

[image: image1]
City-level assessment of green economy development and its driving factors: empirical evidence from 14 prefecture-level cities in Guangxi, China based on DPSR-GTWR integrated model









 


	
	
ORIGINAL RESEARCH
published: 14 November 2025
doi: 10.3389/frsc.2025.1622975








[image: image2]

City-level assessment of green economy development and its driving factors: empirical evidence from 14 prefecture-level cities in Guangxi, China based on DPSR-GTWR integrated model

Haoran Yin1,2, Zhidong Zhu3*, Liurong Pan1,4, Fangyang Zhu1 and Linsen Zhu1


1School of Economics and Management, BeibuGulf University, Qinzhou, China

2BeibuGulf Ocean Development Research Center, Qinzhou, China

3Department of Economics, University of Manchester, Manchester, United Kingdom

4BeibuGulf Research Institute of the New Land-sea Corridor, Qinzhou, China

Edited by
 Bingnan Guo, Jiangsu University of Science and Technology, China

Reviewed by
 Jiahua Wei, Guilin University of Technology, China
 Haoxiang Zhao, Chinese Academy of Sciences, China
 

*Correspondence
 Zhidong Zhu, zhidong.zhu@manchester.ac.uk 

Received 05 May 2025
 Accepted 29 October 2025
 Published 14 November 2025

Citation
 Yin H, Zhu Z, Pan L, Zhu F and Zhu L (2025) City-level assessment of green economy development and its driving factors: empirical evidence from 14 prefecture-level cities in Guangxi, China based on DPSR-GTWR integrated model. Front. Sustain. Cities 7:1622975. doi: 10.3389/frsc.2025.1622975
 

Developing the green economy is a fundamental requirement for China’s new development stage, aimed at applying new concepts, building new patterns, and achieving high-quality growth. Guangxi, as a vital engine of China’s green economy, strongly supports this process. This study establishes a green economy evaluation system for Guangxi using the DPSR model, applies the entropy weight-TOPSIS and obstacle degree models to assess its development from 2012 to 2022, and identifies key obstacles. It further analyzes the spatial–temporal heterogeneity of nine major factors through OLS and GTWR models. Findings reveal that Guangxi’s green economy is progressing with a “dual-core” pattern centered on Nanning and Liuzhou, faces significant pressures mainly from the pressure and state dimensions, and experiences varying impacts from key factors across regions and over time. These insights offer theoretical foundations and policy recommendations to improve Guangxi’s green economic development.
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1 Introduction

In July 2024, the Central Committee of the Communist Party of China and the State Council issued the “Opinions on Accelerating the Comprehensive Green Transformation of Economic and Social Development,” underscoring that green transformation is essential for achieving high-quality development and a core strategy to address ecological and environmental challenges. The report of the 20th National Congress further stressed that fostering green economic growth and harmony between the economy and ecosystems are vital for the long-term stability and sustainability of China’s development.

In Guangxi, General Secretary Xi Jinping has emphasized the importance of green economic development during three inspection tours since the 18th National Congress, urging Guangxi to pioneer a new path toward green growth. Nevertheless, Guangxi faces significant challenges, including entrenched high-pollution, high-energy-consumption industrial structures, inefficient resource use, severe environmental issues, and uneven green economic development across regions and time periods. There is thus an urgent need to construct a robust evaluation index system to measure Guangxi’s green economy development and to deeply analyze spatial–temporal variations and influencing factors, providing theoretical and practical foundations for policy formulation and strategic planning.

Globally, green economy research has gained prominence in response to escalating environmental concerns. The term “green economy,” first introduced by Pearce et al. (2013) in Blueprint for a Green Economy, addressed the underestimation of environmental and social costs. The United Nations Environment Programmer (UNEP, 2011) defines a green economy as one that improves human well-being and social equity while reducing environmental risks, integrating economic, social, and environmental dimensions.

Recent studies have advanced frameworks for evaluating green economic development. Schmalensee (2012) proposed a model combining traditional economic metrics and environmental indicators. Chen et al. (2019) built a green growth evaluation system using the DPSR model and entropy weight-TOPSIS methods. Other scholars, such as Zhang (2021) and Shang and Xu (2022), designed comprehensive evaluation systems focusing on economic, social, and environmental aspects. Internationally, Hickel and Kallis (2020) suggested a degrowth framework that prioritizes ecological sustainability beyond GDP. Stjepanovic et al. (2022) constructed a Green GDP database for 160 countries over a 50-year period, which corrects the deficiencies of traditional GDP by subtracting the costs of environmental degradation and natural resource depletion to provide a more realistic measure of the green economy.

Methodologically, Gómez-Calvet et al. (2014) were early to combine the directional distance function with the slack-based measure (SBM) model to evaluate energy efficiency in the EU, offering a methodological reference for green economic efficiency research. Hou et al. (2021) reconstructed a green productivity index, while Hu et al. (2024) evaluated green tourism development using super-efficiency SBM models. Research into spatial patterns has also evolved: Lin et al. (2017) explored spatial spillovers using the spatial Durbin model, while Gu and Ge (2018) examined provincial green economy evolution with spatial panel models. International analyses by Robaina-Alves et al. (2025) and Barbier and Burgess (2020) highlighted regional disparities and policy impacts using spatial econometrics.

