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Agricultural productivity is a cornerstone of food security, poverty alleviation,
and sustainable development. While traditional determinants such as land, labor,
credit, and water have been widely studied, the broader role of national productive
capacities remains underexplored, particularly in the context of the Belt and Road
Initiative (BRI). This study investigates the impact of productive capacities on
agricultural productivity in 42 BRI countries from 2000 to 2024, using the Productive
Capacities Index (PCl) alongside conventional inputs. The study employed the system
GMM and 2SLS econometric techniques and then employed other econometric
techniques such as Driscoll-Kraay, Feasible Generalized Least Squares (FGLS), and
Panel-Corrected Standard Errors (PCSE) to check the robustness of the results.
It is found that higher productive capacities significantly enhance agricultural
productivity, while access to credit, land expansion, and water availability also
play critical roles. Labor contributions, however, show mixed effects, suggesting
inefficiencies in labor-intensive farming systems. By integrating PCI, this study
provides a novel, cross-sectoral perspective on agricultural development. The
findings underscore the importance of strengthening infrastructure, technology,
institutions, and human capital within the BRI framework to foster sustainable
agricultural growth and regional food security.
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1 Introduction

Agricultural productivity remains central to economic growth, food security, and rural
development worldwide (Gollin et al., 2014). In many developing economies, agriculture not
only sustains livelihoods but also drives poverty reduction and employment generation. Yet
persistent productivity gaps hinder sustainable development and exacerbate food insecurity
(Jayne and Rashid, 2013; Bain et al., 2013; Canton, 2021). Addressing these challenges requires
more than traditional inputs; it demands stronger national capacities in technology,
infrastructure, institutions, and human capital.

Productive capacities such as institutions, technology, infrastructure, and human capital
increase agricultural productivity (Boliko, 2019). Effective institutions guarantee policy and
governance structures that favor agricultural development, technology provides sustainable
increases in productivity, infrastructure avails market access and minimizes losses, and human
capital development allows farmers to utilize modern farming techniques (Ruttan, 2002; Wang
et al., 2012). In addition, education and training for human capital development increase
farmers’ capabilities to adopt modern agricultural techniques. In this manner not only
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agricultural productivity increases but also climate variability
resilience is increased (Piesse and Thirtle, 2010). Likewise,
technological advances by means of agricultural R&D contribute
significantly to increasing crop yields and enhance farming practices
(Piesse and Thirtle, 2010). Infrastructure, including road and
irrigation networks, minimizes post-production losses and facilitates
market access, while the development of human capital allows farmers
to adopt new technologies, enhancing resilience to climate fluctuations
(Ruttan, 2002; Wang et al., 2012; Piesse and Thirtle, 2010; Tafara
Gadzirayi et al., 2014). Similarly, investment in rural infrastructure in
the form of transport networks and irrigation system supports
effective access to markets and agricultural activities (Tafara Gadzirayi
et al, 2014). Ingredients for productive capacities indices may,
nonetheless, differ substantially across regions owing to varying socio-
economic dynamics and agro-ecological factors (Zubovic et al., 2009).
Therefore, understanding these productive capacities indices are
important for crafting policies that alleviate poverty, ensure food
security, and promote sustainable growth in selected BRI countries.
That is why the current study is designed to find the impact of
productive capacities on agricultural productivity.

Expansion of cultivated land area leads to increase agricultural
productivity, enhance economic growth and meet ever increasing food
demands (Chandio et al.,, 2016; Mueller et al., 2012). However,
unbalanced expansion often comes at the cost of environmental
sustainability. Draining wetlands or deforestation for farming can lead
exacerbating climate change, increased greenhouse gas emission,
biodiversity decline, and habitat loss (Chandio et al., 2016; Mueller
etal., 2012). Sustainable expansion of cultivated area with cleaner and
modern farming practices is therefore necessary. Practices such as
precision agriculture, agroforestry, and conservation farming can help
lower environmental consequences by reducing resource use,
preserving natural habitats, and improving soil health while ensuring
or even improving productivity. Such practices not only ensures the
log-term agricultural sustainability for food systems but also helps
current and future generation depends critically on the economic
development (Chandio et al., 2016; Mueller et al., 2012).

Employment in agriculture pointedly related to boost agricultural
productivity. Study has elaborated that agricultural production per
one employed in agriculture could increase with an increase in the net
export (Patyka et al., 2021). Employment in agriculture sector provides
labor for essential tasks and hence improves overall efficiency in
farming sectors (World Bank, 2021). Therefore, motivated and well-
trained workers in farming is important in skill development, job
quality, contribute to higher output, and highlighting the importance
of labor allocation in enhancing productivity.

Availability of agricultural credit is a critical factor in supporting
agricultural production by allowing farmers to invest in important
inputs like seeds, fertilizers, and machinery, as well as implement new
technologies and enhance infrastructure (Kashif et al., 2016; Girma,
2022). This credit not only supports increase in productivity but also
encourages innovation in agriculture and overall efficiency along the
agricultural value chain. Furthermore, by enabling farmers to manage
risks triggered by variability in weather and fluctuations in the market,
agricultural credit plays an important role in achieving sustainable
development objectives such as food security and reducing poverty.
Credit facilities the small-scale farmers in rural regions, enabling them
to increase their activities, raise production, and enhance their living
standards. Hence, it is imperative to ensure fair access to agricultural
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credit to promote sustainable and prosperous agricultural industries,
hence contributing to overall economic growth and rural development
(Kashif et al., 2016; Girma, 2022).

Availability of water is a determining factor in agricultural
productivity, which plays an elemental role in irrigation and in
facilitating the growth of crops (Gil Sevilla et al., 2010). The availability
of stable water sources is the key to achieving maximum yields,
especially in climate-vulnerable regions with unstable weather
patterns. Sufficient supply of water not only safeguards against the
risks of floods and droughts but also supports sustainable agriculture
that guarantees uniform production of food. Additionally, equitable
access to water resources is essential to facilitate rural development,
improve livelihoods, and food security among communities. Efficient
water management policies, such as infrastructure development for
storage and supply, and effective irrigation methods, are necessary to
maximize water use efficiency and resilience in agriculture. By solving
the water availability issue, policymakers can promote sustainable
agricultural development and help secure overall socio-economic
stability (Gil Sevilla et al., 2010).

