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Drought stress is a critical constraint to maize production in tropical regions,
impairing growth and reducing yield stability. In this study, a panel of hybrids was
assessed under both well-watered and drought-stress conditions using yield-
based drought tolerance indices and the Multi-Trait Genotype-ldeotype Distance
Index (MGIDI). Thirty-three tropical maize hybrids were evaluated under optimal
and water-limited conditions across two locations using a randomized complete
block design. Drought stress was imposed 40 days after planting until the milk
stage following CIMMYT protocols, and data on morphological, physiological,
and yield traits were recorded. The dataset was subjected to multivariate analyses,
including Principal Component Analysis and hierarchical clustering, as well as
four yield-based drought tolerance indices: Stress Tolerance Index (STI), Stress
Susceptibility Index (SSI), Yield Stability Index (YSI), and Harmonic Mean Index
(HI). Yield-based drought indices identified six superior hybrids (GE13, GE17,
GE21, GE26, GE29, and GE32) characterized by high yield stability and minimal
reductions under stress. Multi trait analysis using the MGIDI, which integrated
various morpho-physiological traits further highlighted GE13, GE21, and GE32
as consistently close to the ideotype. The overlap between yield-based indices
and MGIDI confirms the robustness of these three hybrids, while demonstrating
the value of integrating complementary selection tools for precise identification
of drought tolerant genotypes.

KEYWORDS
maize, drought tolerance, yield indices, multi-trait, MGIDI
Introduction

Drought remains one of the most significant constraints to agricultural production,
reducing yields, limiting crop quality, and threatening food supply chains worldwide. Its

impact is compounded by climate variability, declining soil moisture, and groundwater
depletion, all of which contribute to lower crop productivity and increase the risk of food
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insecurity (Gupta et al., 2022; Gbegbelegbe et al., 2024). Drought
affects not only the quantity but also the nutritional quality of food,
while yield losses reduce farmer income and raise food prices,
disproportionately affecting vulnerable populations (Bandyopadhyay
et al, 2020). As droughts become more frequent and severe,
understanding their impact on food systems and developing effective
mitigation strategies is essential (Smakhtin and Schipper, 2008). Maize
(Zea mays L.) productivity in Southeast Asia remains below the global
average, with recent data indicating yields of around 5.4 t/ha in
Indonesia, 4.6 t/ha in Thailand, and 4.2 t/ha in the Philippines,
whereas global yields average approximately 6.0 t/ha (FAO, 2024). This
gap is exacerbated by the impact of water scarcity, as drought
conditions can reduce maize yields by 10%-50%, with losses
commonly reaching 25-35% in tropical regions like Southeast Asia
(Daryanto et al., 2017).

Maize is highly susceptible to the adverse impacts of climate
change, particularly drought. The effects of drought on maize are
extensive, impacting growth, development, and grain yield. Water
scarcity significantly reduces kernel development in maize, directly
impacting overall yield. Substantial yield losses are often caused by
drought, particularly when it occurs during critical growth stages such
as flowering and grain filling (Deribe, 2024). Persistent drought
reduces biomass, alters maize morphology, and significantly lowers
grain yield, especially when water stress coincides with flowering and
grain filling (Agyare et al.,, 2013; Saad-Allah et al., 2022). Additionally,
the rate of photosynthesis drops more during the flowering stage than
during the jointing or milking stages, even under the same level of
drought stress (Rossi et al., 2020).

Despite significant advancements in agricultural practices,
drought remains a persistent threat to maize yields due to the plant’s
inherent sensitivity to water stress. Maize plants have evolved various
adaptive mechanisms to mitigate the effects of drought, including
physiological, biochemical, and molecular responses. These
adaptations, such as stomatal closure to reduce water loss, osmotic
adjustment to maintain cell turgor, and the activation of antioxidant
enzymes to combat oxidative damage, are essential for the plants
survival under drought conditions (Chauhan et al., 2022). However,
these mechanisms are often insufficient in the face of prolonged or
severe drought, leading to a substantial decline in productivity. The
challenge lies in the fact that these adaptive responses often come at a
cost to the plant’s overall energy balance, diverting resources away
from growth and yield production.

Maize genotypes exhibit a range of responses to drought stress,
with significant variability in growth, yield, leaf gas exchange,
osmolyte accumulation, and antioxidant activity. Drought-tolerant
maize genotypes, for instance, produce higher levels of antioxidant
enzymes, which play a crucial role in mitigating oxidative stress by
neutralizing reactive oxygen species generated during drought
(Ahmad et al,, 2016). These genotypes also demonstrate reduced lipid
peroxidation, preserving cell membrane integrity, and better osmolyte
accumulation, which helps maintain cellular turgor and water content
under water-deficient conditions (Gelaw and Mishra, 2024; Gelaw
etal., 2023).

Drought stress also induces significant alterations in the metabolic
processes of maize. The integrity of cell membranes, water relations
within the plant, and photosynthetic efficiency are all compromised
under drought conditions. Photosynthesis, the process by which
plants convert light energy into chemical energy, is particularly
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sensitive to water stress. Drought conditions limit CO, assimilation
and increase photorespiration, leading to reduced photosynthetic
efficiency and overall carbon fixation in plants (Leverne and Krieger-
Liszkay, 2021).

To address the challenge of drought-induced yield losses, breeding
drought-tolerant maize varieties has become a critical strategy for
sustaining productivity in water-limited environments. Advances in
genomic technologies have facilitated the identification of drought-
resistant traits and the development of maize varieties that are better
equipped to withstand water scarcity. Furthermore, the use of plant
growth-promoting rhizobacteria and endophytic bacteria offers
promising mitigation measures. These beneficial microbes can
enhance root growth, improve water uptake, and modulate stress-
responsive pathways, thereby contributing to the maintenance of
maize productivity under drought conditions (Agunbiade and
Babalola, 2024).

