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The rapid urbanization and industrialization of the Guangdong-Hong Kong-Macao 
Greater Bay Area (GBA) pose a severe challenge for rational land use. This study 
presents a multi-factor land-use suitability assessment system with economic, 
social, and environmental dimensions. System reliability and stability are confirmed 
by a Cronbach’s α coefficient (>0.7). We innovatively integrate the PS-DR-DP model 
with the Monte Carlo and Markov models. The Markov model analyzes transition 
probabilities between different land capacity states. The Monte Carlo method 
quantifies key parameter uncertainties through extensive random sampling, while 
the Markov chain-Monte Carlo approach dynamically evaluates and predicts land 
capacity. From 2002 to 2022, overall GBA land-population carrying capacity is 
stable above 0.6 and keeps rising, reflecting improved regional land capacity and 
successful coordinated development. However, the forecast results indicate that 
land capacity will first increase and then decrease between 2023 and 2042, with 
most cities reaching a peak carrying capacity (S-value approaching or exceeding 
2) in 2027. This peak is followed by a projected decline, and by 2042, the overall 
land capacity may drop to around 0.5, signaling a significant long-term risk of 
overload. If current development trends continue, the region faces significant 
long-term risks of declining carrying capacity, particularly if the transition to a 
sustainable, innovation-driven economy is not managed effectively. This highlights 
the profound challenge of balancing economic growth, urbanization, and ecological 
protection. These recommendations offer scientific evidence and decision-making 
support for sustainable GBA development.

KEYWORDS

Monte Carlo model, Guangdong-Hong Kong-Macao Greater Bay Area (GBA), 
evaluation of land spatial suitability, Markov model, PS-DR-DP model

1 Introduction

Serving as a crucial fulcrum for China’s “dual-circulation” strategy, the Guangdong-Hong 
Kong-Macao Greater Bay Area (GBA) is one of the country’s most economically vibrant and 
open regions. With less than 0.6% of China’s land area, it contributes about 12% of the nation’s 
GDP, making it a core driver of regional collaborative and high-quality development (Chen and 
Xu, 2021; Zeng et al., 2020; Li et al., 2021). However, between 2010 and 2020, the annual 
expansion rate of construction land in the GBA reached 3.2%, much higher than the national 
average. This has intensified regional “production-living-ecological space” conflicts, manifesting 
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as the fragmentation and shrinkage of ecological space. For instance, 
the total mangrove area decreased by 18% over the study period, a 
significant loss that contributes to habitat fragmentation. This 
percentage loss is calculated as lossP =[( initialA − finalA )/ initalA ] × 100%, 
where Ainitial and Afinal are the initial and final mangrove areas, 
respectively. This annual rate is calculated as the total converted 
farmland area relative to the initial area, divided by the number of years 
in the observation period ( convertR =[( convertA / initialA )/Y] × 100%). A 
higher rate signifies more rapid loss of essential agricultural land. These 
spatial imbalances have further triggered socioeconomic issues such as 
‘job-housing mismatch’ (residential-job separation index rising to 1.32) 
(Zhang J. et al., 2022; Zhang Z. et al., 2022; Hu et al., 2021; Zhou et al., 
2016), posing a challenge to the region’s sustainable development. This 
index quantifies the degree of separation between workplaces and 
residences, typically calculated as the ratio of the actual average 
commute distance to the theoretical minimum average commute 
distance (I= actual minC /C ). A value greater than 1.0 indicates a spatial 
mismatch, with higher values signifying a greater degree of separation 
and potentially longer commuting burdens. Therefore, the core 
objective of this study is to provide a scientific basis for resolving these 
complex socioeconomic and environmental problems from the 
perspective of spatial planning and land suitability. Currently, ensuring 
sustained economic growth while resolving the population—
resource—environment contradictions within the area has become a 
pressing issue. Land Suitability Assessment (LSA) (Ni and Wei, 2024; 
Ma et al., 2022) is key to solving the “trilemma” of spatial resource 
allocation, offering scientific backing for regional planning, land use, 
and ecological protection. Yet, LSA in the GBA faces many challenges 
like complex natural geography, multi-source data integration, cross-
domain institutional barriers, and dynamic risk overlay (Zhong and 
Chen, 2025; Sun et al., 2025; Liu et al., 2020; Zhao et al., 2018). So, 
building a scientific and reasonable LSA system is of great importance 
for the GBA’s sustainable development.

As a core land resource management tool, the Land Suitability 
Assessment (LSA) methodological evolution mirrors the deepening 
understanding of complex human-environment systems. Early 
studies, typified by McHarg’s (1969) overlay analysis, focused on 
natural element superposition but were restricted by static evaluation 
and qualitative decision-making (Collins et  al., 2001). With 
geographic information system (GIS) technology development, FAO’s 
systematic evaluation framework enabled multi-source data spatial 
integration (FAO, 1976), and Steiner et al.’s subsequent multi-criteria 
decision-making model (Steiner et al., 2000) marked the shift from 
one-dimensional to multi-dimensional LSA research. Current 
international frontier research shows two trends. First, dynamic 
simulation technology is widely used. For example, Batty combined 
Cellular Automata (CA) with Multi-Agent Systems (MAS) for 
dynamic urban expansion simulation (Batty, 2013). Second, 
uncertainty quantification has become a focus. Li et al. (2018) used 
Bayesian networks to integrate various uncertainties, improving the 
evaluation result credibility. Domestic research has evolved from 
adopting foreign experiences to independent innovation. In 2002, 
Wu’s (2002) “Human Settlements Science” theory provided a 
localized LSA framework, and Duan’s (2024) team developed the 
“spatial gene” technology in 2015 for quantitative local characteristic 
analysis. In terms of method innovation, Li Mianchun et al.’s CLUE-S 
model (Fan et al., 2023), integrating system dynamics and spatial 
allocation algorithms, has greatly improved simulation accuracy.

The “Pressure-Support; Destructiveness-Resilience; Degradation-
Promotion” Model (PS-DR-DP Model). The PS-DR-DP model is an 
optimized version of the “Pressure-State-Response” model (P-S-R 
model) (Yu et al., 2023), developed by Wang Liang et al. It expands 
the framework from three dimensions to six dimensions, forming a 
regular hexagon model of interacting forces (Wang and Liu, 2019). 
As a framework for assessing resource and environmental carrying 
capacity (RECC), the PS-DR-DP model decomposes carrying 
capacity into the resultant sum of multiple forces. It simulates the 
dynamic changes in RECC using the filling degree of the hexagon 
model, providing a “warning-oriented” evaluation mechanism 
(Xinxin, 2024). This model addresses both the issues of “growth 
limits” and “structural stability,” using the hexagon’s filling degree to 
simulate RECC dynamics and establish its warning-oriented 
evaluation mechanism. Domestically, some scholars have applied it 
to evaluate the comprehensive carrying capacity of specific regions 
(such as resource-based cities, ecologically fragile areas, and river 
basins), validating its effectiveness in identifying key constraining 
factors and providing early warnings of carrying status (Ying et al., 
2022; Li J. et al., 2024; Li M. et al., 2024; Zhang J. et al., 2022; Zhang 
Z. et  al., 2022). Other research has attempted to integrate the 
PS-DR-DP model with other methods (such as system dynamics, 
neural networks, and GIS spatial analysis) to enhance its dynamic 
simulation capabilities and spatial visualization (Zhao et al., 2021; Wu 
and Ning, 2018). These studies have deepened the understanding of 
the interaction mechanisms among the six-dimensional forces and 
have made valuable explorations in areas such as indicator system 
construction, weighting methods, and setting warning thresholds for 
evaluation results. Internationally, literature directly applying the 
PS-DR-DP model is relatively limited. However, its core ideas 
(multidimensionality, dynamic nature, warning-orientation) align 
with the international forefront of carrying capacity research. 
Frameworks like the UN Sustainable Development Goals (SDGs) 
indicators, Ecological Footprint, Planetary Boundaries, and the PSR 
model and its derivatives (United Nations, 2015; Rockström et al., 
2009; European Environment Agency, 2007) all focus on 
multidimensional comprehensive evaluation, human-nature system 
interactions, and tipping point warnings. The PS-DR-DP model’s 
expansion to six forces, explicitly distinguishing between 
“Destructiveness-Resilience” and “Degradation-Promotion,” provides 
a refined perspective for characterizing system resilience and 
recovery potential. This aligns with the international emphasis on 
Resilience and Sustainability Transitions research (Folke, 2016). Its 
“hexagon filling” visualization method for warnings intuitively 
displays multidimensional states. As research deepens and 
international exchange increases, the theoretical value and application 
potential of the PS-DR-DP model are expected to gain wider 
international recognition. Its multidimensional opposing forces 
framework and warning mechanism could provide new analytical 
tools for global sustainability science (Turner, 2010). Future research 
should promote its standardization and international application, 
strengthening comparisons and linkages with mainstream 
international frameworks.

