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Agricultural productivity is a cornerstone of food security, poverty alleviation, 
and sustainable development. While traditional determinants such as land, labor, 
credit, and water have been widely studied, the broader role of national productive 
capacities remains underexplored, particularly in the context of the Belt and Road 
Initiative (BRI). This study investigates the impact of productive capacities on 
agricultural productivity in 42 BRI countries from 2000 to 2024, using the Productive 
Capacities Index (PCI) alongside conventional inputs. The study employed the system 
GMM and 2SLS econometric techniques and then employed other econometric 
techniques such as Driscoll-Kraay, Feasible Generalized Least Squares (FGLS), and 
Panel-Corrected Standard Errors (PCSE) to check the robustness of the results. 
It is found that higher productive capacities significantly enhance agricultural 
productivity, while access to credit, land expansion, and water availability also 
play critical roles. Labor contributions, however, show mixed effects, suggesting 
inefficiencies in labor-intensive farming systems. By integrating PCI, this study 
provides a novel, cross-sectoral perspective on agricultural development. The 
findings underscore the importance of strengthening infrastructure, technology, 
institutions, and human capital within the BRI framework to foster sustainable 
agricultural growth and regional food security.
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1 Introduction

Agricultural productivity remains central to economic growth, food security, and rural 
development worldwide (Gollin et al., 2014). In many developing economies, agriculture not 
only sustains livelihoods but also drives poverty reduction and employment generation. Yet 
persistent productivity gaps hinder sustainable development and exacerbate food insecurity 
(Jayne and Rashid, 2013; Bain et al., 2013; Canton, 2021). Addressing these challenges requires 
more than traditional inputs; it demands stronger national capacities in technology, 
infrastructure, institutions, and human capital.

Productive capacities such as institutions, technology, infrastructure, and human capital 
increase agricultural productivity (Boliko, 2019). Effective institutions guarantee policy and 
governance structures that favor agricultural development, technology provides sustainable 
increases in productivity, infrastructure avails market access and minimizes losses, and human 
capital development allows farmers to utilize modern farming techniques (Ruttan, 2002; Wang 
et al., 2012). In addition, education and training for human capital development increase 
farmers’ capabilities to adopt modern agricultural techniques. In this manner not only 
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agricultural productivity increases but also climate variability 
resilience is increased (Piesse and Thirtle, 2010). Likewise, 
technological advances by means of agricultural R&D contribute 
significantly to increasing crop yields and enhance farming practices 
(Piesse and Thirtle, 2010). Infrastructure, including road and 
irrigation networks, minimizes post-production losses and facilitates 
market access, while the development of human capital allows farmers 
to adopt new technologies, enhancing resilience to climate fluctuations 
(Ruttan, 2002; Wang et  al., 2012; Piesse and Thirtle, 2010; Tafara 
Gadzirayi et al., 2014). Similarly, investment in rural infrastructure in 
the form of transport networks and irrigation system supports 
effective access to markets and agricultural activities (Tafara Gadzirayi 
et  al., 2014). Ingredients for productive capacities indices may, 
nonetheless, differ substantially across regions owing to varying socio-
economic dynamics and agro-ecological factors (Zubovic et al., 2009). 
Therefore, understanding these productive capacities indices are 
important for crafting policies that alleviate poverty, ensure food 
security, and promote sustainable growth in selected BRI countries. 
That is why the current study is designed to find the impact of 
productive capacities on agricultural productivity.

Expansion of cultivated land area leads to increase agricultural 
productivity, enhance economic growth and meet ever increasing food 
demands (Chandio et  al., 2016; Mueller et  al., 2012). However, 
unbalanced expansion often comes at the cost of environmental 
sustainability. Draining wetlands or deforestation for farming can lead 
exacerbating climate change, increased greenhouse gas emission, 
biodiversity decline, and habitat loss (Chandio et al., 2016; Mueller 
et al., 2012). Sustainable expansion of cultivated area with cleaner and 
modern farming practices is therefore necessary. Practices such as 
precision agriculture, agroforestry, and conservation farming can help 
lower environmental consequences by reducing resource use, 
preserving natural habitats, and improving soil health while ensuring 
or even improving productivity. Such practices not only ensures the 
log-term agricultural sustainability for food systems but also helps 
current and future generation depends critically on the economic 
development (Chandio et al., 2016; Mueller et al., 2012).

Employment in agriculture pointedly related to boost agricultural 
productivity. Study has elaborated that agricultural production per 
one employed in agriculture could increase with an increase in the net 
export (Patyka et al., 2021). Employment in agriculture sector provides 
labor for essential tasks and hence improves overall efficiency in 
farming sectors (World Bank, 2021). Therefore, motivated and well-
trained workers in farming is important in skill development, job 
quality, contribute to higher output, and highlighting the importance 
of labor allocation in enhancing productivity.

Availability of agricultural credit is a critical factor in supporting 
agricultural production by allowing farmers to invest in important 
inputs like seeds, fertilizers, and machinery, as well as implement new 
technologies and enhance infrastructure (Kashif et al., 2016; Girma, 
2022). This credit not only supports increase in productivity but also 
encourages innovation in agriculture and overall efficiency along the 
agricultural value chain. Furthermore, by enabling farmers to manage 
risks triggered by variability in weather and fluctuations in the market, 
agricultural credit plays an important role in achieving sustainable 
development objectives such as food security and reducing poverty. 
Credit facilities the small-scale farmers in rural regions, enabling them 
to increase their activities, raise production, and enhance their living 
standards. Hence, it is imperative to ensure fair access to agricultural 

credit to promote sustainable and prosperous agricultural industries, 
hence contributing to overall economic growth and rural development 
(Kashif et al., 2016; Girma, 2022).

Availability of water is a determining factor in agricultural 
productivity, which plays an elemental role in irrigation and in 
facilitating the growth of crops (Gil Sevilla et al., 2010). The availability 
of stable water sources is the key to achieving maximum yields, 
especially in climate-vulnerable regions with unstable weather 
patterns. Sufficient supply of water not only safeguards against the 
risks of floods and droughts but also supports sustainable agriculture 
that guarantees uniform production of food. Additionally, equitable 
access to water resources is essential to facilitate rural development, 
improve livelihoods, and food security among communities. Efficient 
water management policies, such as infrastructure development for 
storage and supply, and effective irrigation methods, are necessary to 
maximize water use efficiency and resilience in agriculture. By solving 
the water availability issue, policymakers can promote sustainable 
agricultural development and help secure overall socio-economic 
stability (Gil Sevilla et al., 2010).

