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Introduction: The adoption of smart granary systems is critical for safeguarding 
national grain security, yet the determinants of adoption intention in grain 
enterprises remain insufficiently understood.
Methods: Based on the Technology-Organization-Environment (TOE) 
framework, this study develops a configurational model to investigate how six 
antecedents, which are organizational compatibility, technological fit, resource 
readiness, competitive pressure, operational risk, and privacy risk, interactively 
relate to adoption intentions. Using fuzzy-set Qualitative Comparative Analysis 
(fsQCA) on cross sectional survey data from 46 middle and senior managers of 
grain enterprises in Fuzhou, China.
Results: (1) Adoption intention stems from combinatorial causality rather than 
isolated factors, with no single necessary condition identified; (2) Two dominant 
pathways drive high adoption intention: “technology fit support driven path” 
(four pathways) and “resource readiness support driven path” (five pathways); (3) 
Privacy risk emerges as a significant association factor in both pathways.
Discussion: The results uncover the key factors and driving pathways associated 
with the adoption of smart grain storage technology in grain enterprises, 
providing theoretical insights and practical references for promoting the 
widespread application of smart grain storage systems.
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1 Introduction

Grain security constitutes a critical component of national security strategy, where effective 
grain storage systems play a pivotal role in mitigating post-harvest losses, stabilizing market 
supplies, and ensuring nutritional accessibility (Xue et al., 2024). In recent years, however, with the 
continuous expansion of grain reserve scales, the limitations of traditional grain storage 
management models have become increasingly apparent, manifesting in issues such as inefficient 
management and challenges in supervision (Su et al., 2012). Globally, approximately 13% of cereal 
production is lost during storage stages, with developing country facing disproportionately higher 
rates due to inadequate infrastructure (Wang et al., 2024). In China, grain storage losses account 
for 4.2% of annual production, translating to 35 million metric tons, which equivalent to the annual 
consumption of a province (Jianyao et al., 2023), which may affect the stability of national food 
supply chains. Consequently, optimizing the safety management of grain storage in grain enterprises 
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has emerged as an imperative measure to ensure national grain security, 
as well as a significant step toward advancing the modernization of grain 
storage systems.

Smart granary systems is an emerging technology developed in 
the context of increasing demands for grain reserve security, which 
integrate IoT-enabled condition monitoring, cloud computing, and 
blockchain-based traceability, enable intelligent monitoring, precise 
management, and efficient scheduling of grain reserves, these systems 
represent a key driver in the modernization of grain warehouses 
(Quellhorst et al., 2020; Velesaca et al., 2021; Gitonga and De Groote, 
2015). Despite these advantages, adoption rates among grain 
enterprises remain heterogeneous, ranging from 81% in economically 
advanced regions to 54% in traditional agricultural zones. 
Accelerating the informatization of the grain industry is not only a 
critical measure for modernizing grain reserve management but also 
an essential requirement for deepening the reform and development 
of the grain sector (Tireuov et al., 2018). Therefore, promoting the 
widespread adoption of smart granary technology in grain enterprises 
has become a critical issue to be  addressed in the field of 
grain management.

Existing research has primarily focused on the technological 
optimization of smart grain storage (Sun and Zhu, 2013) or isolated 
policy analyses (Omotilewa et  al., 2019), which exhibit several 
limitations. Firstly, most studies emphasize improvements in hardware 
and software, while overlooking the practical challenges of promoting 
smart grain storage adoption (Liu et al., 2018). Secondly, although the 
factors associated with the adoption intention of smart grain storage 
can be categorized into external and internal dimensions, existing 
studies predominantly rely on regression analysis methods, focusing 
on the net effects of individual factors while neglecting the synergistic 
interactions among multiple factors (Li et al., 2022). To address these 
research gaps, this study adopts the Technology-Organization-
Environment (hereafter referred to as TOE) framework as a theoretical 
lens to systematically explore the synergistic effects of various factors 
associated with the adoption of smart grain storage systems. 
Additionally, fuzzy-set Qualitative Comparative Analysis (hereafter 
referred to as fsQCA) method is employed to identify the key drivers 
and conditional configurations that lead to the acceptance of smart 
grain storage technologies by grain enterprises.

In this context, conducting an in-depth study on the factors 
influencing grain enterprises’ intention to adopt smart granary 
technology and constructing an effective application mechanism 
holds significant theoretical and practical value. To this end, this study 
covers all 12 grain storage enterprises in Fuzhou City, employing a 
stratified sampling method to select 46 middle and senior managers 
as survey respondents. Based on the characteristics of smart granary 
technology, the study expands the TOE theoretical framework and 
applies the fsQCA method to explore the associate of technological, 
organizational, environmental, and risk-related dimensions on the 
adoption of smart granary technology. By analyzing these influencing 
factors and proposing corresponding strategies, the study aims to 
facilitate the modernization and transformation of grain enterprises 
in Fuzhou, thereby promoting the widespread adoption of smart 
granary technology. On one hand, this research enriches the study of 
granary technology adoption and the TOE theoretical framework, 
while on the other, it innovatively integrates both TOE and fsQCA 
into the study of smart granaries, providing a key case for in-depth 
research on agricultural technology diffusion.

2 Theoretical foundations and model 
construction

2.1 The TOE framework theory

Tornatzky and Fleischer developed the TOE framework, which 
posits that three dimensions (technological, organizational, and 
environmental) influence the process of adopting and implementing 
technological innovations within organizations (Tornatzky and 
Fleischer, 1990). As a systematic analytical framework for technology 
application, the TOE framework has been widely employed to explore 
the mechanisms underlying the effects of technology across multilevel 
application scenarios. It has been extensively applied in various 
research fields, including enterprise adoption of new technologies, 
government e-service implementation, and enterprise resource 
planning (Abed, 2020; Junior et al., 2019; Qalati et al., 2021). Notably, 
the TOE framework does not specify the exact explanatory variables 
for the three dimensions, allowing scholars to adapt it flexibly based 
on the specific context, research questions, and scenarios under 
investigation (Malik et al., 2021).