To improve the selection of drought-tolerant maize genotypes, it
is essential to evaluate performance under stress by analyzing key
agronomic, morphological, and physiological traits (Banziger et al.,
2000). Techniques such as selection indices, AMMI, and GGE biplot
are widely used to assess genotype superiority, quantify genotype-
environment interaction (GEI), and identify high-yielding, stable
hybrids across environments (Azrai et al, 2023). Incorporating
secondary traits strongly associated with grain yield enhances
selection accuracy under both drought stress and low nitrogen (Azrai
et al, 2024). More recently, the Multi-Trait Genotype-Ideotype
Distance Index (MGIDI) was introduced to integrate multivariate trait
data into a single ideotype-based distance metric, assisting breeders
in ranking genotypes by overall performance without multicollinearity
issues (Olivoto and Nardino, 2021; Singamsetti et al., 2023).
Furthermore, envirotyping and enviromics have introduced
approaches to delineate mega-environments using long-term
environmental data and to employ indices like MTMPS for joint
yield-stability assessment, improving hybrid selection across diverse
conditions (Yue et al., 2022). Al-based methods, such as compositional
autoencoders, further enhance GEI modeling by disentangling
genotype and environment-specific effects, achieving up to a tenfold
gain in yield prediction accuracy (Powadi et al., 2024).

This study aimed to select drought-tolerant tropical maize
genotypes by integrating multiple traits and drought indices to achieve
a comprehensive evaluation under stress conditions. Morpho-
physiological traits were combined with four established drought
indices (ST1, SSI, YSI, and HI), and genotype overlaps were visualized
using multi-metric Venn diagram. Additionally, the MGIDI was
applied to rank genotypes based on their overall performance across
multiple key traits. This multi-layered analysis provides a new strategy
for pinpointing elite maize hybrids with strong adaptability to water-
limited environments.

Materials and methods
Screening of hybrid candidates

Field trials were carried out over two consecutive seasons (2020
and 2021) at two distinct research stations in South Sulawesi,

Indonesia: The Maros site (119°50'E; —5°31’S) and the Bajeng Farm
Station (119°57'E; —5°98’S) (Figure 1). Both locations represent
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rainfed lowland environments, situated at elevations of 80 m and 50 m
above sea level, respectively. Despite slight variations in their
microclimates, both sites experienced minimal rainfall during the
experimental periods, with average daily temperatures ranging from
22°C to 34°C. Relative humidity averaged 74% in Maros and 76% in
Bajeng, while wind speeds were recorded at 11.9 km/h and 13 km/h,
respectively. Maros had slightly higher incident solar radiation
(6.7 kWh/m?*/day) compared to Bajeng (6.1 kWh/m?/day). Soils at the
Maros site are classified as clay loam (Luvisols, FAO Soil Classification),
while those at Bajeng are sandy clay loam (Fluvisols). The study
involved 33 hybrid maize genotypes, derived from CIMMY T’s global
maize breeding program and complemented with locally developed
genetic material. These hybrids were evaluated under two water
regimes: optimal irrigation and controlled drought stress. Planting
was conducted in May 2020 at Maros and in June 2021 at Bajeng. Both
trials followed a randomized complete block design (RCBD) with
three replications. Each plot consisted of four rows measuring 5
meters in length, with a spacing of 70 cm between rows and 20 cm
between plants. Two seeds were sown per hole and later thinned to
one seedling.

Drought stress was initiated 40 days after planting (DAP)
corresponding to the late vegetative growth stage, by withholding
irrigation, following the CIMMYT protocol (Binziger et al., 2000).
Stress was maintained through flowering (approximately 50 DAP) and
continued until the milk stage (around 75 DAP), after which normal
irrigation (furrow) was resumed. This timing ensured that the
imposed stress coincided precisely with the critical stages of yield

10.3389/fsufs.2025.1608307

formation. All field management, including fertilization, weed
management, and pest/disease control, were conducted in accordance
with national agronomic guidelines established by the Indonesian
Ministry of Agriculture. Under these standardized management
practices, the genotypes displayed uniform phenological development,
with an average flowering time of 50-53 DAP, grain filling between
70-75 DAP, and physiological maturity occurring at 100-102
DAP. The environmental conditions, soil properties, and experimental
setup are presented in Table 1.

The observed variables encompassed a range of phenological and
physiological traits, including plant height (PH), ear height (EH), ratio
of plant to ear height (RPH), days to tasseling (DTS), days to silking
(DSL), leaf angle (LAG), leaf area (LA), stem diameter (SD), anthesis
to silking interval (ASI), and SPAD reading. The leaf angle in maize
was determined by using an inclinometer, which measures the angle
formed between the leaf blade and the stem. SPAD values of the flag
leaves were measured using a SPAD-502 chlorophyll meter (Konica
Minolta) at 75 days after planting (DAP), corresponding to the milk
stage (the end of the imposed drought period). Leaf area was
calculated according to the method proposed by (Radford, 1967). The
leaf area was computed using the formula LA = K (L * W), where LA
is the leaf area in square centimeters (cm?), K is a constant (0.75), L is
the leaf length in centimeters, and W is the maximum leaf width
in centimeters.

At harvest, maize cobs were collected from a five-meter plot
stretch located in the central rows of each replicate. The measurements
included ear diameter (ED), ear length (EL), number of kernel rows
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FIGURE 1
Map of the maize drought tolerance trial sites.
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TABLE 1 Site characteristics, weather data, and experimental design details.

Parameter

Location coordinates

Maros site

119°50E; —5°31’S

10.3389/fsufs.2025.1608307

Bajeng site

119°57E; —5°98’S

Elevation (m above sea level)

80 m

50 m

Land type

Rainfed

Rainfed

Temperature range

23°°C-34°°C

22°°C-34°°C

Rainfall Late May-June: 152 mm June-July: 109 mm
July-August: 0.00 mm August-September: 0.00 mm

Relative humidity 74% 76%

Wind speed 11.9 km/h 13 km/h

Mean shortwave incident solar 6.7 kWh/m?*/day 6.1 kWh/m?*/day

Soil type Clay loam Sandy clay loam

Growing seasons

May-August 2020

June-October 2021

Irrigation regimes

Normal and water-stressed

Normal and water-stressed

Experimental design

RCBD, 3 replications

RCBD, 3 replications

Plot size

4 rows x 5 m (row length)

4 rows x 5 m (row length)

Plant spacing

70 cm x 20 cm

70 cm x 20 cm

Drought stress timing

40-75 DAP (flowering to milk stage)