However, existing studies often focus on national or regional levels, with limited research at the provincial scale, particularly regarding unified evaluation systems and spatial–temporal influencing factors. This gap warrants attention, as research on multi-level governance indicates that sub-national levels play a critical role in translating sustainable development policies into concrete actions (Sandmann et al., 2024). Furthermore, most studies address green economic efficiency rather than development levels, creating gaps in the literature.

This study focuses on Guangxi, constructing a green economic development evaluation system based on the DPSR model across the four dimensions of driving forces, pressures, states, and responses. Crucially, unlike prior work, we apply the Geographically and Temporally Weighted Regression (GTWR) model to comprehensively account for spatial and temporal dynamics in analyzing influencing factors.

The remainder of this paper is structured as follows: Section 2 presents the research methodology and data sources, including the construction of the evaluation system and analytical techniques. Section 3 discusses the results, including the assessment of Guangxi’s green economy development level, identification of obstacle factors, and analysis of influencing factors. Section 4 concludes with policy recommendations.



2 Research methodology and data sources


2.1 Construction of the evaluation index system

Green economic development is an evolving process that requires an evaluation system attentive not only to current drivers and states but also to future development trends (Chen et al., 2019). The DPSR model—an enhancement of the PSR framework initially proposed by the OECD (Adriaanse, 1993) and UNEP (Tong, 2000)—provides a causal-relationship-based structure for systematically assessing interactions between human activities and natural ecosystems across four dimensions: Driving forces, Pressures, States, and Responses (Troian et al., 2021).

Economic development, inherently dynamic, involves the continuous use of ecosystems to meet social needs. High-intensity socio-economic activities often exert negative pressures on ecosystems; however, technological advancements and rising environmental awareness can mitigate these effects, shifting development toward greener pathways without clear-cut boundaries between positive and negative impacts (Halkos, 2023).

In this study, indicators such as registered year-end population and urbanization rate are assigned to the Driving layer, representing socio-economic drivers. Indicators reflecting environmental pressures, including wastewater discharge and industrial sulfur dioxide emissions, are categorized under the Pressure layer. Measures of environmental conditions, such as air quality compliance rate and groundwater resource volume, represent the State layer. Lastly, management responses, including the harmless treatment rate of domestic waste and green coverage rate in built-up areas, are placed in the Response layer.

This integration of socio-economic and environmental factors is consistent with the best international practices. Hickel (2020) emphasizes that effective green economy evaluation must incorporate both economic growth and ecological constraints, while Stern and Stiglitz (2021) advocate frameworks that jointly consider human well-being and environmental sustainability. Our DPSR-based approach aligns with these perspectives, offering a holistic view that accounts for both socio-economic drivers and environmental impacts.

Following the principles of scientific rigor, hierarchical structure, dynamism, and practical operability, and drawing on the work of Tang and Zhang (2020) and Chen et al. (2019), we construct a comprehensive evaluation system for Guangxi’s green economic development, selecting 17 indicators across the four DPSR dimensions (see Table 1).


TABLE 1 Guangxi green economy development level evaluation system.


	Target layer
	Criterion layer
	Indicator layer
	Indicator unit
	Indicator direction
	Indicator weight
	Indicator code

 

 	Green Economic Growth Indicator System of 14 Cities in Guangxi 	Driving Force (D) 0.1797 	GDP 	100 million yuan 	+ 	0.0780 	D1


 	Year-end registered population 	10,000 persons 	− 	0.0433 	D2


 	Urbanization rate 	% 	+ 	0.0282 	D3


 	Share of secondary industry 	% 	− 	0.0302 	D4


 	Pressure (P) 0.5025 	Total water consumption 	100 million 

m
3

 	− 	0.0492 	P1


 	Annual wastewater discharge 	10,000 tons 	− 	0.1380 	P2


 	Industrial SO₂ emissions 	tons 	− 	0.1948 	P3


 	Liquefied petroleum gas supply 	tons 	− 	0.1204 	P4


 	State (S) 0.2756 	Green coverage area 	hectares 	+ 	0.1674 	S1


 	Groundwater resource volume 	100 million 

m
3

 	+ 	0.0469 	S2


 	Wastewater treatment rate 	% 	+ 	0.0071 	S3


 	Good air quality rate 	% 	+ 	0.0152 	S4


 	Air quality composite index 	Index 	+ 	0.0390 	S5


 	Response (R) 0.0422 	Harmless treatment Rate of household waste 	% 	+ 	0.0058 	R1


 	Centralized treatment rate of sewage plants 	% 	+ 	0.0220 	R2


 	Green coverage rate in built-up areas 	% 	+ 	0.0101 	R3


 	Water supply coverage rate 	% 	+ 	0.0043 	R4




 



2.2 Research methods


2.2.1 Entropy weight-TOPSIS model

Following the approaches of Zhao C. et al. (2024), Zhao W. et al. (2024), and Zournatzidou et al. (2024) for panel data analysis, this study applies the entropy weight-TOPSIS method to calculate the weights and comprehensive scores for Guangxi’s green economic development evaluation system. Widely adopted in global green economy assessments (Almulhim, 2024), the entropy weight method objectively determines indicator weights based on information variability, while the TOPSIS method evaluates alternatives by calculating their distance from ideal and anti-ideal solutions. As these methodologies are standard, detailed formulas are omitted here for brevity.



