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The speed of urbanization around the world is decreasing the arable land endangering
food security since the population is estimated to reach 9.7 billion by the year 2050.
Urban agriculture provides a long-term solution to food production in urban areas but
has issues of good monitoring of plant diseases because growing areas are fragmented,
microclimates change, and resources are limited. However, biotic (e.g., pathogens)
and abiotic stresses must be accurately detected to reduce wastage in crop and
ensure sustainability in urban farming ecosystems. This paper will suggest a new deep
learning model that integrates ResNet101 and the Sparrow Search Optimization (SSO)
algorithm to identify plant stress in urban agriculture environments. Based on the
capabilities of transfer learning, the model makes use of optimal feature extraction with
small datasets, resolving the issue of data scarcity in cities. The framework was trained
and evaluated based on a heterogeneous dataset of urban crop images, inclusive of
multifactorial stress indicators on variable conditions. ResNet101 + SSO reached an F1-
score of 98.9, and ROC-AUC of 0.989, which is better than the traditional approaches
(RandomForest: 92.3% F1; KNN 89.7% F1). It showed great accuracy in detecting both
biotic and abiotic stress factors, which allows the timely detection of the broken urban
farms. This solution promotes sustainable urban agriculture by minimizing the waste
of crops by monitoring stress accurately and at scale. The model is developed to
support smart city objectives of improving food security and resources sustainability,
which is tailored to city settings with limited resources. The future planning of work
will be to combine real-time data of loT sensors and make the model applicable to
various types of crops used in urban areas.

KEYWORDS

sustainable agriculture, biotic and abiotic plant stressors, deep learning, sparrow
search algorithm, CNN - convolutional neural network

1 Introduction

The rapid urbanization and exponential growth of the global population, projected to surpass
9.7 billion by 2050, have intensified the demand for sustainable food production systems that can
efficiently meet nutritional needs while contending with shrinking arable land resources (Martin
and Wagner, 2018). Urban agriculture has emerged as a promising solution, enabling localized food
cultivation in city environments through innovative methods such as vertical farming, rooftop
gardens, and hydroponic systems. This approach not only reduces transportation-related carbon
emissions but also enhances food resilience by bringing production closer to consumers, thereby
addressing the dual challenges of population surge and land scarcity. However, the plants in urban
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settings are vulnerable to a range of biotic factors, including pathogens
(fungal, viral, bacterial, weeds and pests), as well as abiotic stresses like
drought, nutrient deficiencies, and extreme temperatures, all of which can
severely compromise yields and quality. Early identification of these issues
is crucial to minimize losses, yet manual monitoring is labour-intensive
and prone to errors, especially in large-scale urban farms. This
underscores the necessity for advanced technologies to support precise,
timely interventions that optimize resource use and sustain productivity.
Artificial intelligence (AI) has revolutionized agricultural practices
by offering tools for automated disease detection, stress identification,
and yield prediction, leveraging machine learning and deep learning
models to analyze vast datasets from sensors, drones, and imaging
devices. For instance, convolutional neural networks (CNNs)
(Kandukuri et al., 2023) have been effectively employed to classify foliar
diseases in crops like rice (Prajapati et al., 2017), cassava (Ramcharan
etal, 2017), and apples (Thapa et al., 2020), enabling farmers to apply
targeted treatments and reduce chemical usage. Similarly, AI-driven
phenotyping helps detect abiotic stresses through spectral analysis and
multi-modality imagery, while predictive models forecast yields based
on environmental variables. However, existing data structures
predominantly consist of image repositories focused on specific crops
or biotic diseases, such as the PlantVillage (Ali et al., 2024) dataset for
common foliar issues or the Cassava challenge for cassava-specific
pathologies (Kiruthika et al., 2024). These resources, while valuable,
reveal critical gaps: limited coverage of abiotic stresses, insufficient
diversity in urban-relevant crops, and a lack of integrated datasets that
encompass both biotic and abiotic factors under real-world conditions.
Moreover, many models suffer from suboptimal hyperparameter
tuning, leading to reduced accuracy in dynamic environments.
According to Reddy et al. (2025), effective risk profiling in rainfed
farming must integrate biotic and abiotic factors alongside institutional
challenges, highlighting the need for comprehensive coping strategies
that align with policy frameworks targeting resilience and sustainability.
By situating biotic and abiotic stresses within this broader policy and
institutional milieu, the study underscores their critical role as
determinants of agricultural vulnerability and the necessity of integrated
management approaches at the national level. This policy relevance
renders the study highly pertinent for decision-makers and practitioners
aiming to formulate strategies that mitigate risks, enhance adaptability,
and promote sustainable agricultural development (Reddy et al., 2025).
These
comprehensive solutions tailored to urban agriculture’s unique

limitations motivate the development of more
demands, where space-efficient, Al integrated systems are essential for
scalability. By addressing the limited availability of datasets and to
enhancing model efficiency, this paper presented deep learning based
solution for active plant health management, ultimately fostering
smarter, more resilient urban food systems.

The primary objectives of this study PlantStress dataset, a novel
collection that incorporates both biotic (e.g., fungal, viral, bacterial, weeds
and pest damage) and abiotic (e.g., heat, drought, salt, nutritional
deficiencies, flood etc) stresses across diverse urban-cultivated plants,
captured through high-resolution imagery and environmental metadata.
This collection contains 5,170 original photographs that were shot in
plantations in a variety of lighting circumstances; these images were
captured. Within the dataset, there are a total of 8,629 distinct leaf
annotations that span 27 different disease classifications. A few of these
annotations consist of a single leaf, while others include many leaves.
Building on this foundation, we employ the Sparrow Search Algorithm for
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hyperparameter optimization of a ResNet101 architecture, harnessing
transfer learning to adapt pre-trained features for superior performance in
stress classification. Finally, the proposed framework is designed for
seamless integration with smart city infrastructure, and can be suitable for
the automated alerts and decision-making in urban farming ecosystems.

