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This study evaluates adaptive management in sugarcane cultivation through
varied input strategies and legume integration. A total of 380 soil samples were
collected across blocks at two depths (0-15 and 15-30 cm). Results showed that
at 0—15 cm, oxidizable soil organic carbon (SOC) ranged from 3.19 to 8.01 g kg%,
and at 15-30 cm, it ranged from 2.50 to 6.90 g kg~t. The C indices showed a
decreasing trend with depth. Total organic carbon (TOC) varied from 5.68 to
114 g kgt at 0-15 cm and from 3.85 to 11.4 g kg™t at 15-30 cm. Permanganate-
oxidizable carbon (KMnO,-C) ranged from 145 to 382 mg kg~ at 0-15 cm and from
122 to 356 mg kg~ at 15—-30 cm. Carbon stock ranged from 12.6 to 25.9 Mg ha!
at 0-15 cm, and from 10.2 to 24.5 Mg ha! at 15—-30 cm. The active carbon pool
decreased by 17.59%, the passive pool changed negligibly (0.22%) with depth;
lability and recalcitrance indices showed carbon stability differences. Study offers
key farm-level insights on carbon footprints and adaptive sugarcane management.

KEYWORDS

sugarcane cultivation, agricultural sustainability, soil management, carbon
sequestration, climate change

1 Introduction

Agricultural agroecological landscapes cover 37% of the Earth’s surface and contribute
significantly to greenhouse gas (GHG) emissions (IPCC, 2006). Climate change poses a major
challenge to sugarcane production, particularly in regions experiencing increased consecutive
dry days, higher temperatures, and reduced precipitation (IPCC, 2021). Research by the
International Sugar Organization (ISO, 2022) indicates that rising (+) temperatures and CO,
levels have varying effects on sugarcane yields. Additionally, agricultural management
practices can exacerbate environmental pollution (Wakchaure et al., 2025; Yannopoulos et al.,
2015). The agricultural sector contributes significantly to global greenhouse gas emissions,
accounting for up to 52% of anthropogenic methane (CHs) and 84% of nitrous oxide (N,O)
emissions (Wakchaure et al., 2025; Bonsucro, 2023). However, it also serves as a GHG sink
through C-sequestration in agricultural landscapes (Lal, 2004; Hillier et al., 2009; Tubiello
etal., 2014).

Global sugarcane production rose from 448 Mt. in 1961 to over 2 Bt by 2020, expanding
from 8.9 to 27 Mha. The Americas and Asia account for 93% of output, with Brazil leading and
India contributing 18.7% as the second-largest producer (OECD/FAO, 2019). The increasing
demand for bio-ethanol, driven by its high energy balance and reduced GHG emissions, has
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intensified land use globally (Wakchaure et al., 2025; Cherubin et al.,
2021). This intensification raises environmental sustainability concerns,
such as soil quality degradation and ecosystem service impacts (do
Amaral etal., 2008; Cherubin et al., 2016). India’s sugarcane production
surpassed 500 million metric tons, with large shares used for sugar and
ethanol, making it a top global producer and consumer (P1B, 2022).

In India, the expansion of sugarcane cultivation is becoming
increasingly important to meet the rising global demand for biofuel
production. However, this expansion must be supported by adaptive
soil management practices to ensure agroecological stability.
Achieving this goal requires regular monitoring of soil ecosystems,
which is essential for maintaining a stable and sustainable environment
for soil-plant interactions. Currently, sugarcane is cultivated on 5
Mha, with an average productivity of 68 tons per hectare and a sugar
recovery rate of 10%.

Sugarcane cropping systems in India struggle with low technology
adoption, poor ratoon management, policy gaps, and inefficient
inputs. Solutions include best agronomic practices, supportive
policies, balanced nutrients, better water use, farmer training, and
integrated soil health indices for accurate impact assessment.

Sugarcane farming in Bihar, covering approximately 250,000
hectares, faces challenges in maintaining production stability (Kumar
et al., 2023). Productivity has declined by 5.17%, from 55.17 t/ha in
2014-15 to approximately 50.0 t/ha currently. Factors such as poor
germination, inadequate cultivation practices, waterlogging, poor
ratoon management, substandard seed quality, insufficient irrigation,
and the neglect of plant protection measures collectively contribute to
low productivity in sugarcane cultivation. A significant issue is the
incorrect and imbalanced use of chemical fertilizers, primarily
nitrogenous ones, which adversely affect the ecosystem through
nutrient loss via leaching, runoff, and volatilization, reducing nutrient
use efficiency. Additionally, the lack of organic manure application
depletes soil organic matter and deteriorates soil physical conditions.

