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The speed of urbanization around the world is decreasing the arable land endangering 
food security since the population is estimated to reach 9.7 billion by the year 2050. 
Urban agriculture provides a long-term solution to food production in urban areas but 
has issues of good monitoring of plant diseases because growing areas are fragmented, 
microclimates change, and resources are limited. However, biotic (e.g., pathogens) 
and abiotic stresses must be accurately detected to reduce wastage in crop and 
ensure sustainability in urban farming ecosystems. This paper will suggest a new deep 
learning model that integrates ResNet101 and the Sparrow Search Optimization (SSO) 
algorithm to identify plant stress in urban agriculture environments. Based on the 
capabilities of transfer learning, the model makes use of optimal feature extraction with 
small datasets, resolving the issue of data scarcity in cities. The framework was trained 
and evaluated based on a heterogeneous dataset of urban crop images, inclusive of 
multifactorial stress indicators on variable conditions. ResNet101 + SSO reached an F1-
score of 98.9, and ROC-AUC of 0.989, which is better than the traditional approaches 
(RandomForest: 92.3% F1; KNN 89.7% F1). It showed great accuracy in detecting both 
biotic and abiotic stress factors, which allows the timely detection of the broken urban 
farms. This solution promotes sustainable urban agriculture by minimizing the waste 
of crops by monitoring stress accurately and at scale. The model is developed to 
support smart city objectives of improving food security and resources sustainability, 
which is tailored to city settings with limited resources. The future planning of work 
will be to combine real-time data of IoT sensors and make the model applicable to 
various types of crops used in urban areas.
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1 Introduction

The rapid urbanization and exponential growth of the global population, projected to surpass 
9.7 billion by 2050, have intensified the demand for sustainable food production systems that can 
efficiently meet nutritional needs while contending with shrinking arable land resources (Martin 
and Wagner, 2018). Urban agriculture has emerged as a promising solution, enabling localized food 
cultivation in city environments through innovative methods such as vertical farming, rooftop 
gardens, and hydroponic systems. This approach not only reduces transportation-related carbon 
emissions but also enhances food resilience by bringing production closer to consumers, thereby 
addressing the dual challenges of population surge and land scarcity. However, the plants in urban 
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settings are vulnerable to a range of biotic factors, including pathogens 
(fungal, viral, bacterial, weeds and pests), as well as abiotic stresses like 
drought, nutrient deficiencies, and extreme temperatures, all of which can 
severely compromise yields and quality. Early identification of these issues 
is crucial to minimize losses, yet manual monitoring is labour-intensive 
and prone to errors, especially in large-scale urban farms. This 
underscores the necessity for advanced technologies to support precise, 
timely interventions that optimize resource use and sustain productivity.

Artificial intelligence (AI) has revolutionized agricultural practices 
by offering tools for automated disease detection, stress identification, 
and yield prediction, leveraging machine learning and deep learning 
models to analyze vast datasets from sensors, drones, and imaging 
devices. For instance, convolutional neural networks (CNNs) 
(Kandukuri et al., 2023) have been effectively employed to classify foliar 
diseases in crops like rice (Prajapati et al., 2017), cassava (Ramcharan 
et al., 2017), and apples (Thapa et al., 2020), enabling farmers to apply 
targeted treatments and reduce chemical usage. Similarly, AI-driven 
phenotyping helps detect abiotic stresses through spectral analysis and 
multi-modality imagery, while predictive models forecast yields based 
on environmental variables. However, existing data structures 
predominantly consist of image repositories focused on specific crops 
or biotic diseases, such as the PlantVillage (Ali et al., 2024) dataset for 
common foliar issues or the Cassava challenge for cassava-specific 
pathologies (Kiruthika et al., 2024). These resources, while valuable, 
reveal critical gaps: limited coverage of abiotic stresses, insufficient 
diversity in urban-relevant crops, and a lack of integrated datasets that 
encompass both biotic and abiotic factors under real-world conditions. 
Moreover, many models suffer from suboptimal hyperparameter 
tuning, leading to reduced accuracy in dynamic environments.