1.1 Motivation

From the above, it is observed that recent advances in plant
pathology fail to address both the biotic and abiotic stress factors
simultaneously. There is a gap that exists in the availability of
comprehensive datasets that specifically focus on the identification of
plant diseases and stress conditions based on both biotic and abiotic
stressors. This motivates us to propose an innovative approach for
plant stress identification that considers both biotic and abiotic stress
factors in an UrbanAgri framework. Through the development of a
new dataset, augmentation techniques, and the use of a deep
convolutional neural network (DCNN) architecture, we seek to
enhance the accuracy and robustness of plant stress detection. The
proposed framework could have significant implications for early
detection, management, and mitigation of plant stress.

1.2 Research objectives

Following the above gaps, this study introduces a novel dataset
focusing on plant stress, encompassing various biotic and abiotic
stressors to provide a more comprehensive foundation for building
Al-based solutions. In addition, we use Sparrow Search Optimization
(SSO), a metaheuristic algorithm, to fine-tune hyperparameters of a
ResNet101 deep learning model. This optimization is designed to
maximize classification accuracy while ensuring computational
efficiency, crucial for practical deployment in urban farming settings
with limited resources. By focusing on the intricate interactions of
urban-specific environmental variables, this research advances the
development of resilient urban food systems aligned with the United
Nations Sustainable Development Goals (SDGs).

1.3 Organisation of the paper

In the first section, the research problem and motivation are
identified. The linked research in section 2 highlights the state-of-
the-art approaches, their issues with the different stressors associated
with the gaps and difficulties in the availability of the relevant datasets
and precise diagnostic models. The details of the suggested
methodology are also included in section 3, which is the article’s major
body. This guarantees that the entire algorithm, including the dataset
description, data argumentation, DCNN, and optimised process, is all
included. Section 4 presents the findings, discussion, and conclusion
pertaining to the proposed UrbanAgri.

2 Related work

The integration of artificial intelligence into agriculture has
transformed traditional farming practices, particularly in the realm of
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plant health management, by enabling automated detection and
prediction capabilities that address the major challenges of food
production. Early efforts were focused on machine learning methods
for identifying plant diseases through image analysis, as demonstrated
by comparative studies evaluating algorithms like support vector
machines and decision trees for foliar symptom classification (Akhtar
et al,, 2013). Further, complex deep learning models dominated the
field due to their ability to extract intricate features from complex
imagery (Boukhris et al., 2020). Building on these developments, deep
learning applications have extended beyond mere disease detection to
encompass stress identification, encompassing both biotic pathogens
and abiotic factors like heat, drought, and nutrient imbalances that are
increasingly prevalent in urban agricultural settings. Several authors
used a CNN model based on an autoencoder technique to identify
diseases in rice crops with 90.6% accuracy (Kandukuri et al., 2023).
Likewise, Lakshmi and Nickolas utilised CNNs and transfer learning
techniques to understand problems in betelvine leaves, getting a mean
Average Precision (mAP) of 84%, proving that these technologies are
suitable for monitoring plant health. Moreover, Elvanidi and Katsoulas
(2022) employed ML techniques to identify stress in tomatoes,
illustrating how computational tools may solve a wide variety of
natural challenges (Kavitha Lakshmi and Nickolas, 2020) and
(Elvanidi and Katsoulas, 2022).

By combining deep learning with mobile and application-based
platforms, Shoaib et al. (2023) in how these developments can be put
into practice to identify plant illnesses instantaneously. Another
dataset, “Paddy Doctor;” was provided in (Petchiammal et al., 2023),
also contribute to the development of robust disease detection models.
They provide a comprehensive range of plant stress situations, which
are essential for enhancing the effectiveness of deep learning models.
Several other datasets that are already available address certain
diseases, such as the Leaflet Cassava Dataset, the APD Dataset, the
Apple Leaf Diseases Dataset (Yu et al., 2020; Sharma et al., 2022), the
Leaf Disease Dataset (Rauf et al., 2019), the Kaggal Cassava Disease
(Ramcharan et al., 2017), the Rice Leaf Disease Dataset (Prajapati
et al,, 2017), the Citrus Dataset (Rauf et al., 2019), and the APDA
Dataset (Akhtar et al., 2013; Gaidel et al., 2023), Apple Leaf Diseases
Dataset (Sharma et al., 2022) are all apple crop diseases. The leaflet
Kaggal Cassava Disease is only concerned with cassava plant diseases.
The Rice Leaf Disease dataset deals with illnesses that harm rice, while
the Citrus dataset deals with diseases that affect oranges. Despite
advances in focused research, this specialisation restricts the models’
general usefulness.

The Plant Village Dataset has more than 54,000 samples. Although
most of them were collected in labs, they may not be useful in the
field. Despite its size, the Crop Pests Dataset only contains pests and a
few additional stressors for plants. The RoCoLe (Parraga-Alava et al.,
2019), Plant Pathology, and MSU-PID datasets are useful (Thapa et al.,
2020); however, they only provide information regarding leaf diseases
and not on other essential problems.

Moreover, while databases such as the Deep Phenotyping dataset
and the DiaMOS Plant Dataset make essential contributions (Fenu
and Malloci, 2021), they underscore the need for more complete and
diverse picture data. Despite its virtues, the field has certain
weaknesses. Many existing models and datasets have low diversity and
representativeness, as they focus on certain diseases or crops. A lack
of adequate data makes it difficult to create models that are robust and
universally applicable. Table 1 shows a comparative analysis of these
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datasets. Furthermore Nagasubramanian et al. (2022) demonstrate the
interpretability of deep learning models. To make these models
understandable and actionable, it is critical to focus on relevant
attributes. These inadequacies emphasise the need for new datasets
that include a wider variety of plant stress factors, including
environmental and nutritional implications, as well as novel deep
learning architectures that may be used to better navigate the
complexities of real-world agricultural environments. Currently, there
is no comprehensive dataset that encompasses various crops, disease
kinds, and stress variables under various situations. Furthermore,
these datasets are not necessarily highly detailed or appropriate. A
new, more comprehensive dataset is required to increase the precision,
resilience, and practicality of plant stress identification and
classification methods.