Amidst the accelerated digital transformation of grain storage 
systems, the technology adoption decisions of grain enterprises are 
influenced by multifaceted factors (Mwinuka and Hyera, 2022). While 
traditional causal analyses attempt to explain the nonlinear 
mechanisms driving the adoption of smart grain storage systems, they 
often fail to account for the synergistic interactions among 
technological perceptions, resource endowments, and market 
dynamics (Omotilewa et al., 2019). Therefore, this study applies the 
TOE framework to investigate the adoption intentions of grain 
enterprises toward intelligent storage systems, driven by two 
pivotal rationales.

The TOE framework’s tripartite structure aligns with three critical 
dimensions of applications in grain reserve systems. Technologically, 
it evaluates the maturity and compatibility of innovations such as 
IoT-enabled sensing devices and big data analytics platforms; 
organizationally, it incorporates endogenous conditions like capital 
reserves, and technological compatibility capacity; environmentally, it 
accounts for external drivers including industry competition. This 
systematic taxonomy facilitates the deconstruction of complex 
decision-making processes. Besides, the special nature of grain 
enterprises, as policy-driven quasi-market entities, amplifies the 
framework’s explanatory utility. Their adoption decisions intertwine 
techno-economic rationality with dual institutional constraints: 
compliance with state-owned asset management protocols and 
fulfillment of food security mandates. For instance, during technology 
evaluation, decision-makers must reconcile technical adaptability 
(technological dimension) with fiscal fund utilization norms 
(organizational dimension) and external operational risks in smart 
depot implementation (environmental dimension), a 
multidimensional interplay effectively deciphered through the TOE 
framework’s configurational perspective.

2.2 Construction of the framework

In this study, we  investigate the factors associated with the 
adoption of smart grain storage technology by grain enterprises, 
which is shaped by the complex interplay of internal technological 
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factors, organizational dynamics, and external environmental 
conditions. These determinants do not operate in isolation; rather, 
they interact and converge to impact the decision-making processes 
of grain enterprises. Given that the construction and operation of 
smart grain storage involve the deep integration of advanced 
technologies such as the IoT and cloud computing, its complexity 
extends beyond the technical level to include potential risks induced 
by these technologies. Smart grain storage relies on the Internet of 
Things (IoT) architecture to achieve real-time monitoring and data 
interaction. The underlying technological logic of the system 
introduces inherent vulnerabilities, making it susceptible to risks such 
as network attacks and system stability flaws (Kundu and Pal, 2022). 
In addition, smart grain storage systems need to upload operational 
data, such as inventory levels and quality inspection reports, to vendor 
cloud platforms, which may lead to data governance conflicts, 
including the risk of commercial confidentiality breaches and 
compliance issues (Zhao and Min, 2023). Given the critical role of 
security in the grain industry, we also found that these risks were 
frequently mentioned during the survey. Due to the importance and 
specificity of the risk dimension in smart grain storage, it impacts the 
technology, organizational, and environmental dimensions within the 
TOE framework. Nagy et al. (2025) point out that agricultural SMEs 
face unique challenges due to factors such as weather, climate change, 
and commodity price fluctuations. The implementation of the TOE 
(technology, organization, and environment) framework in smart 
agriculture faces multiple challenges. Stjepić et al. (2021) argue that 
internal risks related to the organizational dimension and external 
risks related to the environmental dimension should be given priority 
consideration. Therefore, this study innovatively incorporates a risk 
dimension into the traditional TOE framework to provide a more 
comprehensive analysis. The technology dimension comprises two 
influencing factors: organizational compatibility and technology fit. 
The organizational and environmental dimensions are represented by 
resource readiness and competitive pressure, respectively. 
Additionally, the risk dimension includes two influencing factors: 
operational risk and privacy risk. These factors constitute the 
conditional variables of the analytical framework, while the intention 
to adopt serves as the outcome variable. For the specific relationship, 
see Supplementary Figure 1.

2.2.1 Technical conditions
Organizational compatibility is one of the critical factors 

influencing technology adoption, as evidenced by the extent to which 
a new technology matches the existing values, historical practices, and 
current needs of potential adopters (Rogers, 2003). As such, 
organizational compatibility serves as a significant determinant of 
innovation adoption. If smart granary technology is highly compatible 
with the existing culture, values, and work practices of grain 
enterprises (Dedrick and West, 2004; Ifinedo, 2011), it can mitigate 
organizational culture conflicts and avoid the need for extensive work 
process restructuring. This, in turn, reduces the additional effort and 
costs associated with technology implementation, thereby 
strengthening the willingness of grain enterprises to adopt this 
technology (Vichinrojjarul, 2022).

Technology fit originates from the Task-Technology Fit (TTF) 
theory, which refers to the degree of alignment between new 
technologies and an organization’s existing work tasks. This concept 
emphasizes whether the functional characteristics of a technology can 

effectively support the organization’s task requirements (Goodhue 
et al., 2000; Ramamurthy et al., 1999). When the functionality of a new 
technology fails to meet the organization’s task needs or significantly 
exceeds its actual requirements, the degree of task-technology fit is 
low. Conversely, if the functionality of the new technology aligns 
precisely with the organization’s work tasks, the degree of task-
technology fit is high (Kim et al., 2010). This perspective examines 
technology adoption from the angle of technical specifications and 
performance, with the complexity of technology being a major 
constraint on the adoption of IoT and other smart warehouse 
technologies (Li et  al., 2024). Meanwhile, the adoption of smart 
technologies also needs to align with a company’s business model. 
When digital technologies are incompatible with existing device 
protocols, it creates data fragmentation and reduces the perceived 
utility of the technology (Chen and Zhang, 2022). Technology 
compatibility is crucial for the adoption and diffusion of technologies 
among users (Rezaei et al., 2020; Geng et al., 2024). If the technology 
is not compatible with users’ existing values, needs, and experiences, 
the adoption of smart technologies may be  limited (Oyibo and 
Morita, 2022).