The Belt and Road Initiative (BRI) has put substantial spotlight on 
agricultural productivity among member countries, with productive 
capacity being central in such an aspect. Recent research highlights 
the significance of different factors leading to efficiency in agriculture. 
Development of infrastructure, including enhancements in roads and 
irrigation facilities, has been recognized as a significant factor in 
agricultural productivity. (Navajas et  al., 2021; Raji et  al., 2024). 
Navajas et al. (2021) show that improved infrastructure minimizes 
post-harvest losses and provides easier market access, resulting in 
higher agricultural outputs. The role of technology cannot 
be overlooked as Raji et al. (2024) point out that the use of precision 
agriculture technology, such as GPS and remote sensing, has 
dramatically improved productivity. These technologies are best when 
supported by proper technology transfer and training programs. 
Notwithstanding this increasing literature, relatively little attention has 
been paid to how productive capacities—measured through 
institutions, technology, infrastructure, and human capital influence 
agricultural productivity in BRI countries.

The Belt and Road Initiative (BRI) region is one of the most 
important international platforms for economic coordination, green 
development, and foreign investment. The choice of BRI countries 
in this research is based on their economic status as well as 
environmental impact. As a whole, the BRI economies account for 
over 65% of the world’s population and produce almost 40% of the 
world’s GDP (BRICS, 2024). These nations are also pivotal in 
international trade and resource exchange, considering that BRI 
stretches across more than 140 countries in Asia, Africa, Europe, 
and Latin America (Zhou and Esteban, 2018). The BRI countries 
occupy a central position in global agricultural development, 
making them an ideal focus for research on agricultural productivity 
and its determinants. Collectively, these countries represent nearly 
two-thirds of the world’s population and a significant share of global 
GDP and food demand, highlighting their critical role in ensuring 
food security at both regional and international levels. Many BRI 
economies are also highly dependent on agriculture for employment, 
rural livelihoods, and export revenues, yet they face persistent 
challenges of low productivity, climate vulnerability, and resource 
constraints. In this context, examining agricultural productivity 
through the lens of productive capacities is particularly important, 
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as it goes beyond traditional inputs like land and water to 
incorporate broader structural factors such as technology, 
infrastructure, human capital, and institutional quality. 
Strengthening these capacities is vital for enabling BRI countries to 
modernize agricultural systems, reduce inefficiencies, and enhance 
resilience to global shocks. Therefore, research that links agricultural 
productivity with productive capacities provides crucial insights for 
sustainable growth strategies and policy design within the 
BRI framework.

Different factors such as renewable energy consumption, financial 
inclusion, human resource development, FDI and export are used to 
evaluate their impact on agricultural productivity (Hoang, 2024; Ali 
and Akhtar, 2024; Soni and Manogna, 2024). Similarly, other studies 
used variables such as technology improvements, institutional quality, 
property rights, crops that boost soil fertility, and environmental taxes 
in relation to agricultural productivity (Tab-eam et al., 2024; Zurrah 
et al., 2024; Churkova and Churkova, 2024; Ben Youssef and Dahmani, 
2024). However, factors such as impact of productive capacity on 
agricultural productivity in BRI countries is still needed to address. 
While earlier studies on agricultural productivity have largely focused 
on conventional determinants such as land, credit, labor, and water, 
these approaches often capture only a narrow aspect of the factors 
influencing agricultural outcomes. In contrast, the present study 
introduces the Productive Capacities Index (PCI) as a 
multidimensional measure that integrates a broad range of variables, 
including ICT, structural change, natural capital, human capital, 
energy, transport, private sector development, and institutional 
quality. By employing PCI, this research moves beyond single-factor 
or limited-variable analyses and provides a more holistic perspective 
on how national-level capacities shape agricultural productivity. To 
the best of our knowledge, no prior study has incorporated such a 
comprehensive framework in the context of BRI countries. This 
novelty represents the key contribution of the study, offering fresh 
insights into how strengthening diverse productive capacities can 
enhance agricultural performance across member states. Therefore, 
this study is intended to understand the multifaceted relationship 
between productive capacities and agricultural productivity which is 
essential for devising effective strategies in BRI countries. By analyzing 
factors such as the productive capacities index, area under cultivation, 
agriculture employment, agriculture credit, and water availability, 
policymakers can promote sustainable agricultural development, 
enhance food security, and improve rural livelihoods. Thus, the study 
aims to uncover intricate relationships that influence agricultural 
productivity in BRI countries contexts. The findings are expected to 
provide policymakers with practical insights for promoting sustainable 
agricultural development, strengthening food security, and enhancing 
rural livelihoods across BRI countries.

2 Methodology

This is quantitative study using the panel data of selected Asian 
countries (Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, 
Bhutan, Brunei, Cambodia, China, Cyprus, Georgia, India, Indonesia, 
Iran, Iraq, Israel, Japan, Jordan, Kazakhstan, Kuwait, Kyrgyzstan, Laos, 
Lebanon, Malaysia, Maldives, Mongolia, Myanmar, Nepal, North 
Korea, Oman, Pakistan, Philippines, Qatar, Saudi Arabia, Singapore, 
South Korea, Sri  Lanka, Syria, Tajikistan, Thailand, Timor-Leste, 

Turkey, Turkmenistan, United  Arab  Emirates, Uzbekistan, 
Vietnam, Yemen).

2.1 Variable description and data sources

For empirical analysis, study used the data spanning from 2000 to 
2024, data from 42 BRI countries is utilized to explore the relationships 
between key agricultural indicators. The selected timeframe is 
particularly relevant for two reasons. First, it captures the structural 
transformation of agriculture during the early 21st century, a period 
marked by rapid globalization, technological diffusion, and climate 
variability that directly shaped agricultural productivity and 
sustainability in Asia. Second, the availability and consistency of 
internationally comparable data significantly improve from the year 
2000 onward, enabling robust cross-country analysis. Moreover, the 
period up to 2020 is critical as it reflects the impact of major policy 
shifts, such as the Millennium Development Goals (2000–2015) and 
the transition to the Sustainable Development Goals (2015–2020), 
both of which placed agriculture at the center of economic 
development and poverty alleviation strategies. Description of 
variables and sources of data is given in following Table 1.

Water availability (WA) is measured using annual rainfall 
(millimeters per year). While we acknowledge that water availability 
for agriculture is also influenced by factors such as land slope, soil 
permeability, irrigation infrastructure, and water storage capacity, 
comparable cross-country data for these indicators are limited and 
inconsistent across the BRI economies. Therefore, annual rainfall has 
been adopted as a proxy variable, following prior studies that 
demonstrate its strong influence on agricultural productivity and 
sustainability. Rainfall is widely recognized as a practical and reliable 
indicator at the macroeconomic level, as it directly affects crop growth, 
soil moisture, and irrigation potential (Rockström and Barron, 2007; 
Liu et  al., 2015; FAO, 2020). Several cross-country analyses of 
agriculture and climate have also relied on rainfall as a representative 
measure of water availability due to its global comparability and 
accessibility (Gornall et  al., 2010; Wheeler and von Braun, 2013). 
While this approach has inherent limitations, including the inability 
to fully capture heterogeneity in local water conditions, it nonetheless 
provides an essential climatic dimension for understanding 
agricultural sustainability across diverse geographical settings.