International frontier research has not only made 
breakthroughs in model complexity and precision but is also 
exploring how to better handle uncertain factors within large-scale 
urban agglomerations. Against this backdrop, Monte Carlo 
simulation, as a powerful tool for uncertainty analysis, is 

https://doi.org/10.3389/frsc.2025.1676983
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Li et al.� 10.3389/frsc.2025.1676983

Frontiers in Sustainable Cities 03 frontiersin.org

increasingly becoming a research hotspot in the field of spatial 
planning. This method, through random sampling techniques, can 
effectively address uncertainty issues in complex systems, 
providing comprehensive risk assessment for decision-making. 
For example, the Probabilistic Cellular Automata (p-CA) model 
developed by Hagen-Zanker in 2008 (van Vliet et al., 2013), by 
introducing a random sampling mechanism, successfully resolved 
the parameter sensitivity problem inherent in traditional Cellular 
Automata models, significantly enhancing model adaptability and 
predictive capabilities. Domestic scholars are also actively 
exploring methods that integrate advanced computing 
technologies with Monte Carlo simulation (Wu et al., 2018; Weng 
et  al., 2022; Dong and Xu, 2019). In 2021, Liu Yaolin’s team 
proposed a land change simulator integrating deep learning with 
Monte Carlo simulation (Li J. et al., 2024; Li M. et al., 2024). This 
tool possesses adaptive capabilities, enabling it to respond to 
complex and dynamic spatial environments. Nonetheless, existing 
research still faces challenges when dealing with geographic big 
data in the GBA, including computational bottlenecks (Chen et al., 
2022) and inadequate capability in representing unstructured 
variables such as institutional factors (Yang et al., 2023). These 
challenges urgently require further exploration and resolution.

While existing models offer valuable tools, they exhibit specific 
limitations when applied to the dynamic and complex human-
environment system of the GBA. The classic Pressure-State-Response 
(PSR) model, for instance, provides a foundational framework but 
often simplifies the intricate feedback loops into only three 
dimensions, potentially overlooking the opposing forces of system 
degradation and resilience. Spatio-temporal models like Cellular 
Automata-Markov (CA-Markov) excel at simulating the future 
patterns of physical land-use change but are less adept at forecasting 
the dynamic evolution of the overall carrying capacity state, which is 
an aggregate function of non-spatial economic, social, and 
environmental drivers. Furthermore, while methods like Bayesian 
networks can effectively model uncertainty, their application often 
requires complex conditional probability tables and may not be as 
transparent for simulating future trajectories based on temporal 
state transitions.

This study addresses these gaps by constructing an innovative 
analytical framework that synthesizes three powerful methodologies. 
Before this, to ensure the internal consistency of the constructed 
multidimensional indicator system, we  employed Cronbach’s α 
coefficient for assessment, guaranteeing that the indicators are both 
independent and interrelated, thereby forming a reliable and effective 
evaluation system (Ahmad et al., 2024; Alexandrou et al., 2023). First, 
we  move beyond the conventional PSR model by employing the 
Pressure-Support; Destructiveness-Resilience; Degradation-
Promotion (PS-DR-DP) model. This six-dimensional framework 
provides a more granular and holistic understanding of the antagonistic 
forces that shape carrying capacity, offering a “warning-oriented” 
mechanism better suited to the GBA’s complexity. Second, we couple 
this with a Markov model to achieve a precise, dynamic simulation of 
future transitions between different carrying capacity states, focusing 
on the temporal trajectory rather than just spatial allocation. Third, 
we innovatively integrate Monte Carlo simulation to explicitly quantify 
the uncertainty associated with these future predictions. By generating 
a probabilistic range of outcomes, our approach provides a more 
robust and realistic forecast compared to deterministic methods.

2 Materials and methods

To systematically present the technical pathway and 
implementation flow of this study, and based on integrating the 
geographical characteristics of the GBA with scientific methodologies, 
this paper constructs a technical roadmap (as illustrated in Figure 1).

2.1 General situation

The GBA is located in the southern coastal region of China (21°–
25°N, 111°–116°E), and consists of the “92+” city cluster pattern with a 
total area of about 56,000 km2, including nine cities in the Pearl River 
Delta, namely Guangzhou, Shenzhen, Zhuhai, Foshan, Dongguan, 
Zhaoqing, Huizhou, Zhongshan, and Jiangmen, as well as the two 
special administrative regions of Hong Kong and Macao (as shown in 
Figure  2). This area shows significant spatial differentiation 
characteristics. According to the 2023 China Statistical Yearbook and the 
spatial assessment report of the Chinese Academy of Sciences, the 
Guangzhou-Shenzhen dual-core (accounting for 26% of the area) has 
formed an economic pole through the siphon effect. In 2022, the total 
GDP reached 6.12 trillion yuan (Shenzhen 3.24 trillion yuan, Guangzhou 
2.88 trillion yuan, ranking third and fourth in the country respectively), 
contributing 52% of the economic output of the GBA and supporting a 
resident population of over 30 million (32% of the total population of 
the area). Intensive development has led to spatial mismatch, with the 
Guangzhou-Shenzhen work-residence separation index reaching 1.32 
(15% higher than the Pearl River Delta average of 1.15), highlighting the 
contradiction of high-density urban spatial resource misallocation. The 
regional ecological functions show a “west conservation-east squeeze” 
pattern: Zhaoqing, as the ecological shield of the GBA has, a forest 
coverage rate of over 70% (32% higher than the regional average of 53%), 
undertaking 60% of the water conservation and biodiversity 
maintenance functions of the West River Basin. Dongguan, driven by 
industrialization, has only 28% of ecological space. From 2011 to 2021, 
the expansion construction of land encroached on 120 square kilometers 
of basic farmland (15% of the total arable land in the city), reflecting the 
deep-seated conflict between economic growth and ecological security.

2.2 Data introduction

This integrates study multidimensional economic, social, and 
environmental data from authoritative sources, including the China 
Statistical Yearbook (2002–2020),1 Guangdong Statistical Yearbook, 
China Environmental Statistical Yearbook,2 China Forestry Statistical 
Yearbook,3 and local statistical bulletins. The data covers key indicators 
such as macroeconomics and energy (GDP, energy consumption), 
resources and environment (emissions, ecological area), population 
and social development (population, income, healthcare), and land 
use and infrastructure (construction land, greening rate).

To ensure data consistency and accuracy, all raw data underwent 
rigorous cross-validation, and missing values were addressed. For data 

1  https://www.stats.gov.cn/

2  https://www.mee.gov.cn/

3  https://www.forestry.gov.cn/
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FIGURE 1

Overall technical roadmap of the project.
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gaps in some prefecture-level administrative regions, linear interpolation 
or spatial filling based on surrounding area averages was used. This 
guarantees dataset integrity and reliability, offering solid empirical 
support for in-depth research on the GBA’s territorial spatial planning.

