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Livestock significantly contribute to biodiversity loss, primarily due to changes 
in land use, overexploitation of natural resources, pollution, and climate change. 
Intensive farming systems that depend heavily on resource inputs accelerate 
the decline of species and exert immense pressure on biodiversity, ultimately 
making the industry unsustainable. Identifying hotspots and quantifying their 
impacts along the value chain of animal products help producers and policymakers 
make informed decisions and provide insights to guide consumers toward more 
environmentally conscious purchasing. Life cycle assessment (LCA) provides a 
holistic approach to assessing the environmental footprint (EF) throughout the life 
cycle of a product or service. However, ecosystem services, such as biodiversity, 
are often not integrated into LCA, particularly in the context of livestock systems. 
Existing studies and methodologies frequently fail to illustrate the impacts of 
biodiversity under various management practices. In addition, the majority of 
these studies focus on a single midpoint impact category related to land use 
change, which is based on the species–area relationship (SAR) and metrics at the 
species level. However, due to the dynamic and complex nature of biodiversity, 
relying a single midpoint impact or metric alone is insufficient to capture the full 
spectrum, and it does not provide a comprehensive understanding of the impacts. 
In addition, the lack of consensus on characterization factors (CFs), limitations in 
data availability (i.e., conservation status of taxa at local and regional levels), and 
challenges in assigning weights to taxa and ecological functions based on their 
significance are key limitations that need to be addressed in future LCA studies.

KEYWORDS

biodiversity, livestock farming, biological footprint, life cycle assessment, ecosystem 
services

1 Introduction

An unprecedented level of biodiversity loss has been observed in recent decades, with 
a decline of 69% in biodiversity between 1970 and 2018 (WWF, 2022). Habitat loss caused 
by the conversion of natural ecosystems for food and agricultural production, as well as 
habitat homogenization and degradation arising from agricultural intensification, has been 
identified as the primary reason for this trend (IPBES, 2019). Approximately 45% of the 
habitable Earth’s surface has been transformed into agricultural land (Ritchie and Roser, 
2019), with more than two-thirds of this area utilized for pasture and livestock feed 
production (Benton et al., 2021). Increased reliance on large amounts of fertilizers and 
machinery, overgrazing, and higher stocking densities in modern intensive livestock 
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production systems also accelerate the loss of biodiversity (Benton 
et al., 2021). Furthermore, the livestock sector indirectly contributes 
to the decline of species and biodiversity by altering the global 
climate through the emission of nearly 12% of anthropogenic 
greenhouse gasses (GHG) from global animal protein production 
(FAO, 2022; IPBES, 2019), polluting and contaminating water and 
land (i.e., eutrophication and acidification) (FAO, 2006; FAO, 2018), 
and contributing to the spread of diseases and invasive species 
(FAO, 2006; FAO, 2018). On the contrary, livestock systems are also 
known to perform an often-overlooked role in promoting diversity 
and shaping ecosystem functioning. For instance, studies have 
shown that well-managed rangelands with moderate grazing levels 
foster greater diversity compared to under-grazed or overgrazed 
systems, highlighting the significance of the interplay between 
biodiversity and livestock (Geß, 2020; Mathewos et  al., 2023). 
However, the increasing pressure to meet the growing demand for 
animal-sourced products of the expanding human population 
continue to strain local biodiversity and its ecological functioning, 
jeopardizing the sustainability of these production systems 
(FAO, 2018).

