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The rapid urbanization and industrialization of the Guangdong-Hong Kong-Macao
Greater Bay Area (GBA) pose a severe challenge for rational land use. This study
presents a multi-factor land-use suitability assessment system with economic,
social, and environmental dimensions. System reliability and stability are confirmed
by a Cronbach'’s a coefficient (>0.7). We innovatively integrate the PS-DR-DP model
with the Monte Carlo and Markov models. The Markov model analyzes transition
probabilities between different land capacity states. The Monte Carlo method
quantifies key parameter uncertainties through extensive random sampling, while
the Markov chain-Monte Carlo approach dynamically evaluates and predicts land
capacity. From 2002 to 2022, overall GBA land-population carrying capacity is
stable above 0.6 and keeps rising, reflecting improved regional land capacity and
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successful coordinated development. However, the forecast results indicate that
land capacity will first increase and then decrease between 2023 and 2042, with
most cities reaching a peak carrying capacity (S-value approaching or exceeding
practice. No use, distribution or reproduction 2) in 2027. This peak is followed by a projected decline, and by 2042, the overall
is permitted which does not comply with land capacity may drop to around 0.5, signaling a significant long-term risk of
these terms. overload. If current development trends continue, the region faces significant
long-term risks of declining carrying capacity, particularly if the transition to a
sustainable, innovation-driven economy is not managed effectively. This highlights
the profound challenge of balancing economic growth, urbanization, and ecological
protection. These recommendations offer scientific evidence and decision-making
support for sustainable GBA development.

KEYWORDS

Monte Carlo model, Guangdong-Hong Kong-Macao Greater Bay Area (GBA),
evaluation of land spatial suitability, Markov model, PS-DR-DP model

1 Introduction

Serving as a crucial fulcrum for China’s “dual-circulation” strategy, the Guangdong-Hong
Kong-Macao Greater Bay Area (GBA) is one of the country’s most economically vibrant and
open regions. With less than 0.6% of China’s land area, it contributes about 12% of the nation’s
GDP, making it a core driver of regional collaborative and high-quality development (Chen and
Xu, 2021; Zeng et al., 2020; Li et al., 2021). However, between 2010 and 2020, the annual
expansion rate of construction land in the GBA reached 3.2%, much higher than the national
average. This has intensified regional “production-living-ecological space” conflicts, manifesting
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as the fragmentation and shrinkage of ecological space. For instance,
the total mangrove area decreased by 18% over the study period, a
significant loss that contributes to habitat fragmentation. This
percentage loss is calculated as Pioss=[(Ainitial —Afinal)/Ainital] x 100%,
where A and Ag,, are the initial and final mangrove areas,
respectively. This annual rate is calculated as the total converted
farmland area relative to the initial area, divided by the number of years
in the observation period (R convert=[(Aconvert/Ainitial)/ Y] X 100%). A
higher rate signifies more rapid loss of essential agricultural land. These
spatial imbalances have further triggered socioeconomic issues such as
‘job-housing mismatch’ (residential-job separation index rising to 1.32)
(Zhang J. et al., 2022; Zhang Z. et al., 2022; Hu et al., 2021; Zhou et al,,
2016), posing a challenge to the region’s sustainable development. This
index quantifies the degree of separation between workplaces and
residences, typically calculated as the ratio of the actual average
commute distance to the theoretical minimum average commute
distance (I=C,cyal / Cmin)- A value greater than 1.0 indicates a spatial
mismatch, with higher values signifying a greater degree of separation
and potentially longer commuting burdens. Therefore, the core
objective of this study is to provide a scientific basis for resolving these
complex socioeconomic and environmental problems from the
perspective of spatial planning and land suitability. Currently, ensuring
sustained economic growth while resolving the population—
resource—environment contradictions within the area has become a
pressing issue. Land Suitability Assessment (LSA) (Ni and Wei, 2024;
Ma et al., 2022) is key to solving the “trilemma” of spatial resource
allocation, offering scientific backing for regional planning, land use,
and ecological protection. Yet, LSA in the GBA faces many challenges
like complex natural geography, multi-source data integration, cross-
domain institutional barriers, and dynamic risk overlay (Zhong and
Chen, 2025; Sun et al., 2025; Liu et al., 2020; Zhao et al., 2018). So,
building a scientific and reasonable LSA system is of great importance
for the GBA's sustainable development.

As a core land resource management tool, the Land Suitability
Assessment (LSA) methodological evolution mirrors the deepening
understanding of complex human-environment systems. Early
studies, typified by McHarg’s (1969) overlay analysis, focused on
natural element superposition but were restricted by static evaluation
and qualitative decision-making (Collins et al, 2001). With
geographic information system (GIS) technology development, FAO’s
systematic evaluation framework enabled multi-source data spatial
integration (FAO, 1976), and Steiner et al’s subsequent multi-criteria
decision-making model (Steiner et al., 2000) marked the shift from
one-dimensional to multi-dimensional LSA research. Current
international frontier research shows two trends. First, dynamic
simulation technology is widely used. For example, Batty combined
Cellular Automata (CA) with Multi-Agent Systems (MAS) for
dynamic urban expansion simulation (Batty, 2013). Second,
uncertainty quantification has become a focus. Li et al. (2018) used
Bayesian networks to integrate various uncertainties, improving the
evaluation result credibility. Domestic research has evolved from
adopting foreign experiences to independent innovation. In 2002,
Wu's (2002) “Human Settlements Science” theory provided a
localized LSA framework, and Duan’s (2024) team developed the
“spatial gene” technology in 2015 for quantitative local characteristic
analysis. In terms of method innovation, Li Mianchun et al’s CLUE-S
model (Fan et al., 2023), integrating system dynamics and spatial
allocation algorithms, has greatly improved simulation accuracy.
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The “Pressure-Support; Destructiveness-Resilience; Degradation-
Promotion” Model (PS-DR-DP Model). The PS-DR-DP model is an
optimized version of the “Pressure-State-Response” model (P-S-R
model) (Yu et al,, 2023), developed by Wang Liang et al. It expands
the framework from three dimensions to six dimensions, forming a
regular hexagon model of interacting forces (Wang and Liu, 2019).
As a framework for assessing resource and environmental carrying
capacity (RECC), the PS-DR-DP model decomposes carrying
capacity into the resultant sum of multiple forces. It simulates the
dynamic changes in RECC using the filling degree of the hexagon
model, providing a “warning-oriented” evaluation mechanism
(Xinxin, 2024). This model addresses both the issues of “growth
limits” and “structural stability;” using the hexagon’s filling degree to
simulate RECC dynamics and establish its warning-oriented
evaluation mechanism. Domestically, some scholars have applied it
to evaluate the comprehensive carrying capacity of specific regions
(such as resource-based cities, ecologically fragile areas, and river
basins), validating its effectiveness in identifying key constraining
factors and providing early warnings of carrying status (Ying et al.,
2022; LiJ. et al., 2024; Li M. et al., 2024; Zhang J. et al,, 2022; Zhang
7. et al., 2022). Other research has attempted to integrate the
PS-DR-DP model with other methods (such as system dynamics,
neural networks, and GIS spatial analysis) to enhance its dynamic
simulation capabilities and spatial visualization (Zhao et al., 2021; Wu
and Ning, 2018). These studies have deepened the understanding of
the interaction mechanisms among the six-dimensional forces and
have made valuable explorations in areas such as indicator system
construction, weighting methods, and setting warning thresholds for
evaluation results. Internationally, literature directly applying the
PS-DR-DP model is relatively limited. However, its core ideas
(multidimensionality, dynamic nature, warning-orientation) align
with the international forefront of carrying capacity research.
Frameworks like the UN Sustainable Development Goals (SDGs)
indicators, Ecological Footprint, Planetary Boundaries, and the PSR
model and its derivatives (United Nations, 2015; Rockstrom et al.,
2009; 2007)
multidimensional comprehensive evaluation, human-nature system