According to Reddy et al. (2025), effective risk profiling in rainfed 
farming must integrate biotic and abiotic factors alongside institutional 
challenges, highlighting the need for comprehensive coping strategies 
that align with policy frameworks targeting resilience and sustainability. 
By situating biotic and abiotic stresses within this broader policy and 
institutional milieu, the study underscores their critical role as 
determinants of agricultural vulnerability and the necessity of integrated 
management approaches at the national level. This policy relevance 
renders the study highly pertinent for decision-makers and practitioners 
aiming to formulate strategies that mitigate risks, enhance adaptability, 
and promote sustainable agricultural development (Reddy et al., 2025).

These limitations motivate the development of more 
comprehensive solutions tailored to urban agriculture’s unique 
demands, where space-efficient, AI integrated systems are essential for 
scalability. By addressing the limited availability of datasets and to 
enhancing model efficiency, this paper presented deep learning based 
solution for active plant health management, ultimately fostering 
smarter, more resilient urban food systems.

The primary objectives of this study PlantStress dataset, a novel 
collection that incorporates both biotic (e.g., fungal, viral, bacterial, weeds 
and pest damage) and abiotic (e.g., heat, drought, salt, nutritional 
deficiencies, flood etc) stresses across diverse urban-cultivated plants, 
captured through high-resolution imagery and environmental metadata. 
This collection contains 5,170 original photographs that were shot in 
plantations in a variety of lighting circumstances; these images were 
captured. Within the dataset, there are a total of 8,629 distinct leaf 
annotations that span 27 different disease classifications. A few of these 
annotations consist of a single leaf, while others include many leaves. 
Building on this foundation, we employ the Sparrow Search Algorithm for 

hyperparameter optimization of a ResNet101 architecture, harnessing 
transfer learning to adapt pre-trained features for superior performance in 
stress classification. Finally, the proposed framework is designed for 
seamless integration with smart city infrastructure, and can be suitable for 
the automated alerts and decision-making in urban farming ecosystems.

1.1 Motivation

From the above, it is observed that recent advances in plant 
pathology fail to address both the biotic and abiotic stress factors 
simultaneously. There is a gap that exists in the availability of 
comprehensive datasets that specifically focus on the identification of 
plant diseases and stress conditions based on both biotic and abiotic 
stressors. This motivates us to propose an innovative approach for 
plant stress identification that considers both biotic and abiotic stress 
factors in an UrbanAgri framework. Through the development of a 
new dataset, augmentation techniques, and the use of a deep 
convolutional neural network (DCNN) architecture, we  seek to 
enhance the accuracy and robustness of plant stress detection. The 
proposed framework could have significant implications for early 
detection, management, and mitigation of plant stress.

1.2 Research objectives

Following the above gaps, this study introduces a novel dataset 
focusing on plant stress, encompassing various biotic and abiotic 
stressors to provide a more comprehensive foundation for building 
AI-based solutions. In addition, we use Sparrow Search Optimization 
(SSO), a metaheuristic algorithm, to fine-tune hyperparameters of a 
ResNet101 deep learning model. This optimization is designed to 
maximize classification accuracy while ensuring computational 
efficiency, crucial for practical deployment in urban farming settings 
with limited resources. By focusing on the intricate interactions of 
urban-specific environmental variables, this research advances the 
development of resilient urban food systems aligned with the United 
Nations Sustainable Development Goals (SDGs).

1.3 Organisation of the paper

In the first section, the research problem and motivation are 
identified. The linked research in section 2 highlights the state-of-
the-art approaches, their issues with the different stressors associated 
with the gaps and difficulties in the availability of the relevant datasets 
and precise diagnostic models. The details of the suggested 
methodology are also included in section 3, which is the article’s major 
body. This guarantees that the entire algorithm, including the dataset 
description, data argumentation, DCNN, and optimised process, is all 
included. Section 4 presents the findings, discussion, and conclusion 
pertaining to the proposed UrbanAgri.