2.2.2 Obstacle degree model

To further diagnose obstacles to green economic transition, the obstacle degree model is employed to calculate the obstacle degrees of various indicators and subsystems, helping to identify key barriers and guide adjustments in economic strategies and policies (Zhi and Liu, 2022). This model, similar to applications in sustainable supply chain management research (Mardani et al., 2017), calculates obstacle degrees using the following steps (Yao et al., 2015):
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θ
 ranges from [1,11], spanning 2012–2022 (11 years), i representing 14 cities in Guangxi, and j covering 17 evaluation indicators.



2.2.3 Geographically and temporally weighted regression model

To capture spatial–temporal heterogeneity in influencing factors, this study employs the Geographically and Temporally Weighted Regression (GTWR) model, an extension of the GWR model that integrates both spatial and temporal dimensions. GTWR enables more accurate mapping of regional variations in green economy drivers, utilizing tools like ArcGIS for spatial visualization. This approach aligns with global practices, such as Ren et al. (2023), who applied spatial regression methods to examine environmental regulation and green innovation in Chinese cities.

Before GTWR estimation, Ordinary Least Squares (OLS) regression is conducted to ensure model robustness, following Zhao et al. (2023). All control variables are introduced, and backward elimination is performed to exclude non-significant factors (Li et al., 2021). The GTWR model is expressed as:
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The GTWR model offers key advantages over traditional methods: it captures spatial and temporal heterogeneity (Fotheringham et al., 2015), provides localized parameter estimates revealing regional differences (Li et al., 2021), and identifies spatial clusters of influencing factors critical for targeted green economy policymaking (Matthews and Yang, 2012).




2.3 Data sources

All indicator data used in this study are sourced from the Guangxi Statistical Yearbook (2013–2023), prefecture-level National Economic and Social Development Statistical Bulletins and Environmental Status Bulletins, and supplemental data provided by the Guangxi Zhuang Autonomous Region Department of Ecology and Environment.




3 Analysis and results


3.1 Evaluation and analysis of Guangxi’s green economic development level


3.1.1 Evaluation and analysis of Guangxi’s green economic development level based on the DPSR model

Based on the entropy weight calculation, the system and indicator weights are summarized in Table 1. The weights for the driving force, pressure, state, and response systems are 0.1797, 0.5025, 0.2756, and 0.0422, respectively. The pressure system holds the highest weight, underscoring its dominant role in evaluating Guangxi’s green economic development level. This indicates that the environmental and resource pressures induced by economic activities are the central concern in assessing green development performance in Guangxi. Conversely, the response system has the lowest weight, suggesting minimal variation across the 14 cities in Guangxi regarding policy and management responses, and implying a regional deficiency in effective green development strategies and policy adaptation.

The relatively high weights of the driving force and state systems highlight the significant influence of socio-economic dynamics and current environmental conditions on green economic development outcomes. This finding aligns with the broader literature: Geels (2011) emphasized that green transitions require not only technological innovation but also shifts in policies, practices, and market structures, while Barbier (2012) noted that rapidly developing regions often struggle to match ecological pressures with adequate policy responses.

At the indicator level, industrial sulfur dioxide emissions carry the highest weight at 0.1948, emphasizing the critical role of air pollution control in Guangxi’s green economic development. This reflects the province’s industrial legacy, characterized by a dominance of heavy industry, high pollution, and energy-intensive sectors (Yang et al., 2023). The second highest weight is green coverage area at 0.1674, highlighting the importance of ecological infrastructure in providing environmental services such as water conservation, air purification, climate regulation, and biodiversity support—factors that foster new green industries like ecological agriculture and eco-tourism (Mo et al., 2024).

In contrast, indicators such as the harmless treatment rate of domestic waste (0.0058) and water supply coverage rate (0.0043) have low weights, suggesting limited variability among cities and less information contribution to distinguishing green development levels.

Similar patterns have been observed in other emerging economies. Sanye-Mengual et al. (2018) found air quality metrics to be among the highest-weighted indicators in assessments of urban green economy potential in Mediterranean cities, while Lu et al. (2016) emphasized the importance of industrial pollution control in the green development of China’s eastern provinces.



3.1.2 Evolution analysis of Guangxi’s green economic development level

Using the TOPSIS method, this study calculates the relative closeness degree (Ci) for Guangxi’s green economic development and its four subsystems from 2012 to 2022 (Figure 1). Following Sun and Jing’s (2012) classification standards, development stages are determined and summarized in Table 2.

[image: Line graph showing Green Economy Development from 2012 to 2022. The development index fluctuates, peaking around 2014, then sharply drops in 2015. It remains low with a gradual increase from 2017 onward.]

FIGURE 1
 Comprehensive evaluation results of Guangxi’s green economy development level, 2012–2022.



TABLE 2 Classification of the level of green economy development in Guangxi.


	Green economy development level value
	[0.0—0.5]
	[0.5—0.7]
	[0.7—1.0]

 

 	Classification 	Starting Stage 	Development Stage 	Mature Stage


 	Cities 	Chongzuo 	Guilin, Qinzhou, Fangchenggang, Beihai, Hechi, Baise, Yulin, Guigang, Laibin, Wuzhou, Hezhou 	Nanning, Liuzhou




 


3.1.2.1 Temporal evolution

Guangxi’s overall green economic development remained within the development stage over the decade, exhibiting modest fluctuations. The Ci rose from 0.6156 in 2012 to 0.6273 in 2015, declined to 0.5970 by 2017, and recovered to 0.6015 by 2022.