It is essential to identifying and quantifying biodiversity under 
various production and management scenarios along the product value 
chain using life cycle assessment (LCA) to gain a comprehensive 
understanding of sustainability and to make informed decisions. 
However, the current LCA methodology often overlooks the 
multifunctionality (e.g., draft power, financial asset and savings, social 
status, and biodiversity) of smallholder extensive or semi-intensive 
livestock farming systems, resulting in a greater footprint per unit of 
product compared to intensive systems (Gerber et al., 2013). Despite the 
presence of numerous LCA impact assessment methods, such as 
LC-IMPACT (Verones et al., 2020) and Impact World+ (Bulle et al., 
2019), incorporating biodiversity, recent literature points out several 
limitations associated with these models and their applications. For 
instance, Teillard et al. (2016) emphasized the importance of improved 
assessments in the context of agricultural production with the inclusion 
of concepts from landscape ecology, such as landscape heterogeneity and 
habitat fragmentation, and the use of agro-ecological models to account 
for agricultural intensity in biodiversity loss. Similarly, Souza et al. (2015) 
highlighted the need for consensus on life cycle impact indicators, 
particularly in land use modeling. However, the literature on 
incorporating biodiversity into LCA models is still evolving, and only a 
few regional studies have utilized and applied these concepts to livestock 
production systems (Mueller et al., 2013; McClelland et al., 2023). Our 
goal was to perform an extensive literature review in order to identify 
viable biodiversity indicators and indices that are appropriate for 
livestock production, particularly for dairy and beef systems. We also 
aimed to provide an overview of current LCA impact assessment 
methods that incorporate biodiversity within the context of livestock, 
such as ReCiPe 2016 (Huijbregts et al., 2016). We also discussed the 
challenges and shortcomings associated with these methods and 
suggested potential future directions. Building on recent reviews (Teillard 
et al., 2016; Damiani et al., 2023) and placing particular emphasis on 
livestock species, this mini-review serves as a summary guide to different 
approaches for tailoring existing LCA methodologies, particularly by 
using multiple ecosystem indicators as midpoint impacts and regional 
characterization factors (CFs), which indicate the biodiversity damage 
per unit area,. This framework will allow for a comparison of the 
ecological footprints associated with different livestock farming practices.

1.1 Database search and selection of new 
article

A preliminary literature survey was conducted using the scientific 
databases such as Google Scholar and Web of Science, with keywords 
such as “Biodiversity metrics,” “Biological footprint,” “Ecological 
footprint,” “Life cycle assessment,” “Livestock farming,” “Ruminant 
systems,” and “Sustainable farming”. A total of 328 peer-reviewed 
articles published in English were filtered, and only 38 studies related 
to LCA incorporating biodiversity and biodiversity metrics in the 
context of livestock farming, particularly ruminant systems, were 
selected after excluding duplicates and irrelevant studies (i.e., 
non-LCA) by scanning the titles and the abstracts. In addition, five 
peer-reviewed journal articles published in English were identified 
through snowballing the above-mentioned articles, and nine more 
articles were included based on consultation with experts. In total, 52 
articles were selected for this mini-review.

2 Importance of biodiversity in 
livestock production

Biodiversity provides several direct and indirect services that 
contribute to ecosystem functions. According to the Millennium 
Ecosystem Assessment (MEA) (2005), these services are classified into 
four categories, namely, provisional, regulating, cultural, and supporting 
services, all of which are essential for human existence. Biodiversity 
plays a key role in shaping the food system, including livestock 
production, by providing biomass that accounts for 18 and 37% of the 
global human calorie and protein supply, respectively (Benton et al., 
2021). Regulating services, such as water regulation, pollination, and 
pest control, and supporting services, such as soil formation and 
nutrient recycling, fulfill the natural resource requirements for 
continuous livestock and livestock feed production (Teillard et al., 2016). 
For example, 35% of global crops including important livestock feed 
crops, such as Alfalfa (Medicago sativa), are pollinated by animals (Klein 
et al., 2006), whereas pest and weed controlling agents such as soil 
microbes and soil nematodes are essential to maintain and manage 
rangelands and pastures for livestock grazing (Bale et  al., 2007). 
Similarly, other ecosystem services, such as climate change regulation 
through carbon sequestration, water purification, and air quality 
regulation, buffer the impacts, such as climate change and pollution 
(M.E.A., 2005), arising from livestock production. However, dependence 
on biodiversity and its ecological services varies across different 
production systems. For example, extensive production systems, such 
as crop-livestock integrated systems and organic production systems, 
directly rely on biodiversity and its ecological services, such as nutrient 
recycling, pollination, and natural pest control (Pfiffner and Stoeckli, 
2023). However, intensive livestock farming practices greatly depend on 
human inputs and have a low reliance on biodiversity, except for a few 
indirect services such as feedstock and biomass production.