2 Related work

The integration of artificial intelligence into agriculture has 
transformed traditional farming practices, particularly in the realm of 
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plant health management, by enabling automated detection and 
prediction capabilities that address the major challenges of food 
production. Early efforts were focused on machine learning methods 
for identifying plant diseases through image analysis, as demonstrated 
by comparative studies evaluating algorithms like support vector 
machines and decision trees for foliar symptom classification (Akhtar 
et al., 2013). Further, complex deep learning models dominated the 
field due to their ability to extract intricate features from complex 
imagery (Boukhris et al., 2020). Building on these developments, deep 
learning applications have extended beyond mere disease detection to 
encompass stress identification, encompassing both biotic pathogens 
and abiotic factors like heat, drought, and nutrient imbalances that are 
increasingly prevalent in urban agricultural settings. Several authors 
used a CNN model based on an autoencoder technique to identify 
diseases in rice crops with 90.6% accuracy (Kandukuri et al., 2023). 
Likewise, Lakshmi and Nickolas utilised CNNs and transfer learning 
techniques to understand problems in betelvine leaves, getting a mean 
Average Precision (mAP) of 84%, proving that these technologies are 
suitable for monitoring plant health. Moreover, Elvanidi and Katsoulas 
(2022) employed ML techniques to identify stress in tomatoes, 
illustrating how computational tools may solve a wide variety of 
natural challenges (Kavitha Lakshmi and Nickolas, 2020) and 
(Elvanidi and Katsoulas, 2022).

By combining deep learning with mobile and application-based 
platforms, Shoaib et al. (2023) in how these developments can be put 
into practice to identify plant illnesses instantaneously. Another 
dataset, “Paddy Doctor,” was provided in (Petchiammal et al., 2023), 
also contribute to the development of robust disease detection models. 
They provide a comprehensive range of plant stress situations, which 
are essential for enhancing the effectiveness of deep learning models. 
Several other datasets that are already available address certain 
diseases, such as the Leaflet Cassava Dataset, the APD Dataset, the 
Apple Leaf Diseases Dataset (Yu et al., 2020; Sharma et al., 2022), the 
Leaf Disease Dataset (Rauf et al., 2019), the Kaggal Cassava Disease 
(Ramcharan et al., 2017), the Rice Leaf Disease Dataset (Prajapati 
et al., 2017), the Citrus Dataset (Rauf et al., 2019), and the APDA 
Dataset (Akhtar et al., 2013; Gaidel et al., 2023), Apple Leaf Diseases 
Dataset (Sharma et al., 2022) are all apple crop diseases. The leaflet 
Kaggal Cassava Disease is only concerned with cassava plant diseases. 
The Rice Leaf Disease dataset deals with illnesses that harm rice, while 
the Citrus dataset deals with diseases that affect oranges. Despite 
advances in focused research, this specialisation restricts the models’ 
general usefulness.

The Plant Village Dataset has more than 54,000 samples. Although 
most of them were collected in labs, they may not be useful in the 
field. Despite its size, the Crop Pests Dataset only contains pests and a 
few additional stressors for plants. The RoCoLe (Parraga-Alava et al., 
2019), Plant Pathology, and MSU-PID datasets are useful (Thapa et al., 
2020); however, they only provide information regarding leaf diseases 
and not on other essential problems.

Moreover, while databases such as the Deep Phenotyping dataset 
and the DiaMOS Plant Dataset make essential contributions (Fenu 
and Malloci, 2021), they underscore the need for more complete and 
diverse picture data. Despite its virtues, the field has certain 
weaknesses. Many existing models and datasets have low diversity and 
representativeness, as they focus on certain diseases or crops. A lack 
of adequate data makes it difficult to create models that are robust and 
universally applicable. Table 1 shows a comparative analysis of these 

datasets. Furthermore Nagasubramanian et al. (2022) demonstrate the 
interpretability of deep learning models. To make these models 
understandable and actionable, it is critical to focus on relevant 
attributes. These inadequacies emphasise the need for new datasets 
that include a wider variety of plant stress factors, including 
environmental and nutritional implications, as well as novel deep 
learning architectures that may be  used to better navigate the 
complexities of real-world agricultural environments. Currently, there 
is no comprehensive dataset that encompasses various crops, disease 
kinds, and stress variables under various situations. Furthermore, 
these datasets are not necessarily highly detailed or appropriate. A 
new, more comprehensive dataset is required to increase the precision, 
resilience, and practicality of plant stress identification and 
classification methods.