Therefore, if smart granary technology demonstrates a high 
degree of task-technology fit with the work tasks of grain enterprises, 
such as enabling intelligent monitoring, precise management, and 
efficient scheduling of grain storage (Lutz and Coradi, 2022), the 
intention of grain enterprises to adopt this technology will 
be strengthened.

2.2.2 Organizational conditions
Resource readiness refers to the financial resources, human 

resources, and other assets that an organization has prepared for a new 
technology before introducing it (Zhao et al., 2008). For smart grain 
silos, financial resources need to cover the procurement costs of the 
system, installation costs, and subsequent maintenance and upgrade 
expenditures. Additionally, these financial resources also include 
government subsidies (Omotilewa et al., 2019; Geng et al., 2024), 
household income (Maguza-Tembo et  al., 2017), agricultural 
insurance (Li et al., 2022), and any other factors related to capital 
accumulation. Human resources refer to the availability of technicians 
at the grain enterprises who are skilled in operating and maintaining 
the smart grain silo system (Grandon and Pearson, 2004; Mehrtens 
et al., 2001; Yu and Tao, 2009; Chen et al., 2025). Furthermore, the 
completeness of infrastructure such as IoT sensors and communication 
networks is a physical prerequisite for the implementation of 
technology (DeBoer and Erickson, 2019).

Financial allocation plays a fundamental material support role, 
and the cost of technology has a significant negative impact on the 
adoption of IoT technologies. Government subsidies can enhance 
adoption willingness by easing financial constraints (Yan et al., 2013; 
Vasavi et  al., 2025). Especially in the grain industry, where profit 
margins are limited, the high initial costs for both software and 
hardware have become major barriers to technology adoption (Yan 
et al., 2013; Zhao et al., 2024). Moreover, the perceptions and attitudes 
of technology users play an extremely important intermediary role in 
the actual usage of the technology (Chuang et  al., 2020). Thus, 
resource readiness includes the completeness of elements such as 
funding, talent, and infrastructure prepared for the technology’s 
application. Its level directly determines the feasibility and 
sustainability of technology adoption.
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2.2.3 Environmental conditions
It is often assumed that competition in an industry will have a 

positive impact on the adoption of new technology, with competitive 
pressure being the pressure felt by firms competing in the market 
(Redmond, 2013). This would be  even more evident if the new 
technology directly affects competition. Factors such as uncertainty in 
the market environment, competitors, and industry trends can put 
pressure on the development of grain enterprises (Premkumar and 
Roberts, 1999). Adoption of smart grain warehouse technology can 
enhance customer supervision and improve the efficiency of grain 
import and export; grain is a bulk commodity with high trading 
volume, and once it loses the favor of customers, it will lose larger 
profits (Wright, 2011; Kumar and Kalita, 2017). Therefore, to gain an 
advantage in the competitive grain industry, grain enterprises need to 
change the traditional way of stockpiling and introduce smart granary 
technology, which will become an important way to enhance the 
competitiveness of grain enterprises and gain growth space.

2.2.4 Risk conditions
Risk constitutes a critical determinant in agricultural technology 

adoption due to three primary dimensions: First, climate risk is the 
primary risk faced by agricultural enterprises, with climate change 
represents a serious threat to agricultural technology adoption 
(Senyolo et  al., 2021), while risk management strategy selection 
directly impacts farm production costs and resource allocation 
(Vigani and Kathage, 2019). Second, corporate governance and 
operational risks substantially influence agricultural operations 
(Ahmad et  al., 2024; Barmuta and Tuguz, 2021), particularly in 
relation to innovative approaches to production risk management and 
infrastructure development, as highlighted by Hryvkivska et  al. 
(2024). Finally, financial risk remains the most extensively examined 
category, with da Costa (2024) emphasizing that “effective financial 
risk management in agriculture requires a multifaceted approach that 
integrates mitigation strategies for various types of risks.”

This study categorizes risk into operational risks and privacy risks. 
Operational risks refer to technical failures, cybersecurity threats, and 
system stability issues that smart granary technologies may face 
during actual use (Mu et al., 2024; Botschner et al., 2024). Since smart 
granary technology is highly dependent on the Internet, IoT, and 
electronic information processing technologies, it may face a variety 
of risks during its operation, such as malware attacks, data leakage, 
network outages, or system crashes (Lydia et al., 2022; Smith et al., 
2011). These risks may not only affect the normal operation of smart 
grain depots, but also lead to the loss or tampering of grain storage 
data, which in turn poses a serious threat to the operational security 
and management efficiency of grain enterprises. Therefore, this 
uncertainty will affect the intention of grain enterprises to adopt smart 
granary technology. Privacy risk is the concern about the possibility 
of leakage of personal or organizational sensitive data when businesses 
adopt new technologies (Amiri-Zarandi et al., 2022). As an Internet 
and IoT-based service, the operation of smart grain warehouse 
technology requires uploading grain storage data and management 
information from grain enterprises to the provider’s cloud-based 
platform for processing and storage (Agarwal et al., 2024; Lydia et al., 
2022). Therefore, for grain enterprises, this data uploading and sharing 
mechanism may lead to privacy leakage risks, such as data being 
accessed, misused, or leaked by unauthorized third parties, which also 
affects their intention to adopt the technology.