2.3 Cronbach’s alpha coefficient

This study uses the Cronbach α coefficient to test the reliability of 
the standardized indicator system, assessing the evaluation system’s 
consistency in repeated measurements. As a measure of data stability, 
the reliability test reveals the evaluation tool’s reliability and aims to 
eliminate human-caused interference in the measurement results. 
According to psychometrics criteria, the α coefficient threshold is 
positively correlated with system reliability. An α coefficient > 0.9 
indicates excellent internal consistency in the indicator system; 
0.7 ≤ α < 0.9 shows the system meets basic empirical research 
requirements; 0.5 ≤ α < 0.7 suggests a need for indicator dimension 
optimization; and α < 0.5 points to systematic biases in the evaluation 
framework. The mathematical model of this coefficient can be expressed 
as follows:

	
α

 ∑
= −  −  

2

21
1

i

t

n s
n s 	

(1)

In the formula, α  represents the reliability coefficient; n stands for 
the number of indicator variables; ∑ 2

is  is the sum of within-group 
variances of each variable; and 2

is  is the overall variance of the 
indicator variables. Reliability analysis is conducted to ensure the 
reliability of the selected indicator system.

2.4 PS-DR-DP model

The regional land-population carrying capacity is 
quantitatively evaluated using the PS-DR-DP model, which 
culminates in a comprehensive Carrying State Index (S). This 
index represents the dynamic balance between supportive 
(promotive) and restrictive (negative) forces within the 
regional system.

2.4.1 Calculation of the Carrying State Index (s)
The calculation of the S index is a two-step process. First, the 

contribution value (C) of each of the six subsystems (positive/
negative aspects of economic, social, and environmental 
resources) is calculated. This is achieved by quantifying the 
synergistic effect of all indicators within a given subsystem. Based 
on principles of combinatorial mathematics, the impact weight of 
each element is determined by the ratio of the characteristic 
polygon’s mean area to that of a standard regular N-gon. The 

FIGURE 2

The location map of the GBA.
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specific formula for the partial carrying capacity contribution 
value (C) is as follows:

	

( )( )
( )

<
+ +

=
−

∑i, j m m
i ji j k 1 k 1

C
N N 1

	
(2)

In the formula, C  denotes the partial carrying capacity 
contribution value for a specific subsystem. N  represents the 
number of indicators within that subsystem. m

ik  and m
jk  

are the normalized values of the i-th and j-th indicators in 
the subsystem.

Second, the overall Carrying State Index (S) is calculated as the 
ratio of the sum of all positive (promotive) subsystem contribution 
values ( pC ) to the sum of all negative (restrictive) subsystem 
contribution values ( nC ) (see Equation 3):

	

=

=

=
∑
∑

i p
ii 1

j n
jj 1

C
S

C
	

(3)

where p
iC  represents the contribution value of the i-th positive 

subsystem (i.e., Positive Economic, Social, and Environmental 
Resources), and n

jC  represents the contribution value of the j-th 
negative subsystem.

2.4.2 Interpretation of the Carrying State 
Index (s)

The interpretation of the S index is crucial for understanding the 
system’s condition. The value of S=1.0 serves as a critical equilibrium 
threshold, where the supportive forces are perfectly balanced by the 
restrictive forces.

When S>1 (Surplus State): The system is in a positive carrying 
state, indicating that the combined supportive forces (e.g., economic 
growth, social services, environmental quality) outweigh the 
restrictive pressures (e.g., resource consumption, population density, 
pollution). A higher S-value signifies a stronger and more resilient 
carrying capacity.

When S<1 (Deficit State): The system is in a deficit or pressure 
state, suggesting that restrictive forces are dominant. This condition 
serves as an “overload warning,” signaling that the region’s 
development is becoming unsustainable and may be  facing 
significant challenges.

To facilitate dynamic analysis and future prediction, the 
continuous S values are discretized into four distinct states. These 
thresholds are defined based on conventions in carrying capacity 
literature and urban planning standards:

State 1 (Overload): S < 0.6—Indicates a critical state where 
pressures significantly exceed the system’s supportive capacity, posing 
severe risks to sustainability.

State 2 (Pressure): 0.6 ≤ S < 1.0—Represents a warning state 
where the system is under pressure, although not yet in a critical 
overload condition.

State 3 (Secure): 1.0 ≤ S < 1.5—Signifies a healthy and balanced 
state with a reasonable buffer to absorb pressures.

State 4 (Optimal): S ≥ 1.5—Represents a robust state with a strong 
carrying capacity and significant development potential.

2.4.3 Calculation example (using data for the year 
2002)

To clearly demonstrate the calculation process, a hypothetical 
dataset for the year 2002 is used.

2.4.3.1 Step 1: calculate C-values for each subsystem
According to Equation 1, the C-values for the six subsystems are 

calculated, respectively. For example, the calculations for the Positive 
Economic subsystem and the Negative Economic subsystem are 
as follows:

Positive Economic Subsystem (N = 3), with indicator values: GDP 
Growth Rate (0.85), Per Capita GDP (0.72), and Urban Disposable 
Income per Capita (0.60).

	

( ) ( ) ( )
( )

× + × + ×
= =

−EconPos
1.85 1.72 1.85 1.60 1.72 1.60

C 1.482
3 3 1

Negative Economic Subsystem (N = 3), with indicator values: 
Energy Consumption per Unit of GDP (0.55), Growth Rate of Energy 
Consumption per Unit GDP (0.68), and Natural Gas Consumption 
(0.108).

	

( ) ( ) ( )
( )

× + × × ×
= =

−EconNeg
1.55 1.68 1.55 1.108 1.68 1.108

C 1.103
3 3 1

Similarly, the C-values for the other subsystems can be obtained. 
The results are summarized below:

In the positive values ( pC ), the environment is 1.004, the economy 
is 1.482, and the society is 1.671; in the negative values ( nC ), the 
environment is 1.030, the economy is 0.945, and the society is 0.943.

2.4.3.2 Step 2: calculate the Comprehensive Index (S)
The Comprehensive Index S for the year 2002 is calculated by 

substituting the C-values into Equation 2.
Sum of Positive C-values:

	 =
= + + =∑

1
1.004 1.482 1.671 4.157

i
p
i

i
C

Sum of Negative C-values:

	 =
= + + =∑

1
1.030 0.945 0.943 2.918

j
n
j

j
C

Comprehensive Index S:

	
= =2002
4.157 1.425
2.918

S

The calculation shows that the Comprehensive Index S for 2002 is 
approximately 1.425. As this value is greater than 1, it indicates that 
during this stage of development, the overall synergistic strength of 
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the system composed of positive indicators outweighs that of the 
system composed of negative indicators.

2.5 Markov model

First, to construct the Markov transition matrix, the continuous 
carrying state (S) values must be discretized into four distinct states 
( iE ). The definition of these states and their thresholds is primarily 
based on existing standards in urban planning and carrying capacity 
assessment literature, where S = 1.0 is generally considered the 
baseline for a balance between supportive and restrictive forces. The 
specific definitions are as follows:

State 1 (Overload): S < 0.6  – Indicates a critical state where 
pressures significantly exceed the system’s supportive capacity.

State 2 (Pressure): 0.6 ≤ S < 1.0  – Represents a warning state 
where the system is under pressure.

State 3 (Secure): 1.0 ≤ S < 1.5 – Signifies a healthy state with a 
good buffer.

State 4 (Optimal): S ≥ 1.5 – Represents a robust state with strong 
carrying capacity.