3 Materials and methods

3.1 Dataset: biotic and abiotic stress data

The dataset is divided into two primary categories: biotic stress 
(caused by living organisms like pathogens and pests) and abiotic 
stress (caused by environmental factors such as drought, heat, cold, 
and nutrient deficiencies). The dataset includes image data (plant 
leaves affected by various stress factors) and sensor data 
(environmental conditions). A sample PSDataset is shown in Figure 1 
from the actual dataset repository. This consists of the 12 different 
varieties of crops in the healthy directory (wheat, brinjal, cabbage, 
cauliflower, cotton, guava, lemon, maize, potato, rice, spinach, and 
tomato. The biotic (includes 12 different crops like cotton, rice, wheat, 
brinjal, cauliflower, potato, maize, guava, lemon, spinach, tomato, and 
cabbage along with weeds and pest) and abiotic (includes 7 different 
crops like cotton, wheat, rice, brinjal, cauliflower and potato). Looking 
forward, there is potential for this dataset to be integrated with other 
datasets globally.

The PSDataset, comprising 78 classes labeled C1 to C78, is 
systematically categorized into biotic stress (C1–C44), pest stress 
(C45–C56), weed stress (C57–C68), and abiotic stress (C69–C78) 
samples, with its structure illustrated in Supplementary Figure  1. 
Detailed class numbers and names are provided in 
Supplementary Table 1, while Supplementary Table 2 presents class-
wise analysis results, including performance metrics for ResNet-101, 
InceptionV4, and DenseNet models. Supplementary Table 3 outlines 
the characteristics and class distributions of the Original and 
Augmented Datasets, and Supplementary Table 4 details biotic stress 
caused by bacterial factors. Additionally, five image samples per class 
are displayed in a grid format to visualize the dataset, and confusion 
matrices for ResNet-101, InceptionV4, and DenseNet are included to 
evaluate their classification performance (see 
Supplementary materials).

Let the dataset be represented as.

	 { , }D Xb Xa=

Where:

	•	 Xb  represents the biotic stress data, including various plant 
disease images.
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	•	 Xa represents the abiotic stress data, such as drought, heat, cold 
stress, etc.

3.2 Data augmentation using DCGAN (deep 
convolutional generative adversarial 
networks)

To enhance the dataset and overcome limitations in data diversity, 
Deep Convolutional Generative Adversarial Networks (DCGANs) are 
employed for data augmentation. The aim is to generate synthetic 
images of plants under biotic and abiotic stress conditions to increase 
the robustness of the training process.

	•	 The generator network (G) in DCGAN produces synthetic plant 
stress images:

	 ( )θ=ˆ ; GX G z

where z is a random noise vector, and θG represents the learnable 
parameters of the generator.

	•	 The discriminator network (D) is trained to differentiate between 
real images (X) and generated images (X̂):

	 ( ) ( )θ θ; . ;ˆD DD X D vs D X

where θD represents the learnable parameters of the discriminator.
The objective of DCGAN is to optimise the following 

min-max game:

	



( ) ( )

( ) ( )( )( )
log

log 1
G D

XMin Max E pdata X D X

Ez pz z D G z

 ∼  

 + ∼ − 

This generates new plant stress images that help improve the 
performance of the model on unseen data.

TABLE 1  Comparative summary of the existing datasets.

References Dataset name Sample size Resolution Accessibility Limitations

Public Private

Ramcharan et al. (2017) Leaflet Cassava 

Dataset

1,896 737×395 √ Single Disease (Leaf)

Sharma et al. (2022) APD Dataset 31 421×618 √ Single Fruit (Apple)

Ali et al. (2024) Plant Village 

Dataset

54,309 1049×601 √ Laboratory-based

Yu et al. (2020) Apple Leaf Diseases 

Dataset

404 1049×601 √ Single Fruit (Apple)

Mensah et al. (2023) Crop Pests Dataset 4,500 1049×601 √ Only Pest

Sladojevic et al. (2016) Leaf Disease Dataset 4,483 1049×601 √ Single Disease (Leaf)

Ramcharan et al. (2017) Kaggal Cassava 

Disease

9,436 1049×601 √ Single Leaf

Parraga-Alava et al. 

