
Frontiers in Sustainable Food Systems 01 frontiersin.org

Effect of adaptive management 
practices on carbon footprint of 
sugarcane in the agroecological 
landscape of Bihar, India
Babita Kudi 1, Sunita Kumari Meena 2*, Ajeet Kumar 2*, 
Vijay Singh Meena 3,4* and Ranjan Laik 1

1 Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, 
India, 2 Sugarcane Research Institute, Dr. Rajendra Prasad Central Agricultural University, Samastipur, 
Bihar, India, 3 ICAR-Indian Agricultural Research Institute, Regional Station, Samastipur, Bihar, India, 
4 ICAR-Mahatma Gandhi Integrated Farming Research Institute, Motihari, Bihar, India

This study evaluates adaptive management in sugarcane cultivation through 
varied input strategies and legume integration. A total of 380 soil samples were 
collected across blocks at two depths (0–15 and 15–30 cm). Results showed that 
at 0–15 cm, oxidizable soil organic carbon (SOC) ranged from 3.19 to 8.01 g kg−1, 
and at 15–30 cm, it ranged from 2.50 to 6.90 g kg−1. The C indices showed a 
decreasing trend with depth. Total organic carbon (TOC) varied from 5.68 to 
11.4 g kg−1 at 0–15 cm and from 3.85 to 11.4 g kg−1 at 15–30 cm. Permanganate-
oxidizable carbon (KMnO4-C) ranged from 145 to 382 mg kg−1 at 0–15 cm and from 
122 to 356 mg kg−1 at 15–30 cm. Carbon stock ranged from 12.6 to 25.9 Mg ha−1 
at 0–15 cm, and from 10.2 to 24.5 Mg ha−1 at 15–30 cm. The active carbon pool 
decreased by 17.59%, the passive pool changed negligibly (0.22%) with depth; 
lability and recalcitrance indices showed carbon stability differences. Study offers 
key farm-level insights on carbon footprints and adaptive sugarcane management.

KEYWORDS

sugarcane cultivation, agricultural sustainability, soil management, carbon 
sequestration, climate change

1 Introduction

Agricultural agroecological landscapes cover 37% of the Earth’s surface and contribute 
significantly to greenhouse gas (GHG) emissions (IPCC, 2006). Climate change poses a major 
challenge to sugarcane production, particularly in regions experiencing increased consecutive 
dry days, higher temperatures, and reduced precipitation (IPCC, 2021). Research by the 
International Sugar Organization (ISO, 2022) indicates that rising (+) temperatures and CO2 
levels have varying effects on sugarcane yields. Additionally, agricultural management 
practices can exacerbate environmental pollution (Wakchaure et al., 2025; Yannopoulos et al., 
2015). The agricultural sector contributes significantly to global greenhouse gas emissions, 
accounting for up to 52% of anthropogenic methane (CH₄) and 84% of nitrous oxide (N₂O) 
emissions (Wakchaure et al., 2025; Bonsucro, 2023). However, it also serves as a GHG sink 
through C-sequestration in agricultural landscapes (Lal, 2004; Hillier et al., 2009; Tubiello 
et al., 2014).

Global sugarcane production rose from 448 Mt. in 1961 to over 2 Bt by 2020, expanding 
from 8.9 to 27 Mha. The Americas and Asia account for 93% of output, with Brazil leading and 
India contributing 18.7% as the second-largest producer (OECD/FAO, 2019). The increasing 
demand for bio-ethanol, driven by its high energy balance and reduced GHG emissions, has 
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intensified land use globally (Wakchaure et al., 2025; Cherubin et al., 
2021). This intensification raises environmental sustainability concerns, 
such as soil quality degradation and ecosystem service impacts (do 
Amaral et al., 2008; Cherubin et al., 2016). India’s sugarcane production 
surpassed 500 million metric tons, with large shares used for sugar and 
ethanol, making it a top global producer and consumer (PIB, 2022).

In India, the expansion of sugarcane cultivation is becoming 
increasingly important to meet the rising global demand for biofuel 
production. However, this expansion must be supported by adaptive 
soil management practices to ensure agroecological stability. 
Achieving this goal requires regular monitoring of soil ecosystems, 
which is essential for maintaining a stable and sustainable environment 
for soil–plant interactions. Currently, sugarcane is cultivated on 5 
Mha, with an average productivity of 68 tons per hectare and a sugar 
recovery rate of 10%.

Sugarcane cropping systems in India struggle with low technology 
adoption, poor ratoon management, policy gaps, and inefficient 
inputs. Solutions include best agronomic practices, supportive 
policies, balanced nutrients, better water use, farmer training, and 
integrated soil health indices for accurate impact assessment.