40-75 DAP (flowering to milk stage)

Seed material source

CIMMYT + domestic crosses

CIMMYT + domestic crosses

Fertilization and management

Based on MoA Indonesia guidelines

Based on MoA Indonesia guidelines

per ear (NR), number of kernels per row (NKR), shelling percentage
(SP), 1,000-kernel weight (KW1000), and grain yield (GY). At
physiological maturity, NR was determined by visually counting all
kernel rows on a representative ear per plant. NKR was measured by
counting the kernels in three complete rows and averaging the counts.
Shelling percentage was calculated as the weight of the shelled kernels
divided by the total ear weight, multiplied by 100. For KW1000, 1,000
shelled kernels per genotype were equilibrated to 15% moisture (grain
moisture meter) and weighed on a digital balance. The grain yield of
a maize plot is calculated as follows Equation 1

10000 » 100—-MC o Fw _SP

00 1
PS  100-15 1000 100

Yiezd(tha*1)=

where PS is harvested plot (m?*), MC is moisture content at harvest
(%), FW is field weight per plot (kg), and SP is shelling percentage (%).

Assessment of multiple drought tolerant
index

Four distinct indices (Equations 2-5) were calculated for each
hybrid to comprehensively evaluate drought tolerance: Stress
Tolerance Index (STI), Stress Susceptibility Index (SSI), Yield Stability
Index (YSI), and Harmonic Mean Index (HI) (Fernandez, 1992;
Arisandy et al., 2017). Each index was derived using performance data
under both drought and normal conditions, capturing unique aspects
of the genotype’s response. These indices were determined using the
following formula, each designed to assess different aspects of drought
tolerance in maize hybrids.
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Where Y, Y,and Y represent the average performance of the trait
under drought stress conditions, the average performance under normal
conditions for each maize hybrid, and the overall mean performance
under normal conditions across all hybrids, respectively. The drought
tolerance index for each hybrid was subsequently calculated based on
these individual trait performances. In addition to drought indices, a
multi-trait selection method was applied using the MGIDI index to
identify genotypes with the most desirable combination of traits. The
analysis began with a mixed linear model, treating genotypes as random
effects and replications as fixed, to estimate adjusted means (BLUPs) for
each trait. To handle multicollinearity and reduce trait dimensionality,
factor analysis was conducted on the standardized BLUP values,
followed by varimax rotation to clarify trait groupings. The ideotype was
defined as a theoretical reference with optimal values for all traits,
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serving as a benchmark for comparison. Each genotype’s distance from
this ideotype was then calculated within the factorial space, based on
the retained components (Equations 6-7).

(6)

Trait score = Factor loading x Factor score

* 2 * 2 * 2
MGIDI, = (F,. —Fl) +(E2—Fz) +~~~+(Ef—Ff) @
where F; is the score of genotypes i on factor j, and F;* is the ideal
score for that factor. Genotypes with the shortest distances were
considered closest to the ideotype and therefore the most promising.

Statistical analysis

The analysis of variance (ANOVA) for this study was based on a
three-factor factorial design, involving 33 genotypes (G), two locations
(L), and two water treatments (drought and normal), and arranged in
a randomized complete block design (RCBD). In this mixed-effects
model, Genotype, Location, and Treatment were treated as fixed
effects, as their specific levels were of primary interest for comparison.
The Replicate (Block) was treated as a random effect to control for
variability within the experimental sites.

The general linear model (Equation 8) used for the three-way
ANOVA is:

Yijk1 = p+ R+ Gy + L+ Ti +(GL), +(GT),,.

.
+ (LT)jk + (GLT)ijk + €kl

(8)

Where: Yjj; is the observed value for the ith genotype, jth location,
kth treatment, and Ith replicate, x is the overall mean, Ry is the random
effect of the ith replicate, G;, L > and T, are the main fixed effects of
genotype, location, and treatment, respectively, (GL)IN, (GT)ik’ and
(LT)jk are the two-way interaction effects, (GLT)ijk
interaction effect among genotype, location, and treatment, Sijkl is

is the three-way

the random error.

Trait distributions under each treatment were visualized with
boxplots using the ggplot2 package in R. PCA was performed using
the FactoMineR (L.¢ et al., 2008) and factoextra (Kassambara and
Mundt, 2020) packages in R. A two-way hierarchical clustering
heatmap was constructed using the Heatmap package in
R. Correlation analysis was conducted using the metan package

10.3389/fsufs.2025.1608307

(Olivoto et al., 2019), which also supported the multi-index analysis.
Boxplots of morpho-physiological traits across 33 hybrids were
generated using ggplot2, while Venn diagrams and violin plots were
created using Google Collaboratory and associated Python
visualization libraries.

Results and discussion
Analysis of variance

A combined analysis of variance across two locations and two
water regimes (drought and normal irrigation) for agronomic,
physiological, and yield-related traits is presented in Table 2 and
Supplementary Table 1. Environmental variation was partitioned into
location (L) and water treatment (T) effects. Both location and
treatment had highly significant effects (p < 0.001) on most traits,
indicating substantial environmental influences on maize
performance. The genotype (G) effect was highly significant
(p < 0.001) for all traits, showing strong genetic variation among the
hybrids. This variation led to differences in traits like PH, ASI, SPAD,
EL, KW1000, and GY. The genotype x location (G x L) interaction
was not significant for most traits (e.g., PH, SD, ASI, and LAG), except
for SPAD, ED, NR, NKR, KW, SP, and GY, which showed
significant interactions.

A significant genotype x treatment (G x T) interaction was
observed for most traits, including SD, LAG, SPAD, EL, ED, NR, NKR,
KW, SP, and GY, indicating that genotypes responded differently
under drought versus normal irrigation, especially in photosynthetic
efficiency, reproductive development, and yield traits. The absence of
significant interaction for ASI and PH suggests that these traits were
more stable across water regimes. The G x T interaction for grain yield
underscores the need to evaluate genotypes under both stress and
non-stress conditions to identify drought-tolerant yet high-yielding
lines. The three-way interaction (G x L x T) was significant for SPAD,

EL, ED, NKR, KW, SP, and GY.