3 Materials and methods
3.1 Dataset: biotic and abiotic stress data

The dataset is divided into two primary categories: biotic stress
(caused by living organisms like pathogens and pests) and abiotic
stress (caused by environmental factors such as drought, heat, cold,
and nutrient deficiencies). The dataset includes image data (plant
leaves affected by wvarious stress factors) and sensor data
(environmental conditions). A sample PSDataset is shown in Figure 1
from the actual dataset repository. This consists of the 12 different
varieties of crops in the healthy directory (wheat, brinjal, cabbage,
cauliflower, cotton, guava, lemon, maize, potato, rice, spinach, and
tomato. The biotic (includes 12 different crops like cotton, rice, wheat,
brinjal, cauliflower, potato, maize, guava, lemon, spinach, tomato, and
cabbage along with weeds and pest) and abiotic (includes 7 different
crops like cotton, wheat, rice, brinjal, cauliflower and potato). Looking
forward, there is potential for this dataset to be integrated with other
datasets globally.

The PSDataset, comprising 78 classes labeled C1 to C78, is
systematically categorized into biotic stress (C1-C44), pest stress
(C45-C56), weed stress (C57-C68), and abiotic stress (C69-C78)
samples, with its structure illustrated in Supplementary Figure 1.
Detailed
Supplementary Table 1, while Supplementary Table 2 presents class-

class numbers and names are provided in
wise analysis results, including performance metrics for ResNet-101,
InceptionV4, and DenseNet models. Supplementary Table 3 outlines
the characteristics and class distributions of the Original and
Augmented Datasets, and Supplementary Table 4 details biotic stress
caused by bacterial factors. Additionally, five image samples per class
are displayed in a grid format to visualize the dataset, and confusion
matrices for ResNet-101, InceptionV4, and DenseNet are included to
their

Supplementary materials).

evaluate classification performance (see
Let the dataset be represented as.
D ={Xb, Xa}
Where:
o Xb represents the biotic stress data, including various plant

disease images.
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TABLE 1 Comparative summary of the existing datasets.

References Dataset name  Sample size Resolution Accessibility Limitations
Public Private

Ramcharan et al. (2017) Leaflet Cassava 1,896 737%395 \/ Single Disease (Leaf)
Dataset

Sharma et al. (2022) APD Dataset 31 421x618 \/ Single Fruit (Apple)

Ali et al. (2024) Plant Village 54,309 1049x601 v Laboratory-based
Dataset

Yu et al. (2020) Apple Leaf Diseases 404 1049x601 \/ Single Fruit (Apple)
Dataset

Mensah et al. (2023) Crop Pests Dataset 4,500 1049x601 \/ Only Pest

Sladojevic et al. (2016) Leaf Disease Dataset 4,483 1049x601 v Single Disease (Leaf)

Ramcharan et al. (2017) Kaggal Cassava 9,436 1049x601 \/ Single Leaf
Disease

Parraga-Alava et al. RoCoLe Dataset 1,560 388x219 \/

(2019)

Thapa et al. (2020) Plant Pathology 3,651 500%x166 \/ Leaf Disease
Dataset

Prajapati et al. (2017) Rice Leaf Disease 120 2448x2448 \/ Single crop (Rice)
Dataset

Rauf et al. (2019) Citrus Dataset 759 256x256 \/ Single Fruit (Orange)

Akhtar et al. (2013) APDA Dataset 40 776x601 \/ Single Fruit (Apple)

Cruz et al. (2016) MSU-PID Dataset 12,550 571x481 \/ Pants

Fenu and Malloci, 2021) DiaMOS Plant 6,446 5184x3456 \/ Plants
Dataset

Petchiammal et al. (2023) | Paddy Doctor 3,469 568x574 \/ Rice

Singh et al. (2020) PlantDoc 2,551 416x416 \/ Plants

Kaur (2025) PSPDS (Generated 9,900 265x265 v 77 categories for health
through proposed and unhealthy crops
framework) images carrying biotic

and abiotic stress factors

o Xa represents the abiotic stress data, such as drought, heat, cold where z is a random noise vector, and 6 represents the learnable

stress, etc. parameters of the generator.
« The discriminator network (D) is trained to differentiate between
real images (X) and generated images (X):
3.2 Data augmentation using DCGAN (deep
convolutional generative adversarial

networks)

To enhance the dataset and overcome limitations in data diversity,
Deep Convolutional Generative Adversarial Networks (DCGANS) are
employed for data augmentation. The aim is to generate synthetic
images of plants under biotic and abiotic stress conditions to increase
the robustness of the training process.

o The generator network (G) in DCGAN produces synthetic plant

stress images:

X=G(Z;HG)

Frontiers in Sustainable Cities

D(X;0pD) vs.D( X6 )

where @p represents the learnable parameters of the discriminator.
The objective of DCGAN is to optimise the following
min-max game:

Min MaxEx ~ pdata(X)[log D(X)]
G D

+82 ~ pe (=) log 1-D(G(2))) |

This generates new plant stress images that help improve the
performance of the model on unseen data.
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FIGURE 1
The PSDataset consists of 78 classes, labeled C1 to C78. (Classes C1 to C44 represent biotic stress samples, C45 to C56 cover pest stress samples, C57
to C68 include weed stress samples, and C69 to C78 correspond to abiotic stress samples) (Kaur, 2025).
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3.3 Deep convolutional neural network
(DCNN) using ResNet101

The primary model used for stress detection is ResNetl01, a
residual deep convolutional neural network (DCNN) architecture.
ResNet101 helps avoid the vanishing gradient problem using
skip connections.