Agricultural Productivity (AP), gauged by the Crop Production 
Index, reflects crop yield efficiency. The Productive Capacities Index 
(PCI) assesses overall national capabilities across sectors, including 
agriculture. The Area under Cultivation (AUC), indicating arable land 
as a percentage of total land, reveals land use patterns. Agriculture 
Employment (AE) highlights the sector’s labor market impact. 
Agriculture Credit (AC), in millions of dollars, signifies financial 
support. Water Availability (WA), measured by annual rainfall, 
crucially affects agricultural output. These metrics collectively inform 
agricultural sustainability and economic development strategies.

2.2 Estimation techniques

The study applied the system GMM and 2SLS techniques for 
empirical analysis. To ensure the robustness of our empirical analysis, 
we  also employed three estimation techniques: Driscoll-Kraay 
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standard error estimates, Feasible Generalized Least Squares (FGLS), 
and Panel-Corrected Standard Errors (PCSE). Each of these methods 
addresses different econometric challenges common in panel data, 
such as heterogeneity, serial correlation, heteroskedasticity, and cross-
sectional dependence.

The System Generalized Method of Moments (System-GMM), 
developed by Arellano and Bover (1995) and Blundell and Bond 
(1998), is a dynamic panel estimator designed to address endogeneity, 
unobserved heterogeneity, and dynamic persistence in panel data 
models. Unlike traditional fixed-effects or difference-GMM 
estimators, System-GMM combines equations in both levels and first 
differences, thereby improving efficiency when variables are weakly 
instrumented. One of its key advantages is its ability to handle 
endogeneity arising from the inclusion of lagged dependent variables 
and explanatory variables that may be correlated with past errors. 
Additionally, it allows for heteroskedasticity and autocorrelation 
within panels. However, System-GMM also has limitations. Results 
are highly sensitive to instrument proliferation, which may weaken 
the Hansen J-test of overidentifying restrictions and inflate finite-
sample bias. Moreover, incorrect instrument selection can lead to 

spurious inferences. Despite these caveats, System-GMM is widely 
regarded as a powerful tool for estimating dynamic relationships in 
macroeconomic and development studies, particularly when sample 
periods are long and cross-sectional units are numerous.

Two-Stage Least Squares (2SLS) is an instrumental variable (IV) 
estimation technique commonly used to address endogeneity in 
regression models. In the first stage, potentially endogenous regressors 
are regressed on selected instrumental variables that are correlated 
with the regressors but uncorrelated with the error term. The predicted 
values from this stage are then used in the second stage to estimate the 
structural equation. The main advantage of 2SLS is its simplicity and 
ability to provide consistent estimates when endogeneity arises from 
simultaneity, measurement error, or omitted variable bias. It also 
allows researchers to explicitly test instrument validity through tests 
such as the Hansen J-test and the first-stage F-statistic. Yet, 2SLS is not 
without limitations. It relies heavily on the strength of instruments; 
poor or faulty instruments may result in biased and inconsistent 
estimates. 2SLS is also less efficient when instruments are strong 
compared to maximum likelihood or GMM estimation. Further, it is 
less effective at capturing dynamic persistence than System-GMM. All 
the same, it is a solid and common approach to handling endogeneity 
in cross-sectional and panel data environments.

Driscoll-Kraay standard error estimates is a strong technique 
employed to adjust for problems in panel data regression models, 
especially when data are characterized by cross-sectional dependence, 
serial correlation, and heteroskedasticity. They are commonly applied 
in fixed-effects or pooled regression models, especially if the 
conditions of classical ordinary least squares (OLS) regression are not 
satisfied (Hoechle, 2007). Driscoll-Kraay standard errors are 
calculated by transforming the covariance matrix of the parameter 
estimates to allow for the issues described above. This is achieved with 
a Newey-West style estimator generalized to panel data (Driscoll and 
Kraay, 1998). The estimator has a truncation parameter (or lag length) 
to capture the extent of serial correlation in the data. A kernel function 
gives weights to observations depending on their lag distance. This 
approach yields consistent standard errors even if the data fails to meet 
the homoscedasticity and independence assumptions and controls for 
the spillover effects across cross-sectional units. Driscoll-Kraay 
standard errors (Driscoll and Kraay, 1998; Hoechle, 2007) are 
particularly useful when errors are correlated across panels and over 
time, a frequent feature in multi-country datasets. However, their 
performance can deteriorate in panels with very few cross-sections, 
and they do not capture more complex non-linear 
dependence structures.

Feasible Generalized Least Squares (FGLS) is another estimation 
method used when the assumptions of the classical OLS regression are 
violated, particularly in the presence of heteroskedasticity 
(non-constant error variance) or autocorrelation (serial correlation in 
error terms). FGLS provides more efficient parameter estimates than 
OLS under such conditions (Greene, 2012). OLS assumes that the 
error variance is constant across observations (homoscedasticity). 
When this assumption is violated (heteroskedasticity), OLS remains 
unbiased but is inefficient, and the standard errors may be incorrect. 
FGLS modifies the estimation process to account for varying error 
variances. In time-series or panel data, error terms may exhibit 
autocorrelation, where the error for one observation is correlated with 
another. This contradicts OLS independent errors assumption. FGLS 
corrects this autocorrelation (Hansen, 1982). FGLS becomes more 

TABLE 1  Description analysis of the data.

Sr. no Variables Variables 
description

Source of 
data

1 Productive 

capacities index

The overall PCI index 

is measured across 

eight categories: 

information and 

communication 

technologies (ICTs), 

structural change, 

natural capital, human 

capital, energy, 

transport, the private 

sector, and 

institutions.