(2019)

RoCoLe Dataset 1,560 388×219 √

Thapa et al. (2020) Plant Pathology 

Dataset

3,651 500×166 √ Leaf Disease

Prajapati et al. (2017) Rice Leaf Disease 

Dataset

120 2448×2448 √ Single crop (Rice)

Rauf et al. (2019) Citrus Dataset 759 256×256 √ Single Fruit (Orange)

Akhtar et al. (2013) APDA Dataset 40 776×601 √ Single Fruit (Apple)

Cruz et al. (2016) MSU-PID Dataset 12,550 571×481 √ Pants

Fenu and Malloci, 2021) DiaMOS Plant 

Dataset

6,446 5184×3456 √ Plants

Petchiammal et al. (2023) Paddy Doctor 3,469 568×574 √ Rice

Singh et al. (2020) PlantDoc 2,551 416×416 √ Plants

Kaur (2025) PSPDS (Generated 

through proposed 

framework)

9,900 265×265 √ 77 categories for health 

and unhealthy crops 

images carrying biotic 

and abiotic stress factors
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FIGURE 1 (Continued)
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FIGURE 1

The PSDataset consists of 78 classes, labeled C1 to C78. (Classes C1 to C44 represent biotic stress samples, C45 to C56 cover pest stress samples, C57 
to C68 include weed stress samples, and C69 to C78 correspond to abiotic stress samples) (Kaur, 2025).
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3.3 Deep convolutional neural network 
(DCNN) using ResNet101

The primary model used for stress detection is ResNet101, a 
residual deep convolutional neural network (DCNN) architecture. 
ResNet101 helps avoid the vanishing gradient problem using 
skip connections.

The forward pass of the ResNet101 model is represented as

	 ( )θ− −= +1 1,l l l lh h f h

where:

	•	 lh ​ is the output at layer l
	•	 ( )θ−1,l lf h is the transformation learned by the l-th layer,
	•	 θl represents the parameters of the l-th layer.

The model takes an input image X and predicts the stress level 
(biotic/abiotic) as output Ŷ ​:

	 = +(ˆ }res L resY Softmax W h b

where:

	•	 ,res resW b  are the weights and bias of the final fully connected layer,
	•	 L is the final layer of ResNet101.
	•	 Ŷ  represents the predicted stress class.

3.4 Sparrow search optimization algorithm 
for DCNN optimization

To improve the performance of the ResNet101 model beyond 
81% of accuracy, the Sparrow Search Optimization (SSO) 
algorithm is applied to optimise hyperparameters (such as learning 
rate, number of layers, batch size, and so on). SSO is a swarm 
intelligence algorithm inspired by the foraging and escape 
behaviour of sparrows. Figure  2 and Algorithm 1 define the 
complete workflow and the step-by-step processing of the 
UrbanAgri proposed model, respectively. A population of sparrows 
{ }…1 2, 3, , , , nS S S S  is initialized with random hyperparameters 
θ θ θ…1 2, , n​, where ( )θ=i iS  denotes the position of the i-th sparrow 

FIGURE 2

Proposed model UrbanAgri.
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in the hyperparameter space. The fitness function is defined as the 
model’s classification accuracy.

	 ( ) ( )=i if S Accuracy S

where iS  represents the set of hyperparameters of the CNN 
(ResNet101) model. The positions of the sparrows are updated based 
on the following rules:

	 ( )θ θ α θ θ β+ = + − +1 · ·t t t t
i i i j r

where α and β are learning parameters, r is a random vector, and θ t
i  is 

the best-performing sparrow. The optimisation process continues 
until convergence or the maximum number of iterations is reached, 
at which point the optimal set of hyperparameters θ∗ is selected.

3.5 Final classification

After optimising the hyperparameters using the SSO algorithm, 
the final ResNet101 model is retrained with the optimal parameters 
for classification. The softmax layer outputs the final classification for 
biotic and abiotic stress levels. The classification task is modelled as:

	 ( )∈= =argmaxˆ c CY P y c X∣

where C is the set of biotic and abiotic stress classes.