The long-term stability of agricultural production systems is closely
tied to soil quality and health, necessitating effective assessment and
monitoring (Brejda et al,, 2000; Karlen et al., 1997). Adaptive management
practices significantly influence landscape sustainability (Islam and Weil,
20005 Rezapour and Samadi, 2012). Current research aims to develop
multi-parametric indicators for soil productivity and environmental
health (Wakchaure et al., 2025). Despite advancements, monitoring
carbon footprint remains complex due to varied agricultural landscapes
(Hanson et al., 2025; Ozlu et al., 2022; De la Rosa and Sobral, 2008). Most
research has focused on temperate soils, with limited data on calcareous
soils in semi-arid areas (Bouma, 1989; Knoepp and Swank, 1997).

Integrating soil health indices with carbon footprint analysis is
crucial for addressing climate change. Practices that degrade ecosystems
often increase GHG emissions, exacerbating climate change (Lal, 2004;
Smith et al., 2008). Conversely, improving soil health through sustainable
practices can enhance C-sequestration, mitigate GHG emissions, and
promote climate resilience (Lal, 2004). Therefore, developing
comprehensive soil quality indices in relation to carbon footprints and
climate change is vital for sustainable agriculture (Tubiello et al., 2014).

Despite growing interest in sustainable sugarcane production,
research gaps remain on how organic inputs and diverse cropping
affect soil carbon and carbon footprint, especially in calcareous soils
of semi-arid to sub-tropical South Asia. Most studies focus on
temperate zones, with limited field data from this key region where
sugarcane supports food and biofuel security. This study hypothesizes
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that the integration of organic amendments and legume-based crop
diversification in sugarcane systems will enhance soil carbon
sequestration, improve soil carbon pool dynamics, and stabilize
carbon through improved lability and recalcitrance indices.
Accordingly, the objectives are (i) to assess the impact of varying
organic inputs on C-dynamics, C-stock, and C-pools and (ii) to
evaluate the effect of incorporating legumes into sugarcane cropping
sequences on soil organic carbon (SOC) fractions, lability, and
recalcitrance indices. By addressing these objectives, the study
contributes to closing the knowledge gap in carbon footprint analysis
under tropical farming systems and supports the global agenda of
climate-resilient, low-emission agricultural practices.

2 Materials and methods
2.1 Sampling site
The study was structured as a multi-location farmers’ field trial

different cropping
(Supplementary Table 1). The research location is an important

focused  on sugarcane sequences
agricultural zone within the North West Alluvial Plain Zone,
characterized by a semi-arid to sub-tropical climate. Agro-climatic
Zone-1V (as defined by the planning commission, now NITI Ayog),
known as the “Middle Gangatic Plains Region,” encompasses the entire
state of Bihar, including the district of Samastipur (Figure 1). The soils
of Samastipur, Bihar, are primarily alluvial in nature, classified as
Entisols and Inceptisols. They have a loamy to clay-loam texture,
moderate fertility, and slightly acidic to neutral pH, making them well-
suited for crop cultivation. The location has a sub-tropical, semi-arid
climate according to the Képpen-Geiger classification, characterized
by an average annual temperature of 25.2 °C and annual rainfall of
1,236 mm (Figure 2). Summers are hot, winters are cool, and there is
moderate rainfall, with the driest month being November and the
highest precipitation occurring in July. The sugarcane field, managed
by local farmers under Magadh Sugar and Energy Ltd., Hasanpur
(Bihar), India (25.710118, 86.19065), follows standard procedures:
fertilization, weed control, pest management, and leaf removal.

2.2 Site details

A total of 380 individual soil samples were combined into 38
composite samples (each comprised 10 individual soil samples)
collected from Hasanpur (18), Rosera (08), Warisnagar (05),
Bibhutipur (04), and Khanpur (03) blocks in the agricultural landscape
of Samastipur. Soil sampling was conducted at various farmers’ fields
within these blocks, covering two (0-15 and 15-30 cm) soil depths.
Sampling sites within each field were randomly selected to ensure
comprehensive coverage of soil variability (Figure 3).

2.3 Carbon pools

Oxidizable organic carbon was estimated by titration (Wallkley and
Black, 19345 Jackson, 1973), and its various fractions (labile and
non-labile) were determined using a modified Walkley and Black
method (Chan, 2001). For total organic carbon (TOC) determination,
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FIGURE 1
Map of the study area of Samastipur (25.7471° N, 85.8896° E), Bihar, India.
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Trends in maximum and minimum temperature, evapotranspiration, and rainfall during the sugarcane growing period in Samastipur, Bihar, India.
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Description of sampling method.

