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1 Introduction

Crop production is constrained by uncertainty in climate conditions and extreme
weather events globally (Afshar et al., 2021). These barriers not only reduce crop yields but
also compromise the livelihoods of smallholder farmers, emphasizing the urgent necessity
to implement effective risk management strategies (Adelesi et al., 2024). Traditional
indemnity-based crop insurance offers compensation based on actual losses, but only
after a formal loss assessment has been completed. While this approach provides tailored
protection, it often involves delays that can be challenging for those farmers who need
timely financial support the most. A potential—though not perfect—alternative is index-
based crop insurance (IBCI), which determines payouts differently. Instead of relying on
post-loss evaluations, IBCI triggers payments based on predefined indices, such as rainfall
levels or temperature thresholds. This allows for faster disbursement of funds, though
it may not always perfectly match individual losses, if the index used does not correlate
one-to-one with the loss. However, index insurance can mitigate many of the drawbacks
of traditional indemnity insurance, offering more transparent, cost-effective risk transfer
mechanisms and a rapid loss settlement process (Kapphan et al, 2012). However, a
significant challenge in designing IBCI lies in ensuring that the selected index accurately
reflects the actual losses experienced by farmers. When there is a mismatch between the
index-triggered payout and the farmer’s real loss, a problem known as basis risk arises
(Afshar et al., 2021). An often-overlooked fact about basis risk is that it can be negative,
where farmers suffer losses but receive no compensation, or positive, where payouts are
made despite no actual loss. Both forms undermine the credibility, efficiency of IBCI,
potentially discouraging farmer participation and limiting the insurance’s protective value.

A potential way to reduce basis risk can be found in process-based crop models, also
referred to as crop simulation models. These models offer a powerful avenue for enhancing
the design and performance of index crop insurance (Will et al., 2022). While a large
body of research exists on index-based insurance design using statistical, econometric,
and remote-sensing approaches (Singh and Agrawal, 2019; Abdi et al, 2022; Ghahari
et al, 2019), the direct application of process-based crop models in this context remains
relatively scarce (Abdi et al, 2022). This gap highlights the novelty and importance
of exploring how mechanistic models can contribute to more robust index design and
reduced basis risk. These models utilize quantitative descriptions of the physiological and
biophysical processes governing crop growth and development, simulating yield responses
to various environmental factors and management practices (Will et al, 2022). By
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providing a mechanistic understanding of crop-environment

interactions, process-based models can contribute to the
development of more robust and relevant insurance indices,
potentially reducing basis risk and improving the overall
effectiveness of IBCI schemes (Will et al, 2022). Despite their
potential, process-based crop models remain underutilized in
developing IBCL. We explore their application in designing
IBCI, addressing critical issues such as (1) data requirements, (2)
calibration and validation approaches, and (3) spatial and temporal
scales. By examining these factors, we identify key challenges and
offer guidance to support future research that integrates process-
based crop models into index insurance development. Our analysis
is restricted to studies that solely applied process-based models
to index crop insurance; hybrid models are excluded, although

relevant regional examples are referenced to illustrate context.

2 Key data inputs and their influence
on model accuracy

The utility of process-based crop models in agricultural risk
assessment and insurance design is fundamentally dependent on
the availability and quality of a range of key data inputs (Will
etal, 2022). These inputs drive the model simulations and directly
influence the accuracy and reliability of their outputs, which
subsequently inform the design and pricing of index insurance
contracts (Nguyen-Huy et al, 2024). Key data inputs can be
primarily grouped into weather data, soil characteristics, crop
management practices, and crop phenology.

2.1 Weather data

Simulating crop growth responses to atmospheric conditions
requires high-resolution, temporally continuous weather data that
include daily or sub-daily measurements of temperature (minimum
and maximum), precipitation, and solar radiation (Will et al,
2022). Decades of historical weather datasets are necessary for
model calibration, validation, and for simulating the range of yield
variability under different climatic scenarios, which is important
for actuarial assessments in insurance (Kapphan et al, 2012).
Yet, spatially dense networks of weather stations may not be
available, especially in remote or developing areas, creating a large
source of uncertainty in model inputs and outputs (Li et al,
2021a), while the quality and completeness of historical records
also affect the strength of the yield data produced by simulation
(Nieto et al,, 2012); for example, missing rainfall measurements
or temperature errors can inaccurately characterize key stages of
crop development and stress, resulting in erroneous yields with
potentially higher basis risk in derived insurance products (Li
etal, 2021a). Recent studies in developing and data-scarce regions
demonstrate that supplementing sparse ground observations with
satellite or model-based data can significantly enhance process-
based model performance and yield simulation reliability (Feleke
etal., 2021; Kumara et al., 2023).
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2.2 Soil characteristics