3 Research method and data

3.1 Research method

This paper adopts fsQCA for the following reasons: first, 
qualitative comparative analysis requires that the case itself includes 
a cause structure in which multiple factors interact, i.e., it is caused 
by more than one cause, and there must be a grounded theory to 
support the case collusion (Ragin, 2014). The multiple cause 
variables selected in this paper are categorized according to the TOE 
model, and a certain number of research theories on the 
interrelationships between the antecedents and the correlation 
between the antecedents and the outcome variables have been 
formed in the academic community, so there exists a sufficient 
theoretical basis (Zhang and Du, 2019); Secondly, it is written in the 
article of Teng (2023) that the method can analyze small and 
medium-sized samples (10 or 15–50), and at the same time, the ideal 
number of conditions is between 4 and 7. Therefore, in this paper, 6 
cause variables and 46 case samples are selected, which meets the 
applicable requirements; thirdly, at present, QCA is divided into 
three analysis methods according to the type of variables: csQCA 
(clear set qualitative comparative analysis), mvQCA (multi-valued 
set qualitative comparative analysis), and fsQCA (fuzzy set 
qualitative comparative analysis), and mvQCA and csQCA are 
suitable for dealing with category problems only, whereas fsQCA not 
only can deal with category problems, but also problems with degree 
changes and problems with partial affiliation, i.e., cases have an 
affiliation score between 0 and 1.

3.2 Data collection

This study adopts the questionnaire research method for data 
collection, the questionnaire adopts the proven and mature scale as 
the basis, all the variables are based on the references of the existing 
literature, and at the same time, according to the characteristics of 
the grain enterprises and the smart granary. Smart grain warehouse 
technology requires the integration of automation equipment, data 
collection technologies, and management systems, becoming a more 
flexible automated warehouse (Ellithy et  al., 2024). The 
corresponding improvement is made, and the expressions of the 
original items are improved to better suit the purpose of this study. 
For example, “The use of cloud computing is compatible with your 
company’s corporate culture and value system” was changed to 
“Whether the use of smart granary technology is in line with the 
company’s positioning and development strategy,” and “The 
company has the necessary in-house resources for the 
implementation of cloud computing” was changed to “The company 
has the necessary resources for the implementation of cloud 
computing.” Resources” was changed to ‘The company has sufficient 
funds to purchase, use and maintain the smart granary technology’. 
A Likert scale was used to measure the variables in this paper for 
later analysis of fsQCA. Due to the fact that the distinction between 
the three levels of the Likert scale is slightly smaller; the seven levels 
are slightly more complex. In the end, this paper adopted a five-level 
Likert scale, in which the answers to each question are categorized 
into 1–5 levels, with “1” meaning “strongly disagree,” “5” meaning 
“strongly agree,” and “5” meaning “strongly agree.” “For items that 
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are precedent variables, the higher the score, the greater the 
adequacy of the results.” For items that are outcome variables, the 
higher the score, the more likely it is that the technology will 
be adopted.

In this study, the samples selected for this study are from Fuzhou, 
a coastal city in southeastern China, based on the following two 
considerations: First, its climate composition; second, its promotional 
value. Fuzhou is located on the southeastern coast and has a 
subtropical monsoon climate, with an average annual temperature 
ranging from 18 °C to 26 °C and an average annual humidity of 77%. 
Under normal conditions, grain stored in such an environment is 
susceptible to damage from pests, mites, and microorganisms (Lin and 
Chen, 2020). Moreover, Fuzhou holds a unique and significant 
position in China’s overall grain reserves and is one of the national-
level comprehensive emergency security bases. Therefore, the 
application of smart grain warehouse technology in Fuzhou is 
particularly crucial and holds great potential for broader promotion. 
Additionally, Fuzhou has already laid a solid foundation for the 
technology, having achieved the first-ever “visualization of grain 
storage ecology” in a provincial-level grain depot. Fuzhou has a total 
of 12 grain enterprises, and our sample covers all of them. Within 
these 12 enterprises, we  conducted stratified sampling, selecting 
middle and senior managers as survey subjects. This is because the 
adoption of smart grain warehouse technology is primarily a decision 
made by middle and senior management, while frontline staff mainly 
operate the machines and do not play a role in selecting the 
technology. Among these 12 enterprises, we used stratified sampling 
to select 46 final survey samples from department managers and 
senior managers. We then used a questionnaire to gather their views 
on the adoption of smart grain warehouse technology. All participants 
participated in this survey voluntarily and anonymously, and informed 
consent was obtained before participation. The scores of each 
condition variable were averaged by summing the scores of the 
corresponding questions; the three measurement questions of the 
outcome variable were interchangeable. The scales are shown in 
Supplementary Table 1.

A total of 54 questionnaires were distributed to middle and senior 
managers of grain enterprises in Fuzhou City, with 49 returned 
(response rate: 90.7%). To ensure data validity, we implemented a 
two-tier screening protocol consistent with survey methodology 
standards. First, questionnaires exhibiting substantial incompleteness 
(>20% missing responses) were excluded (n = 3). Second, to address 
potential response bias, additional questionnaires showing patterned 
responses—defined as identical answers across all Likert-scale items—
were removed (n = 3). Consequently, 46 valid questionnaires were 
retained for analysis, representing an effective response rate of 93.9%. 
This rigorous screening aligns with established data quality control 
practices in organizational research (Podsakoff et al., 2003; Saunders 
et al., 2018). The 46 questionnaires of the respondents can be briefly 
sorted out the following situation. Among the valid samples, there are 
35 males and 11 females, accounting for 76.08 and 23.91% of the total 
sample, respectively. The age of the respondents is mostly concentrated 
in 46–55 years old, accounting for 67.39% of the total number of 
researchers, indicating that the middle and senior staff are basically 
middle-aged people, and there are more male managers. Educational 
background: 54.38% are undergraduates and 45.62% are junior 
colleges or below. Nine of the respondents’ companies have used the 
smart granary technology, and 37 have not.

3.3 Tests of reliability and validity

The study used SPSS 25.0 and fsQCA 3.0 for data analysis. SPSS 
25.0 was used to calculate the normal distribution of the instrument, 
descriptive statistics, and reliability and validity tests. The software 
fsQCA 3.0 was used to calibrate the questionnaire data, analyze the 
necessary conditions, construct truth tables and configure the analysis, 
and model the presence of results (high satisfaction) and the absence 
of results (non-high satisfaction). Tests of reliability and validity of 
data, normality of distribution and calibration of questionnaire data 
were preprocessing forms of fsQCA standardized analysis.