Sugarcane farming in Bihar, covering approximately 250,000 
hectares, faces challenges in maintaining production stability (Kumar 
et al., 2023). Productivity has declined by 5.17%, from 55.17 t/ha in 
2014–15 to approximately 50.0 t/ha currently. Factors such as poor 
germination, inadequate cultivation practices, waterlogging, poor 
ratoon management, substandard seed quality, insufficient irrigation, 
and the neglect of plant protection measures collectively contribute to 
low productivity in sugarcane cultivation. A significant issue is the 
incorrect and imbalanced use of chemical fertilizers, primarily 
nitrogenous ones, which adversely affect the ecosystem through 
nutrient loss via leaching, runoff, and volatilization, reducing nutrient 
use efficiency. Additionally, the lack of organic manure application 
depletes soil organic matter and deteriorates soil physical conditions.

The long-term stability of agricultural production systems is closely 
tied to soil quality and health, necessitating effective assessment and 
monitoring (Brejda et al., 2000; Karlen et al., 1997). Adaptive management 
practices significantly influence landscape sustainability (Islam and Weil, 
2000; Rezapour and Samadi, 2012). Current research aims to develop 
multi-parametric indicators for soil productivity and environmental 
health (Wakchaure et  al., 2025). Despite advancements, monitoring 
carbon footprint remains complex due to varied agricultural landscapes 
(Hanson et al., 2025; Ozlu et al., 2022; De la Rosa and Sobral, 2008). Most 
research has focused on temperate soils, with limited data on calcareous 
soils in semi-arid areas (Bouma, 1989; Knoepp and Swank, 1997).

Integrating soil health indices with carbon footprint analysis is 
crucial for addressing climate change. Practices that degrade ecosystems 
often increase GHG emissions, exacerbating climate change (Lal, 2004; 
Smith et al., 2008). Conversely, improving soil health through sustainable 
practices can enhance C-sequestration, mitigate GHG emissions, and 
promote climate resilience (Lal, 2004). Therefore, developing 
comprehensive soil quality indices in relation to carbon footprints and 
climate change is vital for sustainable agriculture (Tubiello et al., 2014).

Despite growing interest in sustainable sugarcane production, 
research gaps remain on how organic inputs and diverse cropping 
affect soil carbon and carbon footprint, especially in calcareous soils 
of semi-arid to sub-tropical South Asia. Most studies focus on 
temperate zones, with limited field data from this key region where 
sugarcane supports food and biofuel security. This study hypothesizes 

that the integration of organic amendments and legume-based crop 
diversification in sugarcane systems will enhance soil carbon 
sequestration, improve soil carbon pool dynamics, and stabilize 
carbon through improved lability and recalcitrance indices. 
Accordingly, the objectives are (i) to assess the impact of varying 
organic inputs on C-dynamics, C-stock, and C-pools and (ii) to 
evaluate the effect of incorporating legumes into sugarcane cropping 
sequences on soil organic carbon (SOC) fractions, lability, and 
recalcitrance indices. By addressing these objectives, the study 
contributes to closing the knowledge gap in carbon footprint analysis 
under tropical farming systems and supports the global agenda of 
climate-resilient, low-emission agricultural practices.

2 Materials and methods

2.1 Sampling site

The study was structured as a multi-location farmers’ field trial 
focused on different sugarcane cropping sequences 
(Supplementary Table  1). The research location is an important 
agricultural zone within the North West Alluvial Plain Zone, 
characterized by a semi-arid to sub-tropical climate. Agro-climatic 
Zone-IV (as defined by the planning commission, now NITI Ayog), 
known as the “Middle Gangatic Plains Region,” encompasses the entire 
state of Bihar, including the district of Samastipur (Figure 1). The soils 
of Samastipur, Bihar, are primarily alluvial in nature, classified as 
Entisols and Inceptisols. They have a loamy to clay-loam texture, 
moderate fertility, and slightly acidic to neutral pH, making them well-
suited for crop cultivation. The location has a sub-tropical, semi-arid 
climate according to the Köppen-Geiger classification, characterized 
by an average annual temperature of 25.2 °C and annual rainfall of 
1,236 mm (Figure 2). Summers are hot, winters are cool, and there is 
moderate rainfall, with the driest month being November and the 
highest precipitation occurring in July. The sugarcane field, managed 
by local farmers under Magadh Sugar and Energy Ltd., Hasanpur 
(Bihar), India (25.710118, 86.19065), follows standard procedures: 
fertilization, weed control, pest management, and leaf removal.

2.2 Site details

A total of 380 individual soil samples were combined into 38 
composite samples (each comprised 10 individual soil samples) 
collected from Hasanpur (18), Rosera (08), Warisnagar (05), 
Bibhutipur (04), and Khanpur (03) blocks in the agricultural landscape 
of Samastipur. Soil sampling was conducted at various farmers’ fields 
within these blocks, covering two (0–15 and 15–30 cm) soil depths. 
Sampling sites within each field were randomly selected to ensure 
comprehensive coverage of soil variability (Figure 3).