0.25 g of the soil sample was mixed with 20 mL of 0.4 N chromic acid
solution, heated at 155-160 °C for 20-25 min, and then cooled to room
temperature (Jackson, 1973). Active carbon was estimated by quantifying
potassium permanganate (KMnO,) oxidation with a spectrophotometer
(Weil et al., 2003). Carbon stock and its active/passive pools were
estimated (Equations 1-3), while lability and recalcitrance indices were
calculated as per Datta et al. (2015) (Equations 4-6).

SOC—Stock(Mghail)

=TOC(%)x BD(Mgm™ )< D (m)

where,
SOC =soil organic carbon; TOC =total organic carbon;
BD = bulk density; D = depth of soil

CAP={3(VLC+LC)} @)
where,
CAP = carbon active pool; VLC=very labile -carbon;
LC = labile carbon
CPP={Y(LLC+NLC)} 3)

where,
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CPP = carbon passive pool; LLC=less labile carbon;
NLC = non-labile carbon
Lr=3pr=Yic 4, ke | Lic (4)
TOC TOC TOC
L
rn=tLe*Nie (5)
L c+ LC
riz=2ic (6)
TOC
where,
LI = lability index; VLC = very labile carbon; LC = labile carbon;
LLC =less labile carbon; TOC =total organic carbon;

NLC = non-labile carbon; RI = recalcitrance index.

2.4 Statistical analysis

The study was structured as a multi-location farmers’ field trial,
where ongoing demonstrations served as replications across different
sugarcane-based cropping sequences. Data were collected over
cropping years in the North West Alluvial Plain Zone of Bihar.
Descriptive statistics for various soil and crop parameters were
generated using IBM SPSS (v26). Location maps of the study sites were
prepared in ArcGIS 10.8.2. To evaluate multi-location effects, analysis
of variance (ANOVA) was performed. Replication and multi-location
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effects (treatment) effects across the experimentation were modeled as
random factors, and variance components were estimated using
Restricted Maximum Likelihood (REML). Degrees of freedom were
adjusted using the Satterthwaite approximation to improve accuracy.
Treatment means were compared using the critical difference (CD) test
at the 5% significance level (p < 0.05), and standard errors (SE) were
calculated for all comparisons. For transparency, F-values, degrees of
freedom, p-values, and effect sizes (95% CI) are reported in the results.

3 Results and discussion
3.1 Oxidizable organic carbon

The data revealed significant variation in oxidizable SOC content
across different soil depths within the studied agricultural landscape
(Table 1). Ata depth of 0-15 cm, mean SOC content was 5.23 gkg™". It
ranged from 3.17 to 8.01 g kg™', and exhibited a slight positive skewness
(0.30) and leptokurtic distribution (kurtosis = 0.73). In contrast, at a
deeper soil depth of 15-30 cm, the mean SOC content decreased
(4.56 gkg™), and it ranged from 2.50 to 6.90 g kg™, with skewness
(0.19) and lower kurtosis (0.33). Overall, the SOC content decreased
(12.8%) at 15-30 cm depth. SOC content decreased with increasing soil
depth, indicating a clear vertical gradient in its distribution. This
pattern is critical for understanding nutrient dynamics and assessing
soil health in agricultural ecosystems (Table 1). Continuous addition
of above-ground biomass and decaying roots significantly influences
C-levels. Research by Dotaniya et al. (2014) highlighted that organic
amendments enhance C-content and stimulate microbial activity. The
observed slight increase in integration of organic manure (OM) and
mineral fertilizer application can be attributed to improved crop
growth and higher yield, leading to increased residue and root exudate
inputs that decompose and enrich the SOC. Similar findings have been
reported by More et al. (2007), Bokhtiar et al. (2008), Jha et al. (2017),
Sinha et al. (2017a), and Mthimkhulu et al. (2016), reinforcing the
positive impact of organic inputs on soil fertility and C-dynamics.

3.2 Total organic carbon

Data showed that the mean TOC content was 7.64 gkg™". It
ranged from 5.68 to 11.4 gkg™', showing a positively skewed

10.3389/fsufs.2025.1535741

distribution (skewness =1.57) and slightly leptokurtic shape
(kurtosis = 1.11) at 0-15 cm. Meanwhile, at 15-30 cm, the mean SOC
content decreased to 7.10 g kg™' and ranged from 3.85-11.4 gkg™’,
exhibiting a similar positively skewed distribution (skewness = 1.38)
and lower kurtosis (kurtosis = 0.74) compared to the 0-15 cm depth.
A 7.1% decline in mean TOC content was observed at the 15-30 cm
soil depth (Table 1). Understanding the factors influencing variations
in TOC levels, such as land use practices, soil management strategies,
and climatic conditions, is crucial for optimizing sustainable
agricultural practices and C-sequestration. OM application to soil, as
observed with SOC, plays a significant role in enhancing C-content.
This phenomenon is supported by findings in the literature (Dotaniya
et al., 2014; More et al., 2007; Bokhtiar et al., 2008; Jha et al., 2017;
Sinha et al,, 2017b; Mthimkhulu et al., 2016), which highlight the
positive impact of organic inputs on C-dynamics. By elucidating these
relationships, researchers can better formulate strategies to enhance
SOC levels and improve soil health, thereby contributing to broader
environmental sustainability goals (Table 1).

