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Livestock significantly contribute to biodiversity loss, primarily due to changes
in land use, overexploitation of natural resources, pollution, and climate change.
Intensive farming systems that depend heavily on resource inputs accelerate
the decline of species and exert immense pressure on biodiversity, ultimately
making the industry unsustainable. |dentifying hotspots and quantifying their
impacts along the value chain of animal products help producers and policymakers
make informed decisions and provide insights to guide consumers toward more
environmentally conscious purchasing. Life cycle assessment (LCA) provides a
holistic approach to assessing the environmental footprint (EF) throughout the life
cycle of a product or service. However, ecosystem services, such as biodiversity,
are often not integrated into LCA, particularly in the context of livestock systems.
Existing studies and methodologies frequently fail to illustrate the impacts of
biodiversity under various management practices. In addition, the majority of
these studies focus on a single midpoint impact category related to land use
change, which is based on the species—area relationship (SAR) and metrics at the
species level. However, due to the dynamic and complex nature of biodiversity,
relying a single midpoint impact or metric alone is insufficient to capture the full
spectrum, and it does not provide a comprehensive understanding of the impacts.
In addition, the lack of consensus on characterization factors (CFs), limitations in
data availability (i.e., conservation status of taxa at local and regional levels), and
challenges in assigning weights to taxa and ecological functions based on their
significance are key limitations that need to be addressed in future LCA studies.

KEYWORDS
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1 Introduction

An unprecedented level of biodiversity loss has been observed in recent decades, with
a decline of 69% in biodiversity between 1970 and 2018 (W W, 2022). Habitat loss caused
by the conversion of natural ecosystems for food and agricultural production, as well as
habitat homogenization and degradation arising from agricultural intensification, has been
identified as the primary reason for this trend (IPBES, 2019). Approximately 45% of the
habitable Earth’s surface has been transformed into agricultural land (Ritchie and Roser,
2019), with more than two-thirds of this area utilized for pasture and livestock feed
production (Benton et al., 2021). Increased reliance on large amounts of fertilizers and
machinery, overgrazing, and higher stocking densities in modern intensive livestock
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production systems also accelerate the loss of biodiversity (Benton
etal., 2021). Furthermore, the livestock sector indirectly contributes
to the decline of species and biodiversity by altering the global
climate through the emission of nearly 12% of anthropogenic
greenhouse gasses (GHG) from global animal protein production
(FAO, 2022; IPBES, 2019), polluting and contaminating water and
land (i.e., eutrophication and acidification) (FAO, 2006; FAO, 2018),
and contributing to the spread of diseases and invasive species
(FAO, 2006; FAO, 2018). On the contrary, livestock systems are also
known to perform an often-overlooked role in promoting diversity
and shaping ecosystem functioning. For instance, studies have
shown that well-managed rangelands with moderate grazing levels
foster greater diversity compared to under-grazed or overgrazed
systems, highlighting the significance of the interplay between
biodiversity and livestock (Gefd, 2020; Mathewos et al., 2023).
However, the increasing pressure to meet the growing demand for
animal-sourced products of the expanding human population
continue to strain local biodiversity and its ecological functioning,
jeopardizing the sustainability of these production systems
(FAO, 2018).