In the reliability test, the total Cronbach’s Alpha value of the 
questionnaire is 0.806, usually the Cronbach’s Alpha coefficient value 
of the total scale is greater than 0.8 is excellent, which also indicates 
that the data base of this study has good internal consistency. The 
KMO value is 0.611, and the significance < 0.001, which indicates that 
the results of the questionnaire have authenticity and accuracy. In 
conclusion, the questionnaire passed the reliability test and can 
be used for the next data analysis.

3.4 Data calibration

Calibrating and converting data into sets is a prerequisite for 
analysis and research using the fsQCA method. The questionnaire of 
this study utilized a five-point Likert scale, which was used as the basis 
for data calibration. Following established research conventions 
(Rihoux and Ragin, 2009; Fiss, 2011; Greckhamer and Mossholder, 
2011; Misangyi and Acharya, 2014), this study employs direct 
calibration methods using logistic functions to distribute raw data 
across three qualitative anchors: 1 (full membership), 0.5 (crossover 
point), and 0 (full non-membership) (Ragin, 2008), an approach 
widely adopted in QCA studies globally (Greckhamer, 2011; Garcia-
Castro and Francoeur, 2016; Greckhamer, 2016; Delmas and Pekovic, 
2018; Tan et al., 2019), i.e., calibrated the “Complete non-membership 
point” to 0.05, the “Intersection point” to 0.5, and the “Complete 
membership point” to 0.5, and the “very uncertainty” to 0.95, 
respectively. Was calibrated at 0.05, “uncertain” at 0.5, and “very 
consistent” at 0.95. The calibration anchors for each variable are 
shown in Supplementary Table 2.

4 Results

4.1 Necessity analysis

The necessity analysis aims to identify the conditions that are 
indispensable for the outcome. Following the approach of the founders 
of fsQCA, a consistency threshold of 0.9 is used as the criterion for 
determining necessity. When the consistency of a specific condition is 
greater than or equal to 0.9, that condition can be  considered a 
necessary condition for the outcome. Conversely, when the 
consistency of a specific condition is less than 0.9, it is not considered 
a necessary condition for the outcome (Ragin, 2008; Schneider and 
Wagemann, 2012). This method has been widely used in QCA 
research papers, such as those by Rihoux and Ragin (2009), Fiss 
(2011), García-Castro et al. (2020) and Zhang et al. (2020), and so on. 
Furthermore, Schneider and Wagemann (2012) also suggested that 
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the coverage should exceed 0.5, and we have adopted a dual indicator 
framework of consistency and coverage for the necessity analysis. The 
results of the necessity analysis are shown in Supplementary Table 3.

From the table, we  can observe that none of the individual 
antecedent conditions in this study reach or exceed the 0.9 consistency 
threshold, while the coverage for all conditions is above 0.5. This 
indicates that there is no single antecedent condition that is absolutely 
necessary or indispensable for the formation of high adoption 
intentions for smart grain warehouse technology in grain enterprises. 
In this case, it is appropriate to conduct fsQCA-based 
configurational analysis.

4.2 Configuration analysis

The program using fsQCA3.0 produces 3 solutions based on 
different simplifying assumptions: complex solution (without logical 
residue), intermediate solution (only logical residuals that are 
consistent with theoretical and practical knowledge are used), and 
parsimonious solution (all logical residuals are used regardless of their 
consistency with theoretical and practical knowledge). In general, 
intermediate solutions are superior to complex and parsimonious 
solutions. This is because intermediate solutions achieve a balance 
between complex and parsimonious solutions in terms of complexity. 
More importantly, it is the product of theory and experience 
complementing each other. However, due to the lack of clear 
theoretical expectations from existing studies about the relationship 
between the six conditional variables in this paper and the willingness 
to adopt smart granaries, no explicit counterfactual analysis is made 
in the software analysis. Following the practice of mainstream 
research, this paper presents mainly intermediate solutions in the 
results, supplemented by parsimonious solutions (Schneider and 
Wagemann, 2006).

Ragin (2014) argues that antecedent conditions for a particular 
outcome can be categorized into core and non-core elements based on 
whether or not their presence is necessary. If an antecedent condition 
appears in both the intermediate and parsimonious solutions, the 
antecedent condition is considered to be a core element. If it appears 
only in the intermediate solution but not in the parsimonious solution, 
it is a non-core element. It can be  said that the main difference 
between core and non-core elements is the closeness of the relationship 
with a particular outcome. Following Ragin and Fiss’ form of symbolic 
expression, a solid circle (●) indicates the presence of a condition, a 
forked circle (⊗) indicates the absence of a condition, and a space 
indicates that the condition may or may not occur. Large circles 
denote core conditions, i.e., conditions that are present in both 
intermediate and simple solutions. In contrast, small circles indicate 
auxiliary conditions, i.e., conditions that exist only in intermediate 
solutions (Fiss et al., 2014). Based on these usage criteria, the results 
of the histogram analysis are shown in Supplementary Table 4.

The results show that there are nine different paths to generate 
intention to adopt smart granary at the middle and senior levels of 
grain enterprises. An analysis of intermediate and parsimonious 
solutions identified four paths to Technology Fit-Core Driven and 
another five paths associated with Resource Readiness-Core Driven 
(see Supplementary Table  4), highlighting the multifaceted and 
complex nature of the factors associated with the intention. As shown 
in Supplementary Table  4, the overall coverage of antecedent 

conditions of smart granary adoption intention is 0.63, which means 
that the results obtained in this study explain nearly 63% of the 
reasons for the adoption intention of smart granary at the middle and 
senior levels of the grain enterprises, which shows strong explanatory 
power; the overall consistency level is 91.2%, which indicates that the 
combination of these antecedent conditions can be considered as a 
consistent and sufficient configurations associated with the adoption 
of smart granary at the middle and senior levels of the grain enterprises.