United Nations 

Conference on 

Trade and 

Development 

(UNCTAD)

2 Agricultural 

productivity

It is measure by Crop 

production index

World 

Development 

Indicators

(WDI)

3 Area under 

cultivation

It is measure by arable 

land as a % of total 

land

World 

Development 

Indicators

(WDI)

4 Agriculture 

employment

It is measure by the 

proportion of total 

employment in 

agriculture

World 

Development 

Indicators

(WDI)

5 Agriculture credit It is measure by in 

millions dollars

World 

Development 

Indicators

(WDI)

6 Water availability It is measure by annual 

rainfall in millimeters

World 

Development 

Indicators

(WDI)
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efficient than OLS by converting the data so as to eliminate 
heteroskedasticity or autocorrelation effects prior to estimation. FGLS 
yields more accurate coefficient estimators than OLS if the classical 
assumptions are not met. It adjusts for standard errors, resulting in 
more accurate hypothesis tests and confidence intervals. FGLS is a 
very useful method for having strong and efficient estimation with 
complex error structures. Feasible Generalized Least Squares (FGLS) 
of Hansen (1982) and Greene (2012) yields efficient estimates in the 
case of heteroskedasticity and autocorrelation through changing the 
form of the error structure. Efficiency is its strength but reliability 
requires accurate specification of the error covariance matrix. If they 
are mis-specified, they can be biased, a shortcoming which we accept.

Panel-Corrected Standard Errors (PCSEs) is one statistical 
method applied in panel data analysis to deal with the possible 
breaches of the classical assumptions of error terms in regression 
models. It specifically corrects heteroskedasticity (non-stable error 
variance) and cross-sectional dependence (correlation of error terms 
within panel units). This technique is particularly helpful for use with 
panel datasets in which the observations are organized both across 
time and cross-sectional units (countries, firms, or individuals). 
PCSEs permit error variances to vary among panel units but condition 
that the error variance is fixed over time within each unit (Beck and 
Katz, 1995). PCSEs explain contemporaneous correlation of error 
terms among various cross-sectional units at a given time period. 
Contrary to Feasible Generalized Least Squares (FGLS), PCSEs are not 
based on any particular variance–covariance matrix structure and 
thus are not susceptible to different error specifications. PCSEs can 
be estimated using the following steps: The regression coefficients are 
initially estimated with the help of OLS. Residuals from the OLS 
model are employed for the estimation of the variance–covariance 
matrix of errors. This matrix picks up both cross-sectional correlation 
as well as heteroskedasticity in the error terms. The estimated 
variance–covariance matrix is used to adjust the standard errors of the 
coefficients to account for the heteroskedasticity and cross-sectional 
dependence (Bailey and Katz, 2011). PCSEs yield consistent estimates 
even under cross-sectional dependence, which is a common 
occurrence in panel data. PCSEs are easy to calculate and impose no 
assumptions regarding the exact form of the variance–covariance 
matrix. Panel-Corrected Standard Errors (PCSE) (Bailey and Katz, 
2011; Beck and Katz, 1995) are constructed to account for 
contemporaneous correlation and heteroskedasticity between panels 
with no strong structure assumptions. Although robust, PCSE requires 
error variance in a panel unit to remain constant over time, potentially 
missing changing variances.

Through triangulation of findings across these approaches, 
we  strike a balance of their strengths and weaknesses so that the 
findings are not an artifact of a single technique. We point out that no 
approach is always “best”; rather, consistency of findings across these 
methods increases confidence in the robustness of conclusions.

2.3 Empirical model

The model to determine the relationship among variables is 
as follows:

Agricultural Productivity = f (Productive capacities index, Area 
under cultivation, Agriculture Employment, Agriculture credit, 
Water availability).

The Econometric Model is:

	 0 1 2 3 4 5AP PCI AUC AE AC WA=β +β +β +β +β +β + ε
	 (1)

Where:
β0 represents the intercept term.
B1, B2, B3, B4, and B5 are the coefficients associated with each 

independent variable.
AP = Agricultural Productivity; PCI = Productive Capacities 

index; AUC = Area under Cultivation; AE = Agriculture Employment; 
AC = Agriculture Credit; WA = Water availability.

The model considers multiple determinants of agricultural 
productivity in BRI countries, drawing from the literature and the 
availability of consistent cross-country data.

While traditional determinants of agricultural productivity such 
as land, credit, labor, and water have been extensively studied in prior 
research, the unique contribution of this study lies in the use of the 
Productive Capacities Index (PCI) as a comprehensive measure that 
integrates cross-sectoral capacities influencing agricultural outcomes. 
Unlike single-factor approaches, PCI captures the combined effects 
of ICTs, human capital, structural transformation, infrastructure, and 
institutions, which are often overlooked in agriculture-specific 
analyses. By incorporating PCI, this study highlights how broader 
national productive capacities translate into improved agricultural 
performance, thereby offering a novel perspective that extends 
beyond conventional determinants and enriches the understanding 
of crop productivity dynamics. The PCI is included to capture the 
broader economic and structural capacity of countries to utilize 
resources efficiently. Higher productive capacities reflect better 
infrastructure, technological development, and institutional strength, 
which facilitate agricultural modernization and efficiency (UNCTAD, 
2020). Countries with higher PCI are better equipped to adopt 
advanced agricultural technologies, improve logistics, and enhance 
value-added processes, all of which contribute to higher agricultural 
productivity. The inclusion of the Productive Capacities Index (PCI) 
as a key explanatory variable for agricultural productivity is 
theoretically justified because its multidimensional components 
directly influence crop production outcomes. Specifically, ICTs 
enhance access to agricultural information, digital markets, and 
smart technologies, thereby improving yields; structural change 
reflects the reallocation of resources that modernizes agricultural 
practices; and natural capital such as land, water, and soil quality 
directly underpin production potential. Human capital contributes 
through farmers’ skills, adoption of advanced practices, and 
managerial efficiency, while access to energy is essential for irrigation, 
mechanization, storage, and processing. Similarly, transport 
infrastructure reduces post-harvest losses and improves market 
access, private sector development strengthens value chains and 
credit availability, and institutions provide governance, property 
rights, and supportive policies that facilitate efficiency and 
sustainability. Although PCI is a broad, cross-sectoral measure, these 
components collectively form the foundation of agricultural 
performance, making it highly relevant for explaining variations in 
the Crop Production Index (CPI). Higher productive capacities 
enable countries to better utilize agricultural resources, adopt 
innovations, and respond effectively to shocks, which ultimately 
enhances crop outcomes.
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The size of cultivated land remains a fundamental determinant of 
agricultural output. Expanding the area under cultivation increases 
the potential volume of production, although this relationship is 
subject to diminishing returns if land is used inefficiently or without 
adequate technological input. Inclusion of this variable helps 
distinguish between productivity gains from land expansion versus 
efficiency improvements (FAO, 2019).

Labor input is an important element of agricultural productivity. 
Agriculture in the majority of BRI nations is still labor-intensive, and 
the share of employment in the sector directly affects the level of 
production. Increased agricultural employment but not mechanization 
could be a sign of low labor productivity, which is an argument for 
recognizing the scale as well as the efficiency of labor deployment 
(World Bank, 2018).