Subsystem analysis reveals divergent trends. The driving force subsystem (Figure 2a) showed a steady rise, underpinned by sustained economic growth (7.9% average annual GDP) and increased investment in green technologies, aligning with international observations of economic growth phases fostering green innovation (Borel-Saladin and Turok, 2013; Thi and Do, 2024).
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FIGURE 2
 Evaluation results of the level of green economy development of guangxi subsystems, 2012–2022. Panel (a) at the top-left represents the Driving Force dimension; panel (b) at the top-right represents the Pressure dimension; panel (c) at the bottom-left represents the State dimension; and panel (d) at the bottom-right represents the Response dimension.


Conversely, the pressure subsystem (Figure 2b) declined from 0.5559 to 0.4399, reflecting Guangxi’s persistent industrial dependence a pattern consistent with Mathews (2012) and Cosbey (2011), who note that structural transitions away from high-pollution industries are inherently slow.

The state subsystem (Figure 2c) showed initial improvement followed by slight decline, with fluctuations linked to the gradual effectiveness of green policies and recent global economic volatility.

The response subsystem (Figure 2d) exhibited a stable and significant rise, maintaining a mature stage level throughout, demonstrating Guangxi’s commitment to ecological protection and green governance.



3.1.2.2 Spatial evolution

Spatial disparities are evident across Guangxi’s 14 cities (Table 2). A “dual-core” structure emerged, with Nanning and Liuzhou reaching maturity (levels > 0.70), while 79% of the cities remained at the development stage. Chongzuo lagged behind in the starting stage (0.4996).

These patterns mirror broader trends, where green economy development clusters around urban centers with stronger institutional capacity and innovation ecosystems (Demirel et al., 2019; Hansen and Coenen, 2015).





3.2 Diagnosis of obstacle factors for Guangxi’s green economic development level

Building upon the methodology proposed by Shu et al. (2024) and other scholars—who advocate for diagnosing systemic obstacle factors prior to investigating influencing factors—this study employed Equations 1, 2 to calculate and rank the obstacle degrees of 17 evaluation indicators pertaining to Guangxi’s green economic development between 2012 and 2022. Due to space constraints, the top seven indicators were selected for detailed statistical analysis, as presented in Table 3.


TABLE 3 Barrier analysis table of evaluation indicators, 2012–2022.


	Year
	Obstacle Factor 1
	Obstacle Factor 2
	Obstacle Factor 3
	Obstacle Factor 4
	Obstacle Factor 5
	Obstacle Factor 6
	Obstacle Factor 7

 

 	2012 	S1/0.2016 	P3/0.1840 	P2/0.1613 	P4/0.1318 	D1/0.0922 	S5/0.0476 	S2/0.0423


 	2013 	S1/0.1996 	P3/0.1851 	P2/0.1594 	P4/0.1321 	D1/0.0894 	S2/0.0464 	S5/0.0456


 	2014 	S1/0.1955 	P3/0.1902 	P2/0.1581 	P4/0.1366 	D1/0.0856 	S2/0.0489 	S5/0.0455


 	2015 	P3/0.2095 	S1/0.1988 	P2/0.1613 	P4/0.1422 	D1/0.0864 	S2/0.0470 	P1/0.0379


 	2016 	P3/0.2222 	S1/0.1968 	P2/0.1589 	P4/0.1418 	D1/0.0833 	S2/0.0450 	P1/0.0386


 	2017 	P3/0.2542 	S1/0.1878 	P2/0.1527 	P4/0.1352 	D1/0.0765 	S2/0.0471 	P1/0.0382


 	2018 	P3/0.2586 	S1/0.1872 	P2/0.1542 	P4/0.1284 	D1/0.0771 	S2/0.0473 	P1/0.0378


 	2019 	P3/0.2640 	S1/0.1794 	P2/0.1548 	P4/0.1287 	D1/0.0754 	S2/0.0478 	P1/0.0384


 	2020 	P3/0.2659 	S1/0.1790 	P2/0.1496 	P4/0.1285 	D1/0.0737 	S2/0.0483 	P1/0.0417


 	2021 	P3/0.2581 	S1/0.2001 	P2/0.1455 	P4/0.1283 	D1/0.0695 	S2/0.0510 	P1/0.0403


 	2022 	P3/0.2613 	S1/0.1981 	P2/0.1439 	P4/0.1301 	D1/0.0672 	S2/0.0515 	P1/0.0412




 

Table 3 illustrates that, throughout 2012–2022, the obstacles impeding Guangxi’s green economic development remained relatively concentrated and stable. These obstacles were primarily located within the “pressure” and “state” layers, with key factors including green coverage area, industrial sulfur dioxide emissions, annual wastewater discharge, and liquefied petroleum gas supply—all exhibiting obstacle degrees exceeding 0.1. During this period, Guangxi experienced rapid industrialization and urbanization; however, the expansion of corresponding environmental infrastructure lagged behind, industrial pollution control technologies remained outdated, and regulatory oversight was insufficient.