The Belt and Road Initiative (BRI) has put substantial spotlight on
agricultural productivity among member countries, with productive
capacity being central in such an aspect. Recent research highlights
the significance of different factors leading to efficiency in agriculture.
Development of infrastructure, including enhancements in roads and
irrigation facilities, has been recognized as a significant factor in
agricultural productivity. (Navajas et al., 2021; Raji et al., 2024).
Navajas et al. (2021) show that improved infrastructure minimizes
post-harvest losses and provides easier market access, resulting in
higher agricultural outputs. The role of technology cannot
be overlooked as Raji et al. (2024) point out that the use of precision
agriculture technology, such as GPS and remote sensing, has
dramatically improved productivity. These technologies are best when
supported by proper technology transfer and training programs.
Notwithstanding this increasing literature, relatively little attention has
been paid to how productive capacities—measured through
institutions, technology, infrastructure, and human capital influence
agricultural productivity in BRI countries.

The Belt and Road Initiative (BRI) region is one of the most
important international platforms for economic coordination, green
development, and foreign investment. The choice of BRI countries
in this research is based on their economic status as well as
environmental impact. As a whole, the BRI economies account for
over 65% of the world’s population and produce almost 40% of the
world’s GDP (BRICS, 2024). These nations are also pivotal in
international trade and resource exchange, considering that BRI
stretches across more than 140 countries in Asia, Africa, Europe,
and Latin America (Zhou and Esteban, 2018). The BRI countries
occupy a central position in global agricultural development,
making them an ideal focus for research on agricultural productivity
and its determinants. Collectively, these countries represent nearly
two-thirds of the world’s population and a significant share of global
GDP and food demand, highlighting their critical role in ensuring
food security at both regional and international levels. Many BRI
economies are also highly dependent on agriculture for employment,
rural livelihoods, and export revenues, yet they face persistent
challenges of low productivity, climate vulnerability, and resource
constraints. In this context, examining agricultural productivity
through the lens of productive capacities is particularly important,
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as it goes beyond traditional inputs like land and water to
incorporate broader structural factors such as technology,
infrastructure, human capital, and institutional quality.
Strengthening these capacities is vital for enabling BRI countries to
modernize agricultural systems, reduce inefficiencies, and enhance
resilience to global shocks. Therefore, research that links agricultural
productivity with productive capacities provides crucial insights for
sustainable growth strategies and policy design within the
BRI framework.

Different factors such as renewable energy consumption, financial
inclusion, human resource development, FDI and export are used to
evaluate their impact on agricultural productivity (Hoang, 2024; Ali
and Akhtar, 2024; Soni and Manogna, 2024). Similarly, other studies
used variables such as technology improvements, institutional quality,
property rights, crops that boost soil fertility, and environmental taxes
in relation to agricultural productivity (Tab-cam et al., 2024; Zurrah
et al., 2024; Churkova and Churkova, 2024; Ben Youssef and Dahmani,
2024). However, factors such as impact of productive capacity on
agricultural productivity in BRI countries is still needed to address.
While earlier studies on agricultural productivity have largely focused
on conventional determinants such as land, credit, labor, and water,
these approaches often capture only a narrow aspect of the factors
influencing agricultural outcomes. In contrast, the present study
(PCI) as a

multidimensional measure that integrates a broad range of variables,

introduces the Productive Capacities Index
including ICT, structural change, natural capital, human capital,
energy, transport, private sector development, and institutional
quality. By employing PCI, this research moves beyond single-factor
or limited-variable analyses and provides a more holistic perspective
on how national-level capacities shape agricultural productivity. To
the best of our knowledge, no prior study has incorporated such a
comprehensive framework in the context of BRI countries. This
novelty represents the key contribution of the study, offering fresh
insights into how strengthening diverse productive capacities can
enhance agricultural performance across member states. Therefore,
this study is intended to understand the multifaceted relationship
between productive capacities and agricultural productivity which is
essential for devising effective strategies in BRI countries. By analyzing
factors such as the productive capacities index, area under cultivation,
agriculture employment, agriculture credit, and water availability,
policymakers can promote sustainable agricultural development,
enhance food security, and improve rural livelihoods. Thus, the study
aims to uncover intricate relationships that influence agricultural
productivity in BRI countries contexts. The findings are expected to
provide policymakers with practical insights for promoting sustainable
agricultural development, strengthening food security, and enhancing
rural livelihoods across BRI countries.

2 Methodology

This is quantitative study using the panel data of selected Asian
countries (Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh,
Bhutan, Brunei, Cambodia, China, Cyprus, Georgia, India, Indonesia,
Iran, Iraq, Israel, Japan, Jordan, Kazakhstan, Kuwait, Kyrgyzstan, Laos,
Lebanon, Malaysia, Maldives, Mongolia, Myanmar, Nepal, North
Korea, Oman, Pakistan, Philippines, Qatar, Saudi Arabia, Singapore,
South Korea, Sri Lanka, Syria, Tajikistan, Thailand, Timor-Leste,

Frontiers in Sustainable Food Systems

10.3389/fsufs.2025.1616468

Turkmenistan,
Vietnam, Yemen).

Turkey, United Arab FEmirates, Uzbekistan,

2.1 Variable description and data sources

For empirical analysis, study used the data spanning from 2000 to
2024, data from 42 BRI countries is utilized to explore the relationships
between key agricultural indicators. The selected timeframe is
particularly relevant for two reasons. First, it captures the structural
transformation of agriculture during the early 21st century, a period
marked by rapid globalization, technological diffusion, and climate
variability that directly shaped agricultural productivity and
sustainability in Asia. Second, the availability and consistency of
internationally comparable data significantly improve from the year
2000 onward, enabling robust cross-country analysis. Moreover, the
period up to 2020 is critical as it reflects the impact of major policy
shifts, such as the Millennium Development Goals (2000-2015) and
the transition to the Sustainable Development Goals (2015-2020),
both of which placed agriculture at the center of economic
development and poverty alleviation strategies. Description of
variables and sources of data is given in following Table 1.