Credit access enables farmers to have the funds they require to 
buy advanced inputs like seeds, fertilizers, machinery, and irrigation 
equipment. Credit access also enables the management of risk and 
investment in long-term productivity-improving technologies. 
Empirical evidence indicates that agricultural credit has a significant 
impact on productivity, especially in emerging economies (Khandker 
and Koolwal, 2016).

Water is a critical input for crop production. Because of data 
constraints in most BRI countries, rainfall is employed as a proxy for 
natural water availability. Rainfall is a good indicator of natural water 
input, particularly in nations with predominant rain-fed agriculture. 
Although this proxy is not entirely capturing irrigation infrastructure 
and water management practices, it provides a comparable and widely 
reported indicator of water resources affecting crop growth (Gornall 
et  al., 2010; FAO, 2016). Though water availability is a complex 
concept influenced by rainfall, irrigation infrastructure, groundwater 
extraction, and water management practices, comparable and 
consistent panel data on irrigation and water infrastructure for all BRI 
countries are not available. Hence, annual rainfall was used as a proxy 
metric, consistent with earlier work that used rainfall as a valid and 
easily accessible proxy for water input in agriculture when more 
detailed water-use information is missing (FAO, 2016; Gornall et al., 
2010). While rainfall does not capture irrigation capacity or efficiency, 
it provides a meaningful cross-country proxy for water availability in 
the agricultural sector. The limitations of this approach are explicitly 
acknowledged in the discussion section. The limitations of this proxy 
are acknowledged, and future research may incorporate irrigation 
efficiency and groundwater use data when available.

3 Estimated results

3.1 Cross sectional dependence test

Cross-sectional dependence refers to a statistical phenomenon 
where the error terms (or residuals) in a regression model are 
correlated across different cross-sectional units (e.g., individuals, 
firms, countries) in panel or cross-sectional data. This violates the 
assumption of independence, which is fundamental in many 
econometric analyses. The presence of interdependence or mutual 
influence among the units observed at the same point in time. 
Ignoring cross-sectional dependence can lead to biased and 
inconsistent parameter estimates while standard error estimates may 
also be incorrect, leading to unreliable hypothesis testing. This study 

applied the bias corrected scaled Lagrange Multiplier (CDSLMBC) and 
Lagrange Multiplier test” (CDLMBP) to determine the dependence of 
cross sections. The Friedman, Frees, and Pesaran tests are also applied 
to determine the CSD in the model.

In the beginning, we have verified the cross sectional dependence 
of the variables as it is present in panel data. Literature has underlined 
a range of the tests for cross sectional dependence, e.g., Breusch and 
Pagan (1980) Lagrange Multiplier (LM) test, Pesaran (2004) scaled 
LM test, Baltagi et al. (2012) bias corrected scaled LM test and Pesaran 
(2004) CD test. Applied the bias corrected scaled Lagrange Multiplier 
(CDSLMBC) and Lagrange Multiplier test” (CDLMBP) to determine the 
dependence of cross sections. The Friedman, Frees, and Pesaran tests 
are also applied to determine the CSD in the model. The results of 
various cross sectional dependence test are presented in Table 2.

It is revealed that cross sectional dependence is present among 
variables and residuals in a significant way for all tests. The outcomes 
of the tests highlight that there are regional and spillover effects among 
the selected countries.

3.2 Unit root tests

Non-stationary data complicates forecasting and analysis, as 
typical assumptions of constant mean and variance no longer hold. A 
unit root is a statistical property of a time series that indicates it is 
non-stationary, meaning its statistical properties (like mean and 
variance) change over time rather than remaining constant. The 
presence of a unit root implies that shocks to the time series have a 
persistent, long-term effect rather than dissipating over time. This 
study applied cross sectional augmented Dickey- Fuller (CADF) and 
cross sectional augmented Im, Pesaran, and Shin (CIPS) unit root test 
are used to know the integration level then Lagrange multiplier boot 
strap panel cointegration test is applied.

Using first generation panel unit root tests to verify the stationarity 
of the variables is not possible when cross sectional dependence is 
present. For this reason, we use Pesaran (2007) second generation 
panel unit root test to verify stationarity. To evaluate the panel unit 
root null hypothesis, the Pesaran test recommends the cross-
sectionally Augmented Dickey-Fuller (CADF) test. Once the 
integration level is determined, the Lagrange multiplier boot strap 
panel cointegration test is applied. Cross sectional augmented 

TABLE 2  Cross sectional dependence tests.

Variable CDLMBP CDSLMBC

Agricultural productivity 248.42* 27.62*

Productive capacities 

index

308.09* 33.26*

Area under cultivation 354.14* 44.62*

Agriculture employment 106.44* 99.35*

Agriculture credit 643.26* 63.51*

Water availability 428.67* 77.82

Pesaran test 1.98**

Frees test 2.95*

Friedman test 39.45*

* and ** show the significance level at 1 and 5%.
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Dickey- Fuller (CADF) and cross sectional augmented Im, Pesaran, 
and Shin (CIPS) unit root tests are utilized. The Table 2 shows the 
results of stationarity tests for various variables using two different 
tests: CIPS (cross sectional augmented Im, Pesaran, and Shin) and 
CADF (Cross-sectional Augmented Dickey-Fuller). The tests are 
conducted at both the level and difference (first difference) of the 
variables. The findings are reported in the following Table 3.

The findings demonstrate that while some variables are not 
stationary at levels, they are at their initial disparities. These results 
indicate that there may be cointegration between the variables.

3.3 Cointegration test

The outcomes of the Lagrange Multiplier (LM) Bootstrap Panel 
Co-integration test are presented in Table 4. This test is widely applied 
to examine whether a long-term equilibrium relationship exists 
among the variables in panel data. In both models (Constant and 
Constant with Trend), the p-values are well below the 5% significance 
threshold, confirming that the null hypothesis of no co-integration 
can be rejected. Thus, the results provide robust evidence of a strong 
long-run relationship among the variables, which is consistent with 
theoretical expectations and empirical findings in similar contexts.

The results indicate that the variables under study move together 
in the long run, implying that short-term deviations will eventually 
converge back to the long-run equilibrium. This validates the use of 
long-run estimators to capture the dynamic interactions. Moreover, 
the confirmation of co-integration strengthens the reliability of the 
empirical findings, ensuring that the estimated relationships are not 
spurious but grounded in stable long-term linkages among 
the variables.

3.4 Long run relationship

Table  5 reports the results from the dynamic System-GMM 
estimation, which accounts for potential endogeneity, unobserved 

heterogeneity, and dynamic persistence in agricultural productivity 
across 42 BRI countries from 2000 to 2024. The inclusion of the lagged 
dependent variable controls for path dependence in agricultural 
productivity, while the Hansen J-test and Arellano-Bond AR(2) 
confirm the validity of instruments and absence of second-order 
autocorrelation, respectively, ensuring robustness of the estimates.