2.3 Carbon pools

Oxidizable organic carbon was estimated by titration (Walkley and 
Black, 1934; Jackson, 1973), and its various fractions (labile and 
non-labile) were determined using a modified Walkley and Black 
method (Chan, 2001). For total organic carbon (TOC) determination, 
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FIGURE 1

Map of the study area of Samastipur (25.7471° N, 85.8896° E), Bihar, India.

FIGURE 2

Trends in maximum and minimum temperature, evapotranspiration, and rainfall during the sugarcane growing period in Samastipur, Bihar, India.
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0.25 g of the soil sample was mixed with 20 mL of 0.4 N chromic acid 
solution, heated at 155–160 °C for 20–25 min, and then cooled to room 
temperature (Jackson, 1973). Active carbon was estimated by quantifying 
potassium permanganate (KMnO4) oxidation with a spectrophotometer 
(Weil et  al., 2003). Carbon stock and its active/passive pools were 
estimated (Equations 1–3), while lability and recalcitrance indices were 
calculated as per Datta et al. (2015) (Equations 4–6).

	

( )
( ) ( ) ( )

−

−
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TOC BD Mg m D m
	

(1)

where, 
SOC = soil organic carbon; TOC = total organic carbon; 

BD = bulk density; D = depth of soil

	 ( ){ }= ∑ +CAP VLC LC 	 (2)

where, 
CAP = carbon active pool; VLC = very labile carbon; 

LC = labile carbon

	 ( ){ }= ∑ +CPP LLC NLC 	 (3)

where,

CPP = carbon passive pool; LLC = less labile carbon; 
NLC = non-labile carbon
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where,
LI = lability index; VLC = very labile carbon; LC = labile carbon; 

LLC = less labile carbon; TOC = total organic carbon; 
NLC = non-labile carbon; RI = recalcitrance index.

2.4 Statistical analysis

The study was structured as a multi-location farmers’ field trial, 
where ongoing demonstrations served as replications across different 
sugarcane-based cropping sequences. Data were collected over 
cropping years in the North West Alluvial Plain Zone of Bihar. 
Descriptive statistics for various soil and crop parameters were 
generated using IBM SPSS (v26). Location maps of the study sites were 
prepared in ArcGIS 10.8.2. To evaluate multi-location effects, analysis 
of variance (ANOVA) was performed. Replication and multi-location 

FIGURE 3

Description of sampling method.
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effects (treatment) effects across the experimentation were modeled as 
random factors, and variance components were estimated using 
Restricted Maximum Likelihood (REML). Degrees of freedom were 
adjusted using the Satterthwaite approximation to improve accuracy. 
Treatment means were compared using the critical difference (CD) test 
at the 5% significance level (p ≤ 0.05), and standard errors (SE) were 
calculated for all comparisons. For transparency, F-values, degrees of 
freedom, p-values, and effect sizes (95% CI) are reported in the results.

3 Results and discussion

3.1 Oxidizable organic carbon

The data revealed significant variation in oxidizable SOC content 
across different soil depths within the studied agricultural landscape 
(Table 1). At a depth of 0–15 cm, mean SOC content was 5.23 g kg−1. It 
ranged from 3.17 to 8.01 g kg−1, and exhibited a slight positive skewness 
(0.30) and leptokurtic distribution (kurtosis = 0.73). In contrast, at a 
deeper soil depth of 15–30 cm, the mean SOC content decreased 
(4.56 g kg−1), and it ranged from 2.50 to 6.90 g kg−1, with skewness 
(0.19) and lower kurtosis (0.33). Overall, the SOC content decreased 
(12.8%) at 15–30 cm depth. SOC content decreased with increasing soil 
depth, indicating a clear vertical gradient in its distribution. This 
pattern is critical for understanding nutrient dynamics and assessing 
soil health in agricultural ecosystems (Table 1). Continuous addition 
of above-ground biomass and decaying roots significantly influences 
C-levels. Research by Dotaniya et al. (2014) highlighted that organic 
amendments enhance C-content and stimulate microbial activity. The 
observed slight increase in integration of organic manure (OM) and 
mineral fertilizer application can be  attributed to improved crop 
growth and higher yield, leading to increased residue and root exudate 
inputs that decompose and enrich the SOC. Similar findings have been 
reported by More et al. (2007), Bokhtiar et al. (2008), Jha et al. (2017), 
Sinha et al. (2017a), and Mthimkhulu et al. (2016), reinforcing the 
positive impact of organic inputs on soil fertility and C-dynamics.