3 Incorporating biodiversity in life 
cycle assessment studies

As with other environmental footprints (EFs), such as carbon 
and water footprints, a biodiversity footprint (BF) accounts for 
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trade-offs related to biodiversity along the supply and 
consumption chain of a product or a service. This provides a 
wealth of information on the impacts on biodiversity resulting 
from resource utilization and emissions associated with obtaining 
the end product. Thereby, a BF helps reveal the contribution of a 
particular organization or sector to biodiversity decline. However, 
an ecological footprint that quantifies the ecological impact in 
terms of biologically productive land required to compensate for 
anthropogenic resource usage and GHG emissions does not 
necessarily reflect or suggest a correlation with the biodiversity 
footprint (Hanafiah et al., 2012).

LCA serves as a holistic tool for assessing the EF of livestock 
products, although most LCA studies do not include ecosystem 
services or biodiversity in their assessments (Teillard et al., 2016; 
Myllyviita et al., 2019; Crenna et al., 2020). For instance, the most 
recent livestock LCA conducted in the USA focused on carbon 
footprint (Thoma et al., 2013; Naranjo et al., 2020; Uddin et al., 
2021; Aguirre-villegas et  al., 2022). Therefore, excluding 
biodiversity from LCA often makes the sustainability assessment 
biased. However, recent developments in biodiversity LCA 
methods have identified ways to incorporate biodiversity into LCA 
models to assist in uncovering impacts on biodiversity from both 
on-farm and off-farm activities (e.g., feed production, energy 
generation) (Curran et al., 2016; Lindner et al., 2021; Marques 
et al., 2021; Damiani et al., 2023). In addition, such assessments 
will permit comparisons of different products and services (Winter 
et  al., 2017), deriving from various management practices 
and regions.

LCA methodology for assessing biodiversity oversees the 
impact pathways leading to biodiversity loss at both regional and 
global levels (FAO, 2020). Each inventory item (i.e., the land area 
transformed or occupied) is translated into its damage impacts by 
CFs through a life cycle impact assessment model to provide 
comparable impact units (Souza et al., 2015) expressed in relation 
to a functional unit and within a defined system boundary. For 
example, studies in the context of livestock production often 
express biodiversity impacts per liter of milk, kilogram of carcass, 
or kilogram of protein, where system boundaries are set at a farm-
gate level (FAO, 2020) to account for all stages of production. Due 
to the significant impact of livestock farming on habitat 
conversion, the majority of these life cycle impact assessment 
models rely on land use for evaluating the impacts of biodiversity 
loss (Souza et al., 2015; Teillard et al., 2016). These models are 
based on the species–area relationship (SAR) ecological model 
(Souza et al., 2015; Teillard et al., 2016), which assumes a positive 
correlation between the number of species and land area and uses 
species richness as a proxy for biodiversity (Lindner et al., 2021). 
Several methodologies, such as ReCiPe (Huijbregts et al., 2016), 
have been designed by incorporating multiple midpoint impact 
categories—parameters that are between inventory data and the 
endpoint of the cause-effect chain for a particular impact category 
(Bare et al., 2000)—such as climate change, eutrophication, water 
use, ecotoxicity, invasive species, and land use. These 
methodologies aim to provide a comprehensive understanding of 
the endpoint impacts—environmental damage aggregated and 
summarized from midpoint impacts (Hardaker et  al., 2022) of 
biodiversity loss—particularly in the context of livestock systems 
(Table 1; Teillard et al., 2016; Crenna et al., 2020).

4 Biodiversity metrics as indicators

Understanding and assessing changes in biodiversity are 
fundamental to conservation and investigating the sustainability of 
any ecosystem. Biotic indicators, defined as species or groups of 
species that reflect the state of an environment (Gerhardt, 2002), 
provide insights and offer quantifiable and interpretable means of 
assessing the impacts arising from disturbances or changes in the land 
use pattern, and they also provide an effective way to evaluate and 
follow up on conservation efforts (Duelli and Obrist, 1998; Büchs, 
2003; Clergué et al., 2005; McClelland et al., 2023). However, due to 
the dynamic nature and complexity of biodiversity, as well as cost and 
time constraints, interpretations rely on a limited set of key indicators, 
selected based on scientific reliability, repeatability, and the underlying 
conservation goals (Büchs, 2003; Clergué et al., 2005). For example, 
McClelland et al. (2023) developed a biodiversity integrity index using 
indicators from eight thematic categories: habitat protection, habitat 
change, wildlife conservation, invasive species, aquatic biodiversity, 
off-farm feed, landscape heterogeneity, and ecosystem services to 
assess the performance of the ecosystem. To gain a comprehensive 
understanding of biodiversity, one should incorporate indicators to 
represent the principal components of biodiversity (genetic, species, 
and habitat) at every three dimensions (composition, structure, and 
function) (Curran et al., 2016; Teillard et al., 2016; McClelland et al., 
2023), as well as indicators to reflect management practices (i.e., 
livestock density), particularly for human-dominated landscapes 
(Herzog et al., 2013).