It is essential to identifying and quantifying biodiversity under
various production and management scenarios along the product value
chain using life cycle assessment (LCA) to gain a comprehensive
understanding of sustainability and to make informed decisions.
However, the current LCA methodology often overlooks the
multifunctionality (e.g., draft power, financial asset and savings, social
status, and biodiversity) of smallholder extensive or semi-intensive
livestock farming systems, resulting in a greater footprint per unit of
product compared to intensive systems (Gerber et al., 2013). Despite the
presence of numerous LCA impact assessment methods, such as
LC-IMPACT (Verones et al., 2020) and Impact World+ (Bulle et al.,
2019), incorporating biodiversity, recent literature points out several
limitations associated with these models and their applications. For
instance, Teillard et al. (2016) emphasized the importance of improved
assessments in the context of agricultural production with the inclusion
of concepts from landscape ecology, such as landscape heterogeneity and
habitat fragmentation, and the use of agro-ecological models to account
for agricultural intensity in biodiversity loss. Similarly, Souza et al. (2015)
highlighted the need for consensus on life cycle impact indicators,
particularly in land use modeling. However, the literature on
incorporating biodiversity into LCA models is still evolving, and only a
few regional studies have utilized and applied these concepts to livestock
production systems (Mueller et al., 2013; McClelland et al., 2023). Our
goal was to perform an extensive literature review in order to identify
viable biodiversity indicators and indices that are appropriate for
livestock production, particularly for dairy and beef systems. We also
aimed to provide an overview of current LCA impact assessment
methods that incorporate biodiversity within the context of livestock,
such as ReCiPe 2016 (Huijbregts et al., 2016). We also discussed the
challenges and shortcomings associated with these methods and
suggested potential future directions. Building on recent reviews (Teillard
etal, 2016; Damiani et al., 2023) and placing particular emphasis on
livestock species, this mini-review serves as a summary guide to different
approaches for tailoring existing LCA methodologies, particularly by
using multiple ecosystem indicators as midpoint impacts and regional
characterization factors (CFs), which indicate the biodiversity damage
per unit area,. This framework will allow for a comparison of the
ecological footprints associated with different livestock farming practices.
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1.1 Database search and selection of new
article

A preliminary literature survey was conducted using the scientific
databases such as Google Scholar and Web of Science, with keywords
such as “Biodiversity metrics;,” “Biological footprint,” “Ecological

»

Livestock farming;

» »
> >

footprint,” “Life cycle assessment Ruminant
systems,” and “Sustainable farming” A total of 328 peer-reviewed
articles published in English were filtered, and only 38 studies related
to LCA incorporating biodiversity and biodiversity metrics in the
context of livestock farming, particularly ruminant systems, were
selected after excluding duplicates and irrelevant studies (i.e.,
non-LCA) by scanning the titles and the abstracts. In addition, five
peer-reviewed journal articles published in English were identified
through snowballing the above-mentioned articles, and nine more
articles were included based on consultation with experts. In total, 52

articles were selected for this mini-review.

2 Importance of biodiversity in
livestock production

Biodiversity provides several direct and indirect services that
contribute to ecosystem functions. According to the Millennium
Ecosystem Assessment (MEA) (2005), these services are classified into
four categories, namely, provisional, regulating, cultural, and supporting
services, all of which are essential for human existence. Biodiversity
plays a key role in shaping the food system, including livestock
production, by providing biomass that accounts for 18 and 37% of the
global human calorie and protein supply, respectively (Benton et al.,
2021). Regulating services, such as water regulation, pollination, and
pest control, and supporting services, such as soil formation and
nutrient recycling, fulfill the natural resource requirements for
continuous livestock and livestock feed production (Teillard et al., 2016).
For example, 35% of global crops including important livestock feed
crops, such as Alfalfa (Medicago sativa), are pollinated by animals (Klein
et al,, 2006), whereas pest and weed controlling agents such as soil
microbes and soil nematodes are essential to maintain and manage
rangelands and pastures for livestock grazing (Bale et al., 2007).
Similarly, other ecosystem services, such as climate change regulation
through carbon sequestration, water purification, and air quality
regulation, buffer the impacts, such as climate change and pollution
(M.E.A., 2005), arising from livestock production. However, dependence
on biodiversity and its ecological services varies across different
production systems. For example, extensive production systems, such
as crop-livestock integrated systems and organic production systems,
directly rely on biodiversity and its ecological services, such as nutrient
recycling, pollination, and natural pest control (Pfiffner and Stoeckli,
2023). However, intensive livestock farming practices greatly depend on
human inputs and have a low reliance on biodiversity, except for a few
indirect services such as feedstock and biomass production.