The forward pass of the ResNet101 model is represented as

h=hi_1+ f (h-1,6))

where:

o hyis the output at layer 1
o f (hl—l,el )is the transformation learned by the I-th layer,
o O represents the parameters of the 1-th layer.

The model takes an input image X and predicts the stress level
(biotic/abiotic) as output Y:

Y= Softmax(Wyes by, +byes}

10.3389/frsc.2025.1619223

where:

o Wies, byes are the weights and bias of the final fully connected layer,
o Lis the final layer of ResNet101.
o Y represents the predicted stress class.

3.4 Sparrow search optimization algorithm
for DCNN optimization

To improve the performance of the ResNet101 model beyond
81% of accuracy, the Sparrow Search Optimization (SSO)
algorithm is applied to optimise hyperparameters (such as learning
rate, number of layers, batch size, and so on). SSO is a swarm
intelligence algorithm inspired by the foraging and escape
behaviour of sparrows. Figure 2 and Algorithm 1 define the
complete workflow and the step-by-step processing of the
UrbanAgri proposed model, respectively. A population of sparrows
{Sl,Sz,,S3,...,Sn} is initialized with random hyperparameters
6,6>,...6,, where S; = (19,) denotes the position of the i-th sparrow

Input

(Biotic dataset & —>
Abiotic dataset)

Preprocessing &
ROI extraction

Data augmentation

(DCGAN)

!

Augmented biotic
Dataset

Feature extraction

(Resnet 101 & Hybrid
gradient pattern)

}

Feature selection

l

Augmented Abiotic
Dataset

Feature extraction

(Resnet 101 &
Hybrid gradient

!

Feature selection

Sparrow
(Optimized smote ) rescue (Optimized smote )
l optimization
algorithm
Optimized Deep Optimized Deep
CNN CNN
Model Model
Disease & Stress level Disease & Stress level
FIGURE 2
Proposed model UrbanAgri.
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: Input: Dataset D={X;,X,} where X, is biotic stress and X, is abiotic stress data

N

: Output: Prediction stress class ¥

w

: Step 1: Data Augmentation using DCGAN

IS

: Initialize DCGAN with generator G(z; 6) and discriminator D(X; 6p)

w

: for each image X in D, do

=N

: Generate synthetic data X=G(z;05)

7: Train D to distinguish between X and X

8: end for

9: Augmented dataset D’=DUX

10: Step 2: Train ResNet101 on Augmented Data

1

: Initialise ResNet101 model with parameters 0....

1

2

: for each batch of data (X, y) in D°, do

[}

: Compute prediction y’= Softmax (Wggshy +bges)

=

: Compute loss (£(0...)) and update parameters using backpropagation.

15: end for

=Y

: Step 3: Hyperparameter Optimization using Sparrow Search Optimization (SSO) Pae£[0Y

2

: Initialize population of sparrow {S1, S2, ..., Sn} with random hyperparameters

3

: for each iteration until convergence, do

o

: Evaluate fitness [ (S;) for each sparrow S; (using classification accuracy)

2

S

: Update sparrow positions using the follow rule
0" = B+a.( 0 )+ Br

2

: Select best-performing hyperparameters 6"
22: end for

2.

o

: Optimized ResNet101 model with hyperparameters 6 opr
24: Step 4: Final Classification

25: for each test image X, do

26: Predict stress level y= argmax. . P(y=¢Xes))

27: end for

28: Step 5: Evaluation

2

°

: Calculate performance metrics: Accuracy, Precision, Recall, F1-Score
30: Compare results with other deep learning models (DenseNet, InceptionNetV4, etc.).

ALGORITHM 1
Biotic and abiotic stress detection using ResNet101, DCGAN, and
SSO optimization.

in the hyperparameter space. The fitness function is defined as the
model’s classification accuracy.

f(S,») = Accuracy(Si)

where §; represents the set of hyperparameters of the CNN
(ResNet101) model. The positions of the sparrows are updated based
on the following rules:

6" =6l +ar(6 -6 )+ pr

where a and f§ are learning parameters, r is a random vector, and 6’,-t is
the best-performing sparrow. The optimisation process continues
until convergence or the maximum number of iterations is reached,
at which point the optimal set of hyperparameters 8" is selected.
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3.5 Final classification

After optimising the hyperparameters using the SSO algorithm,
the final ResNet101 model is retrained with the optimal parameters
for classification. The softmax layer outputs the final classification for
biotic and abiotic stress levels. The classification task is modelled as:

fzargmaxceCP(y:c\X)

where C is the set of biotic and abiotic stress classes.

3.6 Model training

This paper presented five comprehensive deep learning models
implemented in Python using the Keras and TensorFlow frameworks.
The prediction model for the plant stress dataset was developed via
the PyCharm IDE on a Vultr cloud server equipped with a 6-core Intel
Core (Broadwell, no TSX IBRS), 32 GB RAM, 1 TB storage, and an
NVIDIA A40 24Q GPU. The PSDataset dataset, an extensive
compilation of 9,900 photos devoted to the categorisation of novel
diseases encompassing biotic and abiotic stressors, was the primary
focus of our research. The integration of imaging data augmentation
during the training phase constituted a pivotal element of our
technique. This process entailed the implementation of a range of
image transformation methods, including horizontal flipping, rotation
(5°), shear intensity (0.2°), and zoom (0.2). Achieving homogeneity
throughout the collection, each picture was scaled to 256x256 pixels
and normalised. Using 120 epochs and 28 batches, the models were
trained at a learning rate of 0.001.