4.2.1 Technology fit support driven
Configuration H1 of Supplementary Table  4 shows that a 

configuration with a high degree of technology fitness as the core 
condition can increase the intention of the middle and senior levels of 
grain enterprises to adopt the smart granary.

Configuration H1a: The core conditions include high technology 
fit, high operational risk, and high privacy risk, with high 
organizational compatibility as a peripheral condition. Managers 
meeting this configuration path (consistency = 0.984) exhibit a strong 
interest in smart granary technology. This suggests that even in the 
presence of high operational and privacy risks, managers are more 
inclined to adopt the technology when organizational compatibility 
and job fitness align well with smart granary operations. The 
association of resource readiness and competitive pressure is relatively 
weaker in this configuration.

Configuration H1b: Its core conditions are high technology fit, 
non-high resource readiness, high operational risk and high privacy 
risk, while high competitive pressure is a secondary condition. Most 
of the grain enterprises or grain enterprises that fulfill the 
configuration path H1b (consistency of 0.983) still show high 
willingness to adopt smart granary despite resource shortage and high 
risk. This indicates that despite insufficient resource reserves and high 
operational and privacy risks, middle and senior managers may still 
be inclined to adopt smart granary technology if it can significantly 
improve the grain storage efficiency and monitoring capabilities of 
grain enterprises, and is highly adaptable to existing workflows, and if 
the granaries are in a highly competitive market environment.

Configuration H1c: High technology fit, non-high operational 
risk, and non-high privacy risk as core conditions, and non-high 
organizational compatibility and high resource readiness as edge 
conditions. The technology can be highly adapted to existing grain 
storage and monitoring processes with low operational risks (e.g., 
system failure) and privacy risks (e.g., data leakage), and the 
management of the grain bank shows a high willingness to adopt it. 
Even though the compatibility with the future long-term development 
strategy of the grain bank is low, the sufficient reserve of financial and 
technical resources provides a strong guarantee for the introduction 
of the technology. In addition, due to the lower competitive pressure 
in the grain market in the region, the grain depot is able to focus more 
on internal technology optimization and efficiency enhancement to 
achieve efficient operation of the smart grain depot.

Configuration H1d: High technology fit, non-high operational 
risk, and non-high privacy risk as core conditions, and high 
organizational compatibility and high competitive pressure as edge 
conditions. This suggests that when the smart granary fits well with 
the company’s way of working and is accompanied by low operational 
and privacy risks, if the smart granary technology is highly compatible 
with the organization’s culture and development strategy, and if there 
is a high level of competitive pressure in the region’s grain market, 
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middle and senior managers may raise funds through loans or external 
financing to promote the implementation of the smart granary. In a 
competitive market environment, upgrading technology and 
operational efficiency is key to maintaining competitiveness.

4.2.2 Resource readiness support driven
Configuration H2 of Supplementary Table  4 shows that a 

configuration with high resource readiness as the core condition can 
increase the willingness of the middle and senior levels of grain 
enterprises to adopt the smart grain warehouse.

Configuration H2a: High resource readiness and high privacy risk 
as the core conditions, and high technology fit, non-high competitive 
pressure, and non-high operational risk as the edge conditions. It means 
that when a company has sufficient resource reserves (e.g., capital, 
technical talents) and the competitive pressure in the market is small, 
even though the smart granary technology may have high privacy risk 
(e.g., data leakage potential), managers may still tend to adopt the smart 
granary technology as long as the technology can be highly adapted to 
the company’s existing way of working and the operational risk is low.

Grouping H2b: High resource readiness and high privacy risk as 
core conditions, and non-high organizational compatibility, non-high 
technology fitness and high competitive pressure as edge conditions. 
It means that even though the smart granary technology may have 
high privacy risk and low compatibility of the technology with the 
company’s future development strategy and existing working methods, 
the company has the willingness to adopt the smart granary due to the 
sufficient reserve of financial and technical resources of the granary, 
as well as the high competitive pressure in the market. In a highly 
competitive market environment, rapid improvement of technology 
and operational efficiency is the key to maintaining competitiveness, 
and the adequacy of resource reserves can effectively mitigate potential 
problems arising from technology compatibility and privacy risks.

Grouping H2c: High resource readiness, high organizational 
compatibility, and high privacy risk as core conditions, and non-high 
competitive pressure and high operational risk as marginal conditions. 
It suggests that with sufficient resource readiness and high organizational 
compatibility, firms may still show high willingness to adopt smart 
granary technologies even if they are subject to privacy risk and 
operational risk and have low competitive pressure in the market. This 
path reveals that driven by both sufficient resources and higher 
organizational compatibility, firms are more inclined to achieve internal 
optimization through technology upgrades, while the association 
between privacy and operational risks is relatively weakened. Although 
technology suitability may be limited, resource reserve and organizational 
compatibility provide important guarantees for technology 
implementation and drive firms’ technology adoption decisions.

Grouping H2d: when high resource readiness and high 
organizational compatibility are the core conditions and high 
competitive pressure and non-high operational risk are the edge 
conditions. It indicates that when both resource readiness and 
organizational compatibility are high, accompanied by high 
competitive pressure and low operational risk, the company’s middle 
and senior management will support the adoption of the smart 
granary regardless of the match between the way of working and the 
smart granary, and whether there are risks to privacy.

Grouping H2e: High willingness to adopt can be generated when 
high resource readiness and high organizational compatibility are the 
core conditions, and when high job fitness, high operational risk and 

non-high competitive pressure are the edge conditions. This grouping 
implies that when resource readiness is high and the smart granary fits 
the company’s orientation and way of working, even the absence of 
competitive pressures and possibly operational and privacy risks will 
lead the company to adopt the smart granary.