European Environment Agency, all focus on
interactions, and tipping point warnings. The PS-DR-DP model’s
expansion to six forces, explicitly distinguishing between
“Destructiveness-Resilience” and “Degradation-Promotion,” provides
a refined perspective for characterizing system resilience and
recovery potential. This aligns with the international emphasis on
Resilience and Sustainability Transitions research (Folke, 2016). Its
“hexagon filling” visualization method for warnings intuitively
displays multidimensional states. As research deepens and
international exchange increases, the theoretical value and application
potential of the PS-DR-DP model are expected to gain wider
international recognition. Its multidimensional opposing forces
framework and warning mechanism could provide new analytical
tools for global sustainability science (Turner, 2010). Future research
should promote its standardization and international application,
strengthening comparisons and linkages with mainstream
international frameworks.

International frontier research has not only made
breakthroughs in model complexity and precision but is also
exploring how to better handle uncertain factors within large-scale
urban agglomerations. Against this backdrop, Monte Carlo

simulation, as a powerful tool for uncertainty analysis, is
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increasingly becoming a research hotspot in the field of spatial
planning. This method, through random sampling techniques, can
effectively address uncertainty issues in complex systems,
providing comprehensive risk assessment for decision-making.
For example, the Probabilistic Cellular Automata (p-CA) model
developed by Hagen-Zanker in 2008 (van Vliet et al., 2013), by
introducing a random sampling mechanism, successfully resolved
the parameter sensitivity problem inherent in traditional Cellular
Automata models, significantly enhancing model adaptability and
predictive capabilities. Domestic scholars are also actively
that
technologies with Monte Carlo simulation (Wu et al., 2018; Weng
et al., 2022; Dong and Xu, 2019). In 2021, Liu Yaolin’s team
proposed a land change simulator integrating deep learning with
Monte Carlo simulation (Li J. et al., 2024; Li M. et al., 2024). This
tool possesses adaptive capabilities, enabling it to respond to

exploring methods integrate advanced computing

complex and dynamic spatial environments. Nonetheless, existing
research still faces challenges when dealing with geographic big
data in the GBA, including computational bottlenecks (Chen et al.,
2022) and inadequate capability in representing unstructured
variables such as institutional factors (Yang et al., 2023). These
challenges urgently require further exploration and resolution.

While existing models offer valuable tools, they exhibit specific
limitations when applied to the dynamic and complex human-
environment system of the GBA. The classic Pressure-State-Response
(PSR) model, for instance, provides a foundational framework but
often simplifies the intricate feedback loops into only three
dimensions, potentially overlooking the opposing forces of system
degradation and resilience. Spatio-temporal models like Cellular
Automata-Markov (CA-Markov) excel at simulating the future
patterns of physical land-use change but are less adept at forecasting
the dynamic evolution of the overall carrying capacity state, which is
an aggregate function of non-spatial economic, social, and
environmental drivers. Furthermore, while methods like Bayesian
networks can effectively model uncertainty, their application often
requires complex conditional probability tables and may not be as
transparent for simulating future trajectories based on temporal
state transitions.

This study addresses these gaps by constructing an innovative
analytical framework that synthesizes three powerful methodologies.
Before this, to ensure the internal consistency of the constructed
multidimensional indicator system, we employed Cronbach’s «
coeflicient for assessment, guaranteeing that the indicators are both
independent and interrelated, thereby forming a reliable and effective
evaluation system (Ahmad et al., 2024; Alexandrou et al., 2023). First,
we move beyond the conventional PSR model by employing the
Pressure-Support;  Destructiveness-Resilience; Degradation-
Promotion (PS-DR-DP) model. This six-dimensional framework
provides a more granular and holistic understanding of the antagonistic
forces that shape carrying capacity, offering a “warning-oriented”
mechanism better suited to the GBAs complexity. Second, we couple
this with a Markov model to achieve a precise, dynamic simulation of
future transitions between different carrying capacity states, focusing
on the temporal trajectory rather than just spatial allocation. Third,
we innovatively integrate Monte Carlo simulation to explicitly quantify
the uncertainty associated with these future predictions. By generating
a probabilistic range of outcomes, our approach provides a more
robust and realistic forecast compared to deterministic methods.
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2 Materials and methods

To systematically present the technical pathway and
implementation flow of this study, and based on integrating the
geographical characteristics of the GBA with scientific methodologies,
this paper constructs a technical roadmap (as illustrated in Figure 1).

2.1 General situation

The GBA is located in the southern coastal region of China (21°-
25°N, 111°-116°E), and consists of the “92+” city cluster pattern with a
total area of about 56,000 km?, including nine cities in the Pearl River
Delta, namely Guangzhou, Shenzhen, Zhuhai, Foshan, Dongguan,
Zhaoqing, Huizhou, Zhongshan, and Jiangmen, as well as the two
special administrative regions of Hong Kong and Macao (as shown in
Figure 2). This area shows significant spatial differentiation
characteristics. According to the 2023 China Statistical Yearbook and the
spatial assessment report of the Chinese Academy of Sciences, the
Guangzhou-Shenzhen dual-core (accounting for 26% of the area) has
formed an economic pole through the siphon effect. In 2022, the total
GDP reached 6.12 trillion yuan (Shenzhen 3.24 trillion yuan, Guangzhou
2.88 trillion yuan, ranking third and fourth in the country respectively),
contributing 52% of the economic output of the GBA and supporting a
resident population of over 30 million (32% of the total population of
the area). Intensive development has led to spatial mismatch, with the
Guangzhou-Shenzhen work-residence separation index reaching 1.32
(15% higher than the Pear] River Delta average of 1.15), highlighting the
contradiction of high-density urban spatial resource misallocation. The
regional ecological functions show a “west conservation-east squeeze”
pattern: Zhaoqing, as the ecological shield of the GBA has, a forest
coverage rate of over 70% (32% higher than the regional average of 53%),
undertaking 60% of the water conservation and biodiversity
maintenance functions of the West River Basin. Dongguan, driven by
industrialization, has only 28% of ecological space. From 2011 to 2021,
the expansion construction of land encroached on 120 square kilometers
of basic farmland (15% of the total arable land in the city), reflecting the
deep-seated conflict between economic growth and ecological security.

2.2 Data introduction

This integrates study multidimensional economic, social, and
environmental data from authoritative sources, including the China
Statistical Yearbook (2002-2020),! Guangdong Statistical Yearbook,
China Environmental Statistical Yearbook,” China Forestry Statistical
Yearbook,’ and local statistical bulletins. The data covers key indicators
such as macroeconomics and energy (GDP, energy consumption),
resources and environment (emissions, ecological area), population
and social development (population, income, healthcare), and land
use and infrastructure (construction land, greening rate).