The availability of water and nutrients for plant growth is one
of the main determinants of crop yield and production, which is
governed by soil properties such as type, texture, depth, water-
holding capacity, organic matter content, and nutrient profiles
(Will et al., 20225 Kapphan et al., 2012). In particular, detailed and
spatially explicit data on soil properties are necessary inputs to
simulate soil water balance and nutrient dynamics, both key drivers
of crop performance under water-limited or nutrient-deficient
conditions (Adelesi et al., 2024). Therefore, using coarse-resolution
or inaccurate soil maps can introduce significant errors into model
simulations (Li et al., 2021a), which may increase basis risk in
insurance contracts if the models are used as a basis for such
contracts (Kost et al., 2012). Evidence from regional applications
in Africa and South Asia confirms that improving local soil data
and digital mapping substantially increases simulation accuracy,
reduces uncertainty, and enhances agricultural resilience (Banerjee
et al., 2025; Carcedo et al., 2023; Benaly et al., 2025).

2.3 Crop management practices

The management decisions made by a farmer, such as sowing
dates, planting density, crop varieties, fertilizer application rates
and timing, irrigation schedules, other agronomic interventions
including foliar sprays or use of herbicides to control weeds, and
the representation of these practices in a crop model can impact
the accuracy of yield simulations under different management
scenarios (Kapphan et al, 2012; Will et al., 2022). We further
note that the cropping history of a given land, reflected by
previous crops grown, rotation systems, and historical management
intensity, plays a key role in determining soil fertility status, pest
pressures, and yield potential. Therefore, cropping history can be
incorporated as a subcomponent of crop management data or as
an initialization factor influencing soil and nutrient parameters in
process-based models (Adelesi et al., 2023; Liu and Basso, 2020;
Adelesi et al., 2024; Brogi et al., 2020).

This heterogeneity in management practices across farms,
particularly in smallholder systems, presents one of the most
significant challenges for applying models on farms because a lack
of accurate data for such practices can result in differences between
simulated and actual farm-level yields that contribute to basis risk
for insurance contracts (Afshar et al., 2021; Adelesi et al., 2024).
Recent research in tropical smallholder settings highlights that
capturing field-level variability in management, especially planting
date, cultivar selection, and fertilizer timing, improves prediction
and the reliability of model-informed insurance products (Adelesi
et al,, 2023; Liu and Basso, 2020; Singh, 2023).

2.4 Crop phenology

The timing of crop development stages, such as emergence,
flowering, and maturity, is essential for matching model
simulations of crop sensitivity to weather events with actual
plant physiology (Kapphan et al., 2012). Phenological information
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on when crops reach certain stages, along with the length of
each stage, can be found in historical records, farmer knowledge,
or more recently from remote sensing data such as Leaf Area
Index (LAI) trajectories (Afshar et al., 2021). In addition, accurate
representation of crop phenology remains crucial in process-based
model applications, where seasonal variability and management
interactions affect model calibration (Severini et al., 2024; Diao
et al., 2021). Inaccuracies or a lack of phenological data that are
temporally specific can cause mismatches between simulated
crop responses to stresses (such as drought during flowering)
and the actual impact on yield (Afshar et al., 2021), which will
result in insurance payouts not matching critical periods for crop
vulnerability and undermine the product (Li et al., 2021a). Once
the necessary data inputs are secured, the next aspect is ensuring
the model’s accuracy through rigorous calibration, validation, and
performance assessment.

To aid researchers and practitioners, particularly in data-scarce
regions, Table | summarizes feasible sources of the critical data
inputs discussed in this section.

3 Calibration, validation, and
performance assessment

To ensure that process-based crop models are suitable for index
crop insurance applications, they must be calibrated and validated
rigorously (Afshar et al, 2021). These processes determine the
capacity of the model to accurately simulate historical and potential
future conditions necessary for risk assessment and insurance
design (Kapphan et al., 2012).