As depicted in Figure 3, the trends in obstacle degrees across the eight selected indicators displayed complex fluctuations. Notably, the obstacle degree for industrial sulfur dioxide emissions (P3) remained persistently high and exhibited an upward trajectory, suggesting that sulfur dioxide pollution constituted a major and persistent barrier to Guangxi’s green economic advancement. Conversely, the obstacle degree for the air quality excellence rate (S5) demonstrated a steady decline and, post-2015, fell outside the top seven indicators, indicating progress in air pollution control measures, such as tighter regulation of non-industrial emission sources including vehicular exhaust and dust. Meanwhile, the obstacle degree for green coverage area (S1) showed a fluctuating yet overall rising trend, reflecting early gains in afforestation efforts followed by a subsequent slowdown. The groundwater resource volume (S2) obstacle degree also increased, highlighting the mounting complexity of water resource management challenges. In contrast, the obstacle degrees for GDP (D1), annual wastewater discharge (P2), and liquefied petroleum gas supply (P4) declined, suggesting that improvements in these areas contributed positively to Guangxi’s green economic recovery, underpinned by enhanced wastewater management, optimized energy supply systems, and sustained economic growth.

[image: Heatmap displaying data from 2012 to 2022 across categories P1, S5, S2, D1, P4, P2, P3, and S1. Color gradient ranges from dark green to red, with darker green representing lower values and red representing higher values, as per the color scale on the right.]

FIGURE 3
 Hot spot map of indicators of barriers to green economy development level in Guangxi, 2012–2022. The x-axis denotes the year, the y-axis represents the evaluation indicators, and the color gradient reflects the degree of obstacle.


These findings align with patterns identified in global sustainability transition research. For instance, Markard et al. (2012) emphasized industrial infrastructure lock-in as a persistent barrier to sustainability transitions worldwide, while Loorbach and Rotmans (2006) noted that in developing economies, environmental governance often lags behind rapid industrialization, leading to temporary spikes in pollution before governance structures adapt.



3.3 Analysis of influencing factors of Guangxi’s green economic development level

Building upon the preceding analysis, and to further investigate the spatiotemporal evolution of influencing factors on Guangxi’s green economic development—as well as to uncover the spatial–temporal heterogeneity of these drivers—this study employed OLS and GTWR models, following the methodological frameworks proposed by Zhao Junwei, Li Jiaxin, and others.


3.3.1 Selection of significant factors based on the OLS model

Initially, a backward stepwise regression was conducted using the OLS model in Stata 17, wherein the significance levels of both the explanatory variables and the dependent variable were evaluated. Through this process, nine key indicators were identified as significant determinants of Guangxi’s green economic development: registered year-end population, urbanization rate, proportion of secondary industry, industrial sulfur dioxide emissions, green coverage area, groundwater resource volume, air quality excellence rate, harmless treatment rate of domestic waste, and centralized treatment rate of sewage treatment plants. The model exhibited a high goodness-of-fit, with an R2 value of 0.9763, and all nine variables demonstrated p-values below 0.1.

To guard against pseudo-regression, a collinearity diagnostic was performed based on the principle of variable independence. Utilizing Stata 17, the variance inflation factor (VIF) analysis revealed an average VIF of 1.53 and a maximum VIF of 1.99, all well below the critical threshold of 5, thus confirming the absence of multicollinearity and the robustness of the selected variables.

This approach to variable selection adheres to established international best practices in econometric modeling of green economy drivers. For example, York et al. (2003) applied comparable stepwise regression methodologies to identify transition factors in developing economies, while Larsen (2018) emphasized the importance of VIF analysis to ensure the integrity of sustainability indicator models within regional development research.



3.3.2 Regression results of the GTWR model

Using ArcGIS 10.8 and the GTWR calculation plugin developed by Huang et al. (2010), further regression analysis was conducted on the previously screened factors, based on the GTWR model shown in Equation 3, with the results presented in Table 4. The findings reveal that the adjusted R2 of the GTWR model is 0.998202, notably higher than that of the OLS model (0.9749), and the AICc value is −990.513, collectively indicating that the GTWR model provides a superior goodness of fit.


TABLE 4 GTWR model parameters.


	Model parameters
	Value

 

 	Bandwidth 	0.140444


 	ResidualSquares 	0.001382


 	Sigma 	0.002996


 	AICc 	−990.513


 	R2 	0.998308


 	R2 Adjusted 	0.998202




 

As shown in Table 5, the GTWR regression results display both positive and negative coefficients, with considerable variation in magnitude across regions. This variation further corroborates that the parameter estimates derived from the OLS model merely capture the average characteristics across Guangxi, thereby obscuring the localized dynamics within each of Guangxi’s 14 prefecture-level cities. These results underscore that the relationship between Guangxi’s green economic development level and its influencing factors is not uniformly linear, but rather characterized by pronounced spatial heterogeneity (Zhao et al., 2023).


TABLE 5 GTWR model regression results.


