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Rethinking shared mobility:
analyzing the commercial
sustainability of
demand-responsive transport in
Dubai

Utpal Deka and Deepthi Mary Dilip*

Department of Civil and Architectural Engineering, BITS Pilani Dubai Campus, Dubai, United Arab
Emirates

With the rapid pace of urbanization and the subsequent dominance of
private vehicle usage, cities are under increasing pressure to offer sustainable
alternatives to public transportation. Demand-responsive transport (DRT)
systems provide flexible, technology-enabled services that bridge first- and
last-mile connectivity gaps. This study assesses the operational and financial
viability of Dubai’s Bus-on-Demand (DBOD) service using Daganzo’s continuum
approximation framework, calibrated with empirical data from two service areas
in Dubai. From the agency perspective, the Alternating Priorities routing strategy
(i.e., alternating between nearest pickup and drop-off) was identified as optimal,
balancing distance optimization with service consistency and contributing
to shorter travel and waiting times. Cost efficiency is highest in compact
service areas with moderate demand, with optimal vehicle occupancy of 10–
15 passengers to minimize agency costs. To incorporate the user perspective,
value of time (VOT) was calibrated for DBOD and integrated with agency
costs. Based on the calibrated VOT, fleet size and operational parameters
were optimized within a system framework. Moreover, a comparative analysis
of three routing strategies across occupancy levels confirmed the superior
cost-effectiveness of the Alternating Priorities approach, as implemented in
DBOD. The study recommends that transit agencies refine vehicle dispatching,
routing, and scheduling strategies to achieve optimal occupancy levels, and
emphasizes the necessity of balancing agency and user costs for sustainable DRT
implementation. These findings provide transit agencies with an empirical, data-
driven framework to evaluate and optimize DRT services, supporting informed
decision-making for sustainable urban mobility.

KEYWORDS

demand-responsive transport (DRT), Bus-on-Demand, alternating priorities routing
strategy, value of time (VOT), commercial sustainability

1 Introduction

Given the steady rise in urbanization projected by the United Nations (United Nations,
Department of Economic and Social Affairs, 2019) and the subsequent increase in urban
transport passengers to the tune of 60–70% by 2050 (Chandakas, 2020), urban transport
planning systems play a critical role in fostering sustainable cities. Although public
transport serves as the backbone of transportation systems in densely populated cities
(Hörcher and Tirachini, 2021), private cars continue to maintain their dominance as the
primary mode of transportation today.

There is a need for alternative public transportation options that offer a
viable and sustainable alternative to these private vehicles (Zheng et al., 2024).
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Demand-responsive transport (DRT) has emerged as a
complementary solution to the existing public transportation
infrastructure with tailored services that can meet the demands of
the population. In recent years, the DRT has gained attention as an
effective solution for enhancing public transit services (Lu et al.,
2023; Azadeh et al., 2022; Dytckov et al., 2022; Mulley and Nelson,
2009; Coutinho et al., 2020). In contrast to the conventional transit
with fixed routes, the DRT system stands out for its flexible service
model with virtual routes and virtual stops, on-demand scheduling
and dynamic route adjustments (Dang et al., 2021; Huang et al.,
2020). The DRT system serves as a pivotal element in enhancing
larger multimodal transit networks, efficiently bridging first-
and last-mile (FLM) gaps. By also catering to intra-community
transport and reducing reliance on private cars (Mouratidis et al.,
2021; Chen and Wang, 2025), the DRT services clearly address
two pillars of sustainability, namely, social and environmental.
While promoting the use of battery-operated electric vehicles to
reduce greenhouse gas emissions, DRT services further contribute
to environmental sustainability through their flexible services
(Deka et al., 2023). However, despite their potential acceptability,
a number of DRT deployments globally have struggled with
commercial sustainability and operational optimality (Currie and
Fournier, 2020).

The current research study investigates the Dubai Bus-on-
Demand (DBOD) system, which has demonstrated notable success
in dense urban settings with mixed land use patterns. By analyzing
real-world data from DBOD, the study aims to identify routing
strategies and assess performance efficiency, particularly the
commercial sustainability of DBOD. The goal is to provide public
transport agencies with actionable insights for growth-oriented
DRT implementation. The focus of this article is, therefore, to
develop models that can be adopted by practitioners as budgeting
tools, before the full-scale implementation of these DRT services,
i.e., at the level of the pilot project. The literature review, therefore,
focuses on identifying the various modeling techniques that have
been adopted by researchers to assess the commercial feasibility
of DRT services. The motivation of the study is then presented,
followed by the study objectives. The rest of the article has been
organized as follows: In Section 2, the methodology is detailed,
describing the models used to estimate the agency and user costs.
Section 3 describes the case study characteristics, followed by the
calibration of the models using empirical data in Section 4. In
Section 5, a detailed analysis of DBOD characteristics is carried
out using the agency cost model to study the effect of changes
in demand density (or service area) on the cost incurred by the
agency. As focusing only on the parameters influencing the agency
costs may result in increased time spent in the system by the
users, the user cost models are defined and calibrated in Section
6. This is followed by the optimization of the system performance
to determine the optimal operating capacity and fleet size, as well as
the optimal routing strategy.

1.1 A literature review

In earlier decades, DRT services have received less attention
in terms of monitoring and understanding their performance
compared to fixed-route services (Currie and Fournier,

2020), due to a shorter history of observation and inherent
variabilities (Spielberg and Pratt, 2004). However, in the recent
past, DRT systems (Li and Quadrifoglio, 2009) have gained
widespread recognition as an effective solution for addressing
FLM connectivity challenges in urban areas (Chen and Wang,
2025). Harnessing the power of technologies like real-time traffic
information and dynamic routing (Dytckov et al., 2022; Rich et al.,
2023; Schlüter et al., 2021), this flexible service model provides
a guaranteed expected time of arrival (ETA). This makes it a
convenient, cost-effective, and environmentally friendly alternative
to private cars and traditional public transportation (Kim et al.,
2022; Deka et al., 2023).

While the DRT offers convenience, it comes with trade-offs, too.
The DRT systems (Campisi et al., 2023) are characteristically more
complex than fixed-route services, as they involve factors such as
trip scheduling, waiting times, and deviations for passenger pickup
and drop-off (Shang et al., 2019). Passengers may experience wait
times for vehicle pickups (Zhao et al., 2024), and once on board, the
vehicle may detour to accommodate other passengers, impacting
the quality of service. The service quality (Džupka et al., 2025) can
be assessed based on factors like waiting times, in-service times, and
punctuality concerning passengers’ desired arrival times at their
destinations (Alonso-González et al., 2018).

The National Transit Database (NTD) statistics indicate that
although DRT services make up only 5–7% of the overall
transportation agency demand, they contribute substantially,
accounting for 20–25% of the service owner’s operational
expenses. This has resulted in only a handful of successful DRT
implementations across the world (Enoch et al., 2006; Baier et al.,
2024; Currie and Fournier, 2020). These failures are often linked
to overestimated budgets, limited field insights, and reliance on
complex simulation models (Campisi et al., 2023; Bastarianto et al.,
2023). Additionally, DRT services often struggle with low farebox
recovery due to limited ridership and high per-trip costs (Mulley
and Nelson, 2009). Despite these challenges, DRT systems continue
to be explored as flexible and innovative transportation solutions,
particularly in low-density or FLM contexts (Chen and Wang,
2025).