Water availability (WA) is measured using annual rainfall
(millimeters per year). While we acknowledge that water availability
for agriculture is also influenced by factors such as land slope, soil
permeability, irrigation infrastructure, and water storage capacity,
comparable cross-country data for these indicators are limited and
inconsistent across the BRI economies. Therefore, annual rainfall has
been adopted as a proxy variable, following prior studies that
demonstrate its strong influence on agricultural productivity and
sustainability. Rainfall is widely recognized as a practical and reliable
indicator at the macroeconomic level, as it directly affects crop growth,
soil moisture, and irrigation potential (Rockstrom and Barron, 2007;
Liu et al, 2015; FAO, 2020). Several cross-country analyses of
agriculture and climate have also relied on rainfall as a representative
measure of water availability due to its global comparability and
accessibility (Gornall et al., 2010; Wheeler and von Braun, 2013).
While this approach has inherent limitations, including the inability
to fully capture heterogeneity in local water conditions, it nonetheless
provides an essential climatic dimension for understanding
agricultural sustainability across diverse geographical settings.

Agricultural Productivity (AP), gauged by the Crop Production
Index, reflects crop yield efficiency. The Productive Capacities Index
(PCI) assesses overall national capabilities across sectors, including
agriculture. The Area under Cultivation (AUC), indicating arable land
as a percentage of total land, reveals land use patterns. Agriculture
Employment (AE) highlights the sector’s labor market impact.
Agriculture Credit (AC), in millions of dollars, signifies financial
support. Water Availability (WA), measured by annual rainfall,
crucially affects agricultural output. These metrics collectively inform
agricultural sustainability and economic development strategies.

2.2 Estimation techniques
The study applied the system GMM and 2SLS techniques for

empirical analysis. To ensure the robustness of our empirical analysis,
we also employed three estimation techniques: Driscoll-Kraay
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TABLE 1 Description analysis of the data.

Sr.no  Variables Variables Source of
description data
1 Productive The overall PCI index United Nations
capacities index is measured across Conference on
eight categories: Trade and
information and Development
communication (UNCTAD)
technologies (ICTs),
structural change,
natural capital, human
capital, energy,
transport, the private
sector, and
institutions.
2 Agricultural It is measure by Crop World
productivity production index Development
Indicators
(WDI)
3 Area under It is measure by arable ~ World
cultivation land as a % of total Development
land Indicators
(WDI)
4 Agriculture It is measure by the World
employment proportion of total Development
employment in Indicators
agriculture (WDI)
5 Agriculture credit It is measure by in World
millions dollars Development
Indicators
(WDI)
6 Water availability It is measure by annual | World
rainfall in millimeters Development
Indicators
(WDI)

standard error estimates, Feasible Generalized Least Squares (FGLS),
and Panel-Corrected Standard Errors (PCSE). Each of these methods
addresses different econometric challenges common in panel data,
such as heterogeneity, serial correlation, heteroskedasticity, and cross-
sectional dependence.

The System Generalized Method of Moments (System-GMM),
developed by Arellano and Bover (1995) and Blundell and Bond
(1998), is a dynamic panel estimator designed to address endogeneity,
unobserved heterogeneity, and dynamic persistence in panel data
Unlike traditional fixed-effects or difference-GMM
estimators, System-GMM combines equations in both levels and first

models.

differences, thereby improving efficiency when variables are weakly
instrumented. One of its key advantages is its ability to handle
endogeneity arising from the inclusion of lagged dependent variables
and explanatory variables that may be correlated with past errors.
Additionally, it allows for heteroskedasticity and autocorrelation
within panels. However, System-GMM also has limitations. Results
are highly sensitive to instrument proliferation, which may weaken
the Hansen J-test of overidentifying restrictions and inflate finite-
sample bias. Moreover, incorrect instrument selection can lead to
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spurious inferences. Despite these caveats, System-GMM is widely
regarded as a powerful tool for estimating dynamic relationships in
macroeconomic and development studies, particularly when sample
periods are long and cross-sectional units are numerous.

Two-Stage Least Squares (2SLS) is an instrumental variable (IV)
estimation technique commonly used to address endogeneity in
regression models. In the first stage, potentially endogenous regressors
are regressed on selected instrumental variables that are correlated
with the regressors but uncorrelated with the error term. The predicted
values from this stage are then used in the second stage to estimate the
structural equation. The main advantage of 2SLS is its simplicity and
ability to provide consistent estimates when endogeneity arises from
simultaneity, measurement error, or omitted variable bias. It also
allows researchers to explicitly test instrument validity through tests
such as the Hansen J-test and the first-stage F-statistic. Yet, 2SLS is not
without limitations. It relies heavily on the strength of instruments;
poor or faulty instruments may result in biased and inconsistent
estimates. 2SLS is also less efficient when instruments are strong
compared to maximum likelihood or GMM estimation. Further, it is
less effective at capturing dynamic persistence than System-GMM. All
the same, it is a solid and common approach to handling endogeneity
in cross-sectional and panel data environments.

Driscoll-Kraay standard error estimates is a strong technique
employed to adjust for problems in panel data regression models,
especially when data are characterized by cross-sectional dependence,
serial correlation, and heteroskedasticity. They are commonly applied
in fixed-effects or pooled regression models, especially if the
conditions of classical ordinary least squares (OLS) regression are not
satisfied (Hoechle, 2007). Driscoll-Kraay standard errors are
calculated by transforming the covariance matrix of the parameter
estimates to allow for the issues described above. This is achieved with
a Newey-West style estimator generalized to panel data (Driscoll and
Kraay, 1998). The estimator has a truncation parameter (or lag length)
to capture the extent of serial correlation in the data. A kernel function
gives weights to observations depending on their lag distance. This
approach yields consistent standard errors even if the data fails to meet
the homoscedasticity and independence assumptions and controls for
the spillover effects across cross-sectional units. Driscoll-Kraay
standard errors (Driscoll and Kraay, 1998; Hoechle, 2007) are
particularly useful when errors are correlated across panels and over
time, a frequent feature in multi-country datasets. However, their
performance can deteriorate in panels with very few cross-sections,
and they do mnot capture more complex non-linear
dependence structures.

Feasible Generalized Least Squares (FGLS) is another estimation
method used when the assumptions of the classical OLS regression are
violated, particularly in the presence of heteroskedasticity
(non-constant error variance) or autocorrelation (serial correlation in
error terms). FGLS provides more efficient parameter estimates than
OLS under such conditions (Greene, 2012). OLS assumes that the
error variance is constant across observations (homoscedasticity).
When this assumption is violated (heteroskedasticity), OLS remains
unbiased but is inefficient, and the standard errors may be incorrect.
FGLS modifies the estimation process to account for varying error
variances. In time-series or panel data, error terms may exhibit
autocorrelation, where the error for one observation is correlated with
another. This contradicts OLS independent errors assumption. FGLS
corrects this autocorrelation (Hansen, 1982). FGLS becomes more
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efficient than OLS by converting the data so as to eliminate
heteroskedasticity or autocorrelation effects prior to estimation. FGLS
yields more accurate coeflicient estimators than OLS if the classical
assumptions are not met. It adjusts for standard errors, resulting in
more accurate hypothesis tests and confidence intervals. FGLS is a
very useful method for having strong and efficient estimation with
complex error structures. Feasible Generalized Least Squares (FGLS)
of Hansen (1982) and Greene (2012) yields efficient estimates in the
case of heteroskedasticity and autocorrelation through changing the
form of the error structure. Efficiency is its strength but reliability
requires accurate specification of the error covariance matrix. If they
are mis-specified, they can be biased, a shortcoming which we accept.