	City
	Year
	Year-end registered population
	Urbanization rate
	Share of secondary industry
	Industrial sulfur dioxide emissions
	Green coverage area
	Groundwater resource volume
	Good Air quality rate
	Harmless treatment rate of household waste
	Centralized treatment rate of sewage plants

 

 	Nanning 	2012 	0.047 	−0.013 	0.040 	0.224 	0.207 	0.021 	0.009 	0.066 	0.014


 	Qinzhou 	2012 	0.024 	−0.002 	0.000 	0.306 	0.188 	0.058 	0.009 	0.061 	0.021


 	Beihai 	2012 	0.026 	−0.004 	0.016 	0.302 	0.193 	0.070 	0.009 	0.056 	0.025


 	Fangchenggang 	2012 	0.017 	−0.003 	−0.005 	0.315 	0.191 	0.069 	0.011 	0.061 	0.024


 	Guigang 	2012 	0.035 	0.033 	0.024 	0.221 	0.193 	0.024 	0.001 	0.036 	0.020


 	Liuzhou 	2012 	0.072 	0.035 	0.060 	0.218 	0.165 	0.019 	−0.009 	0.023 	0.038


 	Guilin 	2012 	0.052 	0.035 	−0.007 	0.272 	0.220 	0.048 	0.012 	−0.001 	−0.011


 	Wuzhou 	2012 	0.046 	0.018 	0.024 	0.315 	0.304 	0.048 	0.019 	0.006 	0.016


 	Hezhou 	2012 	0.043 	−0.010 	0.019 	0.299 	0.400 	0.042 	0.018 	−0.004 	0.006


 	Baise 	2012 	0.429 	−0.011 	0.099 	0.158 	−0.010 	0.090 	0.005 	−0.026 	0.043


 	Hechi 	2012 	0.109 	0.062 	0.044 	0.197 	0.092 	−0.016 	0.006 	0.052 	0.048


 	Chongzuo 	2012 	0.095 	0.030 	0.054 	0.261 	0.148 	0.011 	0.017 	0.045 	0.021


 	Laibin 	2012 	0.043 	0.031 	0.059 	0.214 	0.172 	0.006 	−0.018 	0.031 	0.038


 	Yulin 	2012 	0.037 	0.000 	0.018 	0.241 	0.208 	0.036 	0.015 	0.047 	0.017


 	…


 	Nanning 	2022 	0.078 	0.016 	0.045 	0.349 	0.137 	0.015 	0.064 	0.186 	0.075


 	Qinzhou 	2022 	0.101 	0.001 	0.082 	0.488 	0.151 	0.000 	0.058 	0.189 	0.057


 	Beihai 	2022 	0.078 	−0.005 	0.081 	0.213 	0.203 	0.004 	0.034 	0.209 	0.040


 	Fangchenggang 	2022 	0.125 	−0.003 	0.108 	1.030 	0.150 	−0.040 	0.069 	0.180 	0.049


 	Guigang 	2022 	0.062 	0.035 	0.065 	0.187 	0.166 	0.064 	0.031 	0.200 	0.043


 	Liuzhou 	2022 	0.070 	0.086 	0.039 	0.211 	0.124 	0.070 	0.016 	0.204 	0.019


 	Guilin 	2022 	0.096 	0.009 	0.044 	0.221 	0.322 	0.037 	0.018 	0.217 	0.018


 	Wuzhou 	2022 	0.063 	0.060 	0.045 	0.277 	0.264 	0.069 	0.021 	0.200 	0.031


 	Hezhou 	2022 	0.057 	0.051 	0.045 	0.345 	0.308 	0.065 	0.022 	0.202 	0.029


 	Baise 	2022 	0.068 	0.083 	0.060 	0.688 	0.124 	0.030 	0.032 	0.186 	0.041


 	Hechi 	2022 	0.081 	0.075 	0.053 	0.479 	0.117 	0.070 	0.017 	0.193 	0.035


 	Chongzuo 	2022 	0.076 	0.029 	0.036 	0.867 	0.147 	−0.065 	0.057 	0.192 	0.065


 	Laibin 	2022 	0.071 	0.069 	0.062 	0.335 	0.133 	0.071 	0.022 	0.194 	0.037


 	Yulin 	2022 	0.052 	0.009 	0.052 	0.486 	0.198 	0.054 	0.026 	0.216 	0.032




 

The existence of spatial heterogeneity in green economy drivers has similarly been recognized in broader regional studies. For instance, Balland et al. (2019) demonstrated that the effectiveness of green innovation policies varies markedly across regions with different industrial structures and institutional capacities. Likewise, McCauley and Heffron (2018) showed that identical policy instruments can yield divergent green economy outcomes depending on variations in governance structures and resource endowments.



3.3.3 Spatial heterogeneity analysis of influencing factors on Guangxi’s green economic development level

To further explore the variation characteristics and impact intensity of influencing factors in space, based on the regression coefficient results of 9 influencing factors at the beginning (2012) and end (2022) of the period obtained using the GTWR model, the natural breaks method was adopted, and ArcGIS 10.8 was used to visualize the results for more intuitive spatial variation analysis of each influencing factor, as shown in Figures 4, 5. Due to space limitations, this paper selected 5 influencing factors with significant changes from the four criterion layers for the following analysis.

[image: Nine maps depict different environmental and social metrics across regions, including registered population, urbanization rate, secondary industry proportion, sulfur dioxide emissions, green coverage, groundwater resources, air quality, domestic waste treatment, and sewage treatment rates. Each map uses varying green shades to represent data intensity, with a legend indicating specific values. Major locations such as Guilin, Hechi, and Baise are marked on each map. A compass points north, and a scale indicates distances up to five hundred kilometers.]