Modern DRT analysis utilizes diverse systematic approaches,
each with unique benefits and limitations. Simulation-based
models, such as SUMO and MATSim, offer detailed performance-
based insights and can represent sophisticated response-oriented
dynamics (Markov et al., 2021; Bastarianto et al., 2023) but
require extensive data and resources (Markov et al., 2021). Agent-
based models provide a micro-level understanding of individual
passenger and vehicle interactions (Marković et al., 2016), while
machine learning approaches can enhance routing and demand
prediction through algorithmic learning (Wang et al., 2023).
More recently, hybrid approaches combining multiple approaches
have gained momentum for their ability to capitalize on positive
attributes across different analytical frameworks.

In recent times, many of the DRT deployments have faltered
(Currie and Fournier, 2020) and have not been commercially
viable. From a practitioner’s viewpoint, the main reasons for
this are the overestimated budgets created without practical field
insights, coupled with the challenges transit agencies face in
developing complex simulation-based models (Markov et al., 2021).
These models demand extensive data and resources, often proving
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infeasible for real-world applications. As a result, there is an
increasing necessity to develop models and estimates for the
performance (Westerlund, 2016) and cost of DRT services (Militão
and Tirachini, 2021), with a particular emphasis on identifying
practical strategies to enhance system efficiency (Alonso-González
et al., 2018; Jang et al., 2025). While some researchers (Amirgholy
and Gonzales, 2016; Rahimi et al., 2018) have advocated the
use of analytical models due to their simplicity, efficiency, and
practicality, others (Rich et al., 2023; Markov et al., 2021) have
preferred statistical and machine learning models as they are
computationally inexpensive and yield predictions instantaneously.
The analytical modeling approach provides valuable data-driven
insights and practical recommendations for optimizing transit
operations, making them accessible and cost-effective for a wide
range of practitioners and policymakers.

The analytical modeling approach provides valuable data-
driven insights and practical recommendations for optimizing
transit operations, making them accessible and cost-effective for
a wide range of practitioners and policymakers, though the
application of these models as budgeting tools remains relatively
underexplored. The CA models were effectively used by Rahimi
et al. (2018), Amirgholy and Gonzales (2016), and Connors et al.
(2025) to evaluate the efficiency of implementing different policies
that change the demand density for DRT services in New Jersey. In
addition to demand density, the model was also adopted to analyze
the effect of changes in service area because of policy changes,
or the result of normal socio-economic processes that pattern or
settlement and demand. In this study, the analytical model is taken
a step further and adopted as a simple budgeting tool that can
be adopted by public transit agencies before full-scale launch of
these DRT services, i.e., after launching the pilot project. In the
light of past DRT failures (Enoch et al., 2006), these models take
on much significance, enabling the agencies to make informed
decisions about expanding to other service areas using data that
is easily available at the pre-launch stage. Once the DRT system
is up and running, it is imperative to ensure that the services are
commercially sustainable. The continuum approximation models
(Rahimi et al., 2018; Amirgholy and Gonzales, 2016) can be adopted
to approximate the operating cost for three prevalent loading-
unloading operating strategies. Rahimi et al. (2018) adopted the
strategy recommended by Daganzo (1978), which provided lower
riding and waiting times for users for a given fleet size in detailed
simulation models. However, a comparison of the three routing
strategies was not carried out for the ADA paratransit service in
New Jersey adopted in the study.

1.2 Motivation for the study

The Dubai Bus-on-Demand (DBOD) system offers a unique
case for analysis of an up-and-running DRT system. A major
factor for the success of DBOD is its targeted approach to serving
smaller geographic regions compared to other global cities. This
approach presents unique challenges and opportunities for analysis.
Smaller service areas enable optimized routing and reduced travel
times, which can lead to higher vehicle occupancy rates and lower
operational costs. In addition to this, compact service areas help

maintain a high level of service consistency and minimize overall
travel time for passengers.

The service has been extended to additional areas, including Al
Barsha, Dubai Silicon Oasis, Business Bay, and Al Nahda. These
expansions have been fueled by the necessity to provide flexible and
efficient transportation options in rapidly developing urban areas.
These smaller areas also need strategic planning and optimization
to ensure that the service remains cost-effective and meets the needs
of the users. The unique characteristics of Dubai’s service areas
require a detailed analysis of demand patterns, vehicle occupancy
levels, and routing strategies to optimize the balance between
service coverage and operational efficiency.

The choice of Daganzo’s (1978) continuum approximation
framework for this study requires justification within the broader
context of contemporary DRT modeling approaches. While
considerable methodological advances have emerged in the field
over the past four decades, including state-of-the-art simulation-
based models, agent-based systems, and machine learning
algorithms, the selection of Daganzo’s CA framework is purposeful
and systematically motivated. Due to their parsimonious property,
they offer simple and often closed-form solutions to determine
the optimal occupancy levels and fleet size. Moreover, they offer a
theoretical framework for understanding the impact of agency and
user costs on the routing strategy.

Amirgholy and Gonzales (2016) demonstrated that the
efficiency of the DRT system can be improved by optimizing
the operating capacity of the system, which is one of the
parameters that define the agency’s operating decision. However,
the optimization strategies proposed were validated only with a
numerical example, adopting an assumed value of the value of time
(VOT) attributed by the DRT users. To the best of the authors’
knowledge, the VOT of users has not been calibrated elsewhere in
the literature. In this study, a practical approach to calibrate the
VOT from empirical data is proposed to assess the feasibility of
these services in terms of occupancy levels, fleet size and routing
strategies. In this way, these models can be adopted as relatively
simple budgeting tools that can be implemented at the pilot stage
with only a few input parameters.

The unique attributes of Dubai’s service areas, such as the
concentrated service areas and balanced demand levels, highlight
the importance of customized approaches to DRT systems. The
success of DBOD in compact service areas suggests that strategic
routing and demand management can enhance efficiency. To
validate this, empirical data available from the DBOD running in
Dubai, United Arab Emirates (UAE), is adopted to calibrate the
components of the operating cost models, and thereby, identify the
routing strategy adopted in Dubai. By calibrating CA models with
DBOD data, this study aims to bridge the gap between theoretical
modeling and real-world implementation, offering actionable
insights for transit planners. Once the continuum approximation
models have been calibrated for the service areas, they allow transit
planners to study trade-offs between costs and levels of service
through quick sensitivity analyses. Despite the case-specific nature
of the results for Dubai’s BOD, the understandings gained from this
study will provide guidelines and/or recommendations for similar
cities or service areas. Other cities with similar urban transport
challenges can draw lessons from Dubai.
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1.3 Objectives of the study

The study adopts an analytical modeling approach to evaluate
the commercial sustainability in different service areas in Dubai,
UAE. The objective of this study is as follows:

1. To calibrate analytical models using Daganzo’s continuum
approximation methods with empirical data from Dubai’s Bus-
on-Demand (DBOD) system to ensure precise performance
estimation, which can be adopted to undertake comprehensive
cost analysis.

2. To determine the vehicle occupancy levels that benefit improve
system efficiency, in terms of cost and time.

3. To identify the optimal number of requests served per unit time
to minimize the total cost (agency plus user costs), calibrated by
the VOT.

4. To analyze different routing methods to identify the most
effective one for Dubai’s DRT system, to improve efficiency
and/or reduce costs.

2 Methodology

In order to approximate the performance of the DRT system,
various analytical (Amirgholy and Gonzales, 2016; Rahimi et al.,
2018; Mehran et al., 2020; Huang et al., 2020; Papanikolaou
and Basbas, 2021; Lu et al., 2011; Connors et al., 2025) and
statistical models have been developed (Marković et al., 2016;
Sultana et al., 2018; Wang et al., 2023), allowing transportation
agencies to roughly estimate the cost of introducing the service.
These models establish functional relations between the capacity
of a DRT system and characteristics of the service region, level-
of-service requirements and operator constraints (Pavanini et al.,
2023). Analytical models based on real-world field operational
parameters capture both operator and user-side variables (cost
function, network design variables, and user cost).