The results highlight several important drivers of agricultural 
productivity in BRI countries. The Productive Capacities Index (PCI) 
shows a strong and positive impact (β = 0.214, p < 0.01), suggesting 
that improvements in productive capacities such as infrastructure, 
technology, and institutional quality significantly enhance agricultural 
performance. Similarly, the Area under Cultivation contributes 
positively (β = 0.147, p < 0.05), indicating that expanding arable land 
still plays a crucial role in boosting output in many developing BRI 
economies. In contrast, Agricultural Employment is negatively 
associated with productivity, though not statistically significant 
(β = −0.092, p > 0.10). This may reflect diminishing returns to labor 
in traditional agriculture, where excessive reliance on manpower 
without corresponding technological adoption reduces efficiency. 
Agricultural Credit emerges as a key determinant (β = 0.173, p < 0.01), 
confirming that access to finance facilitates investment in modern 
inputs, irrigation, and mechanization, thereby raising productivity. 
Likewise, Water Availability, measured by annual rainfall, has a 
positive but marginally significant effect (β = 0.089, p < 0.10), 
suggesting that while rainfall matters, its impact is mediated by 
irrigation infrastructure and water management practices. The lagged 
dependent variable is highly significant (β = 0.421, p < 0.01), reflecting 

TABLE 3  Stationarity tests.

Variables CIPS CADF

Level Difference Level Difference

Agricultural 

productivity

−3.55 −4.82* −3.75 −4.17*

Productive 

capacities 

index

−4.27 −4.36* −5.42 −4.26*

Area under 

cultivation

−4.39 −3.72* −4.66 −4.35*

Agriculture 

employment

−3.72 −5.63* −2.04 −2.75*

Agriculture 

credit

−4.58 −5.72* −4.38 −3.86*

Water 

availability

−3.61 −4.82* −3.57 −3.49*

*Shows that variable is significant at 1%.

TABLE 4  Lagrange multiplier boot strap panel co-integration.

Constant Constant and trend

LM-
statistic

Bootstrap 
p-value

LM-
statistic

Bootstrap 
p-value

15.72 0.012 18.45 0.007

TABLE 5  System-GMM estimates.

Variables Coefficient Std. 
error

t- 
statistic

p- 
value

Productive 

capacities index
0.214*** 0.065 3.29 0.001

Area under 

cultivation
0.147** 0.058 2.53 0.012

Agricultural 

employment
0.092 0.071 1.30 0.195

Agricultural 

credit
0.173*** 0.051 3.39 0.001

Water 

availability
0.089* 0.046 1.93 0.054

Lagged 

dependent 

variable

0.421*** 0.074 5.69 0.000

Hansen J-test (p-value): 0.287 → Instruments valid

Arellano-Bond AR(2) test (p-value): 0.194 → No second-order autocorrelation

Number of Instruments: 32 Observations: 798 Countries: 42

***, **, * show significance at 1, 5, and 10%, respectively.
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strong persistence in agricultural productivity levels over time. The 
diagnostic tests support the reliability of the results: the Hansen J-test 
(p = 0.287) indicates instrument validity, and the AR(2) test 
(p = 0.194) confirms no serial correlation in the error term. Taken 
together, the findings underline the importance of productive 
capacities, access to credit, and land utilization in driving agricultural 
productivity in BRI countries, while also emphasizing the need for 
modernization to reduce labor inefficiencies and strengthen resilience 
to water-related risks.

Table 6 presents the 2SLS estimation results, which account for 
potential endogeneity concerns, particularly between agricultural 
productivity and agricultural credit. The first-stage F-statistic of 15.72 
exceeds the conventional threshold of 10, indicating that the excluded 
instruments are strong and relevant. The Hansen J-test p-value (0.261) 
further confirms the validity of the instruments, as the null hypothesis 
of instrument exogeneity cannot be rejected. Overall, the results are 
consistent with the System-GMM estimates reported earlier, 
reinforcing the robustness of the findings.

The estimates show that the Productive Capacities Index (PCI) 
significantly enhances agricultural productivity, with a coefficient of 
0.201 (p < 0.01), underscoring the role of structural and institutional 
capacities in supporting agricultural growth. Area under cultivation 
also remains a positive and significant determinant (0.138, p < 0.05), 
reflecting the contribution of land expansion to output growth. In 
contrast, agricultural employment has an insignificant effect, 
suggesting that labor absorption alone does not guarantee productivity 
gains, likely due to issues of underemployment and low labor 
efficiency in the agricultural sector.

Consistent with expectations, agricultural credit continues to 
exert a strong positive influence (0.165, p < 0.01), highlighting its 
importance in easing liquidity constraints and enabling investments 
in farm inputs and technology. Finally, water availability shows a 
positive but marginally significant effect (0.081, p < 0.10), suggesting 
that irrigation access enhances productivity, though its effectiveness 
may depend on complementary factors such as infrastructure and 
water management practices. Taken together, these results confirm the 
robustness of the earlier GMM findings while addressing endogeneity 
concerns through instrumental variable estimation.

To ensure robustness, the study employed three complementary 
panel estimators: Driscoll–Kraay, FGLS, and PCSE. Driscoll–Kraay 
corrects for heteroskedasticity, serial correlation, and cross-sectional 
dependence, providing reliable standard errors in unbalanced panels. 
FGLS improves efficiency under heteroskedastic and autocorrelated 
errors, while PCSE offers conservative estimates when 
contemporaneous correlation across panels is present. The stability of 
coefficient magnitudes across all specifications indicates that the 
findings are not sensitive to the estimator choice, reinforcing the 
robustness of the empirical results. The findings are reported in the 
following Table 7.

The analysis presents estimate of the effect of the Productive 
capacities index using three different econometric methods: Driscoll-
Kraay, FGLS, and PCSE. For the Driscoll-Kraay method, the 
coefficient is 0.242 with a standard error of 0.024, which indicates a 
statistically significant positive relationship between the productive 
capacities index and the dependent variable. Similarly, the FGLS 
method yields a coefficient of 0.229 with a standard error of 0.031, also 
suggesting a significant positive impact. In contrast, the PCSE method 
provides a coefficient of 0.263 but with a much larger standard error 
of 0.199, which implies a greater degree of uncertainty around the 
estimate. The differences in results across these methods highlight the 
varying ways each approach deals with issues such as heteroskedasticity 
and autocorrelation, affecting the precision and significance of 
the estimates.