Panel-Corrected Standard Errors (PCSEs) is one statistical
method applied in panel data analysis to deal with the possible
breaches of the classical assumptions of error terms in regression
models. It specifically corrects heteroskedasticity (non-stable error
variance) and cross-sectional dependence (correlation of error terms
within panel units). This technique is particularly helpful for use with
panel datasets in which the observations are organized both across
time and cross-sectional units (countries, firms, or individuals).
PCSEs permit error variances to vary among panel units but condition
that the error variance is fixed over time within each unit (Beck and
Katz, 1995). PCSEs explain contemporaneous correlation of error
terms among various cross-sectional units at a given time period.
Contrary to Feasible Generalized Least Squares (FGLS), PCSEs are not
based on any particular variance-covariance matrix structure and
thus are not susceptible to different error specifications. PCSEs can
be estimated using the following steps: The regression coefficients are
initially estimated with the help of OLS. Residuals from the OLS
model are employed for the estimation of the variance-covariance
matrix of errors. This matrix picks up both cross-sectional correlation
as well as heteroskedasticity in the error terms. The estimated
variance—covariance matrix is used to adjust the standard errors of the
coeflicients to account for the heteroskedasticity and cross-sectional
dependence (Bailey and Katz, 2011). PCSEs yield consistent estimates
even under cross-sectional dependence, which is a common
occurrence in panel data. PCSEs are easy to calculate and impose no
assumptions regarding the exact form of the variance-covariance
matrix. Panel-Corrected Standard Errors (PCSE) (Bailey and Katz,
2011; Beck and Katz, 1995) are constructed to account for
contemporaneous correlation and heteroskedasticity between panels
with no strong structure assumptions. Although robust, PCSE requires
error variance in a panel unit to remain constant over time, potentially
missing changing variances.

Through triangulation of findings across these approaches,
we strike a balance of their strengths and weaknesses so that the
findings are not an artifact of a single technique. We point out that no
approach is always “best”; rather, consistency of findings across these
methods increases confidence in the robustness of conclusions.

2.3 Empirical model

The model to determine the relationship among variables is
as follows:

Agricultural Productivity = f (Productive capacities index, Area
under cultivation, Agriculture Employment, Agriculture credit,
Water availability).
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The Econometric Model is:

APZB0+B1PCI+B2 AUC+B3AE+B4 AC+B5WA+S (1)

Where:

B represents the intercept term.

B, s, Bs, B, and B; are the coeflicients associated with each
independent variable.

AP = Agricultural Productivity; PCI = Productive Capacities
index; AUC = Area under Cultivation; AE = Agriculture Employment;
AC = Agriculture Credit; WA = Water availability.

The model considers multiple determinants of agricultural
productivity in BRI countries, drawing from the literature and the
availability of consistent cross-country data.

While traditional determinants of agricultural productivity such
as land, credit, labor, and water have been extensively studied in prior
research, the unique contribution of this study lies in the use of the
Productive Capacities Index (PCI) as a comprehensive measure that
integrates cross-sectoral capacities influencing agricultural outcomes.
Unlike single-factor approaches, PCI captures the combined effects
of ICTs, human capital, structural transformation, infrastructure, and
institutions, which are often overlooked in agriculture-specific
analyses. By incorporating PCI, this study highlights how broader
national productive capacities translate into improved agricultural
performance, thereby offering a novel perspective that extends
beyond conventional determinants and enriches the understanding
of crop productivity dynamics. The PCI is included to capture the
broader economic and structural capacity of countries to utilize
resources efficiently. Higher productive capacities reflect better
infrastructure, technological development, and institutional strength,
which facilitate agricultural modernization and efficiency (UNCTAD,
2020). Countries with higher PCI are better equipped to adopt
advanced agricultural technologies, improve logistics, and enhance
value-added processes, all of which contribute to higher agricultural
productivity. The inclusion of the Productive Capacities Index (PCI)
as a key explanatory variable for agricultural productivity is
theoretically justified because its multidimensional components
directly influence crop production outcomes. Specifically, ICTs
enhance access to agricultural information, digital markets, and
smart technologies, thereby improving yields; structural change
reflects the reallocation of resources that modernizes agricultural
practices; and natural capital such as land, water, and soil quality
directly underpin production potential. Human capital contributes
through farmers’ skills, adoption of advanced practices, and
managerial efficiency, while access to energy is essential for irrigation,
mechanization, storage, and processing. Similarly, transport
infrastructure reduces post-harvest losses and improves market
access, private sector development strengthens value chains and
credit availability, and institutions provide governance, property
rights, and supportive policies that facilitate efficiency and
sustainability. Although PCI is a broad, cross-sectoral measure, these
components collectively form the foundation of agricultural
performance, making it highly relevant for explaining variations in
the Crop Production Index (CPI). Higher productive capacities
enable countries to better utilize agricultural resources, adopt
innovations, and respond effectively to shocks, which ultimately
enhances crop outcomes.
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The size of cultivated land remains a fundamental determinant of
agricultural output. Expanding the area under cultivation increases
the potential volume of production, although this relationship is
subject to diminishing returns if land is used inefficiently or without
adequate technological input. Inclusion of this variable helps
distinguish between productivity gains from land expansion versus
efficiency improvements (FAO, 2019).

Labor input is an important element of agricultural productivity.
Agriculture in the majority of BRI nations is still labor-intensive, and
the share of employment in the sector directly affects the level of
production. Increased agricultural employment but not mechanization
could be a sign of low labor productivity, which is an argument for
recognizing the scale as well as the efficiency of labor deployment
(World Bank, 2018).