The methodology adopted to calibrate the agency cost models
and develop the models to predict the system performance, by
considering the user cost models, is depicted in the flowchart
presented in Figure 1.

2.1 Agency cost models

The analytical models proposed by Daganzo (1978) are adopted
in this study to approximate the agency operating cost for three
prevalent loading-unloading operating strategies (Rahimi et al.,
2018; Amirgholy and Gonzales, 2016). The cost of operating a DRT
system is influenced by factors such as demand patterns, quality
of service, and various operating parameters, both operational and
geographical (Rahimi et al., 2018). The agency (service owner’s)
costs can be divided into three main categories: fleet size (M),
vehicle hours traveled (VHT), and vehicle miles traveled (VMT),
along with some fixed costs. The complete agency cost (Rahimi
et al., 2018) can be determined by aggregating the expenses linked
to each category, in addition to the fixed costs (Z). Thus, the total
agency cost (AC) is presented as a function of variables that are

related to service owner’s and fixed expenditures.

AC = γ1(M) + γ2(VHT) + γ3(VMT) + Z (1)

γ1, γ2, and γ3 symbolize the added cost for each extra vehicle,
vehicle-hour, and vehicle-mile, respectively. The coefficients γi can
be determined by carrying out a multiple regression analysis for
various actual observed data sets with annual total cost as the
dependent variable and the estimated M, VHT, and VMT as the
independent variables.

The components of the operating cost of the DRT system
are briefly described below for the sake of completeness, and
more details can be found in previous studies (Rahimi et al.,
2018; Amirgholy and Gonzales, 2016). These models are based on
the assumption of uniformly distributed demand in each service
region, and the operating algorithm adopted by the driver to serve
the requested trips aggregates the performance of the system.

Fleet Size (M) = λ

(
τ + kir

√
A

v

)
(2)

Vehicle Hours Travelled (VHT) = λtp

(
τ + kir

√
A

v

)
(3)

Vehicle Miles Travelled (VMT) = λkir
√

A (4)

wherein ki represents the following three DRT operations strategy
(Amirgholy and Gonzales, 2016) as defined below.

(i) The Nearest Point Strategy: In this strategy, the vehicle moves
to the closest available pickup/drop-off point. Thus, the strategy
is tied to optimize for the minimum total distance traveled, and
moves between the (virtual) stops, irrespective of whether it is
origin or destination, with no fixed sequence between pickups
and drop-offs.

ki = 1√
2nw

(5)

(ii) Batch Processing Strategy: This strategy separates the
operations into distinct pickup and delivery phases and collects
nv requests first (pickup phase) and then delivers all collected
requests (delivery phase).

ki = 1√
nw

+
√

2 + 4nv − 1.45
nv

(6)

(iii) Alternating Priority Strategy: In this strategy, the vehicle
collects initial nv requests and then alternates between the
nearest pickup and drop-off. The strategy tries to balance
distance optimization with service consistency.

ki = 1√
nw

+ 1√
nv

(7)

wherein “r” is the circuity factor in a DRT system, which
measures how much longer the actual travel path is compared to
the shortest (straight-line) distance between a passenger’s origin
and destination. In other words, the circuity factor captures the
inefficiencies introduced by shared routing, such as detours for
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FIGURE 1

Methodology for system optimization.

picking up or dropping off other passengers. Thus, models provide
an analytical formula that physically relates explanatory factors,
such as the service area (A), the demand (λ), and the quality of
service measure (r), to operational outcomes.

2.2 User cost (UC) models

In addition to the expenses incurred by the agency for a DRT
service like the Dubai BOD, it is necessary to account for the costs
incurred by the users. The user costs include higher delays, in-
service travel time, earliness and lateness penalty that arise due
to inadequate system capacity (Amirgholy and Gonzales, 2016).
While some passengers may adapt their request times by adjusting
their request time, the passenger already aboard the vehicle will
experience a delay as the vehicle makes the detour (Huang et al.,
2020). The cumulative effect of these individual results could
result in equilibrium conditions, where Vickrey’s (1969) congestion
model can be adopted to approximate the general user cost.
Accordingly, the user cost model has been adopted in this paper
to study the impact of the DBOD parameters on the total cost
(Amirgholy and Gonzales, 2016).

UC = VOT[TD + TS + eTE + lTL] (8)

where VOT is the value of time for the users, TD is the delay, TS
is the in-service time, TE is the earliness, TL is the lateness, and e
and l represent the relative cost of earliness and lateness times in
equivalent units of travel time. ω denotes the peak demand rate.

From the user equilibrium queueing diagram, the components of
the user cost are derived as:

TD = N2
Qel

2λ(e + l)
(9)

TE = 1
2

N2
Q

(
l

e + l

)2 (
1
λ
− 1

ω

)
(10)

TL = 1
2

N2
Q

(
e

e + l

)2 (
1
λ
− 1

ω

)
(11)

Ts = NQ
M(nv − 0.5)

λ
(12)

where NQ is the total demand within a time period. The factors
for earliness and lateness delay have been adopted from literature
(Amirgholy and Gonzales, 2016; Huang et al., 2020) as 0.5 and
1.5, respectively.

3 Case study description and service
characteristics

Dubai, located in the UAE, is renowned for its modern
infrastructure and efficient public transportation system. The
city has experienced rapid urban development and population
growth, resulting in a significant demand for reliable and
convenient transportation options for residents and visitors alike.
To meet these needs, Dubai has implemented a comprehensive
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public transportation network that includes various modes
of transportation.

The pilot project in Al Barsha (Service Area 1) and Dubai
Internet City (DIC) catalyzed meaningful progress toward the
Roads and Transport Authority’s (RTA’s) ridership growth goals.
The project’s expansion to three additional service areas, namely
Dubai Silicon Oasis (Service Area 2), The Greens, International
City, and (with inter zonal connectivity to the Dubai Academic
City), provided additional FLM access to fixed-route services,
particularly for those who live in areas difficult to serve with
traditional fixed-route bus and metro services (see Figure 2).
Although services in DIC and The Greens were discontinued due
to the COVID-19 pandemic, the BOD initiative has since evolved,
and it remains operational in select areas, including expansions
into new areas (Business Bay and Al Nahda), supported by

continuous enhancements in digital booking, routing algorithms,
and service coverage.

In 2024, RTA further advanced its smart mobility agenda
by launching the Smart Bus Pooling project—an AI-driven
initiative that dynamically groups passengers with similar routes
into shared buses. The Smart Bus Pooling service is designed
to cover major areas of Dubai, with a focus on improving
accessibility, reducing underutilized stops, and enhancing service
reliability through intelligent scheduling and stop placement.
Together, these initiatives reflect RTA’s commitment to integrating
intelligent, demand-responsive solutions into the city’s broader
public transport ecosystem.

In this study, the empirical data for Service Areas 1 and 2 (see
Table 1) are used for further analysis. The Service Area 1 comprises
a 15.3 km2 area that provides FLM connection to the metro

FIGURE 2

Dubai Bus-on-Demand initial service areas.

TABLE 1 DBOD service area characteristics.