3.1 Calibration

The calibration process involves adjusting parameters in a
process-based crop model so that simulated outputs align closely
with observed data under historical conditions, using historical
yield data from official statistics or crop cutting experiments
(Afshar et al., 2021). Three calibration approaches are commonly
used. The first approach optimizes parameters through algorithms
that systematically modify model parameters until simulated yields
match historical observations as closely as possible, often measured
with metrics such as the root mean square error (RMSE) (Li et al.,
2021b). The second approach uses data assimilation techniques
that incorporate multiple data streams, such as remotely sensed
vegetation indices like LAI and phenological observations directly
into the model during simulation to refine parameter estimates
and enhance the representation of real-time crop development,
for example, multi-step assimilation crop model with multi-source
data (MSAcmMD) (Li et al., 2021b). The third approach constrains
parameter ranges using expert knowledge and literature reviews
based on scientific understanding of crop physiology and local
agronomic practices to guide the calibration process and prevent
unrealistic parameter values (Nguyen-Huy et al., 2024).
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3.2 Validation

A crop model’s predictive capability is validated by utilizing
independent datasets that were not used during calibration (Afshar
et al, 2021). This provides a more objective evaluation of
the model’s ability to generalize and accurately simulate crop
performance under novel conditions (Kapphan et al., 2012). The
first commonly used validation approach involves evaluating the
model’s performance against yield data from different years or
locations than those used for calibration (Afshar et al., 2021). The
second assesses the model’s ability to simulate key biophysical
variables, such as LAI, against independent satellite-derived
observations (Afshar et al., 2021). The third is based on a historical
burn analysis, where long-term historical weather data is used
to simulate yield time series and then evaluate the performance
of a hypothetical insurance contract based on these simulated
yields against historical loss data or expectations (Kapphan et al,
2012). This helps to assess the contracts payout characteristics and
potential basis risk over time (Kapphan et al., 2012).

3.3 Model performance assessment

Several quantitative metrics are used to evaluate the
performance of a model when applied in the IBCI context:
coefficient of determination (R?), RMSE, normalized RMSE
(NRMSE), hedging effectiveness metric, and correlation (Afshar
et al., 2021). R? indicates how much variability a model explains;
therefore, it is a key metric to evaluate the fit of a model. The RMSE
and NRMSE metrics are used to measure the extent of alignment
of simulated values with observed values; a lower RMSE depicts
better performance (Setiyono et al., 2018). Hedging effectiveness
metric quantifies how effective an insurance contract based on
the model is by measuring the reduction in variance in income or
yield of farmers, where a higher hedging effectiveness indicates a
more effective insurance product (Kapphan et al., 2012). Finally,
the correlation measures the relationship between the index used
in the model and the yield loss to understand basis risk (Kapphan
etal., 2012).

Robust calibration and validation are indispensable for building
confidence in the reliability of process-based crop models for
informing agricultural insurance design and risk assessment
(Afshar et al., 2021). Demonstrating strong model performance
across relevant metrics provides stakeholders, including farmers,
insurers, and reinsurers, with the assurance that the insurance
product is based on a sound and scientifically defensible foundation
(Giannini et al., 2009). Beyond model performance, the practical
application of process-based models in insurance also depends on
their spatial and temporal scalability.

4 Spatial and temporal applications in
insurance

Process-based crop models have been applied at a range of
spatial and temporal scales for agricultural insurance design, each
with its advantages and limitations (Kapphan et al., 2012). The
choice of scale employed is dictated by the characteristics of the
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TABLE 1 Feasible data sources for key model inputs in data-scarce regions.

Model input category Examples of required variables

‘Weather data Daily temperature, rainfall, solar radiation

10.3389/fsufs.2025.1648861

Feasible data sources

CHIRPS, ERA5-Land, national meteorological stations

Soil characteristics

Soil texture, organic matter, depth, water-holding capacity

Harmonized World Soil Database, ISRIC SoilGrids

CI‘OP management practices

Sowing date, crop type, rotation history, fertilization, irrigation

Local extension services, national statistics, participatory
surveys, multi-year satellite imagery (Landsat, Sentinel)

Crop phenology Growth stages, flowering, maturity timing, LAI

MODIS, Sentinel-2, Landsat, ground observations

insurance product and the availability of relevant data (Setiyono
et al., 2018).

4.1 Spatial scales

Deploying a model at finer spatial resolution may capture
within-field variability in yields that could benefit individual
farm-level insurance contracts, but this requires input data such
as soil maps and management practices at similar resolutions,
which are often sparse in smallholder farming (Li et al., 2021a).
Consequently, validation of models at field scale is challenging, so
modelers usually select aggregated scales such as village clusters
or districts to apply crop models in the design of area-yield
index insurance, where payments are made when yields fall
below a threshold average yield for a defined geographic region
(Afshar et al, 2021). The use of aggregated spatial scale may
have the advantage of local yield variability being averaged out
and a less stringent data requirement than plot-level applications
(Setiyono et al., 2018). However, one study shows that crop
models can explain more variance in yields at the village level
than field level (Afshar et al., 2021), which is consistent with the
practicalities of implementation and management of area-based
insurance schemes as they eliminate farm-level loss assessments
and potentially reduce administrative costs (Kapphan et al,
2012). Crop models can also be used at a national level for
assessing agricultural losses over large areas (Kapphan et al,
2012).