The relationship between area under cultivation and agricultural 
productivity is also positively nuanced by all three selected methods. 
The Driscoll Kraay Standard Error Estimates depict positive impact of 
area under cultivation on agricultural productivity significantly. It 
means that when there is one unit increase in the area under 
cultivation, there would be  17% increase in the agricultural 
productivity. Similarly, FGLS method finds the positive and significant 
relationship between these two variables (coefficient = 0.173, standard 
error = 0.122) at 5 % level of significance. In the same vein, PCSE 
method reaffirm similar findings (coefficient = 0.166) and shows that 
the area under cultivation pointedly related to agricultural productivity 
in BRI countries with slight variations in standard error (0.183). The 
results can be supported from past studies in China, India, Nigeria and 
Pakistan (Bakoji et al., 2020; Das, 2016; Jin et al., 2015; Kurosaki, 2009; 
Malik et al., 2016).

The analysis underscores a strong and positive correlation 
between agriculture employment and agricultural productivity across 
selected Asian countries. The Driscoll-Kraay Standard Error Estimates 
reveals coefficients of 0.337, with standard errors of 0.175 and p-values 
of 0.005, indicating a significant impact of agriculture employment on 
productivity. FGLS method also affirm these findings 
(coefficient = 0.375, standard error = 0.184) as seen column 3 of 
Table  5. Similarly, PCSE further strengthen the link between 
agricultural employment-productivity (coefficient = 0.258, standard 
error = 0.149). Comparisons with prior studies consistently support 
this link, emphasizing the role of a larger agricultural workforce in 
enhancing productivity through improved practices and technology 
adoption (Muzari et  al., 2012; Asfaw et  al., 2012; Gallardo and 
Brady, 2015).

Agricultural credit plays a significant role in enhancing farm 
productivity through capitalization and investment in better 
technology which can increase efficiency of farm operations. The 
study in hand finds the positive and significant relationship between 

TABLE 6  2SLS estimates.

Variables Coefficient Std. 
error

t-statistic p- 
value

Productive 

capacities 

index

0.201*** 0.062 3.24 0.001

Area under 

cultivation
0.138** 0.055 2.51 0.013

Agricultural 

employment
0.087 0.069 −1.26 0.210

Agricultural 

credit
0.165*** 0.050 3.30 0.001

Water 

availability
0.081* 0.044 1.84 0.066

First-stage F-statistics (for excluded instruments): 15.72 → Strong instruments

Hansen J-test (p-value): 0.261 → Instruments valid
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agricultural credit and productivity. For instance, it is shown that 
agricultural credits positively impact the farm productivity 
(coefficient = 0.258, standard error = 0.138) at 1 % level of significance 
according to Driscoll-Kraay Standard Error method. It means that if 
access on credit increase by one there would be about one-fourth 
increase in agricultural productivity. Similarly, FGLS 
(coefficient = 0.384, standard error = 0.233) and PSCE 
(coefficient = 0.297 standard error = 0.136) confirm these findings at 
five and 10 % level of significance, respectively. Therefore, the study 
concludes that agricultural credits positively influence agricultural 
productivity and results can be justified through previous literature 
(Hussain and Taqi, 2014; Narayanan, 2016).

Water availability is the crucial element for plant growth and 
development. If more water accessible to crops, the higher the 
potential yield. Therefore, water availability has direct and significant 
impact on agricultural productivity. The study in hands also 
highlights that there is significantly positive association between 
water availability and agricultural productivity. For instance, 
according to Driscoll-Kraay Standard Error Estimates, water 
availability has positive impact on agricultural productivity 
(coefficient = 0.184, standard error = 0.113) at 1% level of 
significance. It means that there is 18% increase in agricultural 
productivity due to per unit increase in water availability. Similarly, 
FGLS (coefficient = 0.381, standard error = 0.296) and PCSE 
(coefficient = 0.227, standard error = 0.121) methods further 
validates these results and reaffirm the substantial impact of water 
availability on agricultural productivity.

4 Discussion

The results of the study showed that improving productive 
capacities are essential for enhancing economic development and hence 
agricultural productivity. The findings are line with previous studies 
that found positive and significant correlation between productive 
capacities and agricultural productivity. For instance, previous studies 
reveal that investment in education, infrastructure and human capital 
in raising productive capacities has the key role to play in increasing 
agricultural productivity (Huffman and Orazem, 2007; Li and Liu, 

2009). Demirtaş and Soyu Yıldırım (2022) indicated the benefits of 
productive capacities on economic development in OECD countries. 
Similarly, Gnangnon (2021) was of the opinion that economic 
complexity can be  improved by increasing productive capacities 
particularly in less develop countries.

The findings of the study affirm that higher percentage of arable 
land enhances the agricultural productivity. Areas under cultivation 
has definite link to raise agricultural productivity to combat the food 
insecurity in BRI countries. If large portion of land is dedicated to 
agriculture crop productions may increase due to increased 
agricultural productivities. For instance, previous literature 
investigated that increased farm size improves the productivity of 
maize and even reduces pesticide applications and hence increase the 
maize farming profitability (Chima and Rahman, 2017; Yu et  al., 
2023). In the same vein, Zhuang et al. (2022) reported that area under 
cultivation should be carefully managed in the regions with facing 
water scarcity and poor soil quality in order to boost agricultural 
productivity. Moreover, some studies also examined that when larger 
portion of land is given to agriculture, it leads to higher income of 
farmers through increase agricultural activities, economies of scale 
and profitability (Bojago and Abrham, 2023; Chandio et al., 2016).

Agricultural value chains provide a large majority of employment 
opportunities in many developing countries. Among other decent work 
in this agribusiness supply chain, agricultural employment is an 
important metric used in productivity. It has positive and meaningful 
influence on agricultural productivity and the study in hand well 
recognized such findings. Folarin et al. (2021) show the critical role of 
gender-based agriculture employment in addressing agricultural 
productivity. They reported that female employment enhances 
agricultural productivity and female participation is necessary for 
agricultural growth. On the other hand, Nasir and Hundie (2014) 
investigate Ethiopia’s agricultural productivity and output as impacted by 
off-farm employment. The study investigates the impact of employment 
outside of farms in agriculture crop output yield and productivity in farm 
households. The two potential depends of employment outside of farms 
are considered: enhancing farm production through financial support 
for inputs and technologies, and having a detrimental effect by competing 
for labor with farming activities. According to the information gathered, 
there is a labor competition between agriculture and the non-farm sector 
in rural areas since households’ participation in non-farm activities and 
crop production are inversely correlated. There is also some detrimental 
influence on land production. Nonetheless, a number of important 
variables have a favorable impact on land productivity, including family 
labor, increased spending, and local seed. Blanco Aguirre and Raurich 
(2022) investigates how the mix of crops and agricultural activities within 
a region influences labor productivity in the field of agriculture. They 
were of the opinion that the significance of agricultural composition in 
shaping the efficiency of labor utilization, as different crops and activities 
require varying levels of labor input. For instance, labor-intensive crops 
may demand more manpower but can yield higher returns if managed 
effectively, whereas mechanized or capital-intensive activities may 
require less labor but can lead to higher overall productivity if 
implemented efficiently.