3.6 Model training

This paper presented five comprehensive deep learning models 
implemented in Python using the Keras and TensorFlow frameworks. 
The prediction model for the plant stress dataset was developed via 
the PyCharm IDE on a Vultr cloud server equipped with a 6-core Intel 
Core (Broadwell, no TSX IBRS), 32 GB RAM, 1 TB storage, and an 
NVIDIA A40 24Q GPU. The PSDataset dataset, an extensive 
compilation of 9,900 photos devoted to the categorisation of novel 
diseases encompassing biotic and abiotic stressors, was the primary 
focus of our research. The integration of imaging data augmentation 
during the training phase constituted a pivotal element of our 
technique. This process entailed the implementation of a range of 
image transformation methods, including horizontal flipping, rotation 
(5°), shear intensity (0.2°), and zoom (0.2). Achieving homogeneity 
throughout the collection, each picture was scaled to 256×256 pixels 
and normalised. Using 120 epochs and 28 batches, the models were 
trained at a learning rate of 0.001.

4 Experimental results and discussion

This study provided the evaluation of the performance of five 
prominent deep learning architectures, i.e., ResNet50, ResNet101, 
VGG16, InceptionNetV4, and DenseNet, for the detection of biotic 
and abiotic plant stresses within the context of urban agriculture. They 
have varied domain applications, like ResNet architectures that 
incorporate residual connections to mitigate vanishing gradients in 
deep networks, enabling deeper models with improved feature 
extraction capabilities. The VGG16 provides a deep convolutional 
framework that has proven effective for general image classification 
tasks. Further, InceptionNetV4 has inception modules that allow for 
multi-scale feature extraction, enhancing learning efficiency and 
accuracy. The DenseNet has separable convolutions to reduce 
parameter count and is designed for efficiency, employing depth-wise 
to make it suitable for deployment in resource-constrained 
environments. This comprehensive comparison across models varying 
in complexity and operating principles is hence suitable for 
applications in urban agriculture where computational resources and 
accuracy requirements vary. The models were trained and evaluated 
using a comprehensive dataset comprising a large volume of annotated 
images depicting various plant stresses typical of urban and peri-
urban agricultural areas.

The models were tested across different plant stress categories, 
encompassing both biotic stresses like bacterial blight and leaf smut, 

ALGORITHM 1

Biotic and abiotic stress detection using ResNet101, DCGAN, and 
SSO optimization.
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and abiotic stresses such as brown spot and tungro. These stress 
categories are highly relevant to urban agriculture, where the 
interaction of plant pathogens with unique urban environmental 
factors creates complex disease dynamics. The dataset is designed to 
be representative of the symptom variability as encountered in urban 
settings, ensuring that the models learn from diverse manifestations 
of stress. This comprehensive stress coverage enhances the practical 
utility of the study, as successful detection across a wide range of 
stresses is necessary for real-world agricultural monitoring. Balanced 
sampling methods were employed during training to mitigate class 
imbalance issues, a common challenge in disease datasets that could 
bias model learning towards more frequent stress categories. The 
average results of analysis w.r.t. precision, recall, F1 score, and 
accuracy is shown in Table 2.

The outcomes, which are displayed in Tables 3–8, show the results 
of the annotated images and dataset samples, respectively. In 
Tables 3–8, quantify the results of the proposed model with other 
models on the viral, fungal, bacterial, pest, weed, and abiotic stress 
factors with the confusion matrices in Figure 3. All these quantify the 
accuracy, precision, recall, F1-score, and classification performance of 
these models. The ResNet101 model demonstrated remarkable 
performance, attaining the highest F1-score of 94.2 percent. The 
outcomes of the multiclass identification of plant stresses for the 
annotated sample are presented in Figure 4.

4.1 Performance metrics used

All the models were evaluated based on the four key performance 
metrics widely used in classification tasks: precision, Recall, F1 score, 
and accuracy. The precision quantifies the proportion of correctly 
identified positive cases among all predicted positive instances, 
reflecting the model’s ability to minimize false positives. Similarly, 
Recall, also known as sensitivity, is the proportion of true positive 
cases identified out of all actual positives, emphasising the model’s 
capacity to detect all relevant instances and thereby reduce false 
negatives. The F1 score binds both precision and recall into a harmonic 
mean and balances the trade-offs between these two metrics, 
providing a singular measure of model performance. Accuracy 
represents the overall proportion of correct predictions (both positive 
and negative) made by the model on the test dataset. Thus, the above 
metrics collectively inform on variable facets of the detection model’s 
efficacy where both false positives and false negatives have 
significant implications.