4.2 Temporal scales

Process-based models simulate crop growth and development
at finer temporal resolutions, using daily or sub-daily scaling, to
capture dynamic responses of plants to changing environmental
conditions during the growing season (Kapphan et al., 2012), which
is important for understanding timing and duration of critical
stress periods, such as drought occurring during flowering, that
can impact final yield (Afshar et al, 2021). Further, long-term
historical weather data are used to drive models in simulations
of historical periods, generating simulated time series of crop
yields that characterize yield variability, estimate the frequency and
severity of potential losses, and actuarially price index insurance
contracts (Li et al., 2021b). In addition to daily or sub-daily and
historical scaling, future scaling provides long-term evaluation
using climate change scenarios to drive crop models that can be
used to project future yield risks, thereby assisting in gauging the
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long-run viability of designed and existing IBCI products (Will
et al., 2022; Kapphan et al., 2012).

Scaling model applications, both spatially and temporally,
presents several challenges. Scaling down (to finer spatial scales)
requires access to high-resolution and accurate input data,
including weather, soil, and management, which is often a
major limitation (Li et al, 2021a). Representing the inherent
heterogeneity of smallholder farming systems at the plot level
within a model can be complex (Adelesi et al., 2024). Validation of
field-level model outputs against limited observed data can also be
difficult (Afshar et al., 2021). Scaling up (to coarser spatial scales)
can lead to a loss of information about local variations in risk,
potentially increasing basis risk for individual farmers within the
insured area (Afshar et al., 2021). Aggregating diverse farming
systems and environmental conditions within a larger area can
mask important differences in crop responses to weather events (Li
etal., 2021a).

In the context of temporal scaling, historical simulations are
well-established. However, projecting future yields under climate
change involves uncertainties due to climate model projections
and assumptions about future adaptations (KKapphan et al., 2012).
Furthermore, ensuring the relevance of historical data for future
risk assessment in a changing climate is a problem. Another
problem arises when deciding on the most suitable spatial and
temporal scale to apply process-based crop models in IBCI
design, where several factors must be considered, including specific
objectives of the insurance product, availability and quality of
relevant data, as well as the trade-offs between model complexity,
accuracy, and basis risk (Li et al, 2021a). To counter these
limitations, advancements in remote sensing technologies, data
assimilation techniques, and the integration of crop models with
statistical and machine learning approaches expand the possibilities
of applying these hybrid models across different scales (Setiyono
etal., 2018).

5 Synthesis and future directions

Integrating process-based crop models into IBCI has great
potential to strengthen the robustness, relevance, and effectiveness
(will
et al., 2022). Process-based crop models provide a mechanistic

of risk transfer mechanisms for farmers worldwide

understanding of crop yield formation and its response to
environmental and management factors, allowing improved design
of more precise insurance indices with reduced basis risk, one of
the main challenges hindering IBCI uptake on a larger scale (Afshar
et al., 2021). Addressing basis risk when applying process-based
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models requires robust input data, including improving weather
monitoring networks, soil information systems, and developing
methods to capture spatiotemporal variability of crop management
practices. Data-scarce regions can utilize process-based models
by taking advantage of the availability of remote sensing data
to complement ground-based observations with high-resolution
and model inputs such as LAI and phenology (Setiyono et al,
2018).

The application of process-based models in designing IBCI
for smallholder farming systems, while challenging, is increasingly
feasible. Key strategies include (1) leveraging freely available remote
sensing data for weather, soil, and phenology to overcome ground-
data scarcity, (2) calibrating models with localized management
data, even if representative rather than plot-specific, and (3)
operating at aggregated spatial scales (e.g., village or district level)
that align with area-yield insurance schemes, which are more
practical and cost-effective for implementation in these data-
scarce environments.

Additionally, research into new calibration methods, such as
data assimilation and comprehensive validation with independent
datasets, must continue to build confidence in the predictive
ability of crop models. Standardizing performance metrics and
benchmarks specific to IBCI applications will also ensure a
more uniform and transparent assessment of model suitability
and comparison across regions (Afshar et al, 2021). Another
important area requiring further research and development is
how to navigate the challenges associated with spatial and
temporal scaling, which involves determining the optimal scales
for different IBCI products and agricultural systems, taking into
account data availability, computational resources, as well as
the trade-offs between local risk capture and the practicality of
insurance contract design and implementation (Afshar et al,
2021).

Finally, linking process-based models with socioeconomic
and financial modules will help assess product affordability and
policy relevance, ensuring that scientific innovations translate
into scalable solutions that improve smallholder resilience to
climate variability.
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