To ensure data consistency and accuracy, all raw data underwent
rigorous cross-validation, and missing values were addressed. For data

1 https://www.stats.gov.cn/
2 https://www.mee.gov.cn/

3 https://www.forestry.gov.cn;
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Overall technical roadmap of the project.
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FIGURE 2
The location map of the GBA.

gaps in some prefecture-level administrative regions, linear interpolation
or spatial filling based on surrounding area averages was used. This
guarantees dataset integrity and reliability, offering solid empirical
support for in-depth research on the GBAS territorial spatial planning.

2.3 Cronbach’s alpha coefficient

This study uses the Cronbach a coefficient to test the reliability of
the standardized indicator system, assessing the evaluation system’s
consistency in repeated measurements. As a measure of data stability,
the reliability test reveals the evaluation tools reliability and aims to
eliminate human-caused interference in the measurement results.
According to psychometrics criteria, the o coefficient threshold is
positively correlated with system reliability. An a coefficient > 0.9
indicates excellent internal consistency in the indicator system;
0.7<a<0.9 shows the system meets basic empirical research
requirements; 0.5 < o < 0.7 suggests a need for indicator dimension
optimization; and & < 0.5 points to systematic biases in the evaluation
framework. The mathematical model of this coefficient can be expressed
as follows:

n Zsiz

=1

n—1 St2

@

Frontiers in Sustainable Cities

In the formula, & represents the reliability coefficient; n stands for
the number of indicator variables; Zsiz is the sum of within-group
variances of each variable; and s,'2 is the overall variance of the
indicator variables. Reliability analysis is conducted to ensure the
reliability of the selected indicator system.

2.4 PS-DR-DP model

The
quantitatively evaluated using the PS-DR-DP model, which

regional land-population carrying capacity is
culminates in a comprehensive Carrying State Index (S). This
index represents the dynamic balance between supportive
(promotive) and restrictive (negative) forces within the

regional system.

2.4.1 Calculation of the Carrying State Index (s)
The calculation of the S index is a two-step process. First, the
contribution value (C) of each of the six subsystems (positive/
negative aspects of economic, social, and environmental
resources) is calculated. This is achieved by quantifying the
synergistic effect of all indicators within a given subsystem. Based
on principles of combinatorial mathematics, the impact weight of
each element is determined by the ratio of the characteristic
polygon’s mean area to that of a standard regular N-gon. The

frontiersin.org
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specific formula for the partial carrying capacity contribution
value (C) is as follows:

¥ (1) (k1)

N(N-1) @

C=

In the formula, C denotes the partial carrying capacity
contribution value for a specific subsystem. N represents the
number of indicators within that subsystem. ki" and kJm
are the normalized values of the i-th and j-th indicators in
the subsystem.

Second, the overall Carrying State Index (S) is calculated as the
ratio of the sum of all positive (promotive) subsystem contribution
values (CP) to the sum of all negative (restrictive) subsystem
contribution values (C™) (see Equation 3):

i
2t

5=
n
=)

3)

where CP represents the contribution value of the i-th positive
subsystem (i.e., Positive Economic, Social, and Environmental
Resources), and C}l represents the contribution value of the j-th
negative subsystem.

2.4.2 Interpretation of the Carrying State
Index (s)

The interpretation of the S index is crucial for understanding the
system’s condition. The value of S=1.0 serves as a critical equilibrium
threshold, where the supportive forces are perfectly balanced by the
restrictive forces.

When S>1 (Surplus State): The system is in a positive carrying
state, indicating that the combined supportive forces (e.g., economic
growth, social services, environmental quality) outweigh the
restrictive pressures (e.g., resource consumption, population density,
pollution). A higher S-value signifies a stronger and more resilient
carrying capacity.

When S<1 (Deficit State): The system is in a deficit or pressure
state, suggesting that restrictive forces are dominant. This condition
serves as an ‘“overload warning signaling that the region’s
development is becoming unsustainable and may be facing
significant challenges.

To facilitate dynamic analysis and future prediction, the
continuous S values are discretized into four distinct states. These
thresholds are defined based on conventions in carrying capacity
literature and urban planning standards:

State 1 (Overload): S < 0.6—Indicates a critical state where
pressures significantly exceed the system’s supportive capacity, posing
severe risks to sustainability.

State 2 (Pressure): 0.6 <S < 1.0—Represents a warning state
where the system is under pressure, although not yet in a critical
overload condition.

State 3 (Secure): 1.0 <'S < 1.5—Signifies a healthy and balanced
state with a reasonable buffer to absorb pressures.

State 4 (Optimal): S > 1.5—Represents a robust state with a strong
carrying capacity and significant development potential.

Frontiers in Sustainable Cities

10.3389/frsc.2025.1676983

2.4.3 Calculation example (using data for the year
2002)

To clearly demonstrate the calculation process, a hypothetical
dataset for the year 2002 is used.

2.4.3.1 Step 1: calculate C-values for each subsystem

According to Equation 1, the C-values for the six subsystems are
calculated, respectively. For example, the calculations for the Positive
Economic subsystem and the Negative Economic subsystem are
as follows:

Positive Economic Subsystem (N = 3), with indicator values: GDP
Growth Rate (0.85), Per Capita GDP (0.72), and Urban Disposable
Income per Capita (0.60).

(1.85x1.72)+(1.85x1.60) +(1.72x1.60)

=1.482
3(3-1)

CEconPos =

Negative Economic Subsystem (N = 3), with indicator values:
Energy Consumption per Unit of GDP (0.55), Growth Rate of Energy
Consumption per Unit GDP (0.68), and Natural Gas Consumption
(0.108).

(1.55%1.68)+(1.55x1.108)x(1.68x1.108)

=1.103
3(3-1)

CEconNeg =

Similarly, the C-values for the other subsystems can be obtained.
The results are summarized below:

In the positive values (CP), the environment is 1.004, the economy
is 1.482, and the society is 1.671; in the negative values (C"), the
environment is 1.030, the economy is 0.945, and the society is 0.943.

2.4.3.2 Step 2: calculate the Comprehensive Index (S)

The Comprehensive Index S for the year 2002 is calculated by
substituting the C-values into Equation 2.

Sum of Positive C-values:

i
>'CP =1.004+1.482+1.671=4.157
i=1

Sum of Negative C-values:

J
Z:C}1 =1.030+0.945+0.943=2.918
j=1

Comprehensive Index S:

157

4
Syo0s ==L —1.425
200275 918

The calculation shows that the Comprehensive Index S for 2002 is
approximately 1.425. As this value is greater than 1, it indicates that
during this stage of development, the overall synergistic strength of

frontiersin.org
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the system composed of positive indicators outweighs that of the
system composed of negative indicators.

2.5 Markov model

First, to construct the Markov transition matrix, the continuous
carrying state (S) values must be discretized into four distinct states
(E;). The definition of these states and their thresholds is primarily
based on existing standards in urban planning and carrying capacity
assessment literature, where S=1.0 is generally considered the
baseline for a balance between supportive and restrictive forces. The
specific definitions are as follows:

State 1 (Overload): S < 0.6 - Indicates a critical state where
pressures significantly exceed the system’s supportive capacity.

State 2 (Pressure): 0.6 < S < 1.0 - Represents a warning state
where the system is under pressure.

State 3 (Secure): 1.0 < S < 1.5 - Signifies a healthy state with a
good buffer.

State 4 (Optimal): S > 1.5 — Represents a robust state with strong
carrying capacity.

Based on the state definitions above, the one-step state transition
probability matrix P; is calculated using historical data from 2002
to 2022.