4.3 Robustness analysis

In order to reduce the randomness and sensitivity caused by the 
threat of parameterization and to avoid errors in the results due to the 
researcher’s subjectivity, it is necessary to test the robustness of the 
results in the QCA. Schneider and Wagemann (2012) suggest that 
when the researcher makes slightly different, but equally reasonable 
parameterizations, the findings are robust if the changes in the 
conclusions of the study are very subtle. The robustness check will 
be conducted using two methods as follows:

	(1)	 Adjusting the PRI consistency level. The PRI consistency 
threshold is adjusted from 0.75 to 0.8 for robustness test, and 
the results are shown in Supplementary Table 5. Compared 
with Supplementary Table 4, the consistency of the solution is 
changed from 0.912 to 0.925, and the coverage of the solution 
is changed from 0.630 to 0.617, which indicates that the change 
is very slight; at the same time, from the viewpoint of the 
grouping paths, the overall grouping paths have not changed 
significantly except for the change of some core conditions. 
Combining the above two analyses, it can be considered that 
the grouping path of this paper is robust.

	(2)	 Substitution of outcome variables. When designing the 
questionnaire in this paper, three similar and interchangeable 
questions were designed for the outcome variables. In the 
previous section, the answer to “Do you agree that the company 
should use smart grain storage technology” was used as the 
outcome variable for the QCA analysis. Therefore, for the 
robustness test, the answer of “Do you want to use smart silo 
technology in grain storage business” is used, and the results are 
shown in Supplementary Table  6. Compared with 
Supplementary Table  4, the consistency of the solution is 
changed from 0.912 to 0.893, and the coverage of the solution is 
changed from 0.630 to 0.589, which indicates that the change is 
very slight; meanwhile, from the perspective of the grouping 
paths, in addition to H1a, no similar grouping paths can be found 
in the robustness test of Supplementary Table 6, and the other 8 
grouping paths have not changed significantly except for the 
change of some core conditions. Therefore, it can be considered 
that all the group paths except H1a in this paper are robust.

5 Discussion

5.1 Theoretical contributions and practical 
implications

This paper examines the willingness to adopt smart granaries and 
explores the reasons that affect their acceptance. Specifically, it uses 
the fsQCA methodology to analyze and obtain the associations 
between configurational and two core paths, i.e., high job fitness, and 
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high resource readiness, on this issue, which provides a new research 
perspective and is more contextualized.

As far as the theoretical contribution is concerned: this paper 
adopts the fsQCA method to conduct a configuration study on the 
willingness of grain enterprises to adopt smart granary technology. It 
is found that under different combinations of six conditions, there 
exist nine configuration paths that can lead to the intention of grain 
enterprises to adopt this technology. According to the equivalence 
principle of the fsQCA method, although these paths contain different 
combinations of conditions, they may all lead to the same outcome. 
This finding remedies a limitation of the existing literature: traditional 
studies have mostly used net effects analysis, which makes it difficult 
to capture the complex interactions between conditions, leading to 
fragmented and inconsistent findings (Huang et al., 2023). In contrast, 
the fsQCA method can effectively integrate these fragmented results 
and reveal multiple concurrent causal relationships, providing a new 
perspective for understanding the complex mechanisms of smart 
granary technology adoption. In addition, this study extends the 
application of TOE theory by combining it with the fsQCA method 
and applying it to the field of smart agriculture for the first time. This 
attempt not only enriches the theoretical framework of smart granary 
technology adoption, but also provides new theoretical support for the 
promotion of smart agriculture technology. Meanwhile, the findings 
of this paper provide theoretical guidance for the modernization and 
transformation of grain enterprises, which helps to promote the 
transformation of grain warehouse management from the traditional 
mode to the direction of intelligence and digitalization. Finally, this 
paper provides new methods and references for subsequent research. 
By introducing the fsQCA methodology, this study demonstrates its 
application potential in analyzing complex socio-technical systems 
and provides methodological references for future exploration of 
similar issues, such as the adoption mechanisms of other 
agricultural technologies.

In terms of practical contributions, this study provides 
important practical guidance for the adoption of smart granary 
technology in grain enterprises. The findings reveal the key factors 
affecting adoption willingness and their combination paths, which 
provide a scientific decision-making basis for the management of 
grain enterprises. By identifying the core conditions such as job fit, 
resource readiness, and operational risk, grain enterprises can 
more comprehensively recognize the potential value of smart 
warehouse technology in enhancing management efficiency, 
optimizing resource allocation, and improving grain quality 
(Wang, 2022; Min, 2015). These findings help grain enterprises 
optimize grain storage management processes, reduce grain losses, 
and promote their transformation from traditional management 
modes to intelligent and digital (Song, 2022).

In addition, this study provides technology improvement 
recommendations and rollout strategy support for smart granary 
technology vendors. For example, suppliers can lower the technology 
adoption threshold by enhancing system compatibility (Saurabh and 
Dey, 2021; Yadav et al., 2020). Specific measures include optimizing 
the layout and design of the user interface, providing detailed 
operation manuals, and providing on-site one-on-one training 
services for grain enterprise employees to ensure that they are 
proficient in the use of the technology (Murali et al., 2016). At the 
same time, suppliers should establish a 24/7 after-sales service system 
to solve problems in the process of using the technology in a timely 

manner, so as to improve user satisfaction and technology adoption 
(Kundu and Ramdas, 2022).

The results of the study also have important reference value for 
policy making. As an emerging technology, although smart granary 
have significant advantages in improving grain storage management 
efficiency and reducing losses, the high cost of hardware and 
software equipment required in the early stage has become a major 
obstacle to the adoption of the technology in many grain enterprises 
(Singh and Jayas, 2024; Kolli et al., 2023). In order to alleviate this 
financial pressure, the government should further increase the 
policy support for the adoption of smart granary technology in 
grain enterprises. For example, the government can reduce the 
financial burden of grain enterprises by formulating preferential 
policies such as tax exemptions, financial subsidies, and loan interest 
subsidies (Ma et  al., 2018; Gulati et  al., 2012). In addition, the 
government can also set up a special fund to support the research 
and development and promotion of smart granary technology, so as 
to promote the modernization and transformation of grain 
enterprises and enhance the ability to guarantee national grain 
security (Zhao et al., 2017).

