatial correlation between the ACERC of various 
cities and is decreasing and the stability of the network is declining.

3.4 Individual network characteristic of 
ACERC

The overall network characteristics only reflect the overall 
situation of the spatial correlation network of ACERC in Sichuan 
Province. To further reveal the position and role of each city in the 
network, this paper measures and analyzes three individual network 
characteristic indicators, namely, degree centrality, betweenness 
centrality and closeness centrality of each city in 2021. The results are 
shown in Figure 8.

	 1.	 The average degree centrality for 2021 is 5.238. Six cities, 
including Neijiang, Zigong, and Mianyang, have degree 
centrality values higher than the average. It indicates that 
these cities have significant spatial connections with other 
cities and occupy central positions in the network, playing a 
leading role in enhancing Sichuan’s ACERC. Due to the 
differences in inter-city connections, the ACERC of cities 
form a directed spatial network. In-degree and out-degree 
reflect a city’s radiation and aggregation effects on other cities. 
In 2021, eight cities, including Nanchong, Deyang, Mianyang, 
Chengdu, and Liangshan, have higher in-degree than 
out-degree. These cities are predominantly economically 
developed regions that benefit greatly from the spatial 
association network of ACERC. They effectively attract and 
promote resources and elements conducive to agricultural 
carbon emissions reduction, converting them efficiently to 
enhance their own ACERC.

	 2.	 In 2021, Sichuan’s average betweenness centrality value is 
21.99. Six cities have betweenness centrality scores higher 
than the average, including Neijiang, Mianyang, Zigong, 
Meishan, and others. These cities dominate the network 
structure and can effectively regulate and control the 
ACERCs in other regions. These cities serve as the primary 
conduits for the majority of network connectivity. Some of 
them, such as Meishan and Ya’an, are located in central 
Sichuan, allowing them to effectively aggregate various 
agricultural resources from neighboring cities, absorb 
advanced agricultural technologies, funds, and talent from 
developed cities, and export these resources to cities with 
lower ACERC. Neijiang, as a transportation hub in Sichuan 
Province, has a well-developed transportation network that 
strengthens direct connections with other cities, facilitating 
the flow of relevant resources and elements. Therefore, it can 
serve as an “intermediary” and “bridge” within the spatial 
association network.

FIGURE 4

The weight of indicators affecting ACERC.
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	 3.	 In terms of closeness centrality, Sichuan’s average value in 2021 
is 52.66. Nine cities have values above the average, indicating 
that they are ‘active participants’ in the spatial association 
network, capable of receiving and transmitting relevant 
elements and thereby influencing other cities’ ACERC. In 
comparison to other cities, Mianyang has a strong agricultural 
industry base, with a well-developed agricultural industrial 
chain, high agricultural production value, and modern 
agriculture technology and facilities. It can provide other cities 
with green and low-carbon technologies and related green and 
low-carbon production knowledge. Ganzi’s high closeness 
centrality stems mostly from policy support. Under the support 
of policies such as the Western Development Initiative, the 
more developed regions in eastern Sichuan have provided 
Ganzi with various elements such as funds, talent, and 
technology. The inflow of these elements has enhanced Ganzi’s 
closeness centrality.

3.5 Spatial clustering characteristics of 
ACERC

This paper uses the CONCOR in Ucinet6 to explore the roles of 
each sector in the spatial correlation network of ACERC in Sichuan in 
2021 within the network structure, dividing it into four sectors. The 
members within each sector are listed in Table 6.

As shown in Table 7, block I gets 9 external relationships and 
sends out 13 others. The number of external relationships receives is 
less than the number sent out, and there are few internal relationships 
inside the sector, hence it falls under the broker sector. Members of 
this sector include Aba, Panzhihua, and Ya’an, who serve as a “bridge” 

in ACERC’s spatial association network. Block II has an expected 
internal relationship ratio of 20%, however the actual ratio was 9.52%. 
The number of received relationships and overflow relationships are 
26 and 38, respectively, indicating a net overflow block. This block 
includes Guang’an, Bazhong, Dazhou, Suining, and Guangyuan. These 
cities primarily export labor and other factors to other blocks. Block 
III has an actual internal relationship ratio greater than the expected 
internal relationship ratio, with the number of relationships receiving 
spillover from other blocks far exceeding the number of relationships 
sent to other blocks, thus qualifying as a net beneficiary block. The 
cities within this block are Nanchong, Deyang, Mianyang, Zigong, and 
Neijiang. These cities either have well-developed agriculture or 
advanced transportation infrastructure, primarily benefiting from 
factor inputs from other blocks. Region IV has more connections with 
external regions than with its internal members, with both incoming 
and outgoing relationships being relatively high. Therefore, this region 
also belongs to the broker region, which includes eight cities such as 
Liangshan, Ganzi, and Yibin.