Morpho-physiological analysis

The comparative analysis of maize traits under normal and
drought conditions reveals highly significant treatment effects
(p <0.001; Table 2), indicating the negative impact of water stress
on growth development. A three-way ANOVA main effect for

TABLE 2 Pooled ANOVA of maize geno types evaluated under normal and drought conditions.

Source

Genotype (G) 32 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Location (L) 1 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.007 <0.001
Treatment (T) 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
GxL 32 0.772 0.763 0.165 0.330 <0.001 <0.001 0.024 0.225 0.023 0.200 0.033 <0.001
GxT 32 0.152 0.001 0.455 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.009 0.0014
LxT 1 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
GxLxT 32 0.843 0.905 0.116 0.780 <0.001 <0.001 0.023 0.168 0.009 0.032 0.007 0.0013
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Treatment showed highly significant reductions in various plant
growth traits under drought stress (p < 0.001; Table 2; Figure 2).
Plant height was reduced by 12% under drought stress compared to
normal conditions (p < 0.001; Table 2), indicating that limited water
availability restricts cell expansion and elongation. This reduction
aligns with the 20.7% decrease in leaf area observed under similar
conditions, which likely represents a physiological adaptation to
reduce water loss through transpiration. The increase of 61.8% in
the ASI under drought conditions further emphasizes the impact of
water stress, as the delay in flowering disrupts pollination
synchrony, potentially resulting in reduced grain yields. Moreover,
the 11.1% reduction in stem diameter suggests that drought
negatively affects the plant’s structural system, compromising its
ability to support itself and efficiently transport water and nutrients.
SPAD values decreased by 12.9% under drought conditions
(p <0.001; Table 2), indicating a reduction in chlorophyll content
and a decline in photosynthetic capacity and overall plant health.
Improving traits such as plant height, leaf area, ASI, stem diameter,
and chlorophyll content could improve the resilience of maize
varieties to drought-prone or water-stressed environments.

The analysis of maize yield components under drought conditions
reveals a significant impact on various traits, indicating the sensitivity
of ear and kernel development to water stress. Ear diameter shows a
3.3% reduction under drought conditions, demonstrating that water
stress adversely affects ear growth, which could directly influence
overall yield potential. Maintaining stable ear diameter under drought
could thus be critical for securing yields, as ear size is closely linked to
grain production. Additionally, the SP decreases slightly by 1.5%
under drought stress. Although this reduction is minimal, it suggests
a decrease in kernel weight within the cob due to drought stress. The
NKR trait exhibited only a 0.2% difference between normal and
drought conditions (p < 0.001; Table 2), suggesting that this trait is
relatively stable under water stress. Furthermore, the number of rows
(NR) decreased by 3.2% under drought conditions (p < 0.001; Table 2),
reflecting moderate sensitivity to water stress and suggesting a need
for breeding strategies that bolster this trait under drought conditions
to support stable yields. The most substantial impact was observed in
1000-kernel weight, which decreased by 10.8% under drought
conditions (p < 0.001; Table 2), reflecting the distinct effect of water
stress on kernel development and weight. The significant reduction in
KW1000 underlines the challenge of maintaining grain filling and
final kernel size under drought, which are critical determinants of
overall yield. These suggest that breeding efforts should prioritize
traits such as ear diameter, kernel weight, and the number of rows to
develop maize varieties capable of sustaining yields under drought
conditions. A multi stress breeding program would enhance crop
resilience and productivity in water-limited environments,
contributing to more sustainable agricultural practices.

Further analysis revealed a substantial decline in grain yield under
drought conditions, with a 23% reduction compared to normal
conditions (p < 0.001; Table 2), emphasizing the significant impact of
water stress on maize productivity. This sharp decrease in grain yield
emphasizes maize’s vulnerability to drought, which can cause severe
yield losses, especially in regions where water availability is limited.
The increased variability in grain yield under drought conditions also
suggests that the response of different maize genotypes to water stress
is not uniform, pointing to genetic differences in drought tolerance
among the tested genotypes. This variability indicates that some
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genotypes may possess natural drought tolerance, offering potential
for selective breeding to enhance drought resilience.

PCA of maize traits under drought and
normal

A PCA analysis was conducted on a dataset of 33 genotypes across
16 traits to reduce dimensionality and reveal potential correlations
among the measured traits. The PCA results indicated that the
eigenvalue for Dim.1 is 5.19 and accounting for 37.08% of the variance
in the dataset. Dimensions with eigenvalues greater than 1 are
considered important, which is the case for the first four dimensions.
Dim.2 has an eigenvalue of 2.45, explaining 17.53% of the variance,
followed by Dim.3 and Dim.4 with eigenvalues of 1.62 and 1.18,
contributing 11.60 and 8.40%, respectively.

Together, these four dimensions explain 74.62% of the total
variance of the relationships among the 16 examined traits.
Dimensions beyond Dim.4 have eigenvalues below 1, suggesting less
contribution to the data’s structure and can be considered less
impactful in the analysis. This indicates that most of the variation in
the dataset can be explained by the first four principal components,
allowing for a significant reduction in data complexity.

Figure 3 displays the PCA biplot for 33 maize hybrids, the correlation
circle for trait relationships, and bar plots showing the variance explained
by each principal component. The biplot results revealed a clear
distinction between the normal and drought treatments, showing a
marked difference in their responses. The PCA biplot was generated using
the first two principal components (PC1: 37.10% and PC2: 17.53%),
which together explain 54.62% of the total variance. The biplot indicates
the distribution of maize traits under drought stress conditions, with DTS,
DSL, and ASI clustering in the rightmost region. These traits are dispersed
around the hybrid candidates, highlighting their influence under drought
stress (Figures 3A,B). Additionally, traits such as SPAD, LA, SP, SD, GY,
PH, KW1000, LAG, and EL were clustered in the leftmost region of the
biplot, closely associated with hybrids under normal conditions. In
contrast, NKR was positioned near the center of the biplot, indicating
relatively stable performance under both stress and normal environments.