Credit access enables farmers to have the funds they require to
buy advanced inputs like seeds, fertilizers, machinery, and irrigation
equipment. Credit access also enables the management of risk and
investment in long-term productivity-improving technologies.
Empirical evidence indicates that agricultural credit has a significant
impact on productivity, especially in emerging economies (Khandker
and Koolwal, 2016).

Water is a critical input for crop production. Because of data
constraints in most BRI countries, rainfall is employed as a proxy for
natural water availability. Rainfall is a good indicator of natural water
input, particularly in nations with predominant rain-fed agriculture.
Although this proxy is not entirely capturing irrigation infrastructure
and water management practices, it provides a comparable and widely
reported indicator of water resources affecting crop growth (Gornall
et al, 2010; FAO, 2016). Though water availability is a complex
concept influenced by rainfall, irrigation infrastructure, groundwater
extraction, and water management practices, comparable and
consistent panel data on irrigation and water infrastructure for all BRI
countries are not available. Hence, annual rainfall was used as a proxy
metric, consistent with earlier work that used rainfall as a valid and
easily accessible proxy for water input in agriculture when more
detailed water-use information is missing (FAO, 2016; Gornall et al,
2010). While rainfall does not capture irrigation capacity or efficiency,
it provides a meaningful cross-country proxy for water availability in
the agricultural sector. The limitations of this approach are explicitly
acknowledged in the discussion section. The limitations of this proxy
are acknowledged, and future research may incorporate irrigation
efficiency and groundwater use data when available.

3 Estimated results
3.1 Cross sectional dependence test

Cross-sectional dependence refers to a statistical phenomenon
where the error terms (or residuals) in a regression model are
correlated across different cross-sectional units (e.g., individuals,
firms, countries) in panel or cross-sectional data. This violates the
assumption of independence, which is fundamental in many
econometric analyses. The presence of interdependence or mutual
influence among the units observed at the same point in time.
Ignoring cross-sectional dependence can lead to biased and
inconsistent parameter estimates while standard error estimates may
also be incorrect, leading to unreliable hypothesis testing. This study
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applied the bias corrected scaled Lagrange Multiplier (CDSLM3c) and
Lagrange Multiplier test” (CDLMpp) to determine the dependence of
cross sections. The Friedman, Frees, and Pesaran tests are also applied
to determine the CSD in the model.

In the beginning, we have verified the cross sectional dependence
of the variables as it is present in panel data. Literature has underlined
a range of the tests for cross sectional dependence, e.g., Breusch and
Pagan (1980) Lagrange Multiplier (LM) test, Pesaran (2004) scaled
LM test, Baltagi et al. (2012) bias corrected scaled LM test and Pesaran
(2004) CD test. Applied the bias corrected scaled Lagrange Multiplier
(CDSLMjp) and Lagrange Multiplier test” (CDLMgp) to determine the
dependence of cross sections. The Friedman, Frees, and Pesaran tests
are also applied to determine the CSD in the model. The results of
various cross sectional dependence test are presented in Table 2.

It is revealed that cross sectional dependence is present among
variables and residuals in a significant way for all tests. The outcomes
of the tests highlight that there are regional and spillover effects among
the selected countries.

3.2 Unit root tests

Non-stationary data complicates forecasting and analysis, as
typical assumptions of constant mean and variance no longer hold. A
unit root is a statistical property of a time series that indicates it is
non-stationary, meaning its statistical properties (like mean and
variance) change over time rather than remaining constant. The
presence of a unit root implies that shocks to the time series have a
persistent, long-term effect rather than dissipating over time. This
study applied cross sectional augmented Dickey- Fuller (CADF) and
cross sectional augmented Im, Pesaran, and Shin (CIPS) unit root test
are used to know the integration level then Lagrange multiplier boot
strap panel cointegration test is applied.

Using first generation panel unit root tests to verify the stationarity
of the variables is not possible when cross sectional dependence is
present. For this reason, we use Pesaran (2007) second generation
panel unit root test to verify stationarity. To evaluate the panel unit
root null hypothesis, the Pesaran test recommends the cross-
sectionally Augmented Dickey-Fuller (CADF) test. Once the
integration level is determined, the Lagrange multiplier boot strap
panel cointegration test is applied. Cross sectional augmented

TABLE 2 Cross sectional dependence tests.

Variable . CDLMs  CDSLMg
Agricultural productivity 248.42% 27.62%*
Productive capacities 308.09%* 33.26%
index

Area under cultivation 354.14%* 44.62%
Agriculture employment 106.44* 99.35%
Agriculture credit 643.26* 63.51%
Water availability 428.67* 77.82

Pesaran test 1.98%*
Frees test 2.95%
Friedman test 39.45%

* and ** show the significance level at 1 and 5%.
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TABLE 3 Stationarity tests.

Variables CIPS CADF
Level Difference Level Difference

Agricultural —3.55 —4.82% -3.75 —4.17*

productivity

Productive —4.27 —4.36* —5.42 —4.26*

capacities

index

Area under —4.39 —3.72% —4.66 —4.35%

cultivation

Agriculture —-3.72 —5.63% —2.04 —2.75%

employment

Agriculture —4.58 —5.72% —4.38 —3.86%

credit

Water -3.61 —4.82% —3.57 —3.49%

availability

*Shows that variable is significant at 1%.

Dickey- Fuller (CADF) and cross sectional augmented Im, Pesaran,
and Shin (CIPS) unit root tests are utilized. The Table 2 shows the
results of stationarity tests for various variables using two different
tests: CIPS (cross sectional augmented Im, Pesaran, and Shin) and
CADF (Cross-sectional Augmented Dickey-Fuller). The tests are
conducted at both the level and difference (first difference) of the
variables. The findings are reported in the following Table 3.

The findings demonstrate that while some variables are not
stationary at levels, they are at their initial disparities. These results
indicate that there may be cointegration between the variables.

3.3 Cointegration test

The outcomes of the Lagrange Multiplier (LM) Bootstrap Panel
Co-integration test are presented in Table 4. This test is widely applied
to examine whether a long-term equilibrium relationship exists
among the variables in panel data. In both models (Constant and
Constant with Trend), the p-values are well below the 5% significance
threshold, confirming that the null hypothesis of no co-integration
can be rejected. Thus, the results provide robust evidence of a strong
long-run relationship among the variables, which is consistent with
theoretical expectations and empirical findings in similar contexts.