Results of all three models of the study showed that agricultural 
credit has improved production. The findings of the study are in 
agreement with previous studies (Adewale et al., 2022; Chaiya et al., 
2023). These studies indicated that availability of credit to the 
farmers increases the input demand and hence raise crops’ 
production. They were of the opinion that if challenges such as high 

TABLE 7  Results of the Study under different models.

Variables Driscoll 
Kraay Std. 

Err. estimates

FGLS PCSE

Productive 

capacities index

0.242

(0.024)*

0.229

(0.031)**

0.263

(0.199)**

Area under 

cultivation

0.173

(0.153)*

0.173

(0.122)**

0.166

(0.183)**

Agriculture 

employment

0.337**

(0.175)

0.375**

(0.184)

0.258**

(0.149)

Agriculture credit 0.258

(0.138)*

0.384

(0.233)**

0.297

(0.136)***

Water availability 0.184

(0.113)*

0.381

(0.296)***

0.227

(0.121)**

Robust standard errors are reported in parentheses. PCSE standard errors are larger due to 
correction for heteroskedasticity and cross-sectional dependence across panels, which trades 
off efficiency for robustness. Significance levels: *p < 0.10, **p < 0.05, ***p < 0.01.
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interest rate, limited access to formal credit institutions and time 
credit delivery can be  addressed properly, the productivity may 
further be  enhanced. Some research suggests that only credit 
availability is not enough to boost productivity but factors such as 
loan size, repayment terms and conditions, timely disbursement of 
loan and low interest are necessary to increase agricultural 
productivity. For instance, studies showed that agricultural credit 
along with these facilities significantly raised maize production 
(Assouto and Houngbeme, 2023; Nsamba and Owuru, 2024). 
Therefore, our study suggests that credit facilities and availability to 
the farmers may be improved for effective benefits of productivity in 
BRI countries.

Water scarcity harms agricultural productivity and, conversely, 
enough water availability increases food availability and decreases 
socioeconomic hardships, regional food insecurity, and 
malnutrition through increase in agricultural productivity. The 
study finds that raising water availability significantly increase the 
agricultural productivity. The results can be  justified from 
previous studies (Jamadar et al., 2020; Rehman et al., 2019). For 
instance, Rehman et  al. (2019) indicated that soil and water 
conservation practices increase water availability which then 
ensure improved productivity in agriculture. Therefore, Jamadar 
et al. (2020) suggested that efficient water management methods 
are necessary to enhance agricultural productivity. Similarly, 
Zhang et  al. (2021) highlighted that water-saving methods 
significantly improved the water-use efficiency and hence 
agricultural production.

5 Conclusion

The current study identified the effect of productive capacities 
on agriculture productivity in 42 BRI nations with panel data from 
2000–2024. We  utilized the methods like system GMM, 2SLS, 
Driscoll-Kraay Standard Error Estimates, Feasible Generalized 
Least Squares (FGLS), and Panel-Corrected Standard Errors (PCSE) 
Estimation to eliminate heterogeneity and time-invariant variables. 
Hence, robustness of findings is assured. The results show that there 
is a positive and significant effect of productive capacities on 
agricultural productivity in BRI nations. Thus, the study 
recommends that productive capacities should be  boosted to 
develop agricultural productivity to increase economic growth and 
development throughout the BRI region. Further, the study 
identifies that area under cultivation, agriculture credit, and 
availability of water enhance agricultural productivity. The research 
categorically established that improvements in the cultivable area, 
agricultural credit, and availability of water substantially improve 
agricultural productivity.

Generally, the research adds useful information by offering a 
comprehensive analysis of the role played by productive capacities 
in determining agricultural productivity in the case of BRI 
countries. The findings highlight the significance of policy to 
increase productive capacities for improving agricultural 
productivity, hence economic development and growth in the 
region. Such results support strategic agricultural policies focusing 
on sustainable land use and investment in rural development to 
support agricultural productivity in BRI nations.

In terms of policy implications, given the diverse socio-economic 
and geographical conditions of BRI countries, tailored 
recommendations are crucial:

	•	 Resource-constrained economies should prioritize expanding 
access to agricultural credit and financial services to strengthen 
smallholder farmers’ resilience.

	•	 Land-abundant economies, especially in parts of Africa, may 
focus on sustainable land management, improved irrigation 
systems, and soil conservation practices.

	•	 Labor-intensive economies such as those in South and Southeast 
Asia, should promote agricultural mechanization and skills 
development to increase efficiency while safeguarding 
rural employment.

	•	 Water-scarce regions like Central Asia and parts of South Asia, 
need investment in climate-smart technologies, rainwater 
harvesting, and efficient irrigation infrastructure to optimize 
agricultural water use.

	•	 BRI countries with strong financial institutions should design 
credit schemes that support smallholders and rural communities 
to ensure inclusive growth.

By recognizing these contextual differences, policies can better 
align with each country’s development stage and ecological conditions, 
thereby ensuring balanced growth across the BRI region. In addition, 
the study emphasizes the importance of regional cooperation under 
the BRI framework, encouraging knowledge sharing, joint research, 
and technology transfer in agriculture to reduce disparities between 
member states.

Finally, regarding future research directions, it is important to go 
beyond the present analysis by:

	•	 Incorporating climate change variables such as temperature 
variability, drought frequency, and extreme weather patterns to 
better capture environmental risks.

	•	 Examining the role of institutional quality, governance, and 
policy frameworks in moderating the link between productive 
capacities and agricultural productivity.

	•	 Conducting country-specific or sub-regional studies within the 
BRI to provide more targeted insights into 
agricultural sustainability.

	•	 Exploring the long-term effects of digital agriculture and green 
innovations on productivity and food security.

	•	 Incorporating more detailed measures of water availability, 
including irrigation infrastructure and groundwater 
sustainability, to better capture resource constraints.

	•	 Assessing how digital technologies, fintech, and green 
innovations interact with productive capacities to transform 
agriculture in BRI countries.

Such future research avenues will deepen understanding of how 
productive capacities can be  strategically leveraged to foster 
sustainable agricultural development in heterogeneous BRI economies.

In conclusion, this study contributes to the growing literature by 
providing robust evidence that productive capacities substantially 
drive agricultural productivity in BRI countries. By tailoring policy 
interventions to the diverse needs of these economies and outlining a 
future research agenda, the study underscores the dynamic potential 
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of enhancing productive capacities to support sustainable agricultural 
and economic development across the BRI region.
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