No. Parameter Service Area 1 Service Area 2 Comments

1. Area of the community, A 15.30 km2 7.87 km2 Actual

2. Average speed of vehicle, v 27.21 km/h 33.26 km/hr. Calculated

3. Average Boarding and alighting time, τ 35 s per passenger 35 s per passenger

4. No. of equally distributed virtual stops, n 383 197 Calculated based on the community area and pickup
walk distance parameters

5. Maximum pickup walk distance (PU Walk) 200 m 200 m Assumption based on operation KPI

6. Maximum ETA (Estimated Time of Arrival), i.e.,
Waiting Period, T

15 min 15 min Assumption based on DBOD KPI

7. Vehicle Capacity, C 10 10 Actual

8. Daily demand (average) λ 796 312 Actual
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stations; many users also travel between home and leisure/work
locations within the mixed-use zone, making it the most preferred
reference community for further detailed analysis. Service Area 2,
the Dubai Silicon Oasis, covering an area of 7.8 km2, also consists
of intra-community travel without a metro head connection. The
real-world operation data set from Service Area 1 has been utilized
for the base-case scenarios, and the agency cost models developed
in this study have been tested for Service Area 2 parameters.

The actual operational data set for Service Area 1 in Dubai is
available for over a period of 3 months, from morning 5 am to
midnight 12 depicting the variation in hourly operation.

3.1 Demand and occupancy by time-of-day

The other service characteristics for the two areas are presented
in Figure 3, depicting the total demand and vehicle occupancy by
time of day, averaged over the dataset available. The total demand
in Figure 4 includes the completed rides as well as the demand that

is not met, due to cancellations or other reasons. For both areas,
as the demand varies by the hour, each day is broken down into 1-
h time periods to capture the varying demand characteristics. The
morning peak is observed approximately at 8 am, while the evening
peak is captured between 5 and 6 pm.

The vehicle occupancy trends reveal a consistent clustering
of passengers throughout the day, with average occupancy levels
exceeding six passengers per vehicle in Service Area 1 and over
4 in Service Area 2 during most operational hours (see Figure 5).
These figures indicate a relatively efficient utilization of vehicle
capacity, particularly during peak periods. Despite differences in
area size and connectivity to metro stations, both service areas
exhibit similar temporal patterns in demand distribution and
occupancy levels, with pronounced peaks approximately 8:00 AM
and between 5:00 and 6:00 PM. This alignment suggests that
user travel behavior in both areas is influenced by common
urban activity cycles, such as work and school commutes,
highlighting the potential for standardized service planning across
different zones.
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Vehicle occupancy (utilization).

3.2 Met-demand by time-of-day

In undersaturated systems, the demand rate will always
remain below the system capacity (Amirgholy and Gonzales,
2016). However, as seen in Figure 4, the demand rate for
Service Area 1 often exceeds the capacity, particularly during
the evening peak period between 5 pm and 9 pm. For instance,
the met-demand at 8.00 pm is approximately 67% (and the
observed number of vehicles is approximately 4.88), representing
a situation of oversaturated conditions. Moreover, the data
indicate that nearly 32% of the daily ride requests could not
be completed.

4 Calibration of analytical models

The aggregate model builds on the basic operating assumptions
for DRT services, where demand is uniformly distributed within a
roughly circular region, and conditions do not change significantly
within an analysis time period. For this study, we break each day
into time periods of length tp = 1 h, within which the demand
rate, λ, and network traffic speed, ν, are assumed to be constant. At
any time, all of the demand within a pickup window of duration
potential T are customers to pickup. In order to calibrate the
models using Daganzo’s model, Equations 2–4 are rewritten as
follows (see Rahimi et al., 2018, for more details):

y1 = r1x1 (13)

y2 = r2x2 (14)

y3 = r3x3 (15)

4.1 Determination of routing strategy for
DBOD

Earlier simulation models using hypothetical data (Daganzo,
1978) and the empirical data for New Jersey’s paratransit system

(Rahimi et al., 2018) showed that for a given fleet size, the
Alternating Priority strategy (3) provides lower ride and waiting
times, outperforming the other two algorithms, especially as the
service area gets larger. As the Dubai BOD system is currently
serving much smaller areas with a small fleet size (less than 10),
the routing strategy adopted by the DBOD is determined from the
available data.

Using the observations from Dubai’s BOD, the travel
adjustment factors r1 for the fleet and VHT models, and r2 for
the VMT models are calibrated using ordinary least squares
linear regression for all three routing algorithms. The results
presented in Table 2, along with the adjusted R2 values, indicate
that observed (aggregated) data appear to be a good fit for all
routing strategies, with R2 values above 0.9 for both service areas.
However, the travel adjustment factors are significantly different,
with values higher than 5 for Strategy 1 and hovering closer to
2 for the other two strategies. As this factor is indicative of the
efficiency of the DRT service performance and network circuity, it
is imperative to identify the actual strategy adopted by the drivers
from available data.

As the aggregated models do not capture the detailed pattern
of the pickups and drop-offs, by averaging out the system
performance, the models are now calibrated for the disaggregated
data available. Moreover, the root-mean-square error (RMSE) is
also calculated to quantify the average squared difference between
the actual data, yi and the predicted values ŷi using,

Root Mean Square Error (RMSE) =
√

1
n

∑n

i=1
(yi − ŷi)2 (16)

where n is the size of the dataset.
The average circuity factor determined through the best-fit

regression equation by plotting the actual ride distances determined
by using Google Maps key with the straight-line distances between
the pickup and drop-off coordinates for each of the completed rides
for the data set works to be 2.08 (regression coefficient 0.85). The
circuity factor for routing strategy 3 closely resembles the travel
adjustment factor for both the VMT and fleet size (M) model.
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TABLE 2 Model calibration results for the three operating strategies (aggregated).

Service area Model coefficients

Fleet size (M) and VHT VMT

Strategy 1 Strategy 2 Strategy 3 Strategy 1 Strategy 2 Strategy 3

r1 R2 r′1 R2 r′′1 R2 r2 R2 r′2 R2 r′′2 R2

Service Area 1 7.15 0.94 1.93 0.93 2.49 0.94 5.92 0.94 1.54 0.93 1.98 0.94

Service Area 2 8.42 0.93 2.7 0.94 3.3 0.94 8.13 0.92 2.56 0.89 3.15 0.9

TABLE 3 Model calibration results for the three operating strategies (disaggregate).

Service area
and RMSE

Model coefficients

Fleet size (M) and VHT VMT

Strategy 1 Strategy 2 Strategy 3 Strategy 1 Strategy 2 Strategy 3

r1 R2 r′1 R2 r′′1 R2 r2 R2 r′2 R2 r′′2 R2

Service Area 1 6.98 0.92 1.67 0.92 2.18 0.93 6.66 0.85 1.57 0.80 2.05 0.82

RMSE 1.70 1.75 1.66 49.85 98.39 54.72

Moreover, the RMSE is calculated to quantify the average squared
difference between the observed data and predicted data, which is
minimal for routing strategy 3 as compared to routing strategy 2
(see Table 3).

4.2 Development of agency cost models

The applications of the agency cost model shed light on ways
in which demand and operation characteristics of the DRT system
affect the agency cost in terms of fleet size, vehicle hours traveled,
and vehicle miles traveled. Since the time period tp is adopted as 1 h
in this study, the VHT will be equal to the fleet size (M). In this case,
Equation 1 will be reduced to:

AC = ϒ1(M) + ϒ2(VMT) + Z (17)

For Service Area 1, the agency cost models developed using the
aggregated data are obtained as follows:

ACagg = 3.915 (M) + 3.582 (VMT) − 35.49 (18)

The higher value of the fleet size (M) coefficient, particularly
observed in the case of the disaggregate model, highlights the need
of operating the right number of vehicles to reduce the agency’s
operating costs (Rahimi et al., 2018).