4 Experimental results and discussion

This study provided the evaluation of the performance of five
prominent deep learning architectures, i.e., ResNet50, ResNet101,
VGG16, InceptionNetV4, and DenseNet, for the detection of biotic
and abiotic plant stresses within the context of urban agriculture. They
have varied domain applications, like ResNet architectures that
incorporate residual connections to mitigate vanishing gradients in
deep networks, enabling deeper models with improved feature
extraction capabilities. The VGG16 provides a deep convolutional
framework that has proven effective for general image classification
tasks. Further, InceptionNetV4 has inception modules that allow for
multi-scale feature extraction, enhancing learning efficiency and
accuracy. The DenseNet has separable convolutions to reduce
parameter count and is designed for efficiency, employing depth-wise
to make it suitable for deployment in resource-constrained
environments. This comprehensive comparison across models varying
in complexity and operating principles is hence suitable for
applications in urban agriculture where computational resources and
accuracy requirements vary. The models were trained and evaluated
using a comprehensive dataset comprising a large volume of annotated
images depicting various plant stresses typical of urban and peri-
urban agricultural areas.

The models were tested across different plant stress categories,
encompassing both biotic stresses like bacterial blight and leaf smut,
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and abiotic stresses such as brown spot and tungro. These stress
categories are highly relevant to urban agriculture, where the
interaction of plant pathogens with unique urban environmental
factors creates complex disease dynamics. The dataset is designed to
be representative of the symptom variability as encountered in urban
settings, ensuring that the models learn from diverse manifestations
of stress. This comprehensive stress coverage enhances the practical
utility of the study, as successful detection across a wide range of
stresses is necessary for real-world agricultural monitoring. Balanced
sampling methods were employed during training to mitigate class
imbalance issues, a common challenge in disease datasets that could
bias model learning towards more frequent stress categories. The
average results of analysis w.r.t. precision, recall, F1 score, and
accuracy is shown in Table 2.

The outcomes, which are displayed in Tables 3-8, show the results
of the annotated images and dataset samples, respectively. In
Tables 3-8, quantify the results of the proposed model with other
models on the viral, fungal, bacterial, pest, weed, and abiotic stress
factors with the confusion matrices in Figure 3. All these quantify the
accuracy, precision, recall, F1-score, and classification performance of
these models. The ResNetl0l model demonstrated remarkable
performance, attaining the highest Fl-score of 94.2 percent. The
outcomes of the multiclass identification of plant stresses for the
annotated sample are presented in Figure 4.

4.1 Performance metrics used

All the models were evaluated based on the four key performance
metrics widely used in classification tasks: precision, Recall, F1 score,
and accuracy. The precision quantifies the proportion of correctly
identified positive cases among all predicted positive instances,
reflecting the model’s ability to minimize false positives. Similarly,
Recall, also known as sensitivity, is the proportion of true positive
cases identified out of all actual positives, emphasising the model’s
capacity to detect all relevant instances and thereby reduce false
negatives. The F1 score binds both precision and recall into a harmonic
mean and balances the trade-offs between these two metrics,
providing a singular measure of model performance. Accuracy
represents the overall proportion of correct predictions (both positive
and negative) made by the model on the test dataset. Thus, the above
metrics collectively inform on variable facets of the detection model’s
efficacy where both false positives and false negatives have
significant implications.

TABLE 2 Average results of analysis the PSDataSet using the pretrained
models.

Deep Precision = Recall F1 Accuracy
learning

techniques

ResNet50 0.916789 0.871185 | 0.908668 0.929057
ResNet101 0.937650 0.922855 | 0.942363 0.938924
DenseNet 0.868003 0919065 = 0.922548 0921223
VGG16 0.88034 0910093 = 0.928128 0.913562
InceptionV4 0.872267 0.906418 | 0.924567 0.93210
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4.2 Performance analysis across deep
learning models

ResNet50 demonstrated consistent and reliable performance
across nearly all evaluated plant stress classes, affirming its
effectiveness as a detector within the urban agriculture domain.
Notably, it achieved a high precision of 0.97345 for the Brown Spot
class, indicating a strong ability to correctly identify healthy plants
without generating false alarms. This balance between precision and
detection capability is further supported by its F1 score of 0.91101.
However, ResNet50 showed a somewhat lower recall of 0.85903 for
Leaf Smut, suggesting some missed positive cases in that category.
Overall, ResNet50’s practical strength lies in minimizing false positives
while maintaining acceptable detection rates, a feature particularly
valuable in urban farming environments where precise and targeted
interventions are essential for resource optimization. The ResNet101
model, an extension of the ResNet architecture with increased
complexity, exhibited performance broadly similar to ResNet50,
though with marginal improvements in certain classes. For example,
it showed enhanced precision and recall in detecting Tungro disease
(0.94897 precision, 0.92189 recall) and Bacterial Blight (0.96239
precision, 0.93702 recall). These gains are attributed to ResNet101’s
deeper layers, which can learn more complex hierarchical features,
benefiting the subtle
visual differences.

classification of stresses presenting

VGG16 also performed well across several stress types, notably
achieving a high precision of 0.98098 in detecting Bacterial Blight.
This demonstrates its effectiveness in accurately identifying stressed
plants and reducing false positive classifications. Nevertheless, its
recall for Bacterial Blight was comparatively lower at 0.89474,
indicating some positive cases were missed, a critical concern when
early detection is required to limit disease spread. VGG16’s average F1
score of 0.96171 for Tungro highlights its balanced detection quality,
although its fixed architecture depth and absence of residual
connections may hinder generalization in the variable visual
conditions typical of urban plant stresses.

InceptionNetV4 distinguished itself with superior recall
performance, achieving 0.98262 for Bacterial Blight, reflecting
heightened sensitivity to detecting true positives and reducing
false negatives. This capability is crucial for early warning systems
where missing disease onset can cause significant crop damage.
The model also recorded strong F1 scores for Leaf Smut (0.98084)
and Bacterial Blight (0.97467), indicating robustness in both
precision and recall. Its multi-scale feature extraction via
inception modules enables it to capture complex symptom
patterns and nuanced stress indicators commonly encountered in
urban agricultural settings.