The bar plots illustrate the contributions of different variables to
the first two principal components (Dim-1 and Dim-2) in the PCA
(Figures 3C-3F). For Dim-1, the variables with the highest
contributions include LA, GY, and SD, each accounting for more than
10% of the total variance explained by PCI. Other variables such as
PH, DSL, and KW1000 also show significant contributions, though
less prominent. In contrast, Dim-2 shows a different pattern with the
NKR, EL, and DTS contributing most heavily, each exceeding 15% of
the variance in PC2. The NKR trait makes the highest contribution to
Dim-2. Different sets of traits influence the variation captured by each
principal component, with plant structure and yield-related traits
driving PC1, while reproductive traits dominate PC2.

Clustering hybrid candidates using drought
tolerance indices

Considering the effect of drought on grain yield, incorporating

traits that confer drought tolerance into maize breeding programs
could mitigate the adverse effects of water scarcity on crop production,
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ensuring consistent yield performance even under challenging
environmental conditions. The STI index evaluates a traits or
genotype’s capacity to withstand stress conditions, such as drought, by
assessing its ability to maintain high productivity under both stress
and optimal conditions.

The STI values for GY and LA both at 0.8, were the lowest among
the traits evaluated, indicating that these traits are highly susceptible
to stress, resulting in substantial reductions in maize yield (Figure 4A).
In contrast, the STT values for plant height, stem diameter, and SPAD
readings demonstrated a similar level of sensitivity to stress,
comparable to traits such as leaf angle and thousand-kernel weight.
Conversely, the high STI value for ear diameter, at 1.1, suggests that
this trait exhibited stable phenotypic performance under both stress
and non-stress conditions, reflecting greater resilience. This shows
that STT effectively identifies key morpho-physiological traits in maize
hybrids contributing to drought tolerance.

Grouping hybrids for drought tolerance based on a multi-trait
(morpho-physiological) approach allows for more comprehensive
identification of adaptation mechanisms, accurate hybrid selection,
and minimizes the risk of selection errors. Based on Figure 4B, the
hierarchical clustering heatmap visualization illustrates the
relationship among 33 maize hybrids and 16 morpho-physiological
traits under drought stress conditions, effectively highlighting the
performance of various hybrids by integrating these traits, with a color
gradient from blue (indicating lower values) to red (indicating higher
values) on the STI. The variation in drought resilience among
genotypes, especially in terms of grain yield, is a crucial trait for maize
production under drought stress. A higher STI value signifies a
reduced negative impact of drought stress on the corresponding trait.
As for the GY trait, hybrids GE 26, GE 03, and GE 29 exhibited the
highest ST values, suggesting their superior tolerance under drought
conditions. Hybrid GE 26 recorded the highest ST value of 1.12, while
hybrid GE 20 displayed the lowest value of 0.56.

A similar trend was observed for SPAD readings, where hybrids
GE 26, GE 03, and GE 29, which also showed high Stress Tolerance
Index (STT) values, exhibited higher SPAD under drought stress. This
suggests that these hybrids may maintain better chlorophyll content
under water-limited conditions, contributing to sustained
photosynthetic activity and yield. This is consistent with findings by
Kira et al. (2016), who reported that drought reduces chlorophyll
concentration and nitrogen levels in maize leaves. Hybrid GE 26 and
GE 03 recorded the maximum STT value of 1.10, while hybrid GE 19
displayed the lowest value of 0.52. GE 26 also exhibits relatively higher
STI values for ear length and density traits that are strongly related to
high yield, as longer ears with higher density generally contribute to
increased grain production per plant. In contrast, GE 03 shows
relatively higher STT values for ear height, stem diameter and 1,000
kernel weight, indicating superior performance in these traits under
drought conditions. Besides grain yield and SPAD, GE 29 also exhibits
significant STI values for ear height and diameter underscoring the
close relationship among these yield components and the final yield
of the maize hybrid candidate.

Hierarchical clustering grouped the measured traits and 33 hybrid
candidates into three distinct clusters based on STI variation: cluster
1 with 15 hybrids, cluster 2 with 11, and cluster 3 with 7. These clusters
reflect close genetic or phenotypic associations, with hybrids sharing
similar STT characteristics grouped together. Cluster 1, which consists
of 15 hybrids, excelled in traits related to flowering, including DTS,
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DSL, and ASI. The cluster also showed strong performance in SD,
indicating greater resilience during early growth stages, which is
critical for stress tolerance in the initial development phase. Cluster 2,
composed of 11 hybrids, led in yield-related traits. These hybrids
showed superior performance in GY, PH, EH, SPAD, NKR, EL, ED,
and KW1000, highlighting their potential for high productivity under
favorable conditions. The strength of this cluster in these key
agronomic traits suggests its suitability for maximizing yield in
optimal environments. Cluster 3, which includes 7 hybrids, was
dominated by hybrids with lower tolerance to drought stress, as
indicated by their inferior performance across several stress-related
traits. This cluster’s performance points to reduced adaptability to
environments with high abiotic stress, particularly drought.

Furthermore, the column-based clustering of the 16 examined
traits resulted in the formation of two primary clusters. The first
cluster encompassed 13 traits, which were largely associated with
growth, yield potential, and physiological responses, while the second
cluster, consisting of 3 traits, was more related to reproductive
efficiency and kernel characteristics. Cluster-1 include Cluster-1
included DSL, DTS, NR, PH, LA, SPAD, GY, SD, NKR, EL, ED, and
ASI. These traits demonstrated strong interrelationships, suggesting
their significant roles in determining plant productivity and growth
patterns. In contrast, cluster-2, comprising SP, LAG, and 1,000 kernel
weight, represented a group of traits with distinct associations, related
to reproductive efficiency and biomass allocation. The clustering
categorizes hybrids into two main groups: drought-tolerant hybrids
and drought-sensitive hybrids.

Tolerant hybrids, such as GE 26 and GE 03, show high STT values
in key traits such as GY, and are supported by agronomic and
physiological characteristics such as EL, ED, NKR, SD, PH, EH and
SPAD. Conversely, sensitive hybrids, such as GE 07, GE 15, GE 20, GE
30, GE 31, GE 32, and GE 33, exhibit low STI values in these traits.
However, the grouping of other hybrids does not clearly explain the
drought adaptation abilities.