Based on the state definitions above, the one-step state transition 
probability matrix ijP  is calculated using historical data from 2002 
to 2022.

Uncertainty analysis of prediction parameters based on GM (1,1):
The Monte Carlo method is used to randomly sample parameters 

of the GM (1,1) model (Equation 4). These parameters (a0, a1) are 
assumed to follow a normal distribution, with the mean determined 
from historical data analysis and the standard deviation based on the 
variance of historical prediction errors. A large number of random 
parameter combinations A (set to 10,000) are generated for subsequent 
parallel forecasting computations.

	 ( ) ( )= + −0 1y k a a x kˆ 1 	 (4)

Among them, ( )ŷ k  is the grey prediction value; ( )−x k 1  is the 
actual value at the previous moment; 0a  and 1a  are model parameters.

Calculate relative error:
After obtaining the predicted values, it is necessary to evaluate their 

accuracy. The relative error between the grey prediction value and the 
actual value is calculated using the following formula (see Equation 5):
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−
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Among them, ( )k  is the relative error; ( )y k  is the actual value.
Markov calculation of state transition matrix probability:
In order to predict future states, it is necessary to calculate the 

state transition probability matrix, which is calculated using the 
following formula:

	
= ij
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i
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Among them, ijn  is the number of times the state iE  has 
undergone k steps to reach the state jE ; in  is the number of times the 

state iE  appears. Thus obtaining the state transition probability matrix 
KP  (see Equation 7):
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When using Monte Carlo simulation to generate random paths 
for future state transitions, start from the current initial state. At each 
iteration step, based on the transition probabilities corresponding to 
the current state, a random sampling is performed on the distribution 
of the state transition matrix to select the next state. This dynamically 
constructs a state evolution sequence (Kang et al., 2019; Azabdaftari 
and Sunar, 2024; Tariq and Mumtaz, 2023). By repeating a large 
number of independent simulations, multiple potential random 
evolution paths of the system can be covered, thereby quantifying the 
randomness and uncertainty in the state transition process (Ratick 
and Schwarz, 2009; Ligmann-Zielinska and Jankowski, 2014; Jamroz 
and Williams, 2020), which endows the Markov model with 
probabilistic dynamic forecasting capabilities. To ensure the stability 
and reliability of the simulation, we  conducted a convergence 
validation. By monitoring the mean and standard deviation of the 
predicted carrying state S for the final year (2042) as the number of 
iterations increased, we found that the output results stabilized after 
approximately 8,000 iterations. Therefore, setting 10,000 iterations is 
sufficient to ensure the robustness of the results and avoid interference 
from random noise. This helps understand the system’s development 
trend and formulate corresponding strategies.

2.6 Uncertainty and sensitivity analysis

To address the inherent uncertainties in long-term forecasting and 
to ensure the robustness of our conclusions, we  integrated a 
comprehensive uncertainty and sensitivity analysis into our 
modeling framework.

2.6.1 Monte Carlo simulation setup
The probabilistic forecast was generated using a Monte Carlo 

simulation with 10,000 iterations. This number was chosen to ensure 
the statistical stability and convergence of the results, as preliminary 
tests showed that the mean and standard deviation of the final year’s 
predicted S-value stabilized after approximately 8,000 iterations.

2.6.2 Parameterization of uncertainty
Uncertainty was primarily introduced through the parameters of 

the GM(1,1) forecasting model (Equation 4). The model parameters, 
0a  and 1a , were not treated as fixed values but as random variables 

following a normal distribution. The mean of this distribution was 
determined by fitting the model to historical data, while the standard 
deviation was calibrated based on the variance of the historical 
prediction errors.

2.6.3 Stochastic sampling strategy
For each of the 10,000 iterations, a unique future pathway for the 

land carrying capacity was simulated. This was achieved by first 
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sampling a set of parameters for the GM(1,1) model from their 
respective distributions. Then, starting from the last known state (year 
2022), the future state for each subsequent year was determined by 
randomly sampling from the state transition probability matrix 
(Equation 6), which defines the likelihood of moving from one 
carrying capacity state to another. This process created a large 
ensemble of possible future trajectories, allowing us to quantify the 
forecast’s uncertainty.

2.6.4 Sensitivity analysis
To identify the most influential drivers of future carrying capacity, 

a One-At-a-Time (OAT) sensitivity analysis was conducted. Key input 
indicators from the economic, social, and environmental subsystems 
(e.g., GDP Growth Rate, Population Density, Total Wastewater 
Discharge) were systematically perturbed by ±10% from their baseline 
forecast values, while all other indicators were held constant. The 
simulation was re-run for each perturbation, and the resulting 
percentage change in the median S-value for the final forecast year 
(2042) was calculated. This allowed us to rank the indicators based on 
their impact on the long-term carrying capacity.

3 Results

3.1 Construction of indicator system

When selecting indicators, the following principles must 
be followed: firstly, the principle of systematicity. Indicators should not 
only reflect their independence and specificity, but also consider their 
inherent connections and establish a systematic indicator system. The 
second principle is scientificity. Each evaluation indicator should have 
typical representativeness and avoid phenomena such as overly 
complicated indicators, overlapping or missing information. The third 

principle is operability. It is necessary to consider the difficulty level 
of data collection, as well as the practicality and authenticity of the 
data. The fourth principle is regional specificity. To reflect the 
comprehensive characteristics of the research area as much as possible. 
In summary, the reason for choosing the specific indicators mentioned 
above is that they can comprehensively reflect the uniqueness of the 
GBA and support scientific decision-making. Based on the regional 
characteristics of the GBA and the needs for evaluating the suitability 
of national land space, we have selected a series of indicators from 
multiple dimensions such as economy, society, and environment 
(Radermacher, 2021; Hu and Xi, 2023; Zhu et  al., 2022). These 
dimensions not only reflect the current development status of the 
region, but also provide a basis for future planning. The indicator 
system constructed in this article is shown in Table 1.

3.2 Reliability analysis of indicators

This paper collects raw data on land-population carrying capacity 
indicators of six sub-systems in the cities of the GBA (Hong Kong 
SAR, Macao SAR, Guangzhou, Zhuhai, Shenzhen, Foshan, Huizhou, 
Dongguan, Zhongshan, Jiangmen, Zhaoqing) over the past 20 years. 
Using the min-max standardization method, the data is standardized 
to compute correlations, presented in a heatmap (Figure 3) that shows 
part of the indicators due to the large number of cities and indicators. 
Given the economic, social, and environmental interdependence 
among cities in the GBA, some indicators correlate highly, particularly 
between economic and social resource sub-systems. Thus, the 
Cronbach α coefficient is needed for reliability analysis of 
the indicators.

From the reliability analysis of the GBA (see Table 2), the positive 
environmental and resource indicators show the best internal 
consistency. All cities in this category have a Cronbach’s α coefficient 

TABLE 1  Evaluation index system of PS-DR-DP model in GBA.