DenseNet showed respectable recall rates of 0.90157 for Tungro
and 0.91785 for Leaf Smut, demonstrating competence in detecting
most diseased instances. However, it exhibited a lower F1 score of
0.89577 for Brown Spot, indicating some imbalance between precision
and recall for this class. DenseNet’s performance varied across
different stress groups, reflecting variability in classification accuracy.
Its compact, efficiency-optimized architecture, designed for
lightweight deployment, may limit its representational capacity
relative to deeper models, affecting its ability to handle complex visual
stress patterns in urban farming.
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TABLE 3 Results of PSDataset with transfer deep learning in viral stress.

Class ResNet101 InceptionNetV4 DenseNet
Name o o o
Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy
Score Score Score
Cls Alternaria 0.97621 0.84156 0.93161 0.96331 0.94606 0.83213 091197 0.97343 0.96031 0.87921 0.88851 0.97005
Wheat rosette
Cl6 stunt 0.94324 0.86311 0.89596 0.92522 0.96839 0.97322 0.94257 0.96146 0.91103 0.94269 0.92886 0.92651
Wheat yellow
c17 leaf 0.90098 0.82543 0.92932 0.90318 0.91102 0.80210 0.95194 0.94044 0.93223 0.98463 0.97859 0.90141
Cocksfoot
c18 mottle 0.90561 0.93624 0.89502 0.93357 0.97686 0.84349 0.97486 0.95607 0.90579 0.94354 0.88476 0.93528
Cereal
c19 tillering 0.96231 0.82648 0.98502 0.94094 091763 0.90176 0.87386 0.97393 0.94426 0.84185 0.95155 0.94403
C20 Cerocspora 0.98526 0.84506 0.91670 0.90619 0.93966 0.83286 0.90948 0.96464 0.94952 0.83094 0.91955 0.97877
c21 Leaf mottle 0.92412 0.80081 0.94747 097613 0.92089 0.93309 0.95329 0.91200 0.95988 0.83646 0.95104 0.93494
c2 Leaf curl 0.91878 0.85445 0.95987 0.93634 092114 0.91097 0.94128 0.90357 0.98729 0.86309 0.94738 0.90191
c23 Leaf crumple 0.90775 0.93800 0.88751 0.97358 0.97744 0.97845 0.98906 0.94205 0.91881 0.86252 091223 0.90303
C24 Mosaic 0.91977 0.95132 0.97593 0.97941 0.96043 0.92781 0.93263 0.90183 0.94598 0.90185 0.98960 0.95664
C25 Halo spot 0.96298 0.94458 0.88510 0.95537 0.97244 0.92338 0.93645 0.91389 0.98591 0.98174 0.98081 0.90386
C26 Wrinkled 0.90281 0.94030 0.92995 0.97890 091187 0.96305 0.92950 0.94952 0.98964 0.92978 0.93420 0.97655
C27 Darkened 0.91310 0.89780 0.88420 0.93334 0.97880 0.94258 0.87233 0.92434 0.93634 0.91393 0.89226 0.92292
C28 Dwarf 0.98748 0.81800 0.92468 0.93417 0.92486 0.79953 0.87068 0.91151 0.95973 0.91801 0.92761 0.96967
C29 Foliar 0.90988 0.87814 0.94598 0.94375 0.95136 0.92528 0.87139 0.93110 0.95101 0.84594 0.98134 0.90219
C30 Leaf roll 0.92429 0.96578 0.98911 0.92686 0.92148 0.86127 0.91299 0.95873 0.98766 0.81361 0.97882 0.91745
c3l Spotted 0.92260 0.90793 0.88430 0.97380 0.90707 0.82887 0.94904 0.95899 0.93602 0.87560 0.87683 0.97784
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TABLE 4 Results of PSDataset with transfer deep learning in fungal stress.

Class Class ResNet101 InceptionNetV4 DenseNet
SIS Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy
score score score
C32 Fungi 0.77100 0.80419 0.77343 0.82007 0.75761 0.77362 0.90382 0.93597 0.84386 0.94489 0.77587 0.84214
C33 Rice Blast 0.83566 0.92247 0.87094 0.84704 0.83682 0.93217 0.93703 0.81975 0.71750 0.75141 0.82194 0.91940
C34 Leaf scald 0.80591 0.91081 0.85341 0.89245 0.89531 0.76238 0.83727 0.82205 0.93088 0.80332 0.85589 0.82571
C35 Eyespot 0.86072 0.89071 0.94142 0.92053 0.75502 0.70355 0.81371 0.82444 0.88701 0.89960 0.84042 0.92275
C36 Leaf Rust 0.84305 0.93191 0.78287 0.89181 0.88439 0.85205 0.90870 0.86641 0.87425 0.84877 0.78681 0.82180
c37 False smut 0.73662 0.78063 0.79266 0.85247 0.91978 0.88630 0.77520 0.91479 0.83916 0.70642 0.86472 0.87753
C38 Brown spot 0.71464 0.67720 0.76650 0.80305 0.75128 0.76530 0.94386 0.80871 0.74634 0.78827 0.90827 0.84284
C39 Leaf smut 0.71600 0.83664 0.88506 0.84153 0.76654 0.94248 0.85602 0.86984 0.89180 0.71522 0.76562 0.86655
C40 Leaf mold 0.86858 0.87112 0.76582 0.84480 0.84226 0.65773 0.93760 0.89394 0.71897 0.79079 0.90233 0.94437
C4l Kernel smut 0.74594 0.83306 0.89607 0.94323 0.86013 0.71113 0.90553 0.91051 0.73726 0.90879 0.76214 0.92324
Cc42 Downy mildew 0.93363 0.84369 0.85114 0.97878 0.84729 0.84708 0.88586 0.92205 0.74024 0.77352 0.82524 0.89733
Black horse
C43 riding 0.74671 0.93727 0.90261 0.85631 0.81872 0.72176 0.89467 0.80591 0.94892 0.73211 0.89779 0.82515
Verticillium
C44 wilt 0.83715 0.68630 0.92499 0.96761 0.90795 0.80782 0.82052 0.93200 0.84397 0.77839 0.77670 0.81227
C45 Anthracnose 0.71840 0.88288 0.86252 0.83135 0.81555 0.79471 0.87135 0.85600 0.86243 0.73945 0.86565 0.90259
Powdery
C46 mildew 0.86781 0.90369 0.87580 0.91396 0.72101 0.74554 0.82507 0.84999 0.80474 0.94158 0.78437 0.81952
Aggregate
c47 sheath 0.94470 0.74446 0.82472 0.84276 0.73051 0.70677 0.87032 0.87269 0.70716 0.86832 0.76395 0.80356
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TABLE 5 Results of PSDataset with transfer deep learning in pest stress.