The results indicate that the variables under study move together
in the long run, implying that short-term deviations will eventually
converge back to the long-run equilibrium. This validates the use of
long-run estimators to capture the dynamic interactions. Moreover,
the confirmation of co-integration strengthens the reliability of the
empirical findings, ensuring that the estimated relationships are not
spurious but grounded in stable long-term linkages among
the variables.

3.4 Long run relationship

Table 5 reports the results from the dynamic System-GMM
estimation, which accounts for potential endogeneity, unobserved
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TABLE 4 Lagrange multiplier boot strap panel co-integration.

Constant and trend

LM-
statistic

Constant

LM-
statistic

Bootstrap
p-value

Bootstrap
p-value

15.72 0.012 18.45 0.007

TABLE 5 System-GMM estimates.

Variables Coefficient Std. (] p-
error statistic value

Productive

0.214%%* 0.065 3.29 0.001
capacities index
Area under

0.147%%* 0.058 2.53 0.012
cultivation
Agricultural

0.092 0.071 1.30 0.195

employment
Agricultural

0.173%s#% 0.051 3.39 0.001
credit
Water

0.089* 0.046 1.93 0.054

availability
Lagged
dependent 0.421%%** 0.074 5.69 0.000
variable
Hansen J-test (p-value): 0.287 — Instruments valid
Arellano-Bond AR(2) test (p-value): 0.194 — No second-order autocorrelation
Number of Instruments: 32 Observations: 798 Countries: 42

#ik k% show significance at 1, 5, and 10%, respectively.

heterogeneity, and dynamic persistence in agricultural productivity
across 42 BRI countries from 2000 to 2024. The inclusion of the lagged
dependent variable controls for path dependence in agricultural
productivity, while the Hansen J-test and Arellano-Bond AR(2)
confirm the validity of instruments and absence of second-order
autocorrelation, respectively, ensuring robustness of the estimates.
The results highlight several important drivers of agricultural
productivity in BRI countries. The Productive Capacities Index (PCI)
shows a strong and positive impact (f = 0.214, p < 0.01), suggesting
that improvements in productive capacities such as infrastructure,
technology, and institutional quality significantly enhance agricultural
performance. Similarly, the Area under Cultivation contributes
positively (f = 0.147, p < 0.05), indicating that expanding arable land
still plays a crucial role in boosting output in many developing BRI
economies. In contrast, Agricultural Employment is negatively
associated with productivity, though not statistically significant
(p=—0.092, p > 0.10). This may reflect diminishing returns to labor
in traditional agriculture, where excessive reliance on manpower
without corresponding technological adoption reduces efficiency.
Agricultural Credit emerges as a key determinant (4 = 0.173, p < 0.01),
confirming that access to finance facilitates investment in modern
inputs, irrigation, and mechanization, thereby raising productivity.
Likewise, Water Availability, measured by annual rainfall, has a
positive but marginally significant effect (f=0.089, p <0.10),
suggesting that while rainfall matters, its impact is mediated by
irrigation infrastructure and water management practices. The lagged
dependent variable is highly significant (f = 0.421, p < 0.01), reflecting
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strong persistence in agricultural productivity levels over time. The
diagnostic tests support the reliability of the results: the Hansen J-test
(p=0.287) indicates instrument validity, and the AR(2) test
(p = 0.194) confirms no serial correlation in the error term. Taken
together, the findings underline the importance of productive
capacities, access to credit, and land utilization in driving agricultural
productivity in BRI countries, while also emphasizing the need for
modernization to reduce labor inefficiencies and strengthen resilience
to water-related risks.

Table 6 presents the 2SLS estimation results, which account for
potential endogeneity concerns, particularly between agricultural
productivity and agricultural credit. The first-stage F-statistic of 15.72
exceeds the conventional threshold of 10, indicating that the excluded
instruments are strong and relevant. The Hansen J-test p-value (0.261)
further confirms the validity of the instruments, as the null hypothesis
of instrument exogeneity cannot be rejected. Overall, the results are
consistent with the System-GMM estimates reported -earlier,
reinforcing the robustness of the findings.

The estimates show that the Productive Capacities Index (PCI)
significantly enhances agricultural productivity, with a coefficient of
0.201 (p < 0.01), underscoring the role of structural and institutional
capacities in supporting agricultural growth. Area under cultivation
also remains a positive and significant determinant (0.138, p < 0.05),
reflecting the contribution of land expansion to output growth. In
contrast, agricultural employment has an insignificant effect,
suggesting that labor absorption alone does not guarantee productivity
gains, likely due to issues of underemployment and low labor
efficiency in the agricultural sector.

Consistent with expectations, agricultural credit continues to
exert a strong positive influence (0.165, p < 0.01), highlighting its
importance in easing liquidity constraints and enabling investments
in farm inputs and technology. Finally, water availability shows a
positive but marginally significant effect (0.081, p < 0.10), suggesting
that irrigation access enhances productivity, though its effectiveness
may depend on complementary factors such as infrastructure and
water management practices. Taken together, these results confirm the
robustness of the earlier GMM findings while addressing endogeneity
concerns through instrumental variable estimation.

TABLE 6 2SLS estimates.

Variables Coefficient Std. t-statistic p-
error value
Productive
capacities 0.201%#%* 0.062 3.24 0.001
index
Area under
0.138%%* 0.055 2.51 0.013
cultivation
Agricultural
0.087 0.069 —-1.26 0.210
employment
Agricultural
0.165%** 0.050 3.30 0.001
credit
Water
0.081%* 0.044 1.84 0.066
availability
First-stage F-statistics (for excluded instruments): 15.72 — Strong instruments
Hansen J-test (p-value): 0.261 — Instruments valid
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To ensure robustness, the study employed three complementary
panel estimators: Driscoll-Kraay, FGLS, and PCSE. Driscoll-Kraay
corrects for heteroskedasticity, serial correlation, and cross-sectional
dependence, providing reliable standard errors in unbalanced panels.
FGLS improves efficiency under heteroskedastic and autocorrelated
PCSE
contemporaneous correlation across panels is present. The stability of

errors, while offers conservative estimates when
coefficient magnitudes across all specifications indicates that the
findings are not sensitive to the estimator choice, reinforcing the
robustness of the empirical results. The findings are reported in the
following Table 7.