3.2 Total organic carbon

Data showed that the mean TOC content was 7.64 g kg−1. It 
ranged from 5.68 to 11.4 g kg−1, showing a positively skewed 

distribution (skewness = 1.57) and slightly leptokurtic shape 
(kurtosis = 1.11) at 0–15 cm. Meanwhile, at 15–30 cm, the mean SOC 
content decreased to 7.10 g kg−1 and ranged from 3.85–11.4 g kg−1, 
exhibiting a similar positively skewed distribution (skewness = 1.38) 
and lower kurtosis (kurtosis = 0.74) compared to the 0–15 cm depth. 
A 7.1% decline in mean TOC content was observed at the 15–30 cm 
soil depth (Table 1). Understanding the factors influencing variations 
in TOC levels, such as land use practices, soil management strategies, 
and climatic conditions, is crucial for optimizing sustainable 
agricultural practices and C-sequestration. OM application to soil, as 
observed with SOC, plays a significant role in enhancing C-content. 
This phenomenon is supported by findings in the literature (Dotaniya 
et al., 2014; More et al., 2007; Bokhtiar et al., 2008; Jha et al., 2017; 
Sinha et al., 2017b; Mthimkhulu et al., 2016), which highlight the 
positive impact of organic inputs on C-dynamics. By elucidating these 
relationships, researchers can better formulate strategies to enhance 
SOC levels and improve soil health, thereby contributing to broader 
environmental sustainability goals (Table 1).

3.3 KMnO4-C

Results showed that KMnO4-C content in the soil varied between 
depths in the agricultural landscape (Table 1). At 0–15 cm, the mean 
KMnO4-C content was 263.26 mg kg−1, and it ranged from 145 to 
382 mg kg−1, showing a negatively skewed distribution 
(skewness = −0.20) and platykurtic shape (kurtosis = −0.13). While 
at 15–30 cm, the mean KMnO4-C content decreased to 235.69 mg kg−1 
and ranged from 122 to 356 mg kg−1, displaying similar skewness 
(skewness = −0.19) and kurtosis (kurtosis = −0.05) compared to the 
0–15 cm depth (Table 1). The variation in the soil depth was 10.5%. 
This observed decline in KMnO4-C levels with increasing soil depth 
suggests a gradient in C-availability that is pivotal for understanding 
SOC dynamics and nutrient cycling in agricultural systems. Further 
exploration of factors influencing KMnO4-C, such as management 
practices and soil physical properties, is essential to optimize 
C-sequestration and enhance soil health strategies. Higher KMnO4-C 
in the 0–15 cm layer may be attributed to enhanced root biomass, 
rhizodeposition, and microbial activity. Monitoring labile organic 
matter fractions offers a sensitive and effective approach for evaluating 
soil quality dynamics (Needelman et al., 1999; Ding et al., 2006; Benbi 
et al., 2015; Meena et al., 2021).

TABLE 1  Descriptive statistics of oxidizable, total, and KMnO4-C of sugarcane growing area.

Descriptive 
statistics

Oxidizable-SOC (g kg−1) Total-SOC (g kg−1) KMnO4-C (mg kg−1)

0–15 cm 15–30 cm 0–15 cm 15–30 cm 0–15 cm 15–30 cm

Mean 5.23 4.56 7.64 7.10 263.26 235.69

Standard error 0.17 0.16 0.19 0.24 9.03 8.82

Standard deviation 1.06 0.96 1.20 1.49 55.6 54.3

Sample variance 1.13 0.92 1.44 2.21 3,100 2,957

Skewness 0.30 0.19 1.57 1.38 −0.20 −0.19

Kurtosis 0.73 0.33 1.11 0.74 −0.13 −0.05

Minimum 3.17 2.50 5.68 3.85 145 122

Maximum 8.01 6.90 11.4 11.4 382 356
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3.4 Very labile carbon and labile carbon

Data showed that a significant variation was found in VL-C and 
L-C content across different depths within the agricultural landscape 
(Table 2). At 0–15 cm, the mean C-VL content was 1.56 g kg−1 and 
ranged from 1.02 to 2.60 g kg−1, showing a positively skewed 
distribution (skewness = 0.63) and platykurtic shape 
(kurtosis = −0.58). However, at 15–30 cm, the mean C-VL content 
decreased to 1.31 g kg−1, and ranged from 0.90 to 1.98 g kg−1, 
exhibiting a similar positively skewed distribution (skewness = 0.68) 
and slightly lower kurtosis (kurtosis = −0.31) compared to the 
0–15 cm depth. The decline in mean C-VL content from 0–15 cm to 
15–30 cm depth was 16% (Table 2).