The identification of core-periphery structures also holds 
significant practical implications for spatial network structures. 
This study utilized the Core/Periphery function in Ucinet to map 
the core-periphery structure diagrams of Sichuan’s ACERC for 
2010 and 2021 (Figure 9), analyzing the evolutionary characteristics 
of the core-periphery structure. In 2010, the core areas are 
primarily located in the northern part of Sichuan, including 
Chengdu, Deyang, Zigong, and Nanchong. In 2021, the core 
regions have undergone changes, with Suining, Yibin, and Aba no 
longer part of the core region, as their agglomeration functions and 
attractiveness have weakened. Additionally, Ganzi, Neijiang, 
Meishan, Guang’an, and Ziyang have become part of the core 
region. During the study period, the core area shows an expanding 

FIGURE 5

Average value and growth rate of ACERC from 2010 to 2021.
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FIGURE 6

Spatial distribution of ACERC from 2010 to 2021.

FIGURE 7

Spatial correlation strength of ACERC in 2010 and 2021.
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trend, with the number of core area cities increasing from 8 in 2010 
to 10  in 2021. This may be  attributed to the rapid economic 
development of Sichuan under the impetus of the Chengdu-
Chongqing Metropolitan Area initiative, which has led to the 
further improvement of infrastructure such as transportation and 
information technology, as well as more frequent exchanges of 
technology, capital, and experience between cities, thereby 

enhancing connectivity among them. Additionally, Sichuan has 
divided its territory into different functional zones based on 
resource endowments and industrial characteristics, such as the 
Chengdu Plain Agricultural Zone and the Southern Sichuan Hilly 
Ecological Zone. Through policy guidance, core cities are leading 
the development of low-carbon agricultural technologies in 
peripheral cities.

TABLE 5  The overall characteristics of ACERC in Sichuan.

Year Network density Network efficiency Network hierarchy Network connectedness

2010 0.2476 0.7632 0.3333 1

2011 0.2225 0.6579 0.1818 1

2012 0.2005 0.7778 0.1909 1

2013 0.2000 0.7778 0.2727 1

2014 0.1907 0.8012 0.2804 1

2015 0.1711 0.8480 0.2727 1

2016 0.1687 0.8737 0.2609 1

2017 0.1687 0.8789 0.3333 1

2018 0.1687 0.8842 0.3333 1

2019 0.1614 0.8953 0.2609 1

2020 0.2286 0.8105 0.1810 1

2021 0.2238 0.8158 0.1810 1

FIGURE 8

Spatial distribution of cities’ centrality in 2021.
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3.6 Driving factors of the spatial correlation 
network

This study uses Ucinet’s QAP regression analysis, setting the 
number of random permutations to 5,000, to analyze the factors 
impacting ACERC’s spatial correlation network in2021. The results are 
shown in Table 8.

(1) The regression coefficient of the information-level difference 
matrix is significantly positive, indicating that the greater the 
difference in the information level among cities, the more conducive 
it is to the formation of a spatial association network for ACERC. This 
may be because cities with the higher information level concentrate 
various elements within the spatial association network for ACERC, 
thereby promoting the flow of elements within the network. (2) The 
regression coefficient of the rural inhabitants’ income difference 
matrix is strongly negative, suggesting that the smaller the difference 
in farmer income across regions, the easier it is to create a spatial 
association network for ACERC. When there is a small difference in 
rural residents’ income levels across regions, technical exchanges and 
cooperation among farmers become more common, and they are 
more willing to share experiences and learn from one another, 
allowing the flow of agricultural elements such as technology across 
regions and thus strengthening the spatial connections in ACERC. (3) 
The government importance difference matrix is significantly positive, 
implying that the higher the difference in government importance 
between cities, the better the chances of ACERC forming a spatial 
connection network. Governments that prioritize agricultural growth 
often invest more budgetary resources, such as R&D funding, in the 
sector. Thus, high-importance regions may have more sophisticated 
agricultural carbon emission reduction technologies, but 
low-importance regions, due to technological limitations, must 
actively promote exchanges with high-importance regions, thereby 
improving regional spatial connectivity. (4) The agricultural labor 
force difference matrix is significantly positive, meaning that the 
higher the gap in the number of agricultural workers between cities, 
the easier it will be  for ACERC to establish a spatial correlation 
network. Differences in the number of agricultural workers lead to the 
labor mobility and resource-sharing networks among regions. Regions 
with surplus labor can move labor resources to regions with labor 
shortages, and technology can be transmitted to new areas via labor 
mobility, resulting in geographic interconnection.