The analysis presents estimate of the effect of the Productive
capacities index using three different econometric methods: Driscoll-
Kraay, FGLS, and PCSE. For the Driscoll-Kraay method, the
coefficient is 0.242 with a standard error of 0.024, which indicates a
statistically significant positive relationship between the productive
capacities index and the dependent variable. Similarly, the FGLS
method yields a coefficient of 0.229 with a standard error of 0.031, also
suggesting a significant positive impact. In contrast, the PCSE method
provides a coefficient of 0.263 but with a much larger standard error
of 0.199, which implies a greater degree of uncertainty around the
estimate. The differences in results across these methods highlight the
varying ways each approach deals with issues such as heteroskedasticity
and autocorrelation, affecting the precision and significance of
the estimates.

The relationship between area under cultivation and agricultural
productivity is also positively nuanced by all three selected methods.
The Driscoll Kraay Standard Error Estimates depict positive impact of
area under cultivation on agricultural productivity significantly. It
means that when there is one unit increase in the area under
cultivation, there would be 17% increase in the agricultural
productivity. Similarly, FGLS method finds the positive and significant
relationship between these two variables (coefficient = 0.173, standard
error = 0.122) at 5 % level of significance. In the same vein, PCSE
method reaffirm similar findings (coefficient = 0.166) and shows that
the area under cultivation pointedly related to agricultural productivity
in BRI countries with slight variations in standard error (0.183). The
results can be supported from past studies in China, India, Nigeria and
Pakistan (Bakoji et al., 2020; Das, 2016; Jin et al., 2015; Kurosaki, 2009;
Malik et al., 2016).

The analysis underscores a strong and positive correlation
between agriculture employment and agricultural productivity across
selected Asian countries. The Driscoll-Kraay Standard Error Estimates
reveals coefficients of 0.337, with standard errors of 0.175 and p-values
of 0.005, indicating a significant impact of agriculture employment on
productivity. FGLS method these
(coeflicient = 0.375, standard error = 0.184) as seen column 3 of

also affirm findings
Table 5. Similarly, PCSE further strengthen the link between
agricultural employment-productivity (coefficient = 0.258, standard
error = 0.149). Comparisons with prior studies consistently support
this link, emphasizing the role of a larger agricultural workforce in
enhancing productivity through improved practices and technology
adoption (Muzari et al, 2012; Asfaw et al., 2012; Gallardo and
Brady, 2015).

Agricultural credit plays a significant role in enhancing farm
productivity through capitalization and investment in better
technology which can increase efficiency of farm operations. The
study in hand finds the positive and significant relationship between
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TABLE 7 Results of the Study under different models.

Variables Driscoll
Kraay Std.
Err. estimates

Productive 0.242 0.229 0.263
capacities index (0.024)* (0.031)%:* (0.199)%**
Area under 0.173 0.173 0.166
cultivation (0.153)* (0.122)%* (0.183)%**
Agriculture 0.337%* 0.375%* 0.258%*
employment (0.175) (0.184) (0.149)
Agriculture credit 0.258 0.384 0.297

(0.138)* (0.233)%* (0.136) %
Water availability 0.184 0.381 0.227

(0.113)* (0.296)*** (0.121)%**

Robust standard errors are reported in parentheses. PCSE standard errors are larger due to
correction for heteroskedasticity and cross-sectional dependence across panels, which trades
off efficiency for robustness. Significance levels: *p < 0.10, **p < 0.05, **¥p < 0.01.

agricultural credit and productivity. For instance, it is shown that
agricultural credits positively impact the farm productivity
(coefficient = 0.258, standard error = 0.138) at 1 % level of significance
according to Driscoll-Kraay Standard Error method. It means that if
access on credit increase by one there would be about one-fourth
increase in  agricultural  productivity.  Similarly, FGLS
(coefficient = 0.384,  standard  error=0.233) and PSCE
(coeflicient = 0.297 standard error = 0.136) confirm these findings at
five and 10 % level of significance, respectively. Therefore, the study
concludes that agricultural credits positively influence agricultural
productivity and results can be justified through previous literature
(Hussain and Tagi, 2014; Narayanan, 2016).

Water availability is the crucial element for plant growth and
development. If more water accessible to crops, the higher the
potential yield. Therefore, water availability has direct and significant
impact on agricultural productivity. The study in hands also
highlights that there is significantly positive association between
water availability and agricultural productivity. For instance,
according to Driscoll-Kraay Standard Error Estimates, water
availability has positive impact on agricultural productivity
(coefficient = 0.184, standard error=0.113) at 1%
significance. It means that there is 18% increase in agricultural

level of

productivity due to per unit increase in water availability. Similarly,
FGLS (coefficient = 0.381, standard error =0.296) and PCSE
(coefhicient = 0.227, standard error =0.121) methods further
validates these results and reaffirm the substantial impact of water
availability on agricultural productivity.

4 Discussion

The results of the study showed that improving productive
capacities are essential for enhancing economic development and hence
agricultural productivity. The findings are line with previous studies
that found positive and significant correlation between productive
capacities and agricultural productivity. For instance, previous studies
reveal that investment in education, infrastructure and human capital
in raising productive capacities has the key role to play in increasing
agricultural productivity (Huffman and Orazem, 2007; Li and Liu,
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2009). Demirtas and Soyu Yildirim (2022) indicated the benefits of
productive capacities on economic development in OECD countries.
Similarly, Gnangnon (2021) was of the opinion that economic
complexity can be improved by increasing productive capacities
particularly in less develop countries.

The findings of the study affirm that higher percentage of arable
land enhances the agricultural productivity. Areas under cultivation
has definite link to raise agricultural productivity to combat the food
insecurity in BRI countries. If large portion of land is dedicated to
agriculture crop productions may increase due to increased
agricultural productivities. For instance, previous literature
investigated that increased farm size improves the productivity of
maize and even reduces pesticide applications and hence increase the
maize farming profitability (Chima and Rahman, 2017; Yu et al,
2023). In the same vein, Zhuang et al. (2022) reported that area under
cultivation should be carefully managed in the regions with facing
water scarcity and poor soil quality in order to boost agricultural
productivity. Moreover, some studies also examined that when larger
portion of land is given to agriculture, it leads to higher income of
farmers through increase agricultural activities, economies of scale
and profitability (Bojago and Abrham, 2023; Chandio et al., 2016).