Subsystem Evaluation indicator Subsystem Evaluation indicator

Economic resources

Positive subsystem (A1)

GDP growth rate (%)-GGR

Economic resources

Negative subsystem 

(A0)

Energy consumption per Unit of GDP (tce/10,000 yuan)-ECU

Per capita GDP (10,000 yuan/person)-PCG Growth rate of energy consumption per unit GDP (%)-GRE

Urban disposable income per capita (yuan/person)-UDI Natural gas consumption (100 million m3)-NGC

Economic density (100 million yuan/km2)-ED Electricity consumption (100 million kWh)-EC

Land area (km2)-LA Annual water supply (10,000 tons)-AWS

Social resources

Positive subsystem (B1)

Overall labor productivity (%)-OLP

Social resources

Negative subsystem 

(B0)

Population density (persons/km2)-PD

Per capita paved road area (m2/person)-PCP
Permanent resident population (year-end, 10,000 persons)-

PRP

Highway passenger traffic (10,000 persons)-HPT Natural population growth rate (%)-NPG

Hospital beds per 10,000 people (units)-HBP Per capita construction land area (m2/person)-PCC

Infrastructure investment per unit area (10,000 yuan/

km2)-IIU

Registered unemployed persons (year-end, 1,000 persons)-

RUP

Environmental 

resources

Positive subsystem (C1)

Urban green coverage Rate (%)-UGC

Environmental 

resources

Negative Subsystem 

(C0)

Sulfur dioxide emissions (10,000 tons)-SDE

Forest stock volume (10,000 m3)-FSV Smoke/dust emissions (tons)-SDE

Forest land area (hm2)-FLA Total wastewater discharge (10,000 tons)-TWD

Grassland area (hm2)-GA Industrial hazardous waste generation (10,000 tons)-IHW

Mangrove area (hm2)-MA Ambient noise compliance area (km2)-ANC
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above 0.85, up to 0.9852, indicating strong consistency and stability. 
Further comparison of Cronbach’s α values for the six indicators 
across cities (see Figure 4) shows that Guangzhou’s values are close to 
or exceed 0.95 across all indicators. This reflects a well-designed 

indicator system and stable data structure in Guangzhou, with high 
credibility. Generally, core cities like Guangzhou, Shenzhen, and 
Zhuhai have high α coefficients, while peripheral cities like Huizhou, 
Zhongshan, and Jiangmen have relatively low α values in some 

FIGURE 3

Correlation analysis of evaluation index system for PS-DR-DP model in the GBA.

TABLE 2  Reliability of indicators in the GBA.

Cronbach’s α 
for positive 
economic 
indicators

Cronbach’s α 
for negative 
economic 
indicators

Cronbach’s α 
for positive 

social 
indicators

Cronbach’s α 
for negative 

social 
indicators

Cronbach’s α for 
positive 

environmental 
indicators

Cronbach’s α for 
negative 

environmental 
indicators

Hong Kong 0.7941 0.8911 0.8392 0.7665 0.9852 0.7799

Macao 0.7921 0.7396 0.9567 0.8020 0.8800 0.7471

Guanzhou 0.9612 0.9614 0.9537 0.9648 0.9624 0.9477

Zhuhai 0.9550 0.9401 0.8501 0.8666 0.9574 0.8175

Shenzhen 0.9482 0.9448 0.9305 0.9641 0.9602 0.9587

Foshan 0.9522 0.8724 0.8739 0.8660 0.8548 0.9752

Huizhou 0.9375 0.8807 0.8946 0.7564 0.8672 0.7000

Dongguan 0.8406 0.9107 0.7587 0.9424 0.8350 0.7531

Zhongshan 0.9468 0.8048 0.8723 0.8494 0.8537 0.7466

Jiangmen 0.9333 0.8125 0.7927 0.8275 0.8670 0.8961

Zhaoqing 0.7637 0.7243 0.7715 0.9202 0.8723 0.8538
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dimensions, possibly due to unbalanced regional development or data 
collection quality differences. Overall, most cities and indicator 
dimensions have α coefficients above 0.7, showing the indicator 
system has good internal consistency and stability. In conclusion, the 
PS-DR-DP model indicator system for cities in the GBA constructed 
in this study has high reliability. It can largely exclude subjective 
factors and objectively and accurately reflect the actual situation of 
land development suitability in the area.

3.3 PS-DR-DP model results

Over the two-decade period from 2002 to 2022, the GBA, 
comprising Hong Kong, Macao, and nine Guangdong cities, has 
shown dynamic and complex patterns of development in economic, 
social, and environmental aspects, as presented in Figure  5. 
Economically, urban clusters led by core cities like Guangzhou, 
Shenzhen, and Hong Kong have been the main drivers of positive 
economic indicator growth, with all such indicators surpassing the 
benchmark value of 1 by 2022. This reflects the vitality of the regional 
economy and the resource concentration effect. Moreover, the 
negative economic indicators of most cities, like resource consumption 
intensity and pollution-related indices, show a downward trend and 
fluctuate around the benchmark value of 1. However, in 2022, the 
negative economic indicators of Macao and Guangzhou exceeded the 
warning threshold of 1.5. These cities need to enhance resource 
utilization efficiency and pollution control capacity. In terms of social 
resource development, core cities like Guangzhou and Shenzhen have 
significantly improved social positive indicators by optimizing public 
service systems, reaching above 1.6 in 2022. With enhanced social 
equity and public security, negative social indicators have declined. 
However, non-core cities still lag behind core ones. To narrow this 

development gap, some regions need to boost social investment in 
education, healthcare, etc. Regarding the environment, the GBA’s 
overall environmental quality has improved due to ecological 
restoration and pollution control, with positive indicators rising, the 
highest reaching 1.83. Yet, highly urbanized areas like Dongguan and 
Foshan still face severe environmental pressure. Although there’s some 
improvement in negative environmental indicators in certain areas, 
they have not stably dropped to the ideal threshold (generally below 
1). This shows that achieving dynamic balance between ecological 
protection and economic growth requires long-term 
coordinated efforts.

Based on the positive and negative subsystem calculations, the 
GBA’s land-space carrying state (S) from 2002 to 2022 showed 
dynamic changes (Figure 6). Except for Guangzhou in some years, the 
overall carrying state (S-value) in the GBA stayed above 0.6 and rose 
long-term, indicating continuous enhancement of the land-population 
carrying capacity over nearly 20 years. This improvement was driven 
by coordinated advances in regional economic development, urban 
construction, and management. These advances enhanced the region’s 
population accommodation potential and supported sustainable 
urban development. Significant differences existed in S-value changes 
among cities. Core cities with developed economies and industrial 
clusters (e.g., Guangzhou and Foshan) saw more remarkable capacity 
improvements. For instance, Guangzhou’s S-value rose from 1.03 in 
2002 to 2.8 in 2022, a 172% increase, linked to economic expansion, 
industrial upgrading, and population agglomeration. In contrast, 
medium- and small-sized cities like Huizhou experienced greater 
S-value fluctuations. Huizhou’s S-value decreased from 1.07 in 2002 
to 0.83 in 2021, then rebounded to 1.29 in 2022, reflecting the impact 
of weak industrial foundations and unstable population flows. 
Dongguan’s S-value fluctuated between 1.0 and 1.2 due to economic 
cycles, policy shifts, and population migration. Regarding the 

FIGURE 4

Line chart of reliability analysis of indicators for the GBA.
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relationship between carrying-capacity status and the regression line, 
an S-value above the regression line suggests both positive and 
negative subsystem indicators are at low levels, indicating a low-level 
carrying-capacity state. In contrast, an S-value below the regression 
line implies the emergence of deep-seated contradictions in economic, 
social, and environmental resources. Notably, the rapid growth of 
some cities’ S-values (e.g., Guangzhou) shows that ongoing reform 
policies have effectively eased development constraints and unleashed 
regional potential. However, short-term fluctuations (e.g., in Huizhou 
and Dongguan) warn of potential population-land resource 
imbalances. It is recommended to set up dynamic monitoring 
mechanisms in land-use planning, and to optimize resource allocation 
and policy regulation based on carrying-capacity trends.