FIGURE 4
 Spatial distribution of regression coefficients for factors affecting green economic development in Guangxi, 2012.


[image: Nine maps of a region depict various indicators using shades of green. Indicators include registered year-end population, urbanization rate, secondary industry proportion, industrial sulfur dioxide emissions, green coverage area, groundwater resources, air quality compliance rate, harmless treatment rate of domestic waste, and centralized treatment rate of sewage plants. Each map uses a color gradient legend indicating different value ranges, with regions labeled such as Nanning, Baise, and Guilin. An arrow points north in each map, and a scale bar shows distances from zero to five hundred kilometers.]

FIGURE 5
 Spatial distribution of regression coefficients for factors affecting green economic development in Guangxi, 2022.


Registered year-end population exhibited notable spatial and temporal dynamics throughout the study period. At the outset in 2012, elevated coefficients predominantly characterized cities such as Hechi, Baise, and Chongzuo, with a discernible gradient showing higher values in western Guangxi relative to eastern regions. By 2022, a general decline in these coefficients was observed, accompanied by an eastward shift of high-value areas; conversely, cities such as Yulin and Hezhou in the east transitioned to lower-value regions. In the “Qinzhou-Beihai-Fangchenggang” corridor, the positive influence of registered population on Guangxi’s green economy intensified, attributable to increased urbanization and demographic influx from western regions. These cities, serving as key gateways to ASEAN, attracted substantial labor and talent, fostering rapid economic growth while promoting green development. The apparent decline in Yulin and Hezhou may reflect their comparatively weaker economic bases, rendering them more susceptible to demographic and developmental shifts. Such spatial population redistribution aligns with international research patterns—Fan et al. (2019) documented similar migration-driven effects on green economies in developing coastal zones, while Chen and Partridge (2013) highlighted initial environmental diseconomies followed by efficiency gains in urbanizing regions due to scale effects.

Regarding industrial sulfur dioxide emissions, the spatial regression coefficients demonstrated an east–west increasing trend in 2012, which reversed by 2022, manifesting a decreasing east–west pattern despite an overall increase in emission levels. This shift likely reflects intra-regional industrial transfers; Guangxi’s ongoing industrial restructuring, characterized by the persistence of traditional, pollutant-intensive industries and transitional technological upgrades, contributed to short-term emission increases. This pattern resonates with Rodrik’s (2014) analysis of industrial pollution during early stages of regional economic restructuring, where pollution often intensifies as industries relocate before subsequent decline, and with Coenen et al. (2015), who identified “pollution haven” effects during industrial transition phases.

The spatial distribution of green coverage area coefficients remained largely consistent over the decade, characterized by low values in the west and high in the east in 2012, with Baise and Hechi exceptions. By 2022, negative coefficients vanished, and these western regions transitioned to positive values. This shift may be attributed to topographical constraints mountainous terrain and limited water resources alongside relatively underdeveloped economies that hinder green infrastructure investments. Literature by Zhang et al. (2021) underscores the influence of terrain on green space efficacy, while Gao and Bryan (2017) note that challenging geography diminishes returns on green infrastructure investments.

Air quality excellence rates displayed a “north low, south high” pattern in 2012, with Baise, Hechi, Liuzhou, and Laibin exhibiting negative coefficients. By 2022, these regions experienced a transition to positive coefficients, reflecting substantial improvements. This change likely results from strengthened environmental regulations and a shift towards ecological industries such as ecological tourism and agriculture. This transformation aligns with Zhang and Crooks (2012), who describe an environmental Kuznets curve in industrial regions, and Barbier (2016), who emphasizes air quality as an indicator of broader green economy advancements.

Centralized Treatment Rate of Sewage Treatment Plants. The centralized sewage treatment rate coefficients were negative in eastern Guangxi cities and Nanning in 2012, indicating limited impact at that stage. By 2022, the negative coefficients disappeared, with Nanning notably increasing its treatment capacity, suggesting enhanced infrastructure investments. Such spatial patterns in wastewater infrastructure effects are consistent with Spirandelli (2015), who observed higher returns in major urban centers with stronger governance, and with the World Bank (2019), which emphasizes the importance of institutional capacity in realizing environmental and economic benefits from wastewater treatment investments.

In sum, these spatial and temporal shifts in population, industrial emissions, green coverage, air quality, and wastewater infrastructure underscore complex interactions between regional development, environmental policies, and geographic factors, reflecting broader patterns identified in international green economy research.



3.3.4 Temporal evolution analysis of Guangxi’s green economic development level influencing factors

Analysis of the GTWR-derived regression coefficients for nine factors from 2012 to 2022 reveals distinct temporal dynamics across multiple layers (Figure 6).

[image: Nine colorful box plots labeled a to i, showing data distribution trends from 2012 to 2021. Each plot uses different colors to represent data for each year, highlighting variations and trends over the years, with some showing evident increases or stable patterns.]