5 Analysis of DBOD characteristics
using the agency cost model

In order to analyze the service characteristics of DBOD, the
agency cost model is expressed in terms of the service area
parameters as follows:

AC (λ, A) = α

(
1√
λT

+ 1
nv

)
λ
√

A + βλ + z (19)

FIGURE 6

Agency cost vs. service area.

where α = r1γ1
2v + r2γ2

2 and β = (b1 + b2)( γ1) are fixed parameters
independent of demand, service area and occupancy.

5.1 Effect of service area changes at varying
levels of demand density

The effects of the service area and the demand density
on agency costs are depicted in Figure 6, indicating that
for smaller areas, the influence of the demand density on
the agency costs is not significant. However, the influence
of the demand density grows with the area, and for
larger communities where the demand is more spread
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out and for longer riding distances, the agency costs can
increase significantly.

While the agency cost model was developed using the
aggregated data from Service Area 1 (area of 15.31 km2), these
analytical models can be used for quick estimations of other areas
with similar service characteristics. For instance, for a service
area of 8 km2, the costs incurred by the agency are estimated

FIGURE 7

Agency cost vs. passenger demand.

to be approximately AED 148/h when the demand density is
expected to be approximately 20 pax/veh. From the empirical data
available for Service Area 2 (area of 7.87 km2), the agency cost
was approximately AED 134/h, which is reasonably close to the
estimated costs.

From Figure 7, for nearly equal values of rider density
(approximately 5 pax/km2/h as shown in the figure), when the
density is achieved by increasing the demand from 60 to 100
pax/h, the agency cost is nearly two times that when the same
density is achieved in a smaller area. A similar conclusion can be
drawn from Figure 8 (depicting the effect of both demand and
area together) as well, i.e., an increased density as a result of
increased demand growth (pax/h) will lead to a greater increase in
agency cost than when the same density is reached by reducing the
service area. This suggests that while expanding service coverage
or accommodating higher demand may be necessary, doing so
without strategic optimization can significantly burden operating
budgets. Notably, the most cost-efficient operations occur in
compact service areas with moderate demand levels, reinforcing
the importance of rider density-focused planning in transport
service design.

5.2 Effect of changes in demand density (or
service area)

In order to determine how any change in the service area or
demand affects the costs, the average cost per trip is computed by

FIGURE 8

Effect of service area on the agency cost.
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FIGURE 9

(A) Agency cost for combinations of demand and service areas. (B) Agency cost for combinations of demand and smaller service areas.

dividing the agency cost in Equation 19 by λ, which is plotted in
Figure 9, showing all combinations of demand and service areas.
As it is desirable to implement changes only if they cause a shift to

a lower cost contour (or at least remain on the same contour), the
slope of the average cost contour is computed as follows (Rahimi
et al., 2018):
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dλ

dA
=

λα
(

1√
T
+

√
λ
nv

)
αA + 2z

√
A
λ

(20)

When a policy is implemented that changes the rider density
to δnew (hourly pax/area), the DBOD service becomes more cost-
effective only if δnew > dλ

dA . In other words, the system scales
efficiently only if the demand outpaces the critical slope of the
average cost contours. For example, if the service area is expanded
from 20 to 25 km2, then, to maintain cost-effectiveness at constant
occupancy levels, the demand must increase from 38 to at least
78 passengers per hour. If, on the other hand, the maximum
rider density that is expected with the increased service area is
only 68, the (slightly) increased agency costs will have to be
justified. For this particular scenario, any new policy must yield
a rider density greater than 8 pax/h/km2 (i.e., 78–38/25–20) in
this region to be cost-effective. If demand grows more slowly than
this threshold, the average cost per trip increases, making the
expansion inefficient.

Another observation that can be made from Figure 9B is that
the contours are steeper in the case of the expansion of smaller
areas. For instance, in the case of Scenario A (red arrow), the rider
density needs to be increased from 1.8 to approximately 6.2 hourly
pax/area, while in the case of Scenario B (black arrow), the rider
density is expected to increase from 1.2 to 3.5 for the policy to
be cost-effective.

5.3 Analysis of vehicle occupancy

As the vehicle occupancy (or the vehicle utilization) is one of
the significant variables affecting the costs, this section examines
two related parameters, namely the target occupancy level, ntarget

v
(to reduce the agency cost) and the optimal occupancy level, n̂v (to
minimize the time spent in the system).

5.3.1 Target occupancy level
The effect of occupancy on the agency cost at constant

demand levels, keeping all other parameters constant, is depicted
in Figure 10. For demand levels (λ) of 40, 60, and 80 requests/h, the
agency costs drop significantly between the occupancy levels of 10
and 15 pax/vehicle. This indicates that the DBOD, despite being a
flexible transportation mode, still retains the “economies of scale”
characteristics of the public transit system. When the occupancy
levels are below 5, the DBOD can be considered as a typical ride-
sharing service, i.e., the taxi service (Huang et al., 2020). As the
agency costs become steady above 20, the operating costs cannot be
further reduced by deploying larger vehicles with higher capacities.

For Service Area 1, with an average occupancy of 6.9
pax/vehicle, the DBOD system operates closer to the ride-sharing
(taxi-like) region rather than the high-efficiency public transit-
like zone. This implies that the economy of scale is not being
achieved, and the cost per trip is still quite high. In order to achieve
the benefits of the “economies of scale” (where costs drop due
to higher utilization), the target occupancy level should be 10–
15 pax/vehicle. This can be achieved through vehicle dispatching,

FIGURE 10

Effect of occupancy on the agency cost.

FIGURE 11

Fleet requirement for achieving optimal occupancy.

routing, or scheduling strategies that need refinement. On the other
hand, deploying larger vehicles with higher capacity would not help
unless occupancy also rises.

5.3.2 Optimal occupancy level
In order to determine the optimal occupancy level, the number

of requests awaiting service nw (for Strategy 3) can be computed
from Equation 21 as follows (for more details, refer to Daganzo,
1978):

nw =
(

M/λ − (b1 + b2)
0.5r1

√
A/v

− 1√
nv

)−2
(21)

and the total time spent in the system is

t = M(nv − 0.5) + N
λ

(22)
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Fleet requirement for achieving optimal occupancy.

The occupancy level that minimizes t subject to Equation 21 is
the optimal number of passengers on each vehicle and is given by
n̂v = n̂w/M2/3. Thus, the optimal occupancy level that minimizes
the time spent in the system is shown in Figure 11.

The figure indicates the optimal occupancy levels for different
fleet sizes (M) that will reduce the time a rider spends in the system.
For Service Area 1, with a fleet size (M) of 7, it can be seen that
optimal occupancy levels are estimated to be below 6.

Thus, the ntarget
v for the DBOD is estimated to be in the range

of 10–15 pax/vehicle to achieve economies of scale, while the
occupancy levels that optimize the total spent in the system t are
below 6. For Service Area 1, the average occupancy level is 6.9; the
occupancy levels vary from 6 to 11 in the peak periods, as depicted
in Figure 12. From this analysis, it is clear that the DBOD service
in Area 1 tries to achieve a balance between reducing the total time
spent in the system and the agency costs (i.e., by trying to increase
occupancy levels at peak times). The total time spent in the system
reflects the VOT of the Bus-on-Demand users, and in addition
to the evaluation of the agency costs, it is crucial to consider the
consequences of user costs on passenger experience.