5.2 Practical implications

Empirical results show that resource readiness is the primary core 
driver across the nine configurational pathways. As a key prerequisite 
for the implementation of smart grain warehouse technology, resource 
readiness must be  achieved through a dual-track mechanism, 
consisting of the construction of a multi-level technical support 
system and the strengthening of management assurance, working in 
coordination. Additionally, risk prevention and control must 
be systematically integrated to enhance the resilience of the technology.

In terms of technical support, the cultivation of endogenous 
capabilities requires the targeted development of internal technical 
core teams, focusing on enhancing their ability to identify and 
handle technical risks such as equipment protocol heterogeneity 
and algorithmic false alarms. This will reduce external technical 
dependency and prevent potential risks related to technology 
malfunctions. At the same time, an institutionalized simulation 
exercise mechanism should be established. This mechanism would 
involve deep cooperation with technology suppliers to conduct 
stress testing and failure injection drills, exposing system 
vulnerabilities and optimizing emergency plans, while allowing 
employees to gain experience in handling unexpected technical 
risks. The construction of an open innovation network should also 
involve industry associations sharing risk case databases, 
introducing professional consulting firms to customize risk hedging 
solutions, and integrating external resources to mitigate risks 
associated with technical complexity.

In terms of management assurance, strategic top-level design 
requires the management to integrate technology risks into the core 
decision-making agenda. When setting quantitative objectives, risk 
tolerance thresholds should be  established simultaneously, and a 
dynamic monitoring and evaluation mechanism should 
be implemented to provide real-time alerts for organizational risks. 
Policy resource collaboration should focus on securing government 
disaster insurance subsidies, technical transformation risk 
compensation funds, and other risk-sharing mechanisms to alleviate 
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damage to equipment or grain storage losses caused by extreme 
weather conditions.

Empirical results also show that technology fit is the second 
largest core driver across the nine configurational pathways. 
Technology fit, as the core pathway for releasing technological 
effectiveness, should focus on optimizing talent structure, 
empowering grassroots staff, and driving the coupling of 
technological functions with actual needs, while transforming 
risk control into performance gains through human-
machine collaboration.

In the dimension of talent empowerment, differentiated skill 
enhancement should add a risk identification module in training 
content. AR-based simulation training should be developed for older 
employees, with behavioral correction to reduce human-related risks. 
Innovation in industry-education integration mechanisms requires 
collaboration with universities to develop risk prevention and control 
courses, simulating scenarios such as pest outbreaks and equipment 
failures in training bases, to cultivate technical risk response 
capabilities in compound talent. The construction of a talent 
development ecosystem should promote government inclusion of 
safety certifications in vocational systems and strengthen risk 
responsibility awareness through the sharing of accident cases on 
industry platforms.

In terms of technology fit, optimizing the human-machine 
interaction interface should involve embedding risk prompt functions 
when simplifying operation processes, labeling high-risk operation 
points in user manuals, and ensuring that after-sales services cover 
urgent fault handling. Demand-driven custom development should 
involve precise communication of business risk needs to suppliers, 
encouraging the development of redundant verification algorithms to 
ensure that the technological solutions match actual risk scenarios. 
Strengthening technological value recognition should empirically 
demonstrate the benefits of risk control, using data comparisons to 
eliminate cognitive biases. This strategy, following the principle of 
minimizing risks, aims to reduce operational risks through interface 
optimization, solidify preventive behaviors through training and 
certification, and transition technology adoption from ‘usable and 
easy to use’ to ‘safe and reliable’ (Venkatesh et  al., 2003; Lin and 
Huang, 2023).

6 Conclusion

This study conducted a questionnaire survey of 46 middle and 
senior managers of grain enterprises in Fuzhou, and used the 
fsQCA method to explore the configurational pathways associated 
with the intention of grain enterprises to adopt smart granary 
technology. The results of the study indicate that the intention of 
grain enterprises to adopt this technology co-occurs with by 
multidimensional factors, and that a single factor does not 
constitute a necessary condition for it; rather, it is the combined 
configuration of these conditions that is associated with the 
formation of adoption intention.

Specifically, the study identifies two typical path patterns: one is the 
path with high technology fitness as the core condition (containing four 
grouped paths), and the other is the path with high resource readiness 
as the core condition (containing five grouped paths). These findings 
provide new perspectives for understanding the complex mechanisms 

of adopting smart granary technologies in grain enterprises. In 
addition, privacy risk is an obvious association in both paths.

Of course, this study also has some limitations: (1) The data in this 
paper were obtained from middle and senior managers of grain 
enterprises in Fuzhou City, and despite the rigorous questionnaire 
design and data collection process, there may still be measurement bias. 
(2) The findings of this paper are limited to explaining the willingness 
of grain enterprises in Fuzhou City to adopt smart grain silos. Although 
Fuzhou City is representative as a pioneer region in the application of 
smart grain silo technology, the applicability of its conclusions to other 
regions in China (e.g., the central and western regions with different 
resource conditions) still needs to be further verified. (3) This paper 
adopts cross-sectional data, which can reveal the key factors affecting 
adoption willingness and their combination paths, but cannot clarify 
the causal relationship between variables. Since willingness to adopt 
technology is a dynamically changing variable, future research can 
track its trend over time through longitudinal data to better understand 
the formation mechanism and development law of willingness to adopt.

Through this research, it is hoped that the intention of grain 
enterprises in Fuzhou City to adopt smart granary technology can 
be further promoted, thus accelerating the improvement of granary 
technology in Fuzhou and enhancing food security stability, while 
providing a reference for the wider dissemination of this technology. 
Moving forward, we will continue to collect data on a broader scale 
and conduct dynamic and continuous research on the adoption of 
smart granary technology.
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