Uncertainty analysis of prediction parameters based on GM (1,1):

The Monte Carlo method is used to randomly sample parameters
of the GM (1,1) model (Equation 4). These parameters (a,, a,) are
assumed to follow a normal distribution, with the mean determined
from historical data analysis and the standard deviation based on the
variance of historical prediction errors. A large number of random
parameter combinations A (set to 10,000) are generated for subsequent
parallel forecasting computations.

}}(k):ao +a1x(k—1) (4)

Among them, §7(k) is the grey prediction value; x(k —l) is the
actual value at the previous moment; ag and a; are model parameters.

Calculate relative error:

After obtaining the predicted values, it is necessary to evaluate their
accuracy. The relative error between the grey prediction value and the
actual value is calculated using the following formula (see Equation 5):

§(k) =y (k)|

y (k)

e(k)z (5)

Among them, e(k) is the relative error; y(k) is the actual value.

Markov calculation of state transition matrix probability:

In order to predict future states, it is necessary to calculate the
state transition probability matrix, which is calculated using the
following formula:

By=—L (©)

Among them, nj is the number of times the state E; has
undergone k steps to reach the state Ej; n; is the number of times the
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state E; appears. Thus obtaining the state transition probability matrix
Pk (see Equation 7):

Pp P2 -+ P
le Pzz cee P2m

Pk = . . . . (7)
Pml Pm2 Pmm

When using Monte Carlo simulation to generate random paths
for future state transitions, start from the current initial state. At each
iteration step, based on the transition probabilities corresponding to
the current state, a random sampling is performed on the distribution
of the state transition matrix to select the next state. This dynamically
constructs a state evolution sequence (Kang et al., 2019; Azabdaftari
and Sunar, 2024; Tariq and Mumtaz, 2023). By repeating a large
number of independent simulations, multiple potential random
evolution paths of the system can be covered, thereby quantifying the
randomness and uncertainty in the state transition process (Ratick
and Schwarz, 2009; Ligmann-Zielinska and Jankowski, 2014; Jamroz
and Williams, 2020), which endows the Markov model with
probabilistic dynamic forecasting capabilities. To ensure the stability
and reliability of the simulation, we conducted a convergence
validation. By monitoring the mean and standard deviation of the
predicted carrying state S for the final year (2042) as the number of
iterations increased, we found that the output results stabilized after
approximately 8,000 iterations. Therefore, setting 10,000 iterations is
sufficient to ensure the robustness of the results and avoid interference
from random noise. This helps understand the system’s development
trend and formulate corresponding strategies.

2.6 Uncertainty and sensitivity analysis

To address the inherent uncertainties in long-term forecasting and
to ensure the robustness of our conclusions, we integrated a
comprehensive uncertainty and sensitivity analysis into our
modeling framework.

2.6.1 Monte Carlo simulation setup

The probabilistic forecast was generated using a Monte Carlo
simulation with 10,000 iterations. This number was chosen to ensure
the statistical stability and convergence of the results, as preliminary
tests showed that the mean and standard deviation of the final year’s
predicted S-value stabilized after approximately 8,000 iterations.

2.6.2 Parameterization of uncertainty

Uncertainty was primarily introduced through the parameters of
the GM(1,1) forecasting model (Equation 4). The model parameters,
ag and a;, were not treated as fixed values but as random variables
following a normal distribution. The mean of this distribution was
determined by fitting the model to historical data, while the standard
deviation was calibrated based on the variance of the historical
prediction errors.

2.6.3 Stochastic sampling strategy

For each of the 10,000 iterations, a unique future pathway for the
land carrying capacity was simulated. This was achieved by first
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sampling a set of parameters for the GM(1,1) model from their
respective distributions. Then, starting from the last known state (year
2022), the future state for each subsequent year was determined by
randomly sampling from the state transition probability matrix
(Equation 6), which defines the likelihood of moving from one
carrying capacity state to another. This process created a large
ensemble of possible future trajectories, allowing us to quantify the
forecast’s uncertainty.

2.6.4 Sensitivity analysis

To identify the most influential drivers of future carrying capacity,
a One-At-a-Time (OAT) sensitivity analysis was conducted. Key input
indicators from the economic, social, and environmental subsystems
(e.g., GDP Growth Rate, Population Density, Total Wastewater
Discharge) were systematically perturbed by £10% from their baseline
forecast values, while all other indicators were held constant. The
simulation was re-run for each perturbation, and the resulting
percentage change in the median S-value for the final forecast year
(2042) was calculated. This allowed us to rank the indicators based on
their impact on the long-term carrying capacity.

3 Results
3.1 Construction of indicator system

When selecting indicators, the following principles must
be followed: firstly, the principle of systematicity. Indicators should not
only reflect their independence and specificity, but also consider their
inherent connections and establish a systematic indicator system. The
second principle is scientificity. Each evaluation indicator should have
typical representativeness and avoid phenomena such as overly
complicated indicators, overlapping or missing information. The third

TABLE 1 Evaluation index system of PS-DR-DP model in GBA.

Subsystem Evaluation indicator

GDP growth rate (%)-GGR

Per capita GDP (10,000 yuan/person)-PCG

Economic resources
Urban disposable income per capita (yuan/person)-UDI
Positive subsystem (A1)

Economic density (100 million yuan/km?)-ED

Land area (km?)-LA

10.3389/frsc.2025.1676983

principle is operability. It is necessary to consider the difficulty level
of data collection, as well as the practicality and authenticity of the
data. The fourth principle is regional specificity. To reflect the
comprehensive characteristics of the research area as much as possible.
In summary, the reason for choosing the specific indicators mentioned
above is that they can comprehensively reflect the uniqueness of the
GBA and support scientific decision-making. Based on the regional
characteristics of the GBA and the needs for evaluating the suitability
of national land space, we have selected a series of indicators from
multiple dimensions such as economy, society, and environment
(Radermacher, 2021; Hu and Xi, 2023; Zhu et al., 2022). These
dimensions not only reflect the current development status of the
region, but also provide a basis for future planning. The indicator
system constructed in this article is shown in Table 1.

3.2 Reliability analysis of indicators

This paper collects raw data on land-population carrying capacity
indicators of six sub-systems in the cities of the GBA (Hong Kong
SAR, Macao SAR, Guangzhou, Zhuhai, Shenzhen, Foshan, Huizhou,
Dongguan, Zhongshan, Jiangmen, Zhaoqing) over the past 20 years.
Using the min-max standardization method, the data is standardized
to compute correlations, presented in a heatmap (Figure 3) that shows
part of the indicators due to the large number of cities and indicators.
Given the economic, social, and environmental interdependence
among cities in the GBA, some indicators correlate highly, particularly
between economic and social resource sub-systems. Thus, the
Cronbach a coefficient is needed for reliability analysis of
the indicators.