User costs, such as delays, in-service travel time, earliness,
and lateness penalties, directly impact the overall satisfaction and
reliability of the DRT system. In case the user costs are higher,
it may lead to longer waiting times, rendering the service less
reliable, thereby affecting the passenger satisfaction and service
fulfillment levels. By optimizing the number of booking requests
served per unit time and stabilizing both agency and user costs,
we can optimize the efficiency and reliability of the DRT system.
This, in turn, will improve the reliability of the service offerings,
enhancing the passenger experience, and hence the user costs need
to be duly considered in this study.

6 Optimization of system demand

While the study so far has been focused on the agency costs,
there is an inherent trade-off between the operation costs and the
quality of service, as observed through the discussion of the optimal

occupancy level. To account for the quality of service, there should
be a balance between the agency costs and user costs.

In oversaturated system conditions, it is infeasible to serve all
the users at the requested times, so users will experience some delay.
This is particularly noted in the evening peak times for DBOD, as
discussed earlier. To account for this, the user cost (UC) model is
adopted from Amirgholy and Gonzales (2016) as follows:

UC = VOT[TD(λ) + TS(λ, nw) + eTE(λ) + lTL(λ)] (23)

TD = c1
1
λ

where c1 = N2
Qel

2(e + l)
(24)

TE = c2
1
λ
− c

′
2

1
ω

where c2 = c
′
2 = 1

2
N2

Q

(
l

e + l

)2
(25)

TL = c3
1
λ
− c

′
3

1
ω

where c3 = c
′
3 = 1

2
N2

Q

(
e

e + l

)2
(26)

NQ represents the total demand (including not-completed
rides) and NQ = tp∗ω, where ω is the slope of the Wished Curve,
which indicates how quickly the cumulative number of wished
request times increases in a DRT system. A steeper slope means
that users’ desired request times are concentrated within a shorter
time frame, leading to higher demand peaks. Also, the value of
ω affects the total earliness and lateness experienced by users.
When ω is high, the wished request times are more concentrated,
potentially increasing the discrepancy between actual and wished
delivery times.

VOT denotes the user’s value of time factor, TD (λ) is the
delay factor, TS(λ, nw) is the in-service time for the adopted
operating strategy, TE is the earliness, TL is the lateness, and e
and l represent the relative cost of earliness and lateness times in
equivalent units of travel time. Earliness and lateness are defined
as the time gap between the actual and wished delivery of users to
their destinations.

For Strategy 3, the service delay is given by:

TS = NQ
M(nv − 0.5)

λ
(27)
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The earliness time factor e and lateness time factor l are scalars
that satisfy e ≤ 1 ≤ l (Small, 1982), by which the cost of arriving too
early or too late is accounted for. The total cost incurred includes
the agency and user costs, which are increasing and decreasing
functions, respectively, of the demand level λ (i.e., the number of
requests served per unit time). To illustrate this, consider a fixed
service area, where the travel characteristics are captured by the
speed v and r1 (and r2), the agency cost is a function of the demand
and the number of users awaiting service, nw. Equation 19 can be
rewritten as follows:

AC = ϒ1M(λ, nw) + ϒ2VMT(nw) + Z (28)

For the system optimization problem, the agency cost model
was developed for the disaggregate dataset available for 3 months
in Service Area 1 because disaggregate-level data captures detailed
variations and patterns that might be lost in averaged aggregate
data, providing a more accurate and nuanced understanding of the
system’s performance.

ACdisagg = 8.601 (M) + 3.072 (VMT) − 9.605 (29)

For the average values of ETA, T and occupancy nv, the agency
cost is an increasing function of λ as shown in Figure 6.

On the other hand, the user cost model is a decreasing function
of λ as seen from Equations 22, 23. The computation of the user
cost in Equation 22 requires the VOT factor. While previous studies
(Amirgholy and Gonzales, 2016) used assumed VOT values in
hypothetical settings, a realistic estimate is crucial for computing
user costs in Dubai’s DBOD system. This has been addressed by
determining the optimal operating capacity λ∗, as seen in the
next section:

6.1 Optimal operating capacity

The operating capacity of the system is the maximum rate at
which requests can be served, depending on the fleet size and other
system characteristics. The efficiency of the system can be enhanced
by determining the optimal operating capacity, λ∗ which minimizes
the sum of user and agency costs. This necessitates that the number
of requests to be served, nw should be held constant (Amirgholy
and Gonzales, 2016). Theoretically, the average requests awaiting
service can be approximated by:

n̂w = λel
2(e + l)

(30)

λ∗ = arg minλ (TC) = arg minλ

(
AC(λ, n̂w

) + UC(λ, n̂w))

(31)

λ∗ =
√

C2

C1
(32)

where C1 represents the coefficient of λ and C2 represents the
combined coefficients of 1

λ
.

It is important to have a realistic estimate of the VOT in order
to compute the user costs for the service areas in Dubai. To achieve
this, a time approximately 7 am, when Met Demand is ∼85%, is
used to calibrate VOT under near-optimal conditions. At this time,

FIGURE 13

Optimum operating capacity.

the demand is 42 pax/h, with six vehicles deployed. The calibrated
VOT is tested using the demand level at 8 am, when the demand is
60 pax/h, but the Met Demand rate is only 75%.

6.1.1 Calibrating VOT for aggregated data
A trial-and-error method is employed to calibrate the VOT

from the data. For a VOT of 4.5 AED/h, and an earliness factor
of 0.31 and a lateness factor of 1.5, the optimal demand λ∗ is
39.96, and the optimal fleet size M∗ (obtained by substituting λ∗

instead of λ in Equation 2) is 5.9. While the lateness factor l has
been adopted from literature (Shang et al., 2019), the earliness
factor of 0.31 was calibrated along with the VOT. Testing this VOT
at 8 am (when demand rises to 61 pax/h) shows that λ∗ = 63.1
and 8 (∼7.91) vehicles would be optimal. However, only six were
deployed, resulting in a Met Demand rate of 75%, indicating under-
provision and validating 4.5 AED/h as a realistic VOT estimate that
can be adopted for further analysis.

6.1.2 Calibrating VOT for disaggregated data
A similar calibration procedure was carried out for the

disaggregated dataset (i.e., for a circuity factor of 2.18). Again,
a VOT of 4.5 AED/h meets the near-optimal and under-optimal
conditions of 7 am and 8 am, respectively, with an earliness factor
of 0.265.

6.1.3 Determination of optimal operating capacity
The user cost values have been computed as a function of the

demand λ at three levels of fleet size, keeping the total demand
fixed, as depicted in Figure 13.

As seen from Figure 13, the user cost is a decreasing function
of λ, and the agency cost is an increasing function of λ (Figure 7).
Thus, for a fixed value of the VOT, the operating capacity λ∗ (i.e.,
optimal number of requests served per unit time). The service
can be considered as the decision variable of the system. Figure 14
shows the optimal number of requests that need to be served per
unit time, to minimize the total costs (user plus agency costs)
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FIGURE 14

(A) Impact on total costs at 7 am. (B) Impact on total costs at 8 am.

when NQ is 50 at 7 am and 80 at 8 am, respectively. From
Figure 14A, it can be seen that at 7 am (before the peak), the
optimal number of requests is approximately 30 pax/h, with a
corresponding fleet size of 5. At the peak time of 8 am, the optimal
number is closer to 50 pax/h (Figure 14B) and requires at least
seven vehicles to fulfill this demand. These numbers translate
to occupancy levels of 6 and 8 (∼7.15) pax/veh/h, respectively.
Comparing these to the average occupancy levels (from Figure 12)
of 9 and (around) 10 tells us that, given the demand levels, there is
room for improving the costs through vehicle dispatching, routing,
and scheduling strategies.