Class ResNet101 InceptionNetV4 DenseNet
SIS Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy
score score score
C52 Thrips 0.97601 0.98127 0.88924 0.94551 0.96872 0.89567 0.97322 0.96599 0.94848 0.80265 0.97837 0.94048
Csl Termites 0.9092 0.93228 0.98061 0.89784 0.96777 0.81727 0.97204 0.94754 0.97946 0.80547 0.91211 0.96447
C59 Jassides 0.91635 0.94525 0.88559 0.9331 0.96233 0.86315 0.91237 0.93416 0.97285 0.9072 0.98201 0.95844
C58 Aphids 0.9275 0.93881 0.9014 0.96411 0.89612 0.92596 0.88913 0.93885 0.96068 0.85181 0.93155 0.89057
Cs7 Hispa 0.92985 0.9364 0.89252 0.97364 0.92488 0.83457 0.93845 0.91526 0.93652 0.82726 0.97538 0.90005
C54 Whiteflies 0.89608 0.86334 0.95254 0.91183 0.91633 0.82403 0.94294 0.92689 0.95618 0.9804 0.91523 0.94688
C56 Leaf hopper 0.97532 0.95975 0.87135 0.93797 0.97492 0.93426 0.94237 0.93677 0.95504 0.79757 0.96158 0.97656
Cs3 Weevils 0.94265 0.79619 0.91109 0.9667 0.90024 0.86214 0.89653 0.91281 0.9898 0.9425 0.95099 0.96297
Red cotton
C50 bug 0.98943 0.9635 0.92927 0.94659 0.89983 0.8809 0.96324 0.94122 0.96043 0.98722 0.87309 0.93121
Cotton boll
C48 Warm 0.95946 0.87162 0.97265 0.97752 0.94891 0.95618 0.94969 0.93418 0.97341 0.88863 0.91836 0.9482
Cs55 Borer Attack 0.96844 0.89368 0.88757 0.93599 0.92951 0.92089 0.89829 0.89035 0.9843 0.98122 0.9748 0.96884
Mites and
C49 nematode 0.92305 0.97387 0.88979 0.95185 0.94596 0.81028 0.96555 0.97636 0.93692 0.88003 0.94671 0.92325
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TABLE 6 Results of PSDataset with transfer deep learning in weeds stress.

Class Class name ResNet101 InceptionNetV4 DenseNet
Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy
score score score
c71 Target 0.93332 0.95884 0.91975 0.94012 0.92549 0.89142 0.91068 0.91982 0.89335 0.87948 0.89656 0.89349
C69 Pigweed 0.95368 0.83228 0.94137 0.90799 0.93454 0.92056 0.94677 0.97645 0.92662 0.79296 0.88163 0.95179
C70 Purselane 0.98525 0.82238 0.98452 0.97705 0.98941 0.89937 0.91878 0.89499 0.93904 0.7978 0.90029 0.96378
C64 Nutsedge 0.92467 0.97631 0.92194 0.94786 0.93922 0.93833 0.96152 0.93024 0.95539 0.91766 0.93975 0.96517
C63 Knotweed 0.93524 0.91189 0.92003 0.96289 0.94926 0.87738 0.98533 0.96082 0.95062 0.90357 0.91407 0.93141
C67 Parennial 0.98596 0.8505 0.93645 0.97367 0.94114 0.79746 0.95112 0.95279 0.91822 0.89556 0.95798 0.97824
C60 Amarnathen 0.94164 0.94305 0.93784 0.95265 0.92988 0.87325 0.97362 0.94284 0.97988 0.94156 0.90282 0.97274
C61 Paragrass 0.96196 0.88452 0.94439 0.90042 0.97581 0.98143 0.88488 0.90905 0.96882 0.97126 0.87309 0.91617
C68 Phalaris minor 0.90592 0.84243 0.87013 0.90961 0.93174 0.85126 0.88123 0.9563 0.9432 0.88523 0.88127 0.9725
C66 Dactynloctenium 0.96555 0.92206 0.88751 0.97984 0.95535 0.84092 0.90369 0.9535 0.92216 0.81354 0.93719 0.97398
Chrozophpora

C65 tinctoria 0.98225 0.90833 0.92231 0.90401 0.93653 0.81157 0.92349 0.91082 0.90322 0.91341 0.91869 0.91438
C62 Broadleaf 0.96456 0.94643 0.87968 0.931 0.98142 0.86275 0.9309 0.95187 0.89168 0.9793 0.89129 0.96609

‘leye aney

£226T9T'5202254/6855°0T


https://doi.org/10.3389/frsc.2025.1619223
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org

$21110) 9]qeuIRISNS Ul SISNUOIY

T

610 uISI13UO0L

TABLE 7 Results of PSDataset with transfer deep learning in bacterial stress.