FIGURE 6
 Phase line diagram of regression coefficients of GTWR model for impact factors, 2012–2022. In all nine diagrams, the x-axis represents the year and the y-axis denotes the fitted coefficients. Panel (a) corresponds to year-end registered population, (b) to urbanization rate, (c) to share of secondary industry, (d) to industrial carbon dioxide emissions, (e) to green coverage area, (f) to groundwater resource volume, (g) to good air quality rate, (h) to harmless treatment rate of household waste, and (i) to centralized treatment rate of sewage plants.


In the driving force layer, the registered year-end population’s positive influence on green economic development declined modestly over time, with coefficients predominantly between 0.0 and 0.15, indicating a consistent yet diminishing impact. Urbanization rate exhibited an overall increasing trend in its positive effect, signifying its role as a driver. Conversely, the secondary industry’s impact fluctuated downward; although initially promoting green development, its influence waned post-2021, suggesting that reductions in secondary industry proportion facilitated progress—aligning with international findings where urbanization and industrial restructuring underpin green transitions (Loorbach et al., 2017; Shahbaz et al., 2016).

Within the pressure layer, industrial sulfur dioxide emissions displayed a persistent upward trend in their positive coefficients, implying escalating environmental pressure despite green advancements. This pattern parallels transition models where high-emission industries coexist with emerging green structures (Geels, 2014; Kivimaa and Kern, 2016).

In the state layer, green coverage area maintained a stable, positive influence, supporting its role in promoting green economy growth. Groundwater resource volume exhibited a fluctuating yet positive effect, with nonlinear relationships such as “U” and inverted “U” curves observed between 2012–2016 and 2017–2022, respectively—consistent with the complex thresholds identified by Varis and Kummu (2019). The air quality excellence rate showed a steady upward trend, corroborating research by Derkzen et al. (2017) on the ecosystem service value of urban green infrastructure.

In the response layer, the harmless domestic waste treatment rate remained stable until a marked increase in 2021–2022, intensifying its positive impact. The centralized sewage treatment rate demonstrated a consistent upward trajectory, emphasizing the importance of waste management infrastructure in green economic development. This aligns with global observations that circular economy practices and advanced waste treatment systems serve as catalysts for sustainable growth (Ghisellini et al., 2016; Velenturf and Jopson, 2019).

Overall, these temporal coefficient patterns underscore the evolving influence of socio-economic, environmental, and infrastructural factors on Guangxi’s green economy, reflecting both local dynamics and international transition pathways.





4 Conclusions and recommendations

This study reveals pronounced spatial disparities in Guangxi’s green economic development, characterized by a “dual-core” structure led by Nanning and Liuzhou. Most cities remain at the development stage, while Chongzuo persists in the starting stage, underscoring the need for strategic interventions. Future policy should leverage the leadership of Nanning and Liuzhou by implementing targeted preferential support and encouraging knowledge transfer to surrounding areas through coordinated industrial relocation and infrastructure development, fostering regional green spillovers.

The analysis identifies industrial sulfur dioxide emissions, limited green coverage, and wastewater discharge as primary obstacles, reflecting Guangxi’s continued reliance on heavy industry and the slow advancement of environmental infrastructure. In line with Schot and Geels’ (2008) framework of strategic niche management, efforts should focus on gradually phasing out high-pollution sectors while simultaneously nurturing emerging green industries through regulatory support and innovation incentives.

Employing the GTWR model allowed a nuanced understanding of spatial–temporal heterogeneity among nine influencing factors, highlighting that the impact of drivers varies significantly across both geography and time. This supports the geography of sustainability transitions approach (Coenen et al., 2012), emphasizing the need for regionally tailored strategies rather than uniform policy prescriptions. Specifically, policies should prioritize optimizing population flows, promoting green urbanization, accelerating clean industrial upgrades, and enhancing environmental governance infrastructure, particularly in western Guangxi.

These findings collectively reinforce that achieving comprehensive green economic development in Guangxi requires multi-scalar, context-sensitive policy interventions that address both systemic barriers and localized development needs.


4.1 Theoretical implications

This study offers three key theoretical contributions. First, it proposes an integrated DPSR–GTWR analytical framework. By combining a causally oriented DPSR evaluation system with the Geographically and Temporally Weighted Regression (GTWR) model, the study develops a unified approach that quantifies the roles of drivers, pressures, states, and responses in urban green-economy development while capturing the spatiotemporal heterogeneity of the driving factors. This approach overcomes the limitations of space-invariant or single–time–slice models and provides an explicit geo-temporal perspective for theories of sustainable urban economic transition.

Second, it organically links obstacle diagnosis with mechanism analysis. Before implementing the GTWR regression, the research incorporates the entropy-weight TOPSIS and obstacle-degree models to identify heterogeneous constraints imposed by different influencing factors on urban green economic development. This connection strengthens the theoretical link between transition bottlenecks and policy levers, thereby enriching the conceptual foundation of ecological modernization and studies on urban green economy transformation.

Third, it expands the meso-regional research perspective within the context of emerging economies. Based on prefecture-level empirical evidence from Guangxi, the findings reveal how institutional capacity, industrial structure, and environmental infrastructure co-evolve to shape urban green economic outcomes. This underscores that green transition theory, when applied to developing regions, should systematically account for intra-provincial heterogeneity and the sequencing of policy responses. The proposed framework thus provides a transferable analytical template for green-transition studies in other late-developing regions, particularly where historical development constraints and localized characteristics prevail.
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