Meanwhile, C-L in the soil showed variations across different 
depths (Table 2). At 0–15 cm, the mean C-L content was 1.50 g kg−1 
and ranged from 1.13 to 2.08 g kg−1, showing a positively skewed 
distribution (skewness = 0.33) and slightly platykurtic shape 
(kurtosis = −0.32). In contrast, at 15–30 cm, the mean C-L content 
decreased to 1.22 g kg−1 and ranged from 0.43 to 1.97 g kg−1, exhibiting 
a similar positively skewed distribution (skewness = 0.13) and 
leptokurtic shape (kurtosis = 0.88) compared to the 0–15 cm depth. 
The decrease in mean C-L content from 0–15 cm to 15–30 cm depth 
was approximately 18.7% (Table  2). These higher VL-C and L-C 
contents signify enhanced microbial activity and OM turnover 
(Meena et al., 2018; Meena et al., 2021). Monitoring these fractions 
provides insights into the responsiveness of soil carbon pools to 
management practices, facilitating sustainable agricultural strategies 
aimed at enhancing soil health and C-sequestration efforts (Table 2). 
Integrated studies on sugarcane highlight that sustainable trash 
management (Gadge et al., 2017; Shanthy et al., 2020), conservation 
tillage (de Oliveira et al., 2022; Turmel et al., 2015), and optimized 
fertigation (Ravikumar et al., 2011) are key to enhancing productivity, 
improving soil health, and ensuring long-term ecological balance.

3.5 Less labile carbon and non-labile 
carbon

Results showed that less labile carbon (LL-C) content at 0–15 cm 
soil layer ranged from 0.93–3.33 g kg−1, with a mean value 
(2.16 g kg−1), showing a slightly positively skewed distribution 
(skewness = 0.14) and mesokurtic shape (kurtosis = 0.39). At 

15–30 cm, the mean LL-C content slightly decreased to 2.04 g kg−1 
and ranged from 1.00–3.45 g kg−1, exhibiting a similar positively 
skewed distribution (skewness = 0.48) and higher kurtosis 
(kurtosis = 0.85) compared to the 0–15 cm depth. The slight decrease 
in mean LL-C content from 0–15  cm to 15–30 cm depth was 
approximately 5.6% (Table 2).

Meanwhile, in the case of NL-C at 0–15 cm, the mean was 
2.41 g kg−1 and ranged from 1.48 to 3.41 g kg−1, showing a positively 
skewed distribution (skewness = 0.41) and a highly leptokurtic shape 
(kurtosis = 4.70). At 15–30 cm, the mean NL-C content slightly 
increased to 2.54 g kg−1, ranging from 1.35–4.54 g kg−1, exhibiting a 
similar positively skewed distribution (skewness = 0.98) and lower 
kurtosis (kurtosis = 0.82) compared to the 0–15 cm depth. The slight 
increase in mean NL-C content from 0–15 cm to 15–30 cm depth was 
5.4% (Table  2). Sugarcane trash, being less prone to microbial 
decomposition, tends to accumulate as passive SOC over time. This 
phenomenon underscores the role of agricultural practices in 
influencing C-dynamics, where annual additions of sugarcane trash 
to the surface layer may enhance the active C-fraction compared to 
the deeper layer. Crop residues support microbial proliferation, which 
in turn stimulates nutrient cycling and enhances soil fertility (Ensinas 
et al., 2015; Mir et al., 2023). Additionally, Majumder et al. (2008) 
support the idea that management options influence the balance 
between C-inputs (e.g., root biomass, litter fall) and outputs (e.g., 
heterotrophic respiration), thereby affecting soil carbon pools. These 
findings align with studies by Mir et al. (2023) and Benbi et al. (2015), 
which emphasize the importance of understanding carbon dynamics 
in agricultural systems to optimize carbon management strategies and 
mitigate climate change impacts (Table 3).

3.6 Carbon stock

Carbon stock in the soil varied across different depths within the 
agricultural landscape (Table  3). Results showed that the mean 
C-stock (17.00 Mg ha−1) ranged from 12.6 to 25.9 Mg ha−1 at 0–15 cm 
and showed a positively skewed distribution (skewness = 1.18) and 
leptokurtic shape (kurtosis = 2.19). At 15–30 cm, the mean C-stock 
slightly decreased to 16.72 Mg ha−1 and ranged from 10.2 to 
24.5 Mg ha−1, exhibiting a similar positively skewed distribution 
(skewness = 0.62) and slightly lower kurtosis (kurtosis = 0.59) 
compared to the 0–15 cm depth. The decrease in mean C-stock from 

TABLE 2  Descriptive statistics of various carbon fractions of sugarcane growing area.