4 Discussion

Since the reform and opening up, under the intensive input of 
agricultural production factors, China’s agricultural development has 
experienced a high-speed growth phase for nearly 40 years (Hu, 2024). 

During this period, Chinese agriculture has transitioned from a 
planned economy to a market economy, realizing the historical change 
from traditional to modernized agriculture. Over the transformation 
process, the inputs of agricultural production factors have changed 
dramatically, and agricultural carbon emissions have shown a 
continuous upward trend (Liu and Yang, 2021). Because of the uneven 
development of urban agriculture, there are significant regional 
difference in agricultural carbon emissions (Cui et al., 2021). At the 
same time, there is also an imbalance in ACERC between regions. 
Carbon dioxide is a public good, and the local governance pattern 
based on administrative division has limited effect. Synergistic 
governance is required to fundamentally solve the problem of 
agricultural carbon emissions (Yao et al., 2024). Therefore, realizing 
the synergistic effect of regional agricultural carbon emission 
reduction has received increasing attention.

This study systematically uncovers the regional and temporal 
evolution characteristics of the ACERC, as well as the structural 
characteristics of the spatial correlation network and its driving 
variables in Sichuan between 2010 and 2021. According to the study’s 
findings, the ACERC in Sichuan is on the decline, with some room for 
improvement. During the study period, there is an imbalance in the 
ACERC of cities in Sichuan, which may be  due to inter-regional 
variability in the basic conditions of agricultural production, the level 
of economic development, and the implementation of policies (He 
et  al., 2021), however, the difference in the ACERC of the cities 
decreases over time, which is indirectly confirmed by the findings of 
Zhang and Shen (2025). Under the ‘dual carbon’ target, inputs such as 
pesticides, chemical fertilizers, and agricultural films should 
be decreased to improve ACERC at its source. The government should 
also enhance R&D and investment in agricultural science and 
technology, expedite the adoption of low-carbon technologies, and 
improve the agriculture industry’s structure.

From the perspective of spatial network, the spatial network 
connection of ACERC in Sichuan is relatively loose and sparse during 
the study period, and the stability of the network is decreasing. It 
might be because Nanchong, Dazhou, and other cities are all large 
agricultural cities, agricultural products are homogenized, and the 
cities’ agriculture has developed a competitive relationship that has 
somewhat hampered inter-city trade. On the other hand, the network 
rank results indicate that the disparity across cities is progressively 
closing and is comparatively low. In the ACERC network, Nanchong, 
Neijiang, Zigong, and other central cities serve as “middlemen” and 
have direct connections to other cities. Because of their superior 
agricultural base, advanced agricultural technology, and efficient 
transportation, the majority of these cities may readily become 
“bridges” in the network. Stronger relationships with nearby cities are 
a result of the abundance of agricultural technology experts and 
agricultural carbon emission influencers found in cities with high 
agricultural development (Wei and Chen, 2024). As resources, labor, 
and technology travel to neighboring cities via transportation, 
transportation infrastructure also plays a significant role in the 
creation of spatial links. To achieve synergistic carbon emission 
reduction in regional agriculture, it is necessary to give full play to the 
role of such cities to promote agriculture to achieve cross-regional 
carbon emission reduction, which is consistent with the findings of 
Shang et al. (2022).

From the perspective of the ACERC’ influencing factors, the 
information-level, rural residents’ income, government priority, and 

TABLE 6  Cities within each block.

Block City

I Aba, Panzhihua, Ya’an

II Guangan, Bazhong, Dazhou, Suining, Guangyuan

III Nanchong, Deyang, Mianyang, Zigong, Neijiang

IV Leshan, Meishan, Liangshan, Chengdu, Yibin, Ziyang, Luzhou, 

Ganzi
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agricultural labor force have the biggest effects on the spatial 
correlation of ACERC in Sichuan. This is in line with the findings of 
He et al. (2024). The spatial correlation network of ACERC in Sichuan 
is not close enough or stable enough, according to the paper’s findings, 
which suggests that there is insufficient ACERC spatial spillover 
between cities. In order to strengthen the spatial correlation of inter-
regional ACERC, on the one hand, it is necessary to raise rural 
residents’ incomes, increase their consumption capacity, and cultivate 
green product consumption habits, as well as to encourage workers in 
labor resource areas to move to labor-scarce areas in search of more 
opportunities to achieve labor mobility in the interregional area. On 
the other hand, the government should prioritize the development of 
inter-regional coordinated emission reduction activities, as well as 
organize inter-regional low-carbon agricultural technology training 

and experience exchange activities focused on regions with high 
ACERC, while also improving the level of regional information 
technology communication, in order to create conditions for the flow 
of agricultural carbon emission reduction factors.