3.3 KMnO,-C

Results showed that KMnO,-C content in the soil varied between
depths in the agricultural landscape (Table 1). At 0-15 cm, the mean
KMnO,-C content was 263.26 mg kg™’, and it ranged from 145 to
382mgkg™', showing a negatively skewed distribution
(skewness = —0.20) and platykurtic shape (kurtosis = —0.13). While
at 15-30 cm, the mean KMnO,-C content decreased to 235.69 mg kg™’
and ranged from 122 to 356 mg kg™', displaying similar skewness
(skewness = —0.19) and kurtosis (kurtosis = —0.05) compared to the
0-15 cm depth (Table 1). The variation in the soil depth was 10.5%.
This observed decline in KMnO,-C levels with increasing soil depth
suggests a gradient in C-availability that is pivotal for understanding
SOC dynamics and nutrient cycling in agricultural systems. Further
exploration of factors influencing KMnO,-C, such as management
practices and soil physical properties, is essential to optimize
C-sequestration and enhance soil health strategies. Higher KMnO,-C
in the 0-15 cm layer may be attributed to enhanced root biomass,
rhizodeposition, and microbial activity. Monitoring labile organic
matter fractions offers a sensitive and effective approach for evaluating
soil quality dynamics (Needelman et al., 1999; Ding et al., 2006; Benbi
etal., 2015; Meena et al., 2021).

TABLE 1 Descriptive statistics of oxidizable, total, and KMnO,-C of sugarcane growing area.

Descriptive Oxidizable-SOC (g kg™) Total-SOC (g kg™) KMnO,-C (mg kg™)
SHatistics 0-15cm 15-30 cm 0-15cm 15-30 cm 0-15cm 15-30 cm
Mean 523 456 7.64 7.10 26326 235.69
Standard error 0.17 0.16 0.19 0.24 9.03 8.82
Standard deviation 1.06 0.96 1.20 1.49 55.6 54.3
Sample variance 113 0.92 1.44 2.21 3,100 2,957
Skewness 0.30 0.19 1.57 138 ~0.20 ~0.19
Kurtosis 0.73 033 111 0.74 ~0.13 ~0.05
Minimum 317 2.50 5.68 3.85 145 122
Maximum 8.01 6.90 114 11.4 382 356
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3.4 Very labile carbon and labile carbon

Data showed that a significant variation was found in VL-C and
L-C content across different depths within the agricultural landscape
(Table 2). At 0-15 cm, the mean C-VL content was 1.56 g kg™ and
ranged from 1.02 to 2.60 gkg™', showing a positively skewed
distribution ~ (skewness =0.63)  and  platykurtic  shape
(kurtosis = —0.58). However, at 15-30 cm, the mean C-VL content
decreased to 1.31gkg™, and ranged from 0.90 to 1.98 gkg™,
exhibiting a similar positively skewed distribution (skewness = 0.68)
and slightly lower kurtosis (kurtosis =—0.31) compared to the
0-15 cm depth. The decline in mean C-VL content from 0-15 cm to
15-30 cm depth was 16% (Table 2).

Meanwhile, C-L in the soil showed variations across different
depths (Table 2). At 0-15 cm, the mean C-L content was 1.50 g kg™
and ranged from 1.13 to 2.08 g kg™', showing a positively skewed
distribution (skewness =0.33) and slightly platykurtic shape
(kurtosis = —0.32). In contrast, at 15-30 cm, the mean C-L content
decreased to 1.22 g kg™' and ranged from 0.43 to 1.97 g kg™, exhibiting
a similar positively skewed distribution (skewness=0.13) and
leptokurtic shape (kurtosis = 0.88) compared to the 0-15 cm depth.
The decrease in mean C-L content from 0-15 cm to 15-30 cm depth
was approximately 18.7% (Table 2). These higher VL-C and L-C
contents signify enhanced microbial activity and OM turnover
(Meena et al., 2018; Meena et al., 2021). Monitoring these fractions
provides insights into the responsiveness of soil carbon pools to
management practices, facilitating sustainable agricultural strategies
aimed at enhancing soil health and C-sequestration efforts (Table 2).
Integrated studies on sugarcane highlight that sustainable trash
management (Gadge et al., 2017; Shanthy et al., 2020), conservation
tillage (de Oliveira et al., 2022; Turmel et al,, 2015), and optimized
fertigation (Ravikumar et al,, 2011) are key to enhancing productivity,
improving soil health, and ensuring long-term ecological balance.