From the reliability analysis of the GBA (see Table 2), the positive
environmental and resource indicators show the best internal
consistency. All cities in this category have a Cronbach’s o coefficient

Subsystem Evaluation indicator

Energy consumption per Unit of GDP (tce/10,000 yuan)-ECU

Economic resources Growth rate of energy consumption per unit GDP (%)-GRE

Negative subsystem

(A0)

Natural gas consumption (100 million m*)-NGC

Electricity consumption (100 million kWh)-EC

Annual water supply (10,000 tons)-AWS

Overall labor productivity (%)-OLP

Per capita paved road area (m*/person)-PCP

Social resources
Highway passenger traffic (10,000 persons)-HPT
Positive subsystem (B1)

Population density (persons/km?*)-PD

Permanent resident population (year-end, 10,000 persons)-

Social resources PRP

Negative subsystem | Natural population growth rate (%)-NPG

Environmental Forest stock volume (10,000 m*)-FSV

Hospital beds per 10,000 people (units)-HBP (B0) Per capita construction land area (m?/person)-PCC

Infrastructure investment per unit area (10,000 yuan/ Registered unemployed persons (year-end, 1,000 persons)-

km?)-1TU RUP

Urban green coverage Rate (%)-UGC Sulfur dioxide emissions (10,000 tons)-SDE
Environmental

resources Forest land area (hm?)-FLA

Positive subsystem (C1) Grassland area (hm?)-GA

Mangrove area (hm?)-MA

Smoke/dust emissions (tons)-SDE

resources
Total wastewater discharge (10,000 tons)-TWD

Negative Subsystem

(o) Industrial hazardous waste generation (10,000 tons)-IHW

Ambient noise compliance area (km?)-ANC
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Correlation analysis of evaluation index system for PS-DR-DP model in the GBA.

TABLE 2 Reliability of indicators in the GBA.

Cronbach’s @  Cronbach's

Cronbach’s «

Cronbach’sa  Cronbach’s a for Cronbach’s o for

for positive for negative for positive for negative positive negative

economic economic social social environmental environmental

indicators indicators indicators indicators indicators indicators
Hong Kong 0.7941 0.8911 0.8392 0.7665 0.9852 0.7799
Macao 0.7921 0.7396 0.9567 0.8020 0.8800 0.7471
Guanzhou 0.9612 0.9614 0.9537 0.9648 0.9624 0.9477
Zhuhai 0.9550 0.9401 0.8501 0.8666 0.9574 0.8175
Shenzhen 0.9482 0.9448 0.9305 0.9641 0.9602 0.9587
Foshan 0.9522 0.8724 0.8739 0.8660 0.8548 0.9752
Huizhou 0.9375 0.8807 0.8946 0.7564 0.8672 0.7000
Dongguan 0.8406 0.9107 0.7587 0.9424 0.8350 0.7531
Zhongshan 0.9468 0.8048 0.8723 0.8494 0.8537 0.7466
Jiangmen 0.9333 0.8125 0.7927 0.8275 0.8670 0.8961
Zhaoging 0.7637 0.7243 0.7715 0.9202 0.8723 0.8538

above 0.85, up to 0.9852, indicating strong consistency and stability.
Further comparison of Cronbach’s « values for the six indicators
across cities (see Figure 4) shows that Guangzhou’s values are close to
or exceed 0.95 across all indicators. This reflects a well-designed

Frontiers in Sustainable Cities

indicator system and stable data structure in Guangzhou, with high
credibility. Generally, core cities like Guangzhou, Shenzhen, and
Zhuhai have high o coefficients, while peripheral cities like Huizhou,
Zhongshan, and Jiangmen have relatively low a values in some
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Line chart of reliability analysis of indicators for the GBA.

dimensions, possibly due to unbalanced regional development or data
collection quality differences. Overall, most cities and indicator
dimensions have o coefficients above 0.7, showing the indicator
system has good internal consistency and stability. In conclusion, the
PS-DR-DP model indicator system for cities in the GBA constructed
in this study has high reliability. It can largely exclude subjective
factors and objectively and accurately reflect the actual situation of
land development suitability in the area.

3.3 PS-DR-DP model results

Over the two-decade period from 2002 to 2022, the GBA,
comprising Hong Kong, Macao, and nine Guangdong cities, has
shown dynamic and complex patterns of development in economic,
social, and environmental aspects, as presented in Figure 5.
Economically, urban clusters led by core cities like Guangzhou,
Shenzhen, and Hong Kong have been the main drivers of positive
economic indicator growth, with all such indicators surpassing the
benchmark value of 1 by 2022. This reflects the vitality of the regional
economy and the resource concentration effect. Moreover, the
negative economic indicators of most cities, like resource consumption
intensity and pollution-related indices, show a downward trend and
fluctuate around the benchmark value of 1. However, in 2022, the
negative economic indicators of Macao and Guangzhou exceeded the
warning threshold of 1.5. These cities need to enhance resource
utilization efficiency and pollution control capacity. In terms of social
resource development, core cities like Guangzhou and Shenzhen have
significantly improved social positive indicators by optimizing public
service systems, reaching above 1.6 in 2022. With enhanced social
equity and public security, negative social indicators have declined.
However, non-core cities still lag behind core ones. To narrow this
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development gap, some regions need to boost social investment in
education, healthcare, etc. Regarding the environment, the GBAs
overall environmental quality has improved due to ecological
restoration and pollution control, with positive indicators rising, the
highest reaching 1.83. Yet, highly urbanized areas like Dongguan and
Foshan still face severe environmental pressure. Although there’s some
improvement in negative environmental indicators in certain areas,
they have not stably dropped to the ideal threshold (generally below
1). This shows that achieving dynamic balance between ecological
protection and economic growth requires long-term
coordinated efforts.

Based on the positive and negative subsystem calculations, the
GBA’s land-space carrying state (S) from 2002 to 2022 showed
dynamic changes (Figure 6). Except for Guangzhou in some years, the
overall carrying state (S-value) in the GBA stayed above 0.6 and rose
long-term, indicating continuous enhancement of the land-population
carrying capacity over nearly 20 years. This improvement was driven
by coordinated advances in regional economic development, urban
construction, and management. These advances enhanced the region’s
population accommodation potential and supported sustainable
urban development. Significant differences existed in S-value changes
among cities. Core cities with developed economies and industrial
clusters (e.g., Guangzhou and Foshan) saw more remarkable capacity
improvements. For instance, Guangzhou’s S-value rose from 1.03 in
2002 to 2.8 in 2022, a 172% increase, linked to economic expansion,
industrial upgrading, and population agglomeration. In contrast,
medium- and small-sized cities like Huizhou experienced greater
S-value fluctuations. Huizhou’s S-value decreased from 1.07 in 2002
t0 0.83 in 2021, then rebounded to 1.29 in 2022, reflecting the impact
of weak industrial foundations and unstable population flows.
Dongguan’s S-value fluctuated between 1.0 and 1.2 due to economic

cycles, policy shifts, and population migration. Regarding the
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relationship between carrying-capacity status and the regression line,
an S-value above the regression line suggests both positive and
negative subsystem indicators are at low levels, indicating a low-level
carrying-capacity state. In contrast, an S-value below the regression
line implies the emergence of deep-seated contradictions in economic,
social, and environmental resources. Notably, the rapid growth of
some cities’ S-values (e.g., Guangzhou) shows that ongoing reform
policies have effectively eased development constraints and unleashed
regional potential. However, short-term fluctuations (e.g., in Huizhou
and Dongguan) warn of potential population-land resource
imbalances. It is recommended to set up dynamic monitoring
mechanisms in land-use planning, and to optimize resource allocation
and policy regulation based on carrying-capacity trends.