Relationship among drought tolerance
indices, yield reduction, and yield

To assess the drought tolerance of hybrid candidates in relation to
grain yield and yield reduction, four key indices were included: SSI,
STI, YSI and HI. SSI and YSI are essential indicators for assessing
maize tolerance to drought stress, highlighting a hybrid’s capacity to
reduce yield loss. The strong correlation between SSI and YSI values
with the percentage of yield reduction under stress, reflected by R
values of 1.00 and 0.99 respectively, indicates that genotypes with
lower yield reductions under drought stress demonstrate higher
tolerance levels (Figures 5, 6). Specifically, a smaller percentage of
yield reduction indicates that a maize genotype can better withstand
stress conditions, reflecting its resilience and adaptability. Therefore,
incorporating SSI and YSI into the selection criteria for maize
breeding programs will facilitate the differentiation between drought-
tolerant and susceptible genotypes.

Maize genotypes with greater tolerance are characterized by lower SSI
values and higher YSI values. Figure 5 demonstrates that a lower YSI value
is associated with a reduced percentage of yield loss, indicating higher
tolerance to stress conditions. Conversely, a higher YSI value signifies that
a genotype is more effective at minimizing yield loss, reflecting enhanced
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(A) Variation in the STI and SSI for selected morpho-physiological traits of hybrid maize candidates grown under normal and drought stress conditions.
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hybrid-trait associations, with deep blue showing low drought sensitivity and deep red indicating high drought tolerance.
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tolerance under stressful conditions. The relationship between yield
reduction, SSI, and YSI highlights the varying response of maize
genotypes to drought stress. Genotypes with a high SSI, such as GE07
(1.62) and GE20 (1.91), show significant yield reductions under drought,
indicating a high susceptibility to stress. These genotypes experience over
35% reduction in yield, demonstrating their inability to maintain
performance in suboptimal conditions. In contrast, genotypes like GE29
(SSI 0.03, YSI 1.01) and GE26 (SSI 0.17, YSI 1.04) exhibit minimal yield
reduction, maintaining stable yields under drought due to their low stress
susceptibility and high stability index. This suggests that selecting
genotypes with lower SSI and higher YSI, is crucial for improving yield
resilience and consistency in drought-prone environments.

The tolerance criteria for maize genotypes based on SSI and YSI
do not adequately reflect yield potential differences among genotypes
with similar tolerance levels. Both high- and low yielding genotypes
can exhibit comparable SSI values. In Table 3, for instance, under
drought stress, the hybrid GE21 has an SSI of 0.78 and a YSI of 0.82,
values that are almost identical to GE23, which has an SSI of 0.74 and
a YSI of 0.83. Despite this similarity, GE21 has a higher yield,
producing 5.93 t/ha compared to GE23’ 4.61 t/ha under the same
conditions. This demonstrates that tolerance criteria based on SSI and

10.3389/fsufs.2025.1608307

YSI do not necessarily correlate with productivity, as yield is influenced
by the genotype’s ability to limit reductions under stress. Thus, when
selecting drought-tolerant maize genotypes using SSI and YSI, yield
performance should also be considered.

The tolerance of a maize genotype assessed by its productivity
under stress conditions is more accurately reflected through the
STI and HI indices. As shown in Figure 6, STT and HI exhibit a
stronger correlation with maize productivity under drought stress,
with a coefficient of determination between 0.71 and 0.62,
respectively. Particularly, STT demonstrates a stronger correlation
with productivity across various drought conditions compared to
the other tolerance indices. A higher STI or HI value indicates
greater productivity under stress and high tolerance to drought.
This was demonstrated in the hybrid maize varieties GE26, GE29,
GEO03, and GE21, which under drought stress conditions exhibited
STI values greater than 1.05 and HI values exceeding 6.5. These
hybrids also had the highest productivity levels, surpassing
7.2 t ha™! under normal conditions and 5.0 t ha™" under drought
conditions (Table 3). Drought tolerance in hybrids like GE 26 and
GE 03 is supported by their ability to maintain strong vegetative,
physiological, and agronomic traits.
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The relationship between four drought tolerance indices (STI, SSI, YSI, and HI) and hybrid productivity under drought stress conditions.

Drought tolerant hybrid selection

Maize breeders mainly focus on selecting genotypes that
exhibit both high yield potential and strong drought tolerance,
aiming to identify varieties that can maintain productivity under
stress conditions. In this study, 15 genotypes with the highest
drought-tolerant indices, including STI-GY, STI-LAG, STI-SP, and
HI-GY, were evaluated to identify the best drought-tolerant
hybrids (Table 4). To further refine the selection process, a Venn
diagram was utilized to compare and integrate the relationship
between various stress tolerance indices used to assess maize yield
under drought stress conditions, weight the overlap of genotypes
across four key metrics: GY, LAG, SP, and HI. The central overlap,
where all four indices intersect, identifies six genotypes that
exhibit strong stress tolerance across all parameters. These
genotypes demonstrate high grain vyield, efficient plant
architecture, optimized ear/kernel formation, and stable harmonic
index. This comparative approach allowed for a more
comprehensive identification of superior maize hybrids by
highlighting genotypes that consistently performed well across
various drought tolerance and productivity metrics.

The analysis revealed that the six drought-tolerant hybrids
belonged to three distinct clusters, with GE13 and GE17 from

Frontiers in Sustainable Food Systems

Cluster 1, GE21, GE26, and GE29 from Cluster 2, and GE32 from
Cluster 3 (Figure 7). These hybrids demonstrated a higher drought
tolerance level, suggesting that genetic variation between these
clusters plays a significant role in their drought resilience. The
selected genotypes showed minimal reduction in yield, leaf area,
and grain filling under drought stress, indicating their robustness
under adverse conditions. This data is valuable for future
breeding, highlighting genotypes as promising candidates for
developing drought-tolerant maize with stable yields in both
stressed and normal environments.