3.5 Less labile carbon and non-labile
carbon

Results showed that less labile carbon (LL-C) content at 0-15 cm
soil layer ranged from 0.93-3.33 gkg™, with a mean value
(2.16 gkg™), showing a slightly positively skewed distribution
(skewness = 0.14) and mesokurtic shape (kurtosis =0.39). At

10.3389/fsufs.2025.1535741

15-30 cm, the mean LL-C content slightly decreased to 2.04 g kg™
and ranged from 1.00-3.45 g kg™, exhibiting a similar positively
skewed distribution (skewness =0.48) and higher kurtosis
(kurtosis = 0.85) compared to the 0-15 cm depth. The slight decrease
in mean LL-C content from 0-15 cm to 15-30 cm depth was
approximately 5.6% (Table 2).

Meanwhile, in the case of NL-C at 0-15 cm, the mean was
2.41 gkg™' and ranged from 1.48 to 3.41 g kg™', showing a positively
skewed distribution (skewness = 0.41) and a highly leptokurtic shape
(kurtosis = 4.70). At 15-30 cm, the mean NL-C content slightly
increased to 2.54 g kg™', ranging from 1.35-4.54 g kg™!, exhibiting a
similar positively skewed distribution (skewness = 0.98) and lower
kurtosis (kurtosis = 0.82) compared to the 0-15 cm depth. The slight
increase in mean NL-C content from 0-15 cm to 15-30 cm depth was
5.4% (Table 2). Sugarcane trash, being less prone to microbial
decomposition, tends to accumulate as passive SOC over time. This
phenomenon underscores the role of agricultural practices in
influencing C-dynamics, where annual additions of sugarcane trash
to the surface layer may enhance the active C-fraction compared to
the deeper layer. Crop residues support microbial proliferation, which
in turn stimulates nutrient cycling and enhances soil fertility (Ensinas
et al., 2015; Mir et al., 2023). Additionally, Majumder et al. (2008)
support the idea that management options influence the balance
between C-inputs (e.g., root biomass, litter fall) and outputs (e.g.,
heterotrophic respiration), thereby affecting soil carbon pools. These
findings align with studies by Mir et al. (2023) and Benbi et al. (2015),
which emphasize the importance of understanding carbon dynamics
in agricultural systems to optimize carbon management strategies and
mitigate climate change impacts (Table 3).

3.6 Carbon stock

Carbon stock in the soil varied across different depths within the
agricultural landscape (Table 3). Results showed that the mean
C-stock (17.00 Mg ha™') ranged from 12.6 to 25.9 Mg ha™" at 0-15 cm
and showed a positively skewed distribution (skewness = 1.18) and
leptokurtic shape (kurtosis = 2.19). At 15-30 cm, the mean C-stock
slightly decreased to 16.72 Mgha™ and ranged from 10.2 to
24.5 Mg ha™', exhibiting a similar positively skewed distribution
(skewness = 0.62) and slightly lower kurtosis (kurtosis = 0.59)
compared to the 0-15 cm depth. The decrease in mean C-stock from

TABLE 2 Descriptive statistics of various carbon fractions of sugarcane growing area.

Descriptive C-VL (g kg™ C-L (g kg™ C-LL (g kg™ C-NL (g kg™
SIatistics 0-15cm 15— 0-15cm 15— 0-15 cm 15— 0-15cm 15—
30cm 30 cm 30cm 30 cm

Mean 1.56 1.31 1.50 1.22 2.16 2.04 2.41 2.54
Standard error 0.07 0.04 0.04 0.05 0.09 0.08 0.05 0.11
Standard deviation 0.42 0.26 0.24 0.29 0.54 0.50 0.29 0.70
Sample variance 0.17 0.07 0.06 0.09 0.29 0.25 0.09 0.49
Skewness 0.63 0.68 0.33 0.13 0.14 0.48 0.41 0.98
Kurtosis —0.58 —0.31 —0.32 0.88 0.39 0.85 4.70 0.82
Minimum 1.02 0.90 1.13 0.43 0.93 1.00 1.48 1.35
Maximum 2.60 1.98 2.08 1.97 3.33 3.45 3.41 4.54
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TABLE 3 Descriptive statistics of C-stock and C-pools of sugarcane growing area.