3.4 Spatial distribution and future
prediction of national spatial carrying
capacity status

shows the changes in the GBA’s land-population carrying

state (S) from 2002 to 2022, calculated from the positive and negative
subsystems. From 2002 to 2022, the GBA’ land-population carrying

Frontiers in

state showed gradual improvement. Between 2002 and 2007, most
areas were in deep colors, indicating high land-carrying pressure. But
over time, especially after 2012, colors lightened, showing overall
improvement in the land-population carrying state. Core cities like
Guangzhou and Shenzhen were in relatively deep colors throughout,
showing continued carrying pressure. As regional economic centers,
they attract population inflows, causing land resource tension. In
contrast, peripheral cities like Foshan and Zhongshan had smooth
color changes, gradually matching core cities’ colors. This shows their
functional and industrial integration with core cities, jointly sharing
carrying pressure. Over the past 20 years, the GBA’s land-population
carrying state has improved significantly, reflecting progress in urban
planning, resource allocation, and regional coordination. However,
core cities like Guangzhou and Shenzhen still face high carrying
pressure and need more policy support and resource optimization for
sustainable development.

The Markov-based state transition prediction simulation of the
that
the overall stability of urban indicators in the GBA will

GBA’s future 20-year situation, it can be seen from

be enhanced in the coming two decades, indicating that
development within the region is gradually becoming more
balanced. In 2027, the complex color distribution reflects
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and the confidence interval.

Trends of the land-population carrying state (S-value) for cities in the GBA from 2002 to 2022. The graphs show the data points, regression fitting line,

significant differences in the development patterns and speeds of
various cities at the initial stage. However, as time goes by, by 2042,
colors tend to be uniform, showing that resource allocation within
the region has become more rational, economic development levels
are gradually converging, social inclusiveness is increasing,
environmental protection measures are being implemented, and
the overall situation is entering a relatively stable state. Despite the
positive overall trend, there are still local fluctuations. For example,
in 2037, the colors of some areas deepen, which may be due to
challenges such as population growth and resource pressure faced
by these regions. Nevertheless, with policy adjustments and the
optimization of socio-economic structures, these problems have
been alleviated, demonstrating the region’s dynamic adaptability
and self-regulation ability in development. Among them,
Guangzhou and Shenzhen, as regional economic growth poles,
have a high concentration of population and economic activities,
leading to greater carrying pressure in these areas. This reflects the
attractiveness of core cities and their radiating and driving role on
surrounding regions. Other surrounding cities, such as Foshan,
Dongguan, Zhuhai, etc., integrate with core cities, forming
complementarities in functions and industries. Together with core
cities, they construct an organic whole of the GBA, thereby
reducing the burden on core cities and promoting coordinated
regional development.
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4 Policy recommendations

Drawing on the study’s findings regarding the spatiotemporal
dynamics of land carrying capacity and the projected risks, this paper
policy
recommendations designed to balance the “economic growth-social

advances targeted, city-specific, and actionable

equity-ecological conservation” trilemma within the GBA.

4.1 Alleviating overload pressure in core
cities through spatial restructuring

For core cities like Guangzhou and Shenzhen, which face
sustained high carrying pressure and significant job-housing
separation, policies must shift from simply accommodating
growth to smartly managing it. A key strategy is to promote
polycentric urban structures by accelerating the development of
sub-centers in peripheral districts. This can be achieved by
relocating specific municipal functions, large-scale public
facilities, and corporate headquarters to these new hubs. This
spatial restructuring should be tightly integrated with the
implementation of Transit-Oriented Development (TOD), which
mandates high-density, mixed-use development around major
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metro and rail transit stations. Together, these strategies can create
vibrant, self-sufficient communities where residents can live,
work, and access services without heavy reliance on private
vehicles, directly addressing the job-housing mismatch. To ensure
social equity and prevent the spatial mismatch from replicating,
the approval of new industrial or commercial zones must be linked
to the concurrent construction of affordable public housing and
rental units in adjacent areas.

4.2 Balancing industrial upgrading with
ecological redlines in industrial hubs

Industrial hubs such as Dongguan and Foshan face acute
conflicts between rapid industrialization and environmental
degradation, particularly the loss of basic farmland and high
pollution loads. To address this, a multi-pronged approach is
necessary. First, land use management must be strengthened by
re-evaluating and adjusting industrial zoning to protect farmland.
The conversion of designated basic farmland for industrial use
should be prohibited, and a “zoning swap” policy could
be implemented to allow industries on ecologically sensitive land to
relocate to upgraded, high-density industrial parks with better
pollution control infrastructure. Second, as a preventative measure,
a “negative list” of high-pollution and high-water-consumption
industries should be established to bar their entry into areas
adjacent to ecological protection zones or high-quality farmland.
Finally, to mitigate the impact of existing industries, the retrofitting
of industrial parks should be mandated to promote a circular
economy with closed-loop systems for water recycling, waste heat

Frontiers in Sustainable Cities

13

recovery, and industrial symbiosis, thereby reducing the overall
negative environmental footprint (Negative Subsystem CO0).

4.3 Leveraging ecological assets in
peripheral cities through compensation
mechanisms

Peripheral cities like Zhaoqing, Huizhou, and Jiangmen serve
as the GBAs ecological shields but show signs of lagging
development. Policies should focus on converting their ecological
advantages into sustainable economic ones. A formal cross-city
ecological compensation mechanism should be instituted, where
core cities provide dedicated funds to peripheral cities for protecting
critical ecosystems such as forests and water sources. The funding
could be linked to the value of the ecosystem services provided and
the development constraints imposed by conservation. In parallel,
instead of pursuing heavy industry, these cities should focus on
developing high-value, low-impact industries like eco-tourism and
wellness, which leverage their pristine natural environment to
create sustainable livelihoods that are compatible with their
conservation goals.

4.4 An adaptive governance framework for
the entire GBA

To proactively manage the predicted “increase then decline”
trajectory of carrying capacity and avoid the projected 2042
trough, a region-wide adaptive governance framework is essential.
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This framework would be centered on a GBA Land Carrying
Capacity Monitoring Platform, which operationalizes the
PS-DR-DP model developed in this study into a dynamic, real-
time tool for policymakers. The platform would track the overall
carrying state (S-value) and the six underlying forces for all cities.
To make this tool actionable, predefined S-value thresholds
should be established (e.g., a sustained S-value below 0.8 or a
rapid decline of 15% in 2 years) that automatically trigger a
mandatory review and adjustment of a city’s current land-use and
industrial policies. This creates a crucial feedback loop for
adaptive management, ensuring that regional planning remains
flexible and responsive to emerging risks.

5 Discussion

This study combines the PS-DR-DP conceptual model, Monte
Carlo simulation, and Markov state transition prediction. It deeply
examines the dynamic changes in the human-land system carrying
capacity, regional differences, and future risks of the GBA city cluster.
Key findings reveal a complex “six-force” (PS-DR-DP subsystems)
interaction network behind the S-value-based carrying capacity rise
in the Bay Area. They also show how the “core-periphery” structure
causes spatial heterogeneity. Notably, probabilistic predictions
highlight the risk of a “first rise, then fall” inflection point.