3.4 Spatial distribution and future 
prediction of national spatial carrying 
capacity status

Figure 7 shows the changes in the GBA’s land-population carrying 
state (S) from 2002 to 2022, calculated from the positive and negative 
subsystems. From 2002 to 2022, the GBA’s land-population carrying 

state showed gradual improvement. Between 2002 and 2007, most 
areas were in deep colors, indicating high land-carrying pressure. But 
over time, especially after 2012, colors lightened, showing overall 
improvement in the land-population carrying state. Core cities like 
Guangzhou and Shenzhen were in relatively deep colors throughout, 
showing continued carrying pressure. As regional economic centers, 
they attract population inflows, causing land resource tension. In 
contrast, peripheral cities like Foshan and Zhongshan had smooth 
color changes, gradually matching core cities’ colors. This shows their 
functional and industrial integration with core cities, jointly sharing 
carrying pressure. Over the past 20 years, the GBA’s land-population 
carrying state has improved significantly, reflecting progress in urban 
planning, resource allocation, and regional coordination. However, 
core cities like Guangzhou and Shenzhen still face high carrying 
pressure and need more policy support and resource optimization for 
sustainable development.

The Markov-based state transition prediction simulation of the 
GBA’s future 20-year situation, it can be seen from Figure 8 that 
the overall stability of urban indicators in the GBA will 
be  enhanced in the coming two decades, indicating that 
development within the region is gradually becoming more 
balanced. In 2027, the complex color distribution reflects 

FIGURE 5

Dynamic changes of the PS-DR-DP model in the GBA over the past 20 years.
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significant differences in the development patterns and speeds of 
various cities at the initial stage. However, as time goes by, by 2042, 
colors tend to be uniform, showing that resource allocation within 
the region has become more rational, economic development levels 
are gradually converging, social inclusiveness is increasing, 
environmental protection measures are being implemented, and 
the overall situation is entering a relatively stable state. Despite the 
positive overall trend, there are still local fluctuations. For example, 
in 2037, the colors of some areas deepen, which may be due to 
challenges such as population growth and resource pressure faced 
by these regions. Nevertheless, with policy adjustments and the 
optimization of socio-economic structures, these problems have 
been alleviated, demonstrating the region’s dynamic adaptability 
and self-regulation ability in development. Among them, 
Guangzhou and Shenzhen, as regional economic growth poles, 
have a high concentration of population and economic activities, 
leading to greater carrying pressure in these areas. This reflects the 
attractiveness of core cities and their radiating and driving role on 
surrounding regions. Other surrounding cities, such as Foshan, 
Dongguan, Zhuhai, etc., integrate with core cities, forming 
complementarities in functions and industries. Together with core 
cities, they construct an organic whole of the GBA, thereby 
reducing the burden on core cities and promoting coordinated 
regional development.

4 Policy recommendations

Drawing on the study’s findings regarding the spatiotemporal 
dynamics of land carrying capacity and the projected risks, this paper 
advances targeted, city-specific, and actionable policy 
recommendations designed to balance the “economic growth-social 
equity-ecological conservation” trilemma within the GBA.

4.1 Alleviating overload pressure in core 
cities through spatial restructuring

For core cities like Guangzhou and Shenzhen, which face 
sustained high carrying pressure and significant job-housing 
separation, policies must shift from simply accommodating 
growth to smartly managing it. A key strategy is to promote 
polycentric urban structures by accelerating the development of 
sub-centers in peripheral districts. This can be  achieved by 
relocating specific municipal functions, large-scale public 
facilities, and corporate headquarters to these new hubs. This 
spatial restructuring should be  tightly integrated with the 
implementation of Transit-Oriented Development (TOD), which 
mandates high-density, mixed-use development around major 

FIGURE 6

Trends of the land-population carrying state (S-value) for cities in the GBA from 2002 to 2022. The graphs show the data points, regression fitting line, 
and the confidence interval.
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metro and rail transit stations. Together, these strategies can create 
vibrant, self-sufficient communities where residents can live, 
work, and access services without heavy reliance on private 
vehicles, directly addressing the job-housing mismatch. To ensure 
social equity and prevent the spatial mismatch from replicating, 
the approval of new industrial or commercial zones must be linked 
to the concurrent construction of affordable public housing and 
rental units in adjacent areas.

4.2 Balancing industrial upgrading with 
ecological redlines in industrial hubs

Industrial hubs such as Dongguan and Foshan face acute 
conflicts between rapid industrialization and environmental 
degradation, particularly the loss of basic farmland and high 
pollution loads. To address this, a multi-pronged approach is 
necessary. First, land use management must be strengthened by 
re-evaluating and adjusting industrial zoning to protect farmland. 
The conversion of designated basic farmland for industrial use 
should be  prohibited, and a “zoning swap” policy could 
be implemented to allow industries on ecologically sensitive land to 
relocate to upgraded, high-density industrial parks with better 
pollution control infrastructure. Second, as a preventative measure, 
a “negative list” of high-pollution and high-water-consumption 
industries should be  established to bar their entry into areas 
adjacent to ecological protection zones or high-quality farmland. 
Finally, to mitigate the impact of existing industries, the retrofitting 
of industrial parks should be  mandated to promote a circular 
economy with closed-loop systems for water recycling, waste heat 

recovery, and industrial symbiosis, thereby reducing the overall 
negative environmental footprint (Negative Subsystem C0).

4.3 Leveraging ecological assets in 
peripheral cities through compensation 
mechanisms

Peripheral cities like Zhaoqing, Huizhou, and Jiangmen serve 
as the GBA’s ecological shields but show signs of lagging 
development. Policies should focus on converting their ecological 
advantages into sustainable economic ones. A formal cross-city 
ecological compensation mechanism should be instituted, where 
core cities provide dedicated funds to peripheral cities for protecting 
critical ecosystems such as forests and water sources. The funding 
could be linked to the value of the ecosystem services provided and 
the development constraints imposed by conservation. In parallel, 
instead of pursuing heavy industry, these cities should focus on 
developing high-value, low-impact industries like eco-tourism and 
wellness, which leverage their pristine natural environment to 
create sustainable livelihoods that are compatible with their 
conservation goals.

4.4 An adaptive governance framework for 
the entire GBA

To proactively manage the predicted “increase then decline” 
trajectory of carrying capacity and avoid the projected 2042 
trough, a region-wide adaptive governance framework is essential. 

FIGURE 7

Changes in land and population carrying Status (S) in the GBA from 2002 to 2022.
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This framework would be  centered on a GBA Land Carrying 
Capacity Monitoring Platform, which operationalizes the 
PS-DR-DP model developed in this study into a dynamic, real-
time tool for policymakers. The platform would track the overall 
carrying state (S-value) and the six underlying forces for all cities. 
To make this tool actionable, predefined S-value thresholds 
should be  established (e.g., a sustained S-value below 0.8 or a 
rapid decline of 15% in 2 years) that automatically trigger a 
mandatory review and adjustment of a city’s current land-use and 
industrial policies. This creates a crucial feedback loop for 
adaptive management, ensuring that regional planning remains 
flexible and responsive to emerging risks.

5 Discussion

This study combines the PS-DR-DP conceptual model, Monte 
Carlo simulation, and Markov state transition prediction. It deeply 
examines the dynamic changes in the human-land system carrying 
capacity, regional differences, and future risks of the GBA city cluster. 
Key findings reveal a complex “six-force” (PS-DR-DP subsystems) 
interaction network behind the S-value-based carrying capacity rise 
in the Bay Area. They also show how the “core-periphery” structure 
causes spatial heterogeneity. Notably, probabilistic predictions 
highlight the risk of a “first rise, then fall” inflection point.

5.1 The complex dynamical mechanisms 
and regional heterogeneity revealed by the 
PS-DR-DP model

The PS-DR-DP model developed in this study deconstructs 
carrying capacity into six-dimensional interacting forces, providing a 
novel perspective for understanding the complexity of the human-
environment system in the GBA. As shown in Figures 5, 6, the steady 
improvement in the region’s overall carrying capacity (S-value) over 
the past two decades (>0.6 with an upward trend) has been primarily 
driven by robust contributions from the positive economic resource 
subsystem (e.g., GDP growth, increased per capita income) and 
positive social resource subsystem (e.g., enhanced public service 
investment). This increase in the S-value is closely correlated with 
tangible social outcomes. Taking Guangzhou as an example, its 
S-value increased by 172% between 2002 and 2022. This numerical 
change shows a strong correlation with significant improvements in 
the city’s public service sector during the same period (e.g., an increase 
in hospital beds per 10,000 people and an expansion of per capita 
paved road area), directly reflecting how the optimization of land-
space utilization translates into substantial enhancements in residents’ 
quality of life. However, the model precisely captures significant 
internal disparities within this trend.