Descriptive TOC stock (Mg ha?) Active pool (g kg Passive pool (g kg™)
SHatiStics 0-15cm 15-30 cm 0-15cm 15-30 cm 0-15cm 15-30 cm
Mean 17.00 16.72 3.07 253 457 458
Standard error 0.44 0.48 0.10 0.09 0.11 0.18
Standard deviation 2.70 2.93 0.63 0.53 0.66 1.08
Sample variance 7.27 8.58 0.39 0.28 0.43 1.16
Skewness 118 0.62 0.56 0.36 L1l 1.00
Kurtosis 2.19 0.59 —0.30 —0.44 2.19 1.86
Minimum 126 102 215 143 3.44 2.42
Maximum 259 24.5 4.68 3.65 6.74 7.99

TABLE 4 Descriptive statistics of lability and recalcitrance index of sugarcane growing area.

Descriptive RI-2

PIEESHES 0-15 cm 15-30 cm 0-15 cm 15-30 cm
Mean 1.28 1.19 1.52 1.83 0.32 0.36
Standard error 0.01 0.02 0.04 0.05 0.01 0.01
Standard deviation 0.09 0.11 0.24 0.31 0.04 0.05
Sample variance 0.01 0.01 0.06 0.10 0.00 0.00
Skewness 0.08 0.22 1.27 0.18 0.14 0.21
Kurtosis —0.88 —-1.55 2.25 -0.79 0.61 —-1.18
Minimum 1.10 1.04 1.23 1.33 0.22 0.28
Maximum 1.47 1.38 2.32 2.53 0.44 0.46

0-15 cm to 15-30 cm depth was 1.6% (Table 3). The decline in mean
C-stock from 0-15cm to 15-30 cm depth highlights significant
variations in organic carbon storage, crucial for soil fertility,
C-sequestration, and overall soil health in the region (Table 3). Recent
studies by Ensinas et al. (2015) emphasize the role of cropping systems,
such as sugarcane cultivation, in influencing C-stocks and GHG
mitigation. Further research on TOC dynamics, soil properties, and
management practices is essential for optimizing carbon management
strategies in agricultural landscapes (Benbi et al., 2015; Majumder
et al., 2008; Sherrod et al., 2005; Mir et al., 2023).

3.7 Active and passive carbon pools

Data showed that active and passive carbon pools varied across
the soil depths (Table 3) within the agricultural landscape. At 0-15 cm,
the mean active pool was 3.07 gkg™', and it ranged from 2.15 to
4.68 gkg™', showing a moderately positively skewed distribution
(skewness = 0.56) and a slightly negative kurtosis (kurtosis = —0.30).
At 15-30 cm, the mean active pool decreased to 2.53 g kg™', and it
ranged from 1.43 to 3.65 g kg™, indicating a similar positively skewed
distribution (skewness =0.36) and a more negative kurtosis
(kurtosis = —0.44) compared to the 0-15 cm depth. Overall, these
findings indicated a decrease (17.59%) in the mean active pool of soil
carbon from the 0-15 cm to the 15-30 cm soil depths. However, the
passive pool of soil carbon showed a negligible change of
approximately 0.22% from the 0-15 cm to the 15-30 cm soil depths
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(Table 3). These findings underscore the complex dynamics of soil
carbon storage and turnover, crucial for optimizing C-sequestration
and soil fertility management strategies (Lal, 2004; Paustian et al.,
2000; Regnier et al., 2022; Tubiello et al., 2021; Wieder et al., 2015; Fan
etal,, 2023; Chen et al., 2022; Batjes et al., 2020).

3.8 Lability and recalcitrance index

The data indicated that LI, RI-I, and RI-II values varied
significantly across different soil depths (Table 4). At the 0-15cm
depth, the mean LI was 1.28 and ranged from 1.10 to 1.47. The
distribution showed a slight positive skewness (skewness = 0.08) and
exhibited a platykurtic shape (kurtosis = —0.88), indicating a relatively
flat distribution compared to a normal distribution. At the 15-30 cm
depth, the mean LI slightly decreased to 1.19 and ranged from 1.04 to
1.38, with higher positive skewness (skewness = 0.22) and more
negative kurtosis (kurtosis = —1.55), suggesting a more peaked and
narrower distribution compared to the 0-15 cm depth (Table 4).