The study provides a thorough analysis of the impact of drought
stress on various morpho-physiological traits and yields performance
of tropical maize hybrids, emphasizing the significant challenges
posed by water stress. The results confirm that drought stress reduces
plant height, leaf area, stem diameter, and chlorophyll content,
aligning with previous research that links these reductions to
impaired cell expansion and elongation (Bolanos and Edmeades,
1996). These reductions are apparent through various traits such as
ASI, which increased by 61.8% under drought, disrupting pollination
synchrony and yield potential. Other yield components, such as ear
diameter, kernel weight, and the number of kernel rows, also exhibit
sensitivity to drought stress. The stability of the number of kernels
per row under stress further suggests its resilience as a potential
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TABLE 3 Hybrid yield reduction and corresponding values of drought
tolerance indices.

Genotype Yield Yield STI  SSI HI | YSI
(normal) (drought)
GE01 6.95 5.12 087 | 114 | 590 074
GE02 6.10 496 074 | 081 547 081
GE03 7.54 5.84 108 098 | 658 077
GE04 5.81 439 062 | 106 | 500 076
GE05 7.57 496 092 | 150 | 599  0.66
GE06 5.47 5.16 069 | 025 531 094
GE07 6.37 400 062 | 162 | 491 063
GE08 6.53 47 075 | 122 | 547 072
GE09 6.66 458 074 | 136 | 543 069
GE10 7.53 5.1 094 | 140 | 608 0.68
GEl1 6.22 5.39 082 | 058 | 578 087
GE12 6.44 498 078 | 098 | 562 077
GE13 8.09 521 103 155 | 634  0.64
GE14 6.98 5.64 096 | 083 624 081
GEI15 6.33 459 071 | 119 | 532 073
GE16 5.04 432 053 | 0.62 | 465 086
GE17 6.85 6.16 103 044 | 649 090
GE18 5.64 457 063 | 082 505 081
GE19 6.17 5.71 086 | 032 | 593 093
GE20 7.07 3.96 068 | 191 | 508 056
GE21 7.23 5.93 105 078 652 082
GE22 5.92 5.05 073 | 064 | 545 085
GE23 5.56 461 063 | 074 | 504 083
GE24 5.88 456 065 | 097 | 514 078
GE25 6.22 5.54 084 | 047 | 586 089
GE26 7.81 5.88 112 107 | 671 075
GE27 5.92 441 064 | L1l 505 074
GE28 6.11 5.77 086 | 024 594 094
GE29 7.88 5.51 106 131 | 650 @ 070
GE30 6.62 481 078 | 119 | 557 073
GE31 7.26 479 085 | 148 | 577 066
GE32 7.13 5.65 098 090 630 | 0.79
GE33 6.89 5.75 097 | 072 | 627 083

selection trait in breeding programs focused on drought tolerance
(Magorokosho and Tongoona, 2003).

A multivariate selection approach was applied to identify maize
hybrids with optimal trait combinations under drought conditions,
using the MGIDI index as an integrative tool. Factor analysis with
varimax rotation grouped the nine evaluated traits into three distinct
components. The first factor (FA1) captured variation associated with
yield-contributing traits such as ear diameter (ED) and 1,000-kernel
weight (KW1000), along with an inverse relationship to plant height
(PH) and shelling percentage (SP), suggesting a trade-off between
compact plant architecture and grain development. The second factor
(FA2) included traits linked to plant vigor and productivity, namely
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TABLE 4 Selected genotypes based on four tolerance indices.

STI-GY STI-LAG STI-SP HI-GY
GE26 GE17 GE33 GE26
GE03 GE29 GE19 GE03
GE29 GE26 GE18 GE21
GE21 GE32 GE22 GE17
GE13 GE21 GE11 GE29
GE17 GE04 GEl5 GE13
GE32 GE07 GE17 GE32
GE33 GE11 GE32 GE33
GEl4 GE13 GE26 GEl4
GE10 GEl4 GE13 GE10
GE05 GE06 GE21 GEO05
GE01 GE31 GE25 GE28
GE19 GE28 GE29 GE19
GE28 GE22 GE09 GE01
GE31 GE12 GE08 GE25

leaf area, stem diameter, and grain yield, while the third factor (FA3)
was defined by opposite contributions from leaf angle and ear length,
representing differences in canopy architecture and reproductive
growth. On average, 67% of the trait variation was explained by these
three factors. The trait biplots (Figures 8a,b) effectively illustrated
these associations, where traits clustering in the same quadrant shared
positive correlations, and those in opposite directions reflected
functional trade-offs within the genotype profiles.

Genotype selection through MGIDI ranked hybrids based on their
overall proximity to a multi-trait ideotype, with GE21, GE13, GE31,
GE20, GEO1, and GE32 emerging as the most desirable entries
(Figure 8c). These genotypes combined favorable expressions across
different trait dimensions. GE21 showed strong alignment with FA1,
indicating its advantage in kernel weight and efficient plant stature.
GE13 performed well across both FA2 and FA3, reflecting a balanced
trait composition including leaf efficiency and superior ear traits. GE31
exhibited notable performance in FA2, corresponding to higher grain
yield, leaf area, and stem robustness. The strengths and weaknesses chart
(Figure 8d) provided further insight into how each hybrid contributed
across factors. Selection differentials confirmed targeted gains: positive
increases in key traits such as 1,000-kernel weight (+0.59%) and ear
length (+1.58%) were observed, while reductions in plant height
(—0.20%) and leaf angle (—2.85%) may support improved lodging
resistance and canopy efficiency. These results demonstrate the utility of
MGIDI in simplifying complex trait data and supporting informed
decisions in hybrid development for drought-prone environments.

Discussion

Drought tolerance in maize involves complex physiological
responses and genetic controls that coordinate to maintain plant
productivity under water-limited conditions. In this study, significant
genotype X environment interactions and a 23% grain yield reduction
under drought stress reflect not only phenotypic plasticity but also a
diverse set of physiological and genetic adaptations. Photosynthetic
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Selection of drought-tolerant maize genotypes based on four selected tolerant indices.

efficiency showed a 12.9% decline under drought, which correlates
with reductions in chlorophyll content and thus limited carbon
assimilation. Drought stress impairs chloroplast integrity and pigment
biosynthesis, thereby reducing photosynthetic capacity. SPAD values
thus serve as a proxy for leaf senescence and stress-induced oxidative
damage. Genotypes such as GE26 and GE03 maintained higher SPAD
under drought, suggesting enhanced antioxidative defense
mechanisms or delayed senescence traits, which have been linked to
increased drought resilience (Rivero et al., 2007). Furthermore,
Zainuddin and Aqil (2021) reported that leaf color is closely related to
SPAD readings, as both indicate chlorophyll levels on maize leaves.