Species richness (the number of species within a defined region) 
and species evenness (which accounts for the number of species and 
their relative abundance within a community) are widely used direct 
measures of biodiversity (Moore, 2013). Since sampling the entire 
biotic community is practically infeasible, taxa that are ecologically 
important and sensitive to environmental factors are often selected as 
suitable representatives of biodiversity correlates (Büchs, 2003). For 
example, in a livestock system, representatives of major ecological 
functions, such as primary production (e.g., vascular plants), 
decomposition and nutrient recycling (e.g., soil microbes, nematodes, 
and earthworms), and pest control (e.g., spiders), could provide a 
better understanding of ecosystem functioning (Herzog et al., 2013). 
In addition, indicator species—those that respond to changes in the 
environment (Clergué et al., 2005)—such as aquatic and terrestrial 
invertebrates, algae, and plankton, provide insights into the health of 
the ecosystem, which is threatened by excessive discharge of nutrients, 
chemicals, and manure from livestock farming. Furthermore, 
arthropods in general receive widespread recognition as key taxa for 
reflecting overall species diversity, as they account for approximately 
65% of all multicellular species (Duelli and Obrist, 1998; Herzog 
et al., 2013).

Primarily based on species composition, a number of biodiversity 
metrics have been designed with the intention of assessing the state 
of and the influence on biodiversity. For example, metrics such as the 
mean species abundance (MSA) and the living planet index serve as 
state indicators of local ecosystem intactness and global decline in 
species, respectively (Teillard et  al., 2016; Rossberg, 2022). In 
contrast, potential disappearance fraction (PDF), which compares 
original species richness to the fraction remaining after human 
intervention, is widely used as a footprint metric, particularly in the 
context of LCA studies with multiple midpoint impact categories 
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(Goedkoop et al., 2008; Table 1). Although the MSA was initially 
developed in the context of the GLOBIO3 modeling framework as a 
state indicator, it has also been used in LCA to translate several 
midpoint impact categories into biodiversity impacts at the end 
point, especially within the livestock sector (Alkemade et al., 2009; 
Teillard et al., 2016). Despite high spatial variation (regional and 
global) of these metrics in pressure-state-response (PSR) and LCA 
frameworks, numerous metrics are being tailored and developed to 
suit different methodologies and management practices, such as 
confined and grazing systems of ruminants.

5 Research gaps, limitations, and 
future developments

One of the major limitations of current LCA models is that 
most account only for a single midpoint impact category, 
particularly land use change, in assessing biodiversity impacts 
(Souza et  al., 2015; Teillard et  al., 2016) in livestock systems. 
Although the livestock sector is a primary contributor to habitat 
change, other impacts associated with livestock production, such as 
climate change, eutrophication, overexploitation of resources, and 
spread of invasive species, are overlooked in LCA studies (Teillard 
et al., 2016). Moreover, land use ecological models that depend on 
the SAR are criticized for being oversimplified (Souza et al., 2015) 