Frontiers in Sustainable Cities

5.1 The complex dynamical mechanisms
and regional heterogeneity revealed by the
PS-DR-DP model

The PS-DR-DP model developed in this study deconstructs
carrying capacity into six-dimensional interacting forces, providing a
novel perspective for understanding the complexity of the human-
environment system in the GBA. As shown in Figures 5, 6, the steady
improvement in the region’s overall carrying capacity (S-value) over
the past two decades (>0.6 with an upward trend) has been primarily
driven by robust contributions from the positive economic resource
subsystem (e.g., GDP growth, increased per capita income) and
positive social resource subsystem (e.g., enhanced public service
investment). This increase in the S-value is closely correlated with
tangible social outcomes. Taking Guangzhou as an example, its
S-value increased by 172% between 2002 and 2022. This numerical
change shows a strong correlation with significant improvements in
the city’s public service sector during the same period (e.g., an increase
in hospital beds per 10,000 people and an expansion of per capita
paved road area), directly reflecting how the optimization of land-
space utilization translates into substantial enhancements in residents’
quality of life. However, the model precisely captures significant
internal disparities within this trend.

First, the core engine effect. As pivotal cities, Guangzhou,
Shenzhen, and Hong Kong witnessed their positive economic
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indicators (e.g., GDP growth) being the first to exceed baseline values
and maintain sustained leadership. However, accompanying high-
intensity development, their negative economic indicators (e.g.,
resource consumption, pollution linkages) and negative social
pressures (e.g., job-housing separation) were also the first to reach or
surpass critical thresholds. For instance, Macao and Guangzhou
recorded negative economic indicators exceeding 1.5 in 2022,
highlighting the substantial resource, environmental, and social costs
embedded within this growth trajectory.

Second is the fluctuation and lag in the periphery. Cities on the
periphery such as Huizhou and Jiangmen experience significant
fluctuations in their S values. The positive indicators of their social
resources have relatively lagged in improvement, and the negative
environmental indicators have shown limited improvement. This
reflects the greater challenges that non-core areas face in attracting
high-quality resources and balancing development with conservation.
Furthermore, the lower Cronbach’s a values observed in peripheral
cities like Huizhou and Jiangmen (Figure 4, Table 2) warrant specific
attention. This statistical instability may not only reflect data collection
inconsistencies but, more importantly, signal an underlying structural
vulnerability. Unlike the diversified and resilient economies of core
cities, the economic and social systems in peripheral areas may be less
complex and more susceptible to shocks, leading to less stable
relationships among indicators. This highlights a regional equity
challenge, suggesting that a “one-size-fits-all” policy approach is
inadequate. Targeted policies are needed to bolster the economic
diversification and data governance capacity of peripheral cities to
ensure balanced and sustainable regional development. This regional
heterogeneity is deeply rooted in the “core-periphery” spatial structure
of the GBA, as well as its industrial division of labor and the imbalance
in resource allocation. The PS-DR-DP model’s differentiation between
“destructiveness-resilience” (DR) and “degradability-promotiveness”
(DP) particularly highlights the arduous task faced by fast-
industrializing cities like Dongguan and Foshan. They struggle to
make their resilience and promotiveness catch up with destructiveness
and degradability. This is crucial for assessing regional resilience.
Compared with the classic PSR model, the PS-DR-DP model has
advantages in depicting the complex feedback mechanisms and
warning of specific-dimension issues (such as exceeding limits in a
certain negative force) in multi-dimensional, high-intensity, and fast-
changing regions like the GBA. Its “hexagon” visualization also more
intuitively reveals system balance.

5.2 The early warning significance and
uncertainty management of Markov state
transition prediction

This study’s most cautionary finding is the Markov state transition
prediction of urban carrying capacity showing a “first rise then fall”
trajectory (Figure 8). Projections show that the S value (a
comprehensive indicator of urban sustainable development capacity)
of most cities will peak around 2027, with some even exceeding 2. But
it will then drop significantly, possibly causing the regional average to
fall to about 0.5 by 2042. This inflection point projection is highly
significant for policy-making. The upward trend before 2027 is mainly
due to the continuation of current development momentum. This
includes the spillover effects of major infrastructure projects (e.g., the
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Hong Kong-Zhuhai-Macao Bridge), the dividends of innovative
industrial policies, and the potential for continued population and
economic agglomeration. The model captures the cumulative effect of
these positive factors, driving short-term carrying capacity growth.
The projected decline after the peak, however, signals the combined
effect of multiple long-term pressures, which our sensitivity analysis
identified as critical drivers.

Firstly, resource and environmental constraints are becoming
rigid. Decades of rapid urbanization, characterized by a 3.2% annual
expansion of construction land and shrinkage of ecological spaces like
mangroves (down by 18%), suggest that natural capital such as land,
water, and environmental capacity may approach saturation
thresholds, making further growth unsustainable without significant
technological or policy breakthroughs. Secondly, social costs continue
to accumulate, and structural contradictions are becoming
increasingly prominent. The decline in carrying capacity that
we forecast indicates long-term social risks. Long-standing issues such
as job-housing separation (index at 1.32), high housing costs in core
areas, and insufficient public services in peripheral regions will further
undermine the long-term attractiveness of the area and affect social
stability. Specifically, persistent land resource constraints in core areas
are likely to continue driving up housing and living costs, exacerbating
the “job-housing mismatch” phenomenon. At the same time, due to
sluggish growth in the S-value, peripheral cities face challenges in
providing adequate public services. This not only weakens the overall
appeal and social stability of the region but may also entrench issues
of spatial justice, posing long-term challenges to coordinated regional
development, potentially leading to population outflow or slower
growth. Thirdly, economic transformation brings risks and
diminishing marginal benefits. As the dividends from the traditional
factor-input growth model weaken, the transition to a high-quality,
innovation-driven economy is fraught with uncertainty. A slowdown
in key industries or a failure to successfully transition could directly
impact the economic resource subsystem, triggering a decline in the
overall carrying capacity.

The core value of Monte Carlo simulation lies in quantifying the
uncertainty of these predictions. Through sensitivity analysis (as
shown in the added “Sensitivity Analysis Figure”), it reveals the high
sensitivity of prediction results to key parameters such as future GDP
growth, resource-efficiency improvement from technological progress,
and inter-regional population-flow scale. The model itself, for
instance, state-transition-probability estimation and the GM (1,1)
extrapolation method, also introduces some uncertainty. The “overall
stability with local fluctuations” phenomenon shown in Figure 8
partly reflects partial convergence of later-stage simulation paths. This
suggests decision-makers should focus on the prediction interval, not
just the mean value. Therefore, planning needs enough flexibility to
handle various possible scenarios.

5.3 Policy implications for spatial planning
and regional governance

This study offers scientific support and early warnings to resolve
the GBA’s “economic growth-social equity-ecological conservation”
trilemma. To achieve this, precise interventions are needed to
balance the “six forces” This involves boosting positive forces (PS,

and the promotion force in DP), with a focus on increasing social
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resource investment and enhancing the environment in peripheral
cities (e.g., via ecological restoration and green infrastructure).
Meanwhile, strict restrictions should be imposed on factors that
negatively impact the environment and society. For instance, set
stricter control targets and establish incentive mechanisms for
economic negative indicators that have exceeded warnings (such as
resource consumption intensity), like carbon emission trading and
resource taxation.

To enhance regional resilience against the decline risk after 2027,
planning needs early deployment. Specific measures involve
optimizing land resource allocation. This means strictly controlling
new construction land, promoting the redevelopment of existing and
under-performing land, and prioritizing the protection of ecological
and high-quality agricultural spaces. Accelerating industrial-structure
upgrading and the clean-production process is also crucial. This can
be done by improving energy and resource-utilization efficiency and
developing a circular economy. To ease job-residence separation and
regional disparities, it is necessary to enhance rail-transit systems,
offer more affordable housing, and promote equitable public services.
Moreover, implementing ecological-protection red lines and restoring
key ecosystems like mangroves and water sources can boost ecosystem
resilience and service functions.