First, the core engine effect. As pivotal cities, Guangzhou, 
Shenzhen, and Hong Kong witnessed their positive economic 

FIGURE 8

Changes in land and population carrying status (S) in the GBA from 2023 to 2042.
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indicators (e.g., GDP growth) being the first to exceed baseline values 
and maintain sustained leadership. However, accompanying high-
intensity development, their negative economic indicators (e.g., 
resource consumption, pollution linkages) and negative social 
pressures (e.g., job-housing separation) were also the first to reach or 
surpass critical thresholds. For instance, Macao and Guangzhou 
recorded negative economic indicators exceeding 1.5  in 2022, 
highlighting the substantial resource, environmental, and social costs 
embedded within this growth trajectory.

Second is the fluctuation and lag in the periphery. Cities on the 
periphery such as Huizhou and Jiangmen experience significant 
fluctuations in their S values. The positive indicators of their social 
resources have relatively lagged in improvement, and the negative 
environmental indicators have shown limited improvement. This 
reflects the greater challenges that non-core areas face in attracting 
high-quality resources and balancing development with conservation. 
Furthermore, the lower Cronbach’s α values observed in peripheral 
cities like Huizhou and Jiangmen (Figure 4, Table 2) warrant specific 
attention. This statistical instability may not only reflect data collection 
inconsistencies but, more importantly, signal an underlying structural 
vulnerability. Unlike the diversified and resilient economies of core 
cities, the economic and social systems in peripheral areas may be less 
complex and more susceptible to shocks, leading to less stable 
relationships among indicators. This highlights a regional equity 
challenge, suggesting that a “one-size-fits-all” policy approach is 
inadequate. Targeted policies are needed to bolster the economic 
diversification and data governance capacity of peripheral cities to 
ensure balanced and sustainable regional development. This regional 
heterogeneity is deeply rooted in the “core-periphery” spatial structure 
of the GBA, as well as its industrial division of labor and the imbalance 
in resource allocation. The PS-DR-DP model’s differentiation between 
“destructiveness-resilience” (DR) and “degradability-promotiveness” 
(DP) particularly highlights the arduous task faced by fast-
industrializing cities like Dongguan and Foshan. They struggle to 
make their resilience and promotiveness catch up with destructiveness 
and degradability. This is crucial for assessing regional resilience. 
Compared with the classic PSR model, the PS-DR-DP model has 
advantages in depicting the complex feedback mechanisms and 
warning of specific-dimension issues (such as exceeding limits in a 
certain negative force) in multi-dimensional, high-intensity, and fast-
changing regions like the GBA. Its “hexagon” visualization also more 
intuitively reveals system balance.

5.2 The early warning significance and 
uncertainty management of Markov state 
transition prediction

This study’s most cautionary finding is the Markov state transition 
prediction of urban carrying capacity showing a “first rise then fall” 
trajectory (Figure  8). Projections show that the S value (a 
comprehensive indicator of urban sustainable development capacity) 
of most cities will peak around 2027, with some even exceeding 2. But 
it will then drop significantly, possibly causing the regional average to 
fall to about 0.5 by 2042. This inflection point projection is highly 
significant for policy-making. The upward trend before 2027 is mainly 
due to the continuation of current development momentum. This 
includes the spillover effects of major infrastructure projects (e.g., the 

Hong Kong-Zhuhai-Macao Bridge), the dividends of innovative 
industrial policies, and the potential for continued population and 
economic agglomeration. The model captures the cumulative effect of 
these positive factors, driving short-term carrying capacity growth. 
The projected decline after the peak, however, signals the combined 
effect of multiple long-term pressures, which our sensitivity analysis 
identified as critical drivers.

Firstly, resource and environmental constraints are becoming 
rigid. Decades of rapid urbanization, characterized by a 3.2% annual 
expansion of construction land and shrinkage of ecological spaces like 
mangroves (down by 18%), suggest that natural capital such as land, 
water, and environmental capacity may approach saturation 
thresholds, making further growth unsustainable without significant 
technological or policy breakthroughs. Secondly, social costs continue 
to accumulate, and structural contradictions are becoming 
increasingly prominent. The decline in carrying capacity that 
we forecast indicates long-term social risks. Long-standing issues such 
as job-housing separation (index at 1.32), high housing costs in core 
areas, and insufficient public services in peripheral regions will further 
undermine the long-term attractiveness of the area and affect social 
stability. Specifically, persistent land resource constraints in core areas 
are likely to continue driving up housing and living costs, exacerbating 
the “job-housing mismatch” phenomenon. At the same time, due to 
sluggish growth in the S-value, peripheral cities face challenges in 
providing adequate public services. This not only weakens the overall 
appeal and social stability of the region but may also entrench issues 
of spatial justice, posing long-term challenges to coordinated regional 
development, potentially leading to population outflow or slower 
growth. Thirdly, economic transformation brings risks and 
diminishing marginal benefits. As the dividends from the traditional 
factor-input growth model weaken, the transition to a high-quality, 
innovation-driven economy is fraught with uncertainty. A slowdown 
in key industries or a failure to successfully transition could directly 
impact the economic resource subsystem, triggering a decline in the 
overall carrying capacity.

The core value of Monte Carlo simulation lies in quantifying the 
uncertainty of these predictions. Through sensitivity analysis (as 
shown in the added “Sensitivity Analysis Figure”), it reveals the high 
sensitivity of prediction results to key parameters such as future GDP 
growth, resource-efficiency improvement from technological progress, 
and inter-regional population-flow scale. The model itself, for 
instance, state-transition-probability estimation and the GM (1,1) 
extrapolation method, also introduces some uncertainty. The “overall 
stability with local fluctuations” phenomenon shown in Figure  8 
partly reflects partial convergence of later-stage simulation paths. This 
suggests decision-makers should focus on the prediction interval, not 
just the mean value. Therefore, planning needs enough flexibility to 
handle various possible scenarios.

5.3 Policy implications for spatial planning 
and regional governance

This study offers scientific support and early warnings to resolve 
the GBA’s “economic growth-social equity-ecological conservation” 
trilemma. To achieve this, precise interventions are needed to 
balance the “six forces.” This involves boosting positive forces (PS, 
and the promotion force in DP), with a focus on increasing social 
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resource investment and enhancing the environment in peripheral 
cities (e.g., via ecological restoration and green infrastructure). 
Meanwhile, strict restrictions should be imposed on factors that 
negatively impact the environment and society. For instance, set 
stricter control targets and establish incentive mechanisms for 
economic negative indicators that have exceeded warnings (such as 
resource consumption intensity), like carbon emission trading and 
resource taxation.

To enhance regional resilience against the decline risk after 2027, 
planning needs early deployment. Specific measures involve 
optimizing land resource allocation. This means strictly controlling 
new construction land, promoting the redevelopment of existing and 
under-performing land, and prioritizing the protection of ecological 
and high-quality agricultural spaces. Accelerating industrial-structure 
upgrading and the clean-production process is also crucial. This can 
be done by improving energy and resource-utilization efficiency and 
developing a circular economy. To ease job-residence separation and 
regional disparities, it is necessary to enhance rail-transit systems, 
offer more affordable housing, and promote equitable public services. 
Moreover, implementing ecological-protection red lines and restoring 
key ecosystems like mangroves and water sources can boost ecosystem 
resilience and service functions.