and fail to account for positive contributions to biodiversity 
(Teillard et al., 2016). For instance, in well-managed semi-natural 
grasslands, extrapolation of reduction in land area to species loss 
can result in incorrect interpretations (Souza et  al., 2015). In 
addition, the use of potential natural vegetation as a land cover 
reference to estimate the impacts on biodiversity fails to distinguish 
between relative intrinsic values (e.g., diversity, ecosystem services) 
and productivity, assigning the same weight to land use change 
impacts across different habitat types (Curran et al., 2016; Teillard 
et al., 2016). Another disadvantage is that these models rely on a 
single metric (e.g., MSA, PDF), primarily at the species level 
(Table 1; Winter et al., 2017; Crenna et al., 2020; Lindner et al., 
2021), and rarely account for functional attributes (e.g., species 
functional traits and ecosystem services) (Teillard et  al., 2016). 
Therefore, they are unable to capture the full scope of biodiversity 
(Lindner et  al., 2021; Marques et  al., 2021), including species 
extinction (Teillard et al., 2016). Furthermore, these indicators do 
not account for ecological or conservational values, such as 
endemism and rarity, to demonstrate the individual contribution to 
biodiversity (Chaudhary and Brooks, 2018) and to illustrate 
taxonomic significance. Few LCA models and indices have been 
developed to suggest higher biodiversity and conservation value for 
rare and unique species compared to common species. However, 
the development of these models is constrained due to limitations 
in ecological data at the regional and global scales, challenges in 

TABLE 1  Life cycle assessment (LCA) methodologies that incorporate biodiversity in the context of livestock.

Citation LCA methodology Midpoints (impact 
category)

Biodiversity metrics Biodiversity proxy

Huijbregts et al. (2016) ReCiPe 2016 Land use

Climate change

Acidification

Eutrophication

Ecotoxicity

PDF Species composition

Verones et al. (2020) LC Impact Land use

Climate change

Acidification

Eutrophication

Ecotoxicity

PDF Species composition

Bulle et al. (2019) Impact World+ Land use

Climate change

Acidification

Eutrophication

Ecotoxicity

PDF Species composition

Weidema et al. (2008) StepWise Land use

Climate change

Acidification

Eutrophication

Ecotoxicity

Biodiversity adjusted Hectare 

Year (BAHY)

Species composition

Frischknecht et al. (2006) EcoScarcity Land use Eco-points (UBP) Species composition

Jeanneret et al. (2014) Land use Species composition

Rosenbaum et al. (2008) USEtox Ecotoxicity

Verones et al. (2022) GEP Global species extinction Species composition

Chaudhary and Brooks 

(2018)

LUIS Land use PDF Species composition
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assigning weighting factors for indicators based on their relative 
ecological importance (Herzog et  al., 2013), and the lack of 
consensus on CFs (Chaudhary and Brooks, 2018). For example, the 
IUCN Red List, which serves as a database for ecological studies, is 
less reliable at the global scale, and only a few species have been 
evaluated and listed at the regional level (Duelli and Obrist, 2003). 
Frischknecht and Jolliet (2016) recommended the determination of 
CFs at different levels (e.g., global, regional) and for different 
ecosystem types, while other studies have suggested the use of 
multiple indicators and drivers to investigate impacts on 
biodiversity across different dimensions and to include spatial 
details in impact assessments (Crenna et  al., 2020), aiming to 
address the existing weaknesses in current LCA studies. 
Alternatively, other approaches and tools, such as the PSR model, 
are widely used in assessing the impact on biodiversity at the local 
scale, where causal indicators translate the pressure and state of the 
environment (FAO, 2020). Although the PSR framework facilitates 
interpretation and decision-making, it fails to provide information 
on impacts across the life cycle of a product, especially off-farm 
impacts on biodiversity such as livestock feed production (Teillard 
et  al., 2016), and is therefore unable to provide insights into 
BF. However, the recent Biodiversity Multi-Scale Assessment of 
Product Systems (BioMAPS) framework proposed by Maier (2023) 
integrates ecological, conservational, and LCA requirements, 
including land use types and management practices, to assess 
impacts and risks at regional and global levels by scaling up from 
the local scale.

6 Conclusion

Biodiversity assessment is an important part of evaluating the 
sustainability of livestock production, as livestock farming has a 
significant impact on biodiversity depletion. Studies incorporating 
biodiversity in the LCA framework allow the identification of hotspots 
and quantification of biological impacts across the life cycle of animal 
products from various origins. Despite the availability of several 
models and methodologies, capturing the full scope of biodiversity in 
these studies is challenging due to its complexity and the limitations 
and weaknesses associated with these models. Regardless, these 
approaches offer valuable insights for potential interventions and 
mitigation strategies. Incorporating multiple indicators for different 
ecosystem functioning and management practices to reflect multiple 

dimensions of biodiversity would improve the reliability of LCA 
studies when comparing various livestock products.
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