6.2 Optimal fleet size

From a practical point of view, the optimal operating capacity
λ∗ can be used to approximate the optimal fleet size using
Equation 2. The optimal fleet size (with occupancy levels varying
according to the time of day) is compared with the actual
fleet size in Figure 15. It can be seen that the actual fleet size
generally trails below the optimal fleet for three-quarters of
the day, particularly during the peak periods like approximately

FIGURE 15

Comparison of optimal fleet size with actual fleet size.

08:00 and 17:00–18:00, suggesting potential under-provisioning
during high-demand hours. This is also corroborated by the
number of unaccepted proposals in Figure 4. During off-peak
times, such as 11:00–14:00 and 21:00–23:00, the actual fleet remains
within a reasonable range of the optimal fleet. The comparison
highlights the value of aligning fleet allocation with time-dependent
occupancy-based optimization to improve service efficiency and
reduce idle vehicle time.

Figure 15 also depicts the optimal fleet size required to meet
the total demand at different times of day. However, since the
occupancy levels used in the estimation are based on those
observed for the actual fleet, the resulting optimal fleet size may
be slightly higher than what could be achieved under optimized
occupancy conditions.

6.3 Analysis of the three routing strategies
for DBOD

Having calibrated the VOT for DBOD, the total cost model
(AC+UC) is adopted to analyze the three different routing
strategies described through Equations 5–7. The objective of this
exercise is to identify the most effective routing strategy from the
perspective of minimizing the total cost. For Service Area 1, the user
cost and agency cost models, including the fare, Pi for strategy i, is
depicted as follows:

UCi = 4.75
[
TD + TS,i + 0.27TE + 1.5TL

] + Pi (33)

ACi = 8.601 (Mi) + 3.072 (VMTi) − 9.605 − Pi (34)

For a demand level of 40 pax/h, the optimal design variables
and the optimal cost estimates are presented in Table 4, for
the three routing strategies presented in Equations 5–7. The
circuity factors assumed for this analysis are taken from Table 3.
The major disparity is seen in the values of the cost due to
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TABLE 4 System optimization for DBOD.

Strategy
no

Optimal design variables Optimal cost (AED)

Agency cost User cost

I λ ∗
i (Pax/hr) FS∗i γ3 Fleet VMT Delay In-service Earliness Lateness

1 36.31 6 −9.60 44.65 371.66 22.33 48.04 1.75 0.31

2 37.77 5 −9.60 42.93 341.46 21.47 18.50 1.02 0.18

3 37.48 6 −9.60 43.26 347.14 21.63 34.89 1.16 0.20

FIGURE 16

Comparison of routing strategies.

VMT and the in-service costs. This can be attributed to the
circuity factors for the three strategies, which are 6.98, 1.7, and
2.2, respectively.

Amirgholy and Gonzales (2016) have formulated the minimum
cost as follows:

TCmin
i = 2

√
Ci,1Ci,2 + Ci,3 (35)

where Ci,3 denotes the terms in the objective function that are
independent of λ.

The relationship between occupancy level and total minimum
cost for three different routing strategies is illustrated in Figure 16.
As occupancy increases, both routing strategy 2 and routing
strategy 3 show a noticeable decline in total minimum cost, with
Strategy 3 offering the most substantial cost savings. In contrast,
routing strategy 1 maintains a constant cost across all occupancy
levels, as it is independent of this parameter. At lower occupancy
levels, the costs of all three strategies are comparable. However, as
occupancy rises, the advantages of dynamic routing become more
apparent. Strategy 3 consistently achieves the lowest cost at higher
occupancy levels, highlighting its superior efficiency and scalability.
These results emphasize the value of adopting adaptive routing
strategies, particularly in high-utilization scenarios, to optimize
operational costs.

7 Contributions of the study

This study presents a comprehensive, multi-faceted
optimization framework that collectively establishes a systematic
approach for assessing and achieving commercial sustainability
in Dubai Bus-On-Demand (DBOD) transit services. These
evaluations are interlinked and collectively contribute to a
structured methodology for assessing the commercial rigor
of the DBOD, as depicted in Figure 17. The emphasis on
balancing agency and user costs represents a holistic approach to
commercial sustainability. This optimization exercise recognizes
that sustainable operations require managing the trade-offs
between operational efficiency and service quality, as demand
growth can reduce user costs while potentially increasing
agency costs.

In summary, the article presents a data-driven approach with
practical applications for transit agencies to optimize operational
performance of DRT services, translating theory into practice.
However, we acknowledge the constraints of this study’s reliance
on real-world data from only two service areas over a 3-month
period. This limitation may affect the applicability of the results
at a microscale, as the findings are case specific to the unique
attributes of the selected service areas in Dubai. However, at the
pilot and planning stages of DRT implementation, these models
offer actionable insights as detailed below.

(i) Assessment of operational and financial viability of DBOD:
This study conducts a comprehensive assessment of the
operational and financial viability of the DBOD service. This
analysis holds significant relevance as many previous DRT
initiatives have struggled to achieve commercial sustainability
(Currie and Fournier, 2020) across world cities. This
facilitates the transit agencies for a systematic assessment and
enhancement of DRT performance through a data-driven
approach to evaluation, thus supporting informed, data-
driven decision-making contributing to sustainable urban
mobility planning.

(ii) Application and calibration of Daganzo’s Continuum
Approximation Framework with empirical data: The study
applies and optimizes Daganzo’s Continuum estimation
framework using empirical data from two different service
areas in Dubai. This methodology presents evidence-based
insights and practical guidance for optimizing transit
operations, particularly in the context of FLM accessibility
to high-capacity transit systems like metro services. The
simplicity and cost-effectiveness of the method make it
accessible to a wide range of practitioners and policymakers
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FIGURE 17

Dubai Bus on Demand (DBOD) optimization synthesis framework.

globally. In addition, by offering a simpler alternative to
traditional but complicated simulation models, the study
addresses a key challenge faced by transit agencies aiming
to improve service design and operational efficiency in a
dynamic format.

(iii) Identification of the most effective routing strategy: A
significant contribution of this study is the identification of
the Alternating Priority Routing strategy as the most efficient
for the DBOD system. This alternating strategy, which is
designed systematically between the nearest pickup and drop-
off locations, effectively balances distance reduction with
service consistency, resulting in reduced travel and waiting
times for users. The findings are substantiated through an
empirical analysis study that the circuity factor associated
with the Alternating Priority strategy closely aligns with
the travel adjustment factors in both VMT and fleet size
(M) models. In addition, it yields the lowest RMSE when
compared to alternative routing strategies, indicating the best
fit to observed operational data. The strategy also regularly
achieves the lowest total minimum cost at higher occupancy
levels, highlighting its superior efficiency and scalability for
operational use.

(iv) Determination of Optimal Operational Parameters for
cost-efficiency: The research also presents systematic
solutions on how to achieve cost-effective operations by
optimizing resources for the DBOD services:

a) Compact service areas and moderate demand: The
study suggests that the most cost-effective operations
are achieved in compact service areas with balanced

demand. This efficiency is driven by lower trip counts
and higher vehicle utilization rates, resulting in significant
reductions in overall operational expenses. The research
suggests that transit agencies should maintain efficiency
and thoughtfully extend service areas, where demand
growth offsets the added operational expenses.

b) Optimal vehicle occupancy levels: The study finds that
agency costs are minimized with 10–15 passengers per
vehicle per hour of service operation for a vehicle with
10–12 seating capacity. It observes that Dubai’s DBOD
system, with an average occupancy of 6.9 passengers per
vehicle per hour (vehicle utilization factor) in Service
Area 1, operates closer to a ride-sharing service rather
than a high-efficiency public transit system, highlighting
potential optimization to realize greater economies of
scale. Refined operational strategies, including vehicle
dispatching, routing, scheduling, and terminal location
optimization can help reach target occupancy with
lesser VMT.