Descriptive 
statistics

C-VL (g kg−1) C-L (g kg−1) C-LL (g kg−1) C-NL (g kg−1)

0–15 cm 15–
30 cm

0–15 cm 15–
30 cm

0–15 cm 15–
30 cm

0–15 cm 15–
30 cm

Mean 1.56 1.31 1.50 1.22 2.16 2.04 2.41 2.54

Standard error 0.07 0.04 0.04 0.05 0.09 0.08 0.05 0.11

Standard deviation 0.42 0.26 0.24 0.29 0.54 0.50 0.29 0.70

Sample variance 0.17 0.07 0.06 0.09 0.29 0.25 0.09 0.49

Skewness 0.63 0.68 0.33 0.13 0.14 0.48 0.41 0.98

Kurtosis −0.58 −0.31 −0.32 0.88 0.39 0.85 4.70 0.82

Minimum 1.02 0.90 1.13 0.43 0.93 1.00 1.48 1.35

Maximum 2.60 1.98 2.08 1.97 3.33 3.45 3.41 4.54
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0–15 cm to 15–30 cm depth was 1.6% (Table 3). The decline in mean 
C-stock from 0–15 cm to 15–30 cm depth highlights significant 
variations in organic carbon storage, crucial for soil fertility, 
C-sequestration, and overall soil health in the region (Table 3). Recent 
studies by Ensinas et al. (2015) emphasize the role of cropping systems, 
such as sugarcane cultivation, in influencing C-stocks and GHG 
mitigation. Further research on TOC dynamics, soil properties, and 
management practices is essential for optimizing carbon management 
strategies in agricultural landscapes (Benbi et al., 2015; Majumder 
et al., 2008; Sherrod et al., 2005; Mir et al., 2023).

3.7 Active and passive carbon pools

Data showed that active and passive carbon pools varied across 
the soil depths (Table 3) within the agricultural landscape. At 0–15 cm, 
the mean active pool was 3.07 g kg−1, and it ranged from 2.15 to 
4.68 g kg−1, showing a moderately positively skewed distribution 
(skewness = 0.56) and a slightly negative kurtosis (kurtosis = −0.30). 
At 15–30 cm, the mean active pool decreased to 2.53 g kg−1, and it 
ranged from 1.43 to 3.65 g kg−1, indicating a similar positively skewed 
distribution (skewness = 0.36) and a more negative kurtosis 
(kurtosis = −0.44) compared to the 0–15 cm depth. Overall, these 
findings indicated a decrease (17.59%) in the mean active pool of soil 
carbon from the 0–15 cm to the 15–30 cm soil depths. However, the 
passive pool of soil carbon showed a negligible change of 
approximately 0.22% from the 0–15 cm to the 15–30 cm soil depths 

(Table 3). These findings underscore the complex dynamics of soil 
carbon storage and turnover, crucial for optimizing C-sequestration 
and soil fertility management strategies (Lal, 2004; Paustian et al., 
2000; Regnier et al., 2022; Tubiello et al., 2021; Wieder et al., 2015; Fan 
et al., 2023; Chen et al., 2022; Batjes et al., 2020).

3.8 Lability and recalcitrance index

The data indicated that LI, RI-I, and RI-II values varied 
significantly across different soil depths (Table 4). At the 0–15 cm 
depth, the mean LI was 1.28 and ranged from 1.10 to 1.47. The 
distribution showed a slight positive skewness (skewness = 0.08) and 
exhibited a platykurtic shape (kurtosis = −0.88), indicating a relatively 
flat distribution compared to a normal distribution. At the 15–30 cm 
depth, the mean LI slightly decreased to 1.19 and ranged from 1.04 to 
1.38, with higher positive skewness (skewness = 0.22) and more 
negative kurtosis (kurtosis = −1.55), suggesting a more peaked and 
narrower distribution compared to the 0–15 cm depth (Table 4).

Meanwhile, in the case of RI-1 at 0–15 cm depth, the mean was 
1.52 and varied from 1.23 to 2.32 with positive skewness 
(skewness = 1.27) and exhibited leptokurtic shape (kurtosis = 2.25). 
At 15–30 cm depth, the mean was increased to 1.83 and ranged from 
1.33 to 2.53. Distribution showed a lower positive skewness 
(skewness = 0.18) and negative kurtosis (kurtosis = −0.79), indicating 
a more flattened and broader distribution compared to the 0–15 cm 
depth (Table 4). Similarly, in the case of RI-2 at 0–15 cm depth, the 

TABLE 3  Descriptive statistics of C-stock and C-pools of sugarcane growing area.

Descriptive 
statistics

TOC stock (Mg ha−1) Active pool (g kg−1) Passive pool (g kg−1)

0–15 cm 15–30 cm 0–15 cm 15–30 cm 0–15 cm 15–30 cm

Mean 17.00 16.72 3.07 2.53 4.57 4.58

Standard error 0.44 0.48 0.10 0.09 0.11 0.18

Standard deviation 2.70 2.93 0.63 0.53 0.66 1.08

Sample variance 7.27 8.58 0.39 0.28 0.43 1.16

Skewness 1.18 0.62 0.56 0.36 1.11 1.00

Kurtosis 2.19 0.59 −0.30 −0.44 2.19 1.86

Minimum 12.6 10.2 2.15 1.43 3.44 2.42

Maximum 25.9 24.5 4.68 3.65 6.74 7.99

TABLE 4  Descriptive statistics of lability and recalcitrance index of sugarcane growing area.