Class Class ResNet101 InceptionNetV4 DenseNet

AEE Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy
Score Score Score

C1 Brown Spot 0.90445 0.82309 0.92104 0.91042 0.90022 0.8779 0.97159 0.93179 0.93849 0.85812 0.89577 0.97519

Cc2 Leaf Smut 0.98441 0.8454 0.98084 0.90273 0.98547 0.89862 0.97563 0.93485 091215 0.91785 0.92438 0.94654

C3 Bacterial 0.96239 0.98262 0.97467 0.90165 0.90681 0.972 0.87895 0.95818 0.97584 0.84163 0.93111 0.9229
Blight

c4 Tungro 0.94897 0.87451 0.96171 0.91285 0.93275 0.86663 091812 0.93659 0.93955 0.90157 0.90636 0.96162

Cs Frogeye Leaf 0.95802 0.81127 0.96675 0.9559 0.92976 0.97543 0.98838 0.91787 0.94109 0.80873 0.93364 0.97227
Spot

c6 Sheath 0.94829 0.79092 0.96038 0.97791 0.97732 0.96145 0.93918 0.9233 0.98506 0.93895 0.97359 0.92124
Blight

c7 Leaf Blast 0.95957 0.96759 0.92977 0.97783 0.92086 0.92746 0.97418 0.96844 0.95192 0.80882 0.89828 0.93966

cs8 Leaf Blight 0.97259 0.97341 0.95674 0.9718 0.95381 0.95762 0.89119 0.93166 0.95538 0.91659 0.95076 0.95325

c9 Fusarium 0.91202 0.91874 0.9573 0.93988 0.96548 0.82838 0.87613 0.97119 0.93802 0.93185 0.95778 0.92226
Head Blight

Cl10 Seeding 0.94602 0.87269 0.96152 0.91196 0.93305 0.94693 0.96735 0.95062 0.96717 0.84001 0.96501 091123
Blight

cl1 Leaf Scald 0.98575 0.95536 0.94838 0.93157 0.90671 0.90547 0.94247 0.94407 0.98587 0.98798 0.93246 0.94363

c12 Red Smut 0.92581 0.79044 0.9827 0.95001 0.98366 0.93574 0.96551 0.90085 0.97066 0.81264 0.93431 0.9269

c13 False Smut 0.96172 091618 0.95445 0.9776 0.92267 0.80395 0.95533 0.95253 0.96998 0.92052 0.8862 0.9602

Cl4 Foot Rot 0.94031 0.81349 0.95428 0.96995 0.90144 0.90942 0.88395 0.91656 0.97347 0.94615 0.92954 0.90591
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FIGURE 3

The confusion matrix displays the results for the ResNet101 across different stress classes: (a) bacterial stress classes, (b) viral stress classes, (c) fungal
stress classes, (d) pest stress classes, (e) weed stress classes and (f) Abiotic stress class.
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FIGURE 4
Annotated sample of multiple plant stress identification.

peak level before levelling out. In a manner analogous to the training
accuracy, the validation accuracy exhibited an initial surge followed
by a plateau. Following epoch 100, the accuracy of the model remained
mostly unaffected by the fine-tuning, since there was no statistically
significant change seen.

In terms of training and validation loss, the training loss
decreased significantly before levelling off as the model improved
its fit to the training data. However, upon fine-tuning, the
validation loss began to diverge and increase somewhat, which
may suggest that the model has a propensity to overfit the training
data, hence impairing its capacity to generalise to the
validation set.

To summarise, while the model showed signs of effective learning
during the first step (training and validation metrics increased
together), no significant improvements were seen during the fine-
tuning stage. As the validation loss and training loss both increased at
the same time, a slight concern of overfitting became apparent.
Figure 5 shows the learning matrices during the training and testing
of the proposed model.

Figure 6 presented the performance comparison of the ResNet101
with the optimised ResNet 101 with SSO, which consistently
outperforms its competitors on important performance metrics like
accuracy, precision, Recall, and F1 score. This is because it can reliably
identify true positives, keep the ratio of false positives to negatives
under control, and accurately predict positive cases. This enhancement
results in increased overall accuracy, which in turn makes the
optimised model more reliable. Thus, optimisation methods like
Sparrow Search Optimisation improve the performance of deep
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learning models without skewing any of the metrics used for
evaluation. While the impact of these advancements on real-world
applications is significant, it is important to note that actual gains may
differ and that future research should focus on optimising for specific
use cases.

5 Conclusion

This research introduces an advanced deep learning framework
for urban agriculture, a key component of smart cities. Our method
combines ResNet101 with the SSO algorithm to create a highly
effective solution for the early detection of plant stress. This
approach significantly outperforms traditional and other deep
learning models, achieving a peak Fl-score of 98.9%. This
technology is crucial for smart urban environments where space is
limited and minimizing crop waste is a priority. By enabling urban
farmers to make timely interventions, our framework helps prevent
significant losses and maximize yields, directly contributing to
both urban food sustainability and global food security goals like
the UN’s Zero Hunger Sustainable Development Goal (SDG 2).
Ultimately, this research provides a practical, high-performance
tool for resilient and sustainable urban food systems. Urban
agriculture is a rapidly growing solution to food security
challenges, particularly in densely populated areas. In smart cities,
vertical farming and rooftop farming provide a means of
integrating food production into urban spaces, using advanced
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Learning matrices for the ResNet101 for both training and testing PSDataset Samples.
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FIGURE 6
Comparison between ResNet101 and optimized SSO ResNet101.
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technologies like IoT, sensors, and AI to optimize crop
management. The proposed ResNet101 + SSO model provides a
practical tool for these environments, where early detection of
plant stress can make a substantial difference in minimizing crop
loss and waste.

In conclusion, the proposed model not only optimizes plant
stress detection but also has significant implications for urban
sustainability, resource efficiency, and food security in smart cities.
Through innovations in deep learning, this research supports a
more resilient and productive urban agricultural system, capable
of meeting the growing demand for food in a rapidly
urbanizing world.
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