Meanwhile, in the case of RI-1 at 0-15 cm depth, the mean was
1.52 and varied from 1.23 to 2.32 with positive skewness
(skewness = 1.27) and exhibited leptokurtic shape (kurtosis = 2.25).
At 15-30 cm depth, the mean was increased to 1.83 and ranged from
1.33 to 2.53. Distribution showed a lower positive skewness
(skewness = 0.18) and negative kurtosis (kurtosis = —0.79), indicating
a more flattened and broader distribution compared to the 0-15 cm
depth (Table 4). Similarly, in the case of RI-2 at 0-15 cm depth, the
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mean was 0.32 and ranged from 0.22 to 0.44, indicating a relatively
narrow distribution. The distribution showed a slight positive
skewness (skewness = 0.14) and exhibited a slightly leptokurtic shape
(kurtosis = 0.61), suggesting a moderately peaked distribution
compared to a normal distribution. At 15-30 cm depth, the mean
RI-2 increased slightly to 0.36, and values ranged from 0.28 to 0.46,
indicating a slightly wider distribution compared to the 0-15 cm
depth. The distribution showed a positive skewness (skewness = 0.21)
and negative kurtosis (kurtosis = —1.18), suggesting a flatter and
broader distribution compared to the 0-15 cm depth (Table 4). These
findings underscore the importance of understanding C-stability
dynamics in soil profiles, crucial for implementing effective soil
management strategies to enhance C-sequestration and mitigate
climate change impacts (Hassink, 1997; Poeplau and Don, 2015; Yang
et al., 2024; Nie et al., 2024; Lu et al., 2024; Adhikari et al., 2024;
Meena et al., 2024).

10.3389/fsufs.2025.1535741

3.9 Correlation matrix

The correlation matrix revealed significant relationships among soil
parameters across different soil depths within the studied agricultural
landscape (Tables 5, 6). OC refers to organic carbon in soil organic
matter, while TOC is a broader term that includes all forms of organic
carbon, both particulate and dissolved, providing a more comprehensive
measure. At the 0-15 cm soil depth, pH was negatively correlated with
TOC (r = —0.732**) and KMnO,-C (r = —0.710**), indicating reduced
carbon levels with increasing pH. In contrast, EC showed strong
positive correlations with TOC (r=0.750"*) and KMnO,-C
(r=0.757**). Nitrogen exhibited the highest correlation with TOC
(r=0.903**) and KMnO,-C (r = 0.906**). Sulfur and water-stable
aggregates (WSA) were also strongly associated with KMnO,4-C
(r=0.888** and r = 0.806**, respectively), suggesting their key roles in
carbon stabilization (Table 5). Meanwhile, at 15-30 cm depth, nitrogen

TABLE 5 Correlation matrix between soil health parameters and soil carbon pools (0—15 cm soil depth).?

Correlation TOC KMnO,-C
matrix

PH —0.745%* —0.615%* —0.559%* —0.747%% —0.287" —0.732%% —0.628%% —0.710%%
EC 0.774%% 0.766%* 0.6927* 0.631°* 0.252% 0.750%% 0.663%* 0.757%%
N 0.929%% 08327 0.755%% 0.8577% 0316 0.903%* 0.795% 0.906%
P,0; 0.568%* 0.516%* 0.377% 0554 0.041% 0.514%% 0.495%+ 0.6417%
K,O 0448+ 0.405* 0.305™ 0.436%* —0.023" 0.392% 0.282 0.513%*
S 0.875%% 0.795%% 0.747%% 0.783%% 0317 0.855%% 0.755%% 08887
Zn 0.474%% 0.457%% 0.427%% 0.392* 0.170% 04627 04847+ 0.450%*
Cu 0.477%% 0.508%* 0.312% 0.411% 0.022" 0.429%% 0.372* 0.459%*
Fe 0.482%% 0.480%* 0.312% 04427 —0.015™ 0.424%% 0.358* 0.473%%
Mn 0.506%* 0.492%% 0.323* 0.474%% —0.006™ 0.448%* 0.358* 0.505%*
BD —0.263" —0.123% —0.187% —0.340% 0.118™ —0.204% 0.210% —0.276"
WSA 0.787%% 0.781%% 0.764%% 0.612%%* 0.306" 0.774%% 0.690%* 0.806%*

*pH, Potential of Hydrogen; EC, Electrical Conductivity; N, Nitrogen; P,Os, Available Phosphorus; K,O, Available Potassium; S, Sulfur; Zn, Zing; Cu, Copper; Fe, Iron; Mn, Manganese; BD,
Bulk Density; WSA, Water-Stable Aggregates; OC, Organic Carbon; VL-C, Very Labile Carbon; L-C, Labile Carbon; LL-C, Less Labile Carbon; NL-C, Non-Labile Carbon; TOC, Total Organic
Carbon; TOC Stock, Total Organic Carbon Stock; KMnO,-C, Permanganate-Oxidizable Carbon.