3 Incorporating biodiversity in life
cycle assessment studies

As with other environmental footprints (EFs), such as carbon
and water footprints, a biodiversity footprint (BF) accounts for
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trade-offs related to biodiversity along the supply and
consumption chain of a product or a service. This provides a
wealth of information on the impacts on biodiversity resulting
from resource utilization and emissions associated with obtaining
the end product. Thereby, a BF helps reveal the contribution of a
particular organization or sector to biodiversity decline. However,
an ecological footprint that quantifies the ecological impact in
terms of biologically productive land required to compensate for
anthropogenic resource usage and GHG emissions does not
necessarily reflect or suggest a correlation with the biodiversity
footprint (Hanafiah et al., 2012).

LCA serves as a holistic tool for assessing the EF of livestock
products, although most LCA studies do not include ecosystem
services or biodiversity in their assessments (Teillard et al., 20165
Myllyviita et al., 2019; Crenna et al., 2020). For instance, the most
recent livestock LCA conducted in the USA focused on carbon
footprint (Thoma et al., 2013; Naranjo et al., 2020; Uddin et al.,
20215 Aguirre-villegas et al, 2022). Therefore, excluding
biodiversity from LCA often makes the sustainability assessment
biased. However, recent developments in biodiversity LCA
methods have identified ways to incorporate biodiversity into LCA
models to assist in uncovering impacts on biodiversity from both
on-farm and off-farm activities (e.g., feed production, energy
generation) (Curran et al., 2016; Lindner et al., 2021; Marques
etal., 2021; Damiani et al., 2023). In addition, such assessments
will permit comparisons of different products and services (Winter
et al., 2017), deriving from various management practices
and regions.

LCA methodology for assessing biodiversity oversees the
impact pathways leading to biodiversity loss at both regional and
global levels (FAO, 2020). Each inventory item (i.e., the land area
transformed or occupied) is translated into its damage impacts by
CFs through a life cycle impact assessment model to provide
comparable impact units (Souza et al., 2015) expressed in relation
to a functional unit and within a defined system boundary. For
example, studies in the context of livestock production often
express biodiversity impacts per liter of milk, kilogram of carcass,
or kilogram of protein, where system boundaries are set at a farm-
gate level (FAO, 2020) to account for all stages of production. Due
to the significant impact of livestock farming on habitat
conversion, the majority of these life cycle impact assessment
models rely on land use for evaluating the impacts of biodiversity
loss (Souza et al., 2015; Teillard et al., 2016). These models are
based on the species—area relationship (SAR) ecological model
(Souza et al., 2015; Teillard et al., 2016), which assumes a positive
correlation between the number of species and land area and uses
species richness as a proxy for biodiversity (Lindner et al., 2021).
Several methodologies, such as ReCiPe (Huijbregts et al., 2016),
have been designed by incorporating multiple midpoint impact
categories—parameters that are between inventory data and the
endpoint of the cause-effect chain for a particular impact category
(Bare et al., 2000)—such as climate change, eutrophication, water
These
methodologies aim to provide a comprehensive understanding of

use, ecotoxicity, invasive species, and land use.
the endpoint impacts—environmental damage aggregated and
summarized from midpoint impacts (Hardaker et al., 2022) of
biodiversity loss—particularly in the context of livestock systems

(Table 1; Teillard et al., 2016; Crenna et al., 2020).
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4 Biodiversity metrics as indicators

Understanding and assessing changes in biodiversity are
fundamental to conservation and investigating the sustainability of
any ecosystem. Biotic indicators, defined as species or groups of
species that reflect the state of an environment (Gerhardt, 2002),
provide insights and offer quantifiable and interpretable means of
assessing the impacts arising from disturbances or changes in the land
use pattern, and they also provide an effective way to evaluate and
follow up on conservation efforts (Duelli and Obrist, 1998; Biichs,
2003; Clergué et al., 2005; McClelland et al., 2023). However, due to
the dynamic nature and complexity of biodiversity, as well as cost and
time constraints, interpretations rely on a limited set of key indicators,
selected based on scientific reliability, repeatability, and the underlying
conservation goals (Biichs, 2003; Clergué et al., 2005). For example,
McClelland et al. (2023) developed a biodiversity integrity index using
indicators from eight thematic categories: habitat protection, habitat
change, wildlife conservation, invasive species, aquatic biodiversity,
off-farm feed, landscape heterogeneity, and ecosystem services to
assess the performance of the ecosystem. To gain a comprehensive
understanding of biodiversity, one should incorporate indicators to
represent the principal components of biodiversity (genetic, species,
and habitat) at every three dimensions (composition, structure, and
function) (Curran et al., 2016; Teillard et al., 2016; McClelland et al.,
2023), as well as indicators to reflect management practices (i.e.,
livestock density), particularly for human-dominated landscapes
(Herzog et al., 2013).