Frontiers in Sustainable Food Systems

This physiological decline in SPAD under drought reflects broader
disruptions in reproductive and vegetative development. The 61.8%
increase in ASI indicates impaired reproductive synchrony, a known
drought-induced trait disruption that hampers kernel set (Bolanos
and Edmeades, 1996). Longer ASI under stress suggests delayed silk
emergence relative to pollen shed, reducing fertilization success. The
stability of ASI in genotypes such as GE21 implies efficient hormonal
regulation that supports silk elongation under drought (Bruce et al.,
2002). The relative stability of NKR (kernels per row) across treatments
further highlights its robustness and potential as a selection index for
drought resilience.
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d. Strength and weakness of hybrids

In addition to reproductive traits, structural traits like stem
diameter, plant height, and 1,000-kernel weight were significantly
reduced under drought. These traits are associated with turgor
maintenance, vascular development, and assimilating partitioning.
Song et al. (2018) reported that stem diameter is not merely structural
but also reflects hydraulic conductance and assimilate flow to
reproductive sinks. The ability of GE29 and GE03 to sustain SD and
PH under drought implies well-maintained xylem integrity and
cellular osmotic adjustment.

Among reproductive traits, kernel development is especially
vulnerable to drought stress. Kernel weight, reduced by 10.8%, is
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highly sensitive to water deficit due to impaired grain filling. Beyond
phenotype-level observations, these patterns are rooted in specific
genetic architectures. The variation in stress indices (ST1, SSI) and trait
clustering clearly reveal underlying genetic controls. The clustering
patterns reflect functional genomic divergence: Cluster 2 genotypes
(GE26, GE29) exhibited superior GY, EL, ED, and NKR under
drought, traits strongly associated with two key loci on chromosome
2 (bins 2.09 and 2.03) jointly controlling grain yield, 100-kernel
weight, and kernel size traits (Yang et al., 2016).

Furthermore, high STI values in kernel traits (ED, NKR)
suggest favorable alleles for reproductive resilience. The
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multivariate analysis further validated these relationships by
identifying genotype clusters aligned with stress performance
metrics. The PCA biplot and hierarchical clustering confirmed the
multidimensional nature of drought adaptation. Traits such as
SPAD, EL, and GY, which are grouped closely under stress, suggest
a physiological model that integrates photosynthesis, resource
allocation, and reproductive output. Particularly, the ability to
preserve grain yield under drought has emerged as a primary
criterion in evaluating genotype performance (Chukwudi et al.,
20215 Su et al., 2022). While STI provides a reliable indicator of
drought resilience by integrating yield stability and potential,
reliance solely on SSI may mask true genetic potential, as observed
in GE21, which showed comparable SSI values to low-yielding
hybrids despite its superior yield under drought. The high
contribution of NKR and SD to PC2 and PCl, respectively,
underscores their utility as selection anchors in breeding programs.

The Venn diagram analysis and violin plots provided valuable
insights into the variability of drought tolerance across hybrids,
emphasizing that multi-criteria selection frameworks can effectively
capture the complexity of stress adaptation. The central overlap
among the four drought indices revealed a set of genotypes with
strong and consistent tolerance across traits, supporting the utility of
combining multiple metrics to improve selection precision. These
genotypes reflect a balanced integration of physiological resilience
and yield potential, with optimized plant architecture, efficient kernel
development, and a stable harmonic index. This approach aligns with
prior findings (Azrai et al., 2023), which highlighted that integrating
multiple indices can help balance high yield with stress tolerance in
genotype selection. Such multi-layered evaluation frameworks offer
a solid foundation for identifying hybrids suitable for water-limited
environments and contribute to advancing sustainable agriculture
and food security.

Beyond the index-based overlap, the application of MGIDI
provided an important dimension to the selection process by ranking
hybrids according to their closeness to an ideal multi-trait profile.
MGIDI results aligned with the multi-index approach, with hybrids
such as GE13, GE21, and GE32 consistently emerging as desirable
entries across both methods. This consistency strengthens confidence
in their adaptability and confirms the value of MGIDI as a
complementary selection tool. Furthermore, MGIDI facilitated the
identification of additional promising genotypes such as GE31 and
GE20 by highlighting their unique trait advantages within specific
factorial dimensions. Strengths and weaknesses analysis underscored
the diversity of trait contributions, while selection differentials
revealed potential for targeted genetic gains. Positive shifts in traits
like kernel weight and ear length, coupled with modest reductions in
plant height and leaf angle, point toward improvements in canopy
efficiency and lodging resistance. Future research should be directed
to specific genotypes for in-depth biochemical and molecular marker
analyses to more thoroughly characterize the mechanisms underlying
drought tolerance.

Conclusion

This study integrated multi-trait and multi-index approaches
to develop an effective screening strategy for identifying
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drought-tolerant tropical maize genotypes. Under field conditions
across two tropical locations, 33 hybrids were evaluated using
morphological, physiological, and yield-related traits, alongside
four drought tolerance indices: STI, SSI, YSI, and HI. Drought
stress led to substantial reductions in grain yield (23%), leaf area
(20.7%), and plant height (12%), highlighting its significant
impact on maize growth and productivity. Multivariate analyses,
including PCA and hierarchical clustering, effectively captured
genetic variability and grouped hybrids by performance. The
integration of multi-trait indices and MGIDI analysis proved
effective in identifying drought-tolerant maize hybrids with
stable performance under stress conditions. Six hybrids, GE13,
GE17, GE21, GE26, GE29, and GE32 were consistently
highlighted for their yield stability and reduced drought-related
losses. Notably, GE13, GE21, and GE32 were selected by both the
multi-metric and MGIDI approaches, underscoring their robust
adaptability across diverse trait dimensions. This integrated
framework not only strengthens the understanding of the
relationship between drought tolerance and yield but also
provides a practical strategy for selecting elite maize hybrids
suited to water-limited environments.
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