TABLE 6 Correlation matrix between soil health parameters and soil carbon pools (15-30 cm soil depth).

Correlation TOC

matrix

PH —0.586%* —0.489%%* —0.508%%* —0.566%* —0.243% —0.493%%* —0.417%%* —0.286M
EC —0.270™ —0.361* —0.215% —0.199% —0.010™ —0.179%¢ —0.071™ 0.068~
N 0.863%%* 0.764%* 0.801%* 0.778%* 0.569%* 0.826%* 0.814%* —0.109%
P05 0.709%* 0.568%* 0.661%* 0.669%* 0.545%* 0.715%%* 0.647%* 0.082¢
K,O 0.512%%* 0.442%* 0.470%* 0.471%* 0.215™ 0.432%%* 0.411%* 0.1328
S 0.792%%* 0.655%* 0.755%%* 0.728%* 0.493%* 0.744%%* 0.699%* 0.166™
Zn 0.479%%* 0.484%* 0.360* 0.450%* 0.191™ 0.399* 0.276"% 0.0748
Cu 0.478%%* 0.488%** 0.350* 0.450%* 0.210™ 0.407* 0.286™° 0.070™8
Fe 0.540%* 0.548%* 0.419%* 0.498%* 0.227% 0.455%%* 0.333%* 0.103"
Mn 0.575%* 0.549%* 0.465%* 0.537%% 0.259™ 0.4937%* 0.375% 0.119™
BD —0.763%%* —0.600%* —0.688%* —0.740%* —0.512%%* —0.734%% —0.620%* —0.1528¢
WSA 0.708%* 0.568%* 0.631%* 0.683%* 0.519%* 0.701%* 0.578%* 0.139%
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showed strong positive correlations with TOC (r = 0.826**) and OC
(r = 0.863**). Sulfur and phosphorus were also highly correlated with
TOC (r=0.744"* and r=0.715**, respectively). In contrast, bulk
density was strongly negatively correlated with TOC (r = —0.734**) and
OC (r = —0.763**). Unlike in the surface layer, KMnO,-C showed no
significant associations, indicating its lower sensitivity at this depth
(Tables 5, 6). Recent studies underscore the importance of sustainable
sugarcane cultivation using efficient irrigation (Gunarathna et al., 2018),
trash and tillage practices (Surendran et al., 2016; Solomon, 2016; Suma
and Savitha, 2015), and precision nutrient management (Basanta et al.,
2003; Choudhary et al,, 2017). These strategies improve yield, enhance
soil health, and boost resource use efficiency (Powar et al., 2021).

4 Policy recommendation

The policy recommendations in this study focus on promoting
diversified cropping systems, encouraging the use of organic inputs,
and implementing precision agriculture for effective carbon
management (Figure 4). These strategies directly support key
Sustainable Development Goals (SDGs). Improving soil health
through crop rotations and organic practices directly supports SDG 2
(Zero Hunger) by increasing yields and promoting sustainable food
production. At the same time, SDG 13 (Climate Action) is addressed
through reduced carbon footprints and enhanced carbon

10.3389/fsufs.2025.1535741

sequestration, contributing to climate change mitigation. Additionally,
improved soil management practices that enhance biodiversity and
promote sustainable land use align with SDG 15 (Life on Land),
contributing to ecosystem resilience in sugarcane cultivation areas.

5 Conclusion

This study offers valuable insights into the dynamics of SOC in
sugarcane cultivation under the agroecological conditions of Bihar,
India. The findings revealed that carbon fractions are more
concentrated in the surface soil layer, indicating the strong influence
of adaptive management practices on enhancing carbon sequestration
in the topsoil. The observed patterns in TOC and labile carbon pools
emphasize the importance of targeted soil depth-specific
interventions for improving soil health. These results underscore the
potential of diversified practices to improve SOC distribution and
contribute to sustainable land management and climate mitigation
strategies. Crop rotations involving cereals and legumes showed
enhanced biological activity, increased active carbon pools, and
improved nutrient availability compared to continuous sugarcane
cultivation, emphasizing the benefits of diversified cropping systems
for sustainable soil health. These findings highlight the importance
of diversified cropping systems to improve carbon fractions, boost
biological activity, and ensure sustainable soil health long term.

Promote
Diversified —
Cropping Systems

Targeted
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SDG 2: Zero Hunger

Mbﬂn_-ﬁm
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efficient nutrient use and soil
‘monitoring.
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g
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_’

— SDG 13: Climate Action

| ————
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Policy recommendations for sugarcane cultivation: linking sustainable practices to SDGs.
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