The study has the following drawbacks. To begin, given the limited 
availability of data, the assessment indicator system may be insufficient 
to include more representative indicators, and future study should 
include a broader variety of indicators. Second, the EWM-TOPSIS 
approach was employed to evaluate the ACERC, although it was not 
well verified for sensitivity and robustness. Finally, this paper only 
investigated the breadth and direction of the involvement of the 
drivers of the ACERC spatial correlation network in Sichuan, and 
future research is needed to understand the role mechanism of 
driver interaction.

TABLE 7  Block model analysis of ACERC network in Sichuan.

Block Relationships Receive Number of 
members

External Internal Expected 
internal 

relationship 
(%)

Actual internal 
relationship 

(%)I II III IV

I 0 1 5 7 3 13 9 10 0

II 3 4 15 20 5 38 26 20 9.52

III 1 10 3 0 5 11 20 20 21.42

IV 5 15 0 2 8 20 27 35 9.09

FIGURE 9

Core-periphery structure of spatial correlation network of ACERC in 2010 and 2021.

TABLE 8  QAP regression analysis of ACERC spatial correlation network in Sichuan.

Variable Non-standardized 
coefficient

Standardized 
coefficient

Significance Proportion as 
large

Proportion as 
small

Intercept −0.070 0.000

inf 0.263 0.086 0.045 0.045 0.955

inc −0.169 −0.187 0.004 0.997 0.004

gdp 0.049 0.055 0.206 0.206 0.795

gov 0.086 0.088 0.095 0.095 0.906

tran 0.020 0.022 0.374 0.374 0.627

urb −0.035 −0.041 0.309 0.691 0.309

lab 0.098 0.113 0.091 0.091 0.910
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5 Conclusions and policy implications

Taking Sichuan Province as the study area, in this paper, the 
EWM-TOPSIS model is used to assess the ACERC of cities in 
Sichuan, and with the help of gravity model and social network 
analysis, the structural characteristics of the spatial correlation 
network of the ACERC in Sichuan are revealed, and the driving 
factors for the formation of spatial correlation network are 
investigated by using the QAP regression analysis method. The 
main conclusions are as follows:

	 1.	 According to the comprehensive evaluation results of 
EWM-TOPSIS, it can be seen that the overall level of ACERC 
of 21 cities in Sichuan is not high, and most of the cities’ 
ACERC is showing a decreasing trend, which has a certain 
space for progress. During the study period, the areas with 
higher levels of ACERC in the cities of Sichuan are distributed 
in a piecemeal manner.

	 2.	 The closeness of the spatial correlation relationship of ACERC 
among cities in Sichuan is not high, there is no hierarchical 
structural feature, and the synergistic trend of ACERC is 
obvious. However, the stability of the network shows a 
decreasing trend, and the network structure needs to be further 
optimized. The network shows a core-edge structure, with the 
cities of Nanchong, Neijiang, Zigong and Chengdu at the 
center of the network, controlling the flow of factors influencing 
ACERC. Cities located in central Sichuan are the main 
destinations of spatial spillovers from the spatial correlation 
network of ACERC.

	 3.	 The results of the driver analysis show that the information-
level, rural residents’ income, government importance and 
agricultural labor force have an important influence on the 
formation of the spatial correlation network of ACERC. Among 
them, similar levels of information-level, government attention 
and agricultural labor force can promote the formation of the 
network; differences in rural residents’ income also promote 
the formation of the spatial correlation network.

Based on the preceding findings, this study makes the 
following suggestions: first, the analysis demonstrates that there 
is a broad spatial correlation between Sichuan cities’ ACERC, but 
the network as a whole is insufficiently connected and unstable. 
The government should not only monitor the ACERC in city-level 
cities, but also consider their geographical correlation. In the 
future, the Sichuan government should fully exploit the role of the 
market, strengthen interregional agricultural exchanges and 
cooperation, encourage the accelerated flow of agricultural-
related resources and elements, and fully exploit ACERC’s spatial 
spillovers to improve the tightness and stability of the linkage 
network. Second, it is essential to concentrate on the key cities and 
acknowledge the various functions and places that each city plays 
in the spatial connection network. In particular, cities in the 
network’s core area, such as Nanchong and Neijiang, should fully 
utilize their advantages and promote and drive the improvement 
of other cities’ ACERCs. Cities in the network’s periphery should 
improve communication and collaboration with the local 
communities and actively participate in the planning of the 

synergistic development of Sichuan’s agricultural carbon emission 
reduction. The government can gradually close the ACERC gap 
across cities by developing targeted initiatives based on the spatial 
correlation network building mechanism of ACERC in Sichuan. 
The positive effects of information technology and agricultural 
labor force should be  brought into full play to increase the 
communication channels of information, accelerate the transfer 
and sharing of labor force, and drive the correlation and 
coordination of urban ACERC.
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