Descriptive 
statistics

LI RI-1 RI-2

0–15 cm 15–30 cm 0–15 cm 15–30 cm 0–15 cm 15–30 cm

Mean 1.28 1.19 1.52 1.83 0.32 0.36

Standard error 0.01 0.02 0.04 0.05 0.01 0.01

Standard deviation 0.09 0.11 0.24 0.31 0.04 0.05

Sample variance 0.01 0.01 0.06 0.10 0.00 0.00

Skewness 0.08 0.22 1.27 0.18 0.14 0.21

Kurtosis −0.88 −1.55 2.25 −0.79 0.61 −1.18

Minimum 1.10 1.04 1.23 1.33 0.22 0.28

Maximum 1.47 1.38 2.32 2.53 0.44 0.46
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mean was 0.32 and ranged from 0.22 to 0.44, indicating a relatively 
narrow distribution. The distribution showed a slight positive 
skewness (skewness = 0.14) and exhibited a slightly leptokurtic shape 
(kurtosis = 0.61), suggesting a moderately peaked distribution 
compared to a normal distribution. At 15–30 cm depth, the mean 
RI-2 increased slightly to 0.36, and values ranged from 0.28 to 0.46, 
indicating a slightly wider distribution compared to the 0–15 cm 
depth. The distribution showed a positive skewness (skewness = 0.21) 
and negative kurtosis (kurtosis = −1.18), suggesting a flatter and 
broader distribution compared to the 0–15 cm depth (Table 4). These 
findings underscore the importance of understanding C-stability 
dynamics in soil profiles, crucial for implementing effective soil 
management strategies to enhance C-sequestration and mitigate 
climate change impacts (Hassink, 1997; Poeplau and Don, 2015; Yang 
et al., 2024; Nie et al., 2024; Lu et al., 2024; Adhikari et al., 2024; 
Meena et al., 2024).

3.9 Correlation matrix

The correlation matrix revealed significant relationships among soil 
parameters across different soil depths within the studied agricultural 
landscape (Tables 5, 6). OC refers to organic carbon in soil organic 
matter, while TOC is a broader term that includes all forms of organic 
carbon, both particulate and dissolved, providing a more comprehensive 
measure. At the 0–15 cm soil depth, pH was negatively correlated with 
TOC (r = −0.732**) and KMnO₄-C (r = −0.710**), indicating reduced 
carbon levels with increasing pH. In contrast, EC showed strong 
positive correlations with TOC (r = 0.750**) and KMnO₄-C 
(r = 0.757**). Nitrogen exhibited the highest correlation with TOC 
(r = 0.903**) and KMnO₄-C (r = 0.906**). Sulfur and water-stable 
aggregates (WSA) were also strongly associated with KMnO₄-C 
(r = 0.888** and r = 0.806**, respectively), suggesting their key roles in 
carbon stabilization (Table 5). Meanwhile, at 15–30 cm depth, nitrogen 

TABLE 5  Correlation matrix between soil health parameters and soil carbon pools (0–15 cm soil depth).a

Correlation 
matrix

OC VL-C L-C LL-C NL-C TOC TOC 
stock

KMnO4-C

PH −0.745** −0.615** −0.559** −0.747** −0.287NS −0.732** −0.628** −0.710**

EC 0.774** 0.766** 0.692** 0.631** 0.252NS 0.750** 0.663** 0.757**

N 0.929** 0.832** 0.755** 0.857** 0.316NS 0.903** 0.795** 0.906**

P2O5 0.568** 0.516** 0.377* 0.554** 0.041NS 0.514** 0.495** 0.641**

K2O 0.448** 0.405* 0.305NS 0.436** −0.023NS 0.392* 0.282NS 0.513**

S 0.875** 0.795** 0.747** 0.783** 0.317NS 0.855** 0.755** 0.888**

Zn 0.474** 0.457** 0.427** 0.392* 0.170NS 0.462** 0.484** 0.450**

Cu 0.477** 0.508** 0.312NS 0.411* 0.022NS 0.429** 0.372* 0.459**

Fe 0.482** 0.480** 0.312NS 0.442** −0.015NS 0.424** 0.358* 0.473**

Mn 0.506** 0.492** 0.323* 0.474** −0.006NS 0.448** 0.358* 0.505**

BD −0.263NS −0.123NS −0.187NS −0.340* 0.118NS −0.204NS 0.210NS −0.276NS

WSA 0.787** 0.781** 0.764** 0.612** 0.306NS 0.774** 0.690** 0.806**

apH, Potential of Hydrogen; EC, Electrical Conductivity; N, Nitrogen; P₂O₅, Available Phosphorus; K₂O, Available Potassium; S, Sulfur; Zn, Zinc; Cu, Copper; Fe, Iron; Mn, Manganese; BD, 
Bulk Density; WSA, Water-Stable Aggregates; OC, Organic Carbon; VL-C, Very Labile Carbon; L-C, Labile Carbon; LL-C, Less Labile Carbon; NL-C, Non-Labile Carbon; TOC, Total Organic 
Carbon; TOC Stock, Total Organic Carbon Stock; KMnO₄-C, Permanganate-Oxidizable Carbon.