Agricultural value chains provide a large majority of employment
opportunities in many developing countries. Among other decent work
in this agribusiness supply chain, agricultural employment is an
important metric used in productivity. It has positive and meaningful
influence on agricultural productivity and the study in hand well
recognized such findings. Folarin et al. (2021) show the critical role of
gender-based agriculture employment in addressing agricultural
productivity. They reported that female employment enhances
agricultural productivity and female participation is necessary for
agricultural growth. On the other hand, Nasir and Hundie (2014)
investigate Ethiopia’s agricultural productivity and output as impacted by
off-farm employment. The study investigates the impact of employment
outside of farms in agriculture crop output yield and productivity in farm
households. The two potential depends of employment outside of farms
are considered: enhancing farm production through financial support
for inputs and technologies, and having a detrimental effect by competing
for labor with farming activities. According to the information gathered,
there is a labor competition between agriculture and the non-farm sector
in rural areas since households’ participation in non-farm activities and
crop production are inversely correlated. There is also some detrimental
influence on land production. Nonetheless, a number of important
variables have a favorable impact on land productivity, including family
labor, increased spending, and local seed. Blanco Aguirre and Raurich
(2022) investigates how the mix of crops and agricultural activities within
a region influences labor productivity in the field of agriculture. They
were of the opinion that the significance of agricultural composition in
shaping the efficiency of labor utilization, as different crops and activities
require varying levels of labor input. For instance, labor-intensive crops
may demand more manpower but can yield higher returns if managed
effectively, whereas mechanized or capital-intensive activities may
require less labor but can lead to higher overall productivity if
implemented efficiently.

Results of all three models of the study showed that agricultural
credit has improved production. The findings of the study are in
agreement with previous studies (Adewale et al., 2022; Chaiya et al,,
2023). These studies indicated that availability of credit to the
farmers increases the input demand and hence raise crops’
production. They were of the opinion that if challenges such as high
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interest rate, limited access to formal credit institutions and time
credit delivery can be addressed properly, the productivity may
further be enhanced. Some research suggests that only credit
availability is not enough to boost productivity but factors such as
loan size, repayment terms and conditions, timely disbursement of
loan and low interest are necessary to increase agricultural
productivity. For instance, studies showed that agricultural credit
along with these facilities significantly raised maize production
(Assouto and Houngbeme, 2023; Nsamba and Owuru, 2024).
Therefore, our study suggests that credit facilities and availability to
the farmers may be improved for effective benefits of productivity in
BRI countries.

Water scarcity harms agricultural productivity and, conversely,
enough water availability increases food availability and decreases
hardships,
malnutrition through increase in agricultural productivity. The

socioeconomic regional food insecurity, and
study finds that raising water availability significantly increase the
agricultural productivity. The results can be justified from
previous studies (Jamadar et al., 2020; Rehman et al., 2019). For
instance, Rehman et al. (2019) indicated that soil and water
conservation practices increase water availability which then
ensure improved productivity in agriculture. Therefore, Jamadar
et al. (2020) suggested that efficient water management methods
are necessary to enhance agricultural productivity. Similarly,
Zhang et al. (2021) highlighted that water-saving methods
significantly improved the water-use efficiency and hence

agricultural production.

5 Conclusion

The current study identified the effect of productive capacities
on agriculture productivity in 42 BRI nations with panel data from
2000-2024. We utilized the methods like system GMM, 2SLS,
Driscoll-Kraay Standard Error Estimates, Feasible Generalized
Least Squares (FGLS), and Panel-Corrected Standard Errors (PCSE)
Estimation to eliminate heterogeneity and time-invariant variables.
Hence, robustness of findings is assured. The results show that there
is a positive and significant effect of productive capacities on
agricultural productivity in BRI nations. Thus, the study
recommends that productive capacities should be boosted to
develop agricultural productivity to increase economic growth and
development throughout the BRI region. Further, the study
identifies that area under cultivation, agriculture credit, and
availability of water enhance agricultural productivity. The research
categorically established that improvements in the cultivable area,
agricultural credit, and availability of water substantially improve
agricultural productivity.

Generally, the research adds useful information by offering a
comprehensive analysis of the role played by productive capacities
in determining agricultural productivity in the case of BRI
countries. The findings highlight the significance of policy to
increase productive capacities for improving agricultural
productivity, hence economic development and growth in the
region. Such results support strategic agricultural policies focusing
on sustainable land use and investment in rural development to
support agricultural productivity in BRI nations.
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In terms of policy implications, given the diverse socio-economic

and geographical conditions of BRI countries, tailored

recommendations are crucial:

 Resource-constrained economies should prioritize expanding
access to agricultural credit and financial services to strengthen
smallholder farmers’ resilience.

« Land-abundant economies, especially in parts of Africa, may

focus on sustainable land management, improved irrigation

systems, and soil conservation practices.

Labor-intensive economies such as those in South and Southeast

Asia, should promote agricultural mechanization and skills

development to increase efficiency while safeguarding
rural employment.

» Water-scarce regions like Central Asia and parts of South Asia,
need investment in climate-smart technologies, rainwater
harvesting, and efficient irrigation infrastructure to optimize
agricultural water use.

« BRI countries with strong financial institutions should design
credit schemes that support smallholders and rural communities

to ensure inclusive growth.

By recognizing these contextual differences, policies can better
align with each country’s development stage and ecological conditions,
thereby ensuring balanced growth across the BRI region. In addition,
the study emphasizes the importance of regional cooperation under
the BRI framework, encouraging knowledge sharing, joint research,
and technology transfer in agriculture to reduce disparities between
member states.

Finally, regarding future research directions, it is important to go
beyond the present analysis by:

Incorporating climate change variables such as temperature
variability, drought frequency, and extreme weather patterns to
better capture environmental risks.

Examining the role of institutional quality, governance, and
policy frameworks in moderating the link between productive
capacities and agricultural productivity.

Conducting country-specific or sub-regional studies within the
BRI to
agricultural sustainability.

provide more targeted insights into

Exploring the long-term effects of digital agriculture and green
innovations on productivity and food security.

Incorporating more detailed measures of water availability,

including irrigation infrastructure and groundwater

sustainability, to better capture resource constraints.

Assessing how digital technologies, fintech, and green
innovations interact with productive capacities to transform
agriculture in BRI countries.

Such future research avenues will deepen understanding of how
productive capacities can be strategically leveraged to foster
sustainable agricultural development in heterogeneous BRI economies.

In conclusion, this study contributes to the growing literature by
providing robust evidence that productive capacities substantially
drive agricultural productivity in BRI countries. By tailoring policy
interventions to the diverse needs of these economies and outlining a
future research agenda, the study underscores the dynamic potential
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of enhancing productive capacities to support sustainable agricultural
and economic development across the BRI region.
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