Moreover, it is crucial to establish a dynamic monitoring, early-
warning, and scenario-simulation platform based on the PS-DR-DP 
evaluation framework and Monte Carlo model developed in this 
study. The platform can serve the planning decisions for the GBA. It 
can also be further developed to include policy-scenario simulation 
functions. In this way, it can quantitatively assess the impacts of 
different policy mixes (such as ecological-protection policies of 
varying intensities, industrial-dispersal plans, and infrastructure-
investment programs) on the “six forces” and the trajectory of the S 
value. Thus, it can achieve closed-loop management from early 
warning to assessment and then to optimization. All of this is based 
on the unification and sharing of data standards across the 
Guangdong-Hong Kong-Macao regions. This ensures information 
flow and data accuracy, providing solid support for scientific 
decision-making.

5.4 Research limitations and future 
directions

While this study has made theoretical and practical progress, it 
still has several methodological and practical limitations that need 
further exploration and improvement.

First, the model results demonstrate a certain degree of 
sensitivity to indicator weights. Although the PS-DR-DP model in 
this study determines the contribution of each subsystem through 
specific algorithms (such as principles of combinatorial 
mathematics), the final carrying state (S-value) remains sensitive to 
the selection of initial indicators and their weight allocation. While 
internal consistency of the indicator system was ensured using 
Cronbach’s α coefficient, a systematic sensitivity analysis was not 
conducted to examine the robustness of final predictions (such as 
the inflection point expected in 2027) under different weighting 
schemes. Future research should incorporate more weight 
determination methods (e.g., a combined AHP-entropy weight 
approach) and carry out parameter sensitivity tests to enhance the 

reliability of the conclusions. Secondly, the integration of cross-
regional data faces challenges arising from inconsistencies in 
statistical standards. This study combines data from Guangdong, 
Hong Kong, and Macao, yet significant differences exist among 
Hong Kong, Macao, and mainland China in terms of statistical 
criteria, data collection frequency, and indicator definitions (for 
example, the specific definitions of “greening coverage rate of 
built-up areas” or “urban registered unemployed population” may 
vary). These discrepancies pose difficulties in constructing a fully 
consistent long-term time-series dataset, potentially introducing 
systematic biases that may affect the precision of the evaluation 
results. Future research should focus on promoting data 
standardization across the three regions and exploring the 
integration of multi-source and heterogeneous big data. For 
instance, remote-sensing images, mobile-phone signaling data, and 
social-media information can be  used to develop a more 
comprehensive and compound indicator system. This will enhance 
the model’s explanatory and predictive power.

In terms of model mechanisms, the interactions among the “six 
forces” in the current PS-DR-DP model are still simplified, without 
fully incorporating complex mechanisms like nonlinear feedback. 
Meanwhile, the future state predictions of the Markov model are 
primarily based on the extrapolation of historical trends, making it 
difficult to fully simulate the complex institutional background of the 
GBA (e.g., Hong Kong and Macao’s special policies, land-management 
differences) and the behaviors of diverse stakeholders (governments, 
enterprises, residents). To address these issues, future work could 
integrate Multi-Agent Systems (MAS) into the model framework. This 
will more realisticly simulate the micro-decision-making processes of 
different stakeholders and their macro-level spatial emergence effects.

Finally, this study does not adequately account for the impacts of 
extreme scenarios such as climate change. As a typical coastal mega-
urban agglomeration, the Greater Bay Area is highly vulnerable to 
climate change events, including sea-level rise, frequent typhoons, and 
extreme heat. The current forecasting model, which is based on 
historical data trends, does not explicitly incorporate different climate 
change scenarios (e.g., RCP pathways from IPCC reports) into its 
simulations. This limitation restricts our ability to assess the resilience 
of land space suitability in the Greater Bay Area under future extreme 
stressors. Future efforts should focus on enhancing the model’s 
adaptability to uncertainties and expanding its simulation of extreme 
scenarios to boost its practical value in emergency management and 
strategic planning.

Regarding scale-related issues, this study mainly focuses on 
municipal-level analysis. How to effectively connect the research 
results to finer-grained district/county or community scales, and how 
to link them to the broader context of the GBA, national strategies, 
and even global development require further exploration. Future 
research should strengthen the study of scale-transformation methods 
and optimize parameter-adjustment strategies. This will enable model 
results to better serve multi-level and multi-dimensional spatial 
governance and development planning.

6 Conclusion

This paper uses Monte Carlo and Markov state transition 
prediction models. It builds a multi-factor land-space suitability 

https://doi.org/10.3389/frsc.2025.1676983
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Li et al.� 10.3389/frsc.2025.1676983

Frontiers in Sustainable Cities 17 frontiersin.org

evaluation system that integrates economic, social, and environmental 
dimensions. This system is applied to the GBA. From six angles 
(positive and negative aspects of economic, social, and environmental 
resources), it builds an index system reflecting the multi-factor 
coupling and constraints of land population-carrying capacity. After 
verifying with Cronbach’s α coefficient, the results show that the α 
coefficients of cities and index systems in all dimensions are mostly 
over 0.7, indicating the system is reliable and stable. It can filter out 
subjectivity and objectively show the actual land population-carrying 
capacity in the region.

Based on the PS-DR-DP hexagonal interaction model, this 
paper analyzes the dynamic changes in land population-carrying 
capacity in the GBA from 2002 to 2022. Core cities like 
Guangzhou, Shenzhen, and Hong Kong saw their economic 
positive indicators surpass the benchmark 1  in 2022, showing 
strong development vitality and agglomeration effects. Most cities’ 
economic negative indicators declined and fluctuated near 1, yet 
some cities’ negative indicators went beyond the warning level of 
1.5, reflecting ongoing management pressure. In 2022, the social 
positive indicators of core cities jumped to above 1.6, driven by 
the optimized public service system, which advanced regional 
social equity and security. The social negative indicators dropped 
overall. However, non-core cities still lag behind core cities, with 
some areas needing more investment to bridge the development 
gap. From the environmental perspective, the Bay Area’s overall 
environmental quality has improved, with positive indicators 
rising, peaking at 1.83. Yet, in highly urbanized areas, 
environmental pressure remains high. Although negative 
indicators have locally improved, they have not stably fallen to the 
ideal level (below 1), indicating that balancing ecological 
protection and economic growth is a long-term task. Overall, the 
land-space carrying capacity in the Bay Area has stayed above 0.6 
and risen in recent years. Over the past two decades, the land’s 
population-carrying capacity has strengthened. Regional 
economic development, urban construction, and management 
have continuously improved, strongly supporting the sustainable 
development goals.

To enhance the predictive ability regarding future land-population 
carrying capacity trends, this paper introduces the Monte Carlo 
model. It compensates for traditional models’ deficiencies in handling 
uncertainties. Also, it conducts Markov state-transition prediction on 
the GBA’s land-population carrying capacity from 2023 to 2042. The 
prediction shows that by 2027, most areas in the Bay Area will have a 
land-space carrying capacity of over 1, with some cities even reaching 
2. However, over time, despite some cities’ improved carrying capacity, 
the overall capacity of the Bay Area is expected to decline to around 
0.5. Therefore, it is recommended to formulate flexible land-use 
planning schemes based on the changing carrying capacity and 
establish a regular evaluation and dynamic adjustment mechanism to 
handle potential risks.

In summary, the research method proposed in this paper can 
scientifically and systematically show the dynamic trends of land 
population-carrying capacity in the GBA over the next two decades. 
It also greatly improves the accuracy and scientific nature of land-use 
planning. The research findings offer policymakers solid data support 
and a theoretical basis, comprehensively aiding the GBA in achieving 
its long-term goals of high-quality and sustainable development.
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