Moreover, it is crucial to establish a dynamic monitoring, early-
warning, and scenario-simulation platform based on the PS-DR-DP
evaluation framework and Monte Carlo model developed in this
study. The platform can serve the planning decisions for the GBA. It
can also be further developed to include policy-scenario simulation
functions. In this way, it can quantitatively assess the impacts of
different policy mixes (such as ecological-protection policies of
varying intensities, industrial-dispersal plans, and infrastructure-
investment programs) on the “six forces” and the trajectory of the S
value. Thus, it can achieve closed-loop management from early
warning to assessment and then to optimization. All of this is based
on the unification and sharing of data standards across the
Guangdong-Hong Kong-Macao regions. This ensures information
flow and data accuracy, providing solid support for scientific
decision-making.

5.4 Research limitations and future
directions

While this study has made theoretical and practical progress, it
still has several methodological and practical limitations that need
further exploration and improvement.

First, the model results demonstrate a certain degree of
sensitivity to indicator weights. Although the PS-DR-DP model in
this study determines the contribution of each subsystem through
specific algorithms (such as principles of combinatorial
mathematics), the final carrying state (S-value) remains sensitive to
the selection of initial indicators and their weight allocation. While
internal consistency of the indicator system was ensured using
Cronbach’s a coeflicient, a systematic sensitivity analysis was not
conducted to examine the robustness of final predictions (such as
the inflection point expected in 2027) under different weighting
schemes. Future research should incorporate more weight
determination methods (e.g., a combined AHP-entropy weight

approach) and carry out parameter sensitivity tests to enhance the
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reliability of the conclusions. Secondly, the integration of cross-
regional data faces challenges arising from inconsistencies in
statistical standards. This study combines data from Guangdong,
Hong Kong, and Macao, yet significant differences exist among
Hong Kong, Macao, and mainland China in terms of statistical
criteria, data collection frequency, and indicator definitions (for
example, the specific definitions of “greening coverage rate of
built-up areas” or “urban registered unemployed population” may
vary). These discrepancies pose difficulties in constructing a fully
consistent long-term time-series dataset, potentially introducing
systematic biases that may affect the precision of the evaluation
results. Future research should focus on promoting data
standardization across the three regions and exploring the
integration of multi-source and heterogeneous big data. For
instance, remote-sensing images, mobile-phone signaling data, and
social-media information can be used to develop a more
comprehensive and compound indicator system. This will enhance
the model’s explanatory and predictive power.

In terms of model mechanisms, the interactions among the “six
forces” in the current PS-DR-DP model are still simplified, without
fully incorporating complex mechanisms like nonlinear feedback.
Meanwhile, the future state predictions of the Markov model are
primarily based on the extrapolation of historical trends, making it
difficult to fully simulate the complex institutional background of the
GBA (e.g., Hong Kong and Macao’s special policies, land-management
differences) and the behaviors of diverse stakeholders (governments,
enterprises, residents). To address these issues, future work could
integrate Multi-Agent Systems (MAS) into the model framework. This
will more realisticly simulate the micro-decision-making processes of
different stakeholders and their macro-level spatial emergence effects.

Finally, this study does not adequately account for the impacts of
extreme scenarios such as climate change. As a typical coastal mega-
urban agglomeration, the Greater Bay Area is highly vulnerable to
climate change events, including sea-level rise, frequent typhoons, and
extreme heat. The current forecasting model, which is based on
historical data trends, does not explicitly incorporate different climate
change scenarios (e.g., RCP pathways from IPCC reports) into its
simulations. This limitation restricts our ability to assess the resilience
of land space suitability in the Greater Bay Area under future extreme
stressors. Future efforts should focus on enhancing the models
adaptability to uncertainties and expanding its simulation of extreme
scenarios to boost its practical value in emergency management and
strategic planning.

Regarding scale-related issues, this study mainly focuses on
municipal-level analysis. How to effectively connect the research
results to finer-grained district/county or community scales, and how
to link them to the broader context of the GBA, national strategies,
and even global development require further exploration. Future
research should strengthen the study of scale-transformation methods
and optimize parameter-adjustment strategies. This will enable model
results to better serve multi-level and multi-dimensional spatial
governance and development planning.

6 Conclusion

This paper uses Monte Carlo and Markov state transition
prediction models. It builds a multi-factor land-space suitability
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evaluation system that integrates economic, social, and environmental
dimensions. This system is applied to the GBA. From six angles
(positive and negative aspects of economic, social, and environmental
resources), it builds an index system reflecting the multi-factor
coupling and constraints of land population-carrying capacity. After
verifying with Cronbach’s a coefficient, the results show that the «
coeflicients of cities and index systems in all dimensions are mostly
over 0.7, indicating the system is reliable and stable. It can filter out
subjectivity and objectively show the actual land population-carrying
capacity in the region.

Based on the PS-DR-DP hexagonal interaction model, this
paper analyzes the dynamic changes in land population-carrying
capacity in the GBA from 2002 to 2022. Core cities like
Guangzhou, Shenzhen, and Hong Kong saw their economic
positive indicators surpass the benchmark 1 in 2022, showing
strong development vitality and agglomeration effects. Most cities’
economic negative indicators declined and fluctuated near 1, yet
some cities’ negative indicators went beyond the warning level of
1.5, reflecting ongoing management pressure. In 2022, the social
positive indicators of core cities jumped to above 1.6, driven by
the optimized public service system, which advanced regional
social equity and security. The social negative indicators dropped
overall. However, non-core cities still lag behind core cities, with
some areas needing more investment to bridge the development
gap. From the environmental perspective, the Bay Area’s overall
environmental quality has improved, with positive indicators
rising, peaking at 1.83. Yet, in highly urbanized areas,
environmental pressure remains high. Although negative
indicators have locally improved, they have not stably fallen to the
ideal level (below 1), indicating that balancing ecological
protection and economic growth is a long-term task. Overall, the
land-space carrying capacity in the Bay Area has stayed above 0.6
and risen in recent years. Over the past two decades, the land’s
population-carrying capacity has strengthened. Regional
economic development, urban construction, and management
have continuously improved, strongly supporting the sustainable
development goals.

To enhance the predictive ability regarding future land-population
carrying capacity trends, this paper introduces the Monte Carlo
model. It compensates for traditional models’ deficiencies in handling
uncertainties. Also, it conducts Markov state-transition prediction on
the GBA’ land-population carrying capacity from 2023 to 2042. The
prediction shows that by 2027, most areas in the Bay Area will have a
land-space carrying capacity of over 1, with some cities even reaching
2. However, over time, despite some cities’ improved carrying capacity,
the overall capacity of the Bay Area is expected to decline to around
0.5. Therefore, it is recommended to formulate flexible land-use
planning schemes based on the changing carrying capacity and
establish a regular evaluation and dynamic adjustment mechanism to
handle potential risks.

In summary, the research method proposed in this paper can
scientifically and systematically show the dynamic trends of land
population-carrying capacity in the GBA over the next two decades.
It also greatly improves the accuracy and scientific nature of land-use
planning. The research findings offer policymakers solid data support
and a theoretical basis, comprehensively aiding the GBA in achieving
its long-term goals of high-quality and sustainable development.
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