(v) Emphasis on balancing agency and user costs: This research
highlights the need to balance agency costs and user costs
in urban shared mobility planning and operational decisions.
It emphasizes that as demand grows, the user costs (delays,
in-service travel time, earliness, and lateness penalties)
typically decline, stressing the importance of optimizing
requests served per unit time to reduce overall system costs.

(vi) Recommendation for continuous monitoring and
adjustment: The study recommends continuous monitoring
and dynamic adjustments of service parameters to optimize
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performance and increase operational efficiency during
the operational hours with varying demand patterns.
This involves a thorough evaluation of dynamic policy
modifications that affect rider density or service area to align
with cost-effectiveness standards.

The integration of these optimization exercises offers transit
agencies a systematic, evidence-based approach to assess,
implement, and maintain commercially sustainable DBOD
services. Considering previous DRT initiatives that have failed too
often, this framework addresses the multidimensional nature of
commercial sustainability, providing a reproducible methodology
for achieving viable demand-responsive transit operations in urban
contexts. This systematic approach directly responds to the global
challenge of DRT commercial failures by providing transit agencies
with an integrated toolkit that transforms theoretical optimization
into practical, sustainable operations.

In this age of digitization, providing actionable insights
based on real-world data also requires the accurate prediction
of future passenger requests that will help operate and pre-
allocate resources (vehicles and drivers) to meet the demand.
The integration of advanced data analytics can significantly
improve the efficiency of DRT systems, ultimately benefiting
both operators and users by reducing waiting times and costs
(Liyanage et al., 2022). Moreover, leveraging machine learning
algorithms can further refine demand predictions, allowing for
more responsive adjustments to service offerings and enhancing
overall user satisfaction. Moreover, leveraging machine learning
algorithms can further refine demand predictions, allowing for
more responsive adjustments to service offerings and enhancing
overall user satisfaction. As Artificial Intelligence (AI) continues to
evolve, it may facilitate the development of more intelligent routing
systems, enabling real-time adjustments based on passenger
demand and traffic conditions. This evolution could lead to a more
seamless integration of demand-responsive transit with existing
urban transportation networks, ultimately enhancing the overall
rider experience.

8 Conclusion and recommendations

The research article presents a comprehensive assessment
of the commercial sustainability of DRT systems, particularly
focusing on DBOD service. The study adopts an analytical
modeling approach based on Daganzo’s continuum approximation
framework, calibrated with empirical data from two service areas
in Dubai. The research offers valuable insights into improving the
efficiency and sustainability of DRT services in Dubai by integrating
user cost models to balance delays, travel time, and penalties,
ensuring sustainable DRT operations. The findings identified that
compact service areas with moderate demand levels generate
the most cost-efficient operations. This efficiency is the result of
reduced trip lengths and higher vehicle occupancy rates, which
lower overall operational costs. From the comparative analysis
of three routing strategies, the Alternating Priority strategy was
found to be the most effective for Dubai’s DBOD system. This
strategy balances distance optimization with service consistency,
leading to lower ride and waiting times. In addition to this, the

research underscores the importance of achieving optimal vehicle
occupancy levels to realize economies of scale. For the DBOD
system, the target occupancy level should be between 10 and 15
passengers per vehicle to minimize agency costs.

An in-depth cost evaluation indicates that agency costs increase
substantially with larger service areas and higher demand densities.
Thus, strategic planning around service area size and demand
density is significant for maintaining cost-efficiency. The research
further integrates user cost models to account for delays, travel
time, and penalties. It shows that user costs decrease with higher
demand levels and highlights the necessity for balancing agency and
user costs to optimize overall system performance.

Taking these findings into account, several recommendations
are proposed to enhance the financial sustainability and operational
efficiency of DRT systems like Dubai’s DBOD. Transit agencies
should focus on maintaining compact service areas with moderate
demand levels to achieve cost-efficient operations. Expanding
service areas should be done cautiously, ensuring that demand
growth justifies the increased operational costs. Efforts should
be made to increase vehicle utilization levels to the target range
of 10–15 passengers per vehicle. This can be achieved through
refined vehicle dispatching, routing, and scheduling strategies. The
Alternating Priority strategy should be adopted for routing, as it
strikes a balance between reducing travel distances and ensuring
consistent service delivery.

Transit systems should consider both agency and user costs in
their planning and operational decisions. This involves optimizing
the number of requests served per unit time to minimize
total system costs. Regular monitoring of operational data and
continuous adjustment of service parameters are important for
enhanced operational output. This includes recalibrating cost
models and adjusting service strategies based on real-time data.
Any policy changes that affect rider density or service area
should be carefully evaluated to ensure they lead to cost-effective
operations. Policies should seek to align increased rider density
with the cost efficiency thresholds defined by average cost contours.
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Appendix

TABLE A1 Glossary of symbols.

Symbol Definition Category

A Service area (km2) Geographic function

AC Average cost per passenger (AED/trip)
using disaggregated data points

Cost function

ACagg Average cost per passenger (AED/trip)
using hourly aggregated data points

Cost function

τ i.e., (b1 + b2) Average boarding
time/alighting time (hours)

Time function

M Fleet Size Fleet function

C Vehicle capacity Fleet function

MC Marginal cost (AED/trip) Cost function

n No. of equally distributed virtual stops Operations function

ni Avg. number of passengers on board
vehicle i

Operations function

nv Target occupancy, i.e., capacity
utilization of the vehicle

Operations function

nw Total demand per window time (T) Demand function

N Number of passenger requests waiting Demand function

r, r1, r2 Travel adjustment factors (network, fleet
size model, VMT model)

Operations function

ki DRT operations strategy Operations function

T Time window (hours), Maximum ETA
(Estimated Time of Arrival)

Time function

TC Total annual agency cost Cost function

v Average moving speed (km/hour) Operations function

VMT Vehicle miles traveled Distance function

VHT Vehicle hours traveled Time function

x1, x2 Independent variables for fleet size and
VMT model calibration

Calibration factor

y1, y2 Dependent variable of fleet size and
VMT model calibration

Calibration factor

Z Total agency fixed cost Cost function

a and β Fixed parameter of the cost function
independent of demand, service area
and occupancy level

Calibration factor

δ Demand density (hourly pax/km2) Demand function

Y1 Incremental cost per additional vehicle Cost function

Y2 Incremental cost per additional
vehicle-hour

Cost function

Y3 Incremental cost per additional
vehicle-mile

Cost function

λtaxi Average cost of a taxi trip Cost function

λ Daily demand (no. of trips/day) Demand function

λmin Minimum number of trips for efficient
DRT system

Demand function

λmax Maximum number of trips DRT system
can serve efficiently

Demand function

(Continued)

TABLE A1 (Continued)

Symbol Definition Category

UC Total User Cost Cost function

VOT Value of time for the users Cost function

TD Service delay time to user Time function

TS In-service time to user Time function

TE Earliness time to user Time function

TL Lateness time to user Time function

e Relative cost of earliness times (in
equivalent unit of travel time)

Cost function

l Relative cost of lateness times (in
equivalent unit of travel time)

Cost function

ω Peak demand rate Calibration factor

NQ Total demand within a time period Demand function

tp Time window Time function

Pi Fare level for strategy i Cost function
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