TABLE 6  Correlation matrix between soil health parameters and soil carbon pools (15–30 cm soil depth).

Correlation 
matrix

OC VL-C L-C LL-C NL-C TOC TOC 
stock

KMnO4-C

PH −0.586** −0.489** −0.508** −0.566** −0.243NS −0.493** −0.417** −0.286NS

EC −0.270NS −0.361* −0.215NS −0.199NS −0.010NS −0.179NS −0.071NS 0.068NS

N 0.863** 0.764** 0.801** 0.778** 0.569** 0.826** 0.814** −0.109NS

P2O5 0.709** 0.568** 0.661** 0.669** 0.545** 0.715** 0.647** 0.082NS

K2O 0.512** 0.442** 0.470** 0.471** 0.215NS 0.432** 0.411* 0.132NS

S 0.792** 0.655** 0.755** 0.728** 0.493** 0.744** 0.699** 0.166NS

Zn 0.479** 0.484** 0.360* 0.450** 0.191NS 0.399* 0.276NS 0.074NS

Cu 0.478** 0.488** 0.350* 0.450** 0.210NS 0.407* 0.286NS 0.070NS

Fe 0.540** 0.548** 0.419** 0.498** 0.227NS 0.455** 0.333* 0.103NS

Mn 0.575** 0.549** 0.465** 0.537** 0.259NS 0.493** 0.375* 0.119NS

BD −0.763** −0.600** −0.688** −0.740** −0.512** −0.734** −0.620** −0.152NS

WSA 0.708** 0.568** 0.631** 0.683** 0.519** 0.701** 0.578** 0.139NS
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showed strong positive correlations with TOC (r = 0.826**) and OC 
(r = 0.863**). Sulfur and phosphorus were also highly correlated with 
TOC (r = 0.744** and r = 0.715**, respectively). In contrast, bulk 
density was strongly negatively correlated with TOC (r = −0.734**) and 
OC (r = −0.763**). Unlike in the surface layer, KMnO₄-C showed no 
significant associations, indicating its lower sensitivity at this depth 
(Tables 5, 6). Recent studies underscore the importance of sustainable 
sugarcane cultivation using efficient irrigation (Gunarathna et al., 2018), 
trash and tillage practices (Surendran et al., 2016; Solomon, 2016; Suma 
and Savitha, 2015), and precision nutrient management (Basanta et al., 
2003; Choudhary et al., 2017). These strategies improve yield, enhance 
soil health, and boost resource use efficiency (Powar et al., 2021).

4 Policy recommendation

The policy recommendations in this study focus on promoting 
diversified cropping systems, encouraging the use of organic inputs, 
and implementing precision agriculture for effective carbon 
management (Figure  4). These strategies directly support key 
Sustainable Development Goals (SDGs). Improving soil health 
through crop rotations and organic practices directly supports SDG 2 
(Zero Hunger) by increasing yields and promoting sustainable food 
production. At the same time, SDG 13 (Climate Action) is addressed 
through reduced carbon footprints and enhanced carbon 

sequestration, contributing to climate change mitigation. Additionally, 
improved soil management practices that enhance biodiversity and 
promote sustainable land use align with SDG 15 (Life on Land), 
contributing to ecosystem resilience in sugarcane cultivation areas.

5 Conclusion

This study offers valuable insights into the dynamics of SOC in 
sugarcane cultivation under the agroecological conditions of Bihar, 
India. The findings revealed that carbon fractions are more 
concentrated in the surface soil layer, indicating the strong influence 
of adaptive management practices on enhancing carbon sequestration 
in the topsoil. The observed patterns in TOC and labile carbon pools 
emphasize the importance of targeted soil depth-specific 
interventions for improving soil health. These results underscore the 
potential of diversified practices to improve SOC distribution and 
contribute to sustainable land management and climate mitigation 
strategies. Crop rotations involving cereals and legumes showed 
enhanced biological activity, increased active carbon pools, and 
improved nutrient availability compared to continuous sugarcane 
cultivation, emphasizing the benefits of diversified cropping systems 
for sustainable soil health. These findings highlight the importance 
of diversified cropping systems to improve carbon fractions, boost 
biological activity, and ensure sustainable soil health long term.

FIGURE 4

Policy recommendations for sugarcane cultivation: linking sustainable practices to SDGs.
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