Species richness (the number of species within a defined region)
and species evenness (which accounts for the number of species and
their relative abundance within a community) are widely used direct
measures of biodiversity (Moore, 2013). Since sampling the entire
biotic community is practically infeasible, taxa that are ecologically
important and sensitive to environmental factors are often selected as
suitable representatives of biodiversity correlates (Biichs, 2003). For
example, in a livestock system, representatives of major ecological
functions, such as primary production (e.g., vascular plants),
decomposition and nutrient recycling (e.g., soil microbes, nematodes,
and earthworms), and pest control (e.g., spiders), could provide a
better understanding of ecosystem functioning (Herzog et al., 2013).
In addition, indicator species—those that respond to changes in the
environment (Clergué et al., 2005)—such as aquatic and terrestrial
invertebrates, algae, and plankton, provide insights into the health of
the ecosystem, which is threatened by excessive discharge of nutrients,
chemicals, and manure from livestock farming. Furthermore,
arthropods in general receive widespread recognition as key taxa for
reflecting overall species diversity, as they account for approximately
65% of all multicellular species (Duelli and Obrist, 1998; Herzog
etal., 2013).

Primarily based on species composition, a number of biodiversity
metrics have been designed with the intention of assessing the state
of and the influence on biodiversity. For example, metrics such as the
mean species abundance (MSA) and the living planet index serve as
state indicators of local ecosystem intactness and global decline in
species, respectively (Teillard et al., 2016; Rossberg, 2022). In
contrast, potential disappearance fraction (PDF), which compares
original species richness to the fraction remaining after human
intervention, is widely used as a footprint metric, particularly in the
context of LCA studies with multiple midpoint impact categories
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TABLE 1 Life cycle assessment (LCA) methodologies that incorporate biodiversity in the context of livestock.

Citation LCA methodology

category)

Midpoints (impact

Biodiversity metrics Biodiversity proxy

Huijbregts et al. (2016) ReCiPe 2016 Land use
Climate change
Acidification
Eutrophication

Ecotoxicity

PDF Species composition

Verones et al. (2020) LC Impact Land use
Climate change
Acidification
Eutrophication

Ecotoxicity

PDF Species composition

Bulle et al. (2019) Impact World+ Land use
Climate change
Acidification
Eutrophication

Ecotoxicity

PDF Species composition

Weidema et al. (2008) StepWise Land use
Climate change
Acidification
Eutrophication

Ecotoxicity

Biodiversity adjusted Hectare

Year (BAHY)

Species composition

Frischknecht et al. (2006) EcoScarcity Land use

Eco-points (UBP) Species composition

Jeanneret et al. (2014) Land use

Species composition

Rosenbaum et al. (2008) USEtox Ecotoxicity

Verones et al. (2022) GEP

Global species extinction Species composition

Chaudhary and Brooks LUIS Land use

(2018)

PDF Species composition

(Goedkoop et al., 2008; Table 1). Although the MSA was initially
developed in the context of the GLOBIO3 modeling framework as a
state indicator, it has also been used in LCA to translate several
midpoint impact categories into biodiversity impacts at the end
point, especially within the livestock sector (Alkemade et al., 2009;
Teillard et al., 2016). Despite high spatial variation (regional and
global) of these metrics in pressure-state-response (PSR) and LCA
frameworks, numerous metrics are being tailored and developed to
suit different methodologies and management practices, such as
confined and grazing systems of ruminants.

5 Research gaps, limitations, and
future developments

One of the major limitations of current LCA models is that
most account only for a single midpoint impact category,
particularly land use change, in assessing biodiversity impacts
(Souza et al,, 2015; Teillard et al., 2016) in livestock systems.
Although the livestock sector is a primary contributor to habitat
change, other impacts associated with livestock production, such as
climate change, eutrophication, overexploitation of resources, and
spread of invasive species, are overlooked in LCA studies (Teillard
et al,, 2016). Moreover, land use ecological models that depend on
the SAR are criticized for being oversimplified (Souza et al., 2015)
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and fail to account for positive contributions to biodiversity
(Teillard et al., 2016). For instance, in well-managed semi-natural
grasslands, extrapolation of reduction in land area to species loss
can result in incorrect interpretations (Souza et al, 2015). In
addition, the use of potential natural vegetation as a land cover
reference to estimate the impacts on biodiversity fails to distinguish
between relative intrinsic values (e.g., diversity, ecosystem services)
and productivity, assigning the same weight to land use change
impacts across different habitat types (Curran et al., 2016; Teillard
et al., 2016). Another disadvantage is that these models rely on a
single metric (e.g., MSA, PDF), primarily at the species level
(Table 1; Winter et al., 2017; Crenna et al., 2020; Lindner et al.,
2021), and rarely account for functional attributes (e.g., species
functional traits and ecosystem services) (Teillard et al., 2016).
Therefore, they are unable to capture the full scope of biodiversity
(Lindner et al, 2021; Marques et al., 2021), including species
extinction (Teillard et al., 2016). Furthermore, these indicators do
not account for ecological or conservational values, such as
endemism and rarity, to demonstrate the individual contribution to
biodiversity (Chaudhary and Brooks, 2018) and to illustrate
taxonomic significance. Few LCA models and indices have been
developed to suggest higher biodiversity and conservation value for
rare and unique species compared to common species. However,
the development of these models is constrained due to limitations
in ecological data at the regional and global scales, challenges in
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assigning weighting factors for indicators based on their relative
ecological importance (Herzog et al., 2013), and the lack of
consensus on CFs (Chaudhary and Brooks, 2018). For example, the
TUCN Red List, which serves as a database for ecological studies, is
less reliable at the global scale, and only a few species have been
evaluated and listed at the regional level (Duelli and Obrist, 2003).
Frischknecht and Jolliet (2016) recommended the determination of
CFs at different levels (e.g., global, regional) and for different
ecosystem types, while other studies have suggested the use of
multiple indicators and drivers to investigate impacts on
biodiversity across different dimensions and to include spatial
details in impact assessments (Crenna et al., 2020), aiming to
address the existing weaknesses in current LCA studies.
Alternatively, other approaches and tools, such as the PSR model,
are widely used in assessing the impact on biodiversity at the local
scale, where causal indicators translate the pressure and state of the
environment (FAO, 2020). Although the PSR framework facilitates
interpretation and decision-making, it fails to provide information
on impacts across the life cycle of a product, especially off-farm
impacts on biodiversity such as livestock feed production (Teillard
et al,, 2016), and is therefore unable to provide insights into
BE. However, the recent Biodiversity Multi-Scale Assessment of
Product Systems (BioMAPS) framework proposed by Maier (2023)
integrates ecological, conservational, and LCA requirements,
including land use types and management practices, to assess
impacts and risks at regional and global levels by scaling up from
the local scale.

6 Conclusion

Biodiversity assessment is an important part of evaluating the
sustainability of livestock production, as livestock farming has a
significant impact on biodiversity depletion. Studies incorporating
biodiversity in the LCA framework allow the identification of hotspots
and quantification of biological impacts across the life cycle of animal
products from various origins. Despite the availability of several
models and methodologies, capturing the full scope of biodiversity in
these studies is challenging due to its complexity and the limitations
and weaknesses associated with these models. Regardless, these
approaches offer valuable insights for potential interventions and
mitigation strategies. Incorporating multiple indicators for different
ecosystem functioning and management practices to reflect multiple
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