4.2 Performance analysis across deep 
learning models

ResNet50 demonstrated consistent and reliable performance 
across nearly all evaluated plant stress classes, affirming its 
effectiveness as a detector within the urban agriculture domain. 
Notably, it achieved a high precision of 0.97345 for the Brown Spot 
class, indicating a strong ability to correctly identify healthy plants 
without generating false alarms. This balance between precision and 
detection capability is further supported by its F1 score of 0.91101. 
However, ResNet50 showed a somewhat lower recall of 0.85903 for 
Leaf Smut, suggesting some missed positive cases in that category. 
Overall, ResNet50’s practical strength lies in minimizing false positives 
while maintaining acceptable detection rates, a feature particularly 
valuable in urban farming environments where precise and targeted 
interventions are essential for resource optimization. The ResNet101 
model, an extension of the ResNet architecture with increased 
complexity, exhibited performance broadly similar to ResNet50, 
though with marginal improvements in certain classes. For example, 
it showed enhanced precision and recall in detecting Tungro disease 
(0.94897 precision, 0.92189 recall) and Bacterial Blight (0.96239 
precision, 0.93702 recall). These gains are attributed to ResNet101’s 
deeper layers, which can learn more complex hierarchical features, 
benefiting the classification of stresses presenting subtle 
visual differences.

VGG16 also performed well across several stress types, notably 
achieving a high precision of 0.98098 in detecting Bacterial Blight. 
This demonstrates its effectiveness in accurately identifying stressed 
plants and reducing false positive classifications. Nevertheless, its 
recall for Bacterial Blight was comparatively lower at 0.89474, 
indicating some positive cases were missed, a critical concern when 
early detection is required to limit disease spread. VGG16’s average F1 
score of 0.96171 for Tungro highlights its balanced detection quality, 
although its fixed architecture depth and absence of residual 
connections may hinder generalization in the variable visual 
conditions typical of urban plant stresses.

InceptionNetV4 distinguished itself with superior recall 
performance, achieving 0.98262 for Bacterial Blight, reflecting 
heightened sensitivity to detecting true positives and reducing 
false negatives. This capability is crucial for early warning systems 
where missing disease onset can cause significant crop damage. 
The model also recorded strong F1 scores for Leaf Smut (0.98084) 
and Bacterial Blight (0.97467), indicating robustness in both 
precision and recall. Its multi-scale feature extraction via 
inception modules enables it to capture complex symptom 
patterns and nuanced stress indicators commonly encountered in 
urban agricultural settings.

DenseNet showed respectable recall rates of 0.90157 for Tungro 
and 0.91785 for Leaf Smut, demonstrating competence in detecting 
most diseased instances. However, it exhibited a lower F1 score of 
0.89577 for Brown Spot, indicating some imbalance between precision 
and recall for this class. DenseNet’s performance varied across 
different stress groups, reflecting variability in classification accuracy. 
Its compact, efficiency-optimized architecture, designed for 
lightweight deployment, may limit its representational capacity 
relative to deeper models, affecting its ability to handle complex visual 
stress patterns in urban farming.

TABLE 2  Average results of analysis the PSDataSet using the pretrained 
models.

Deep 
learning 
techniques

Precision Recall F1 
score

Accuracy

ResNet50 0.916789 0.871185 0.908668 0.929057

ResNet101 0.937650 0.922855 0.942363 0.938924

DenseNet 0.868003 0.919065 0.922548 0.921223

VGG16 0.88034 0.910093 0.928128 0.913562

InceptionV4 0.872267 0.906418 0.924567 0.93210
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TABLE 3  Results of PSDataset with transfer deep learning in viral stress.

Class Class 
Name

ResNet101 InceptionNetV4 DenseNet

Precision Recall F1 
Score

Accuracy Precision Recall F1 
Score

Accuracy Precision Recall F1 
Score

Accuracy

C15 Alternaria 0.97621 0.84156 0.93161 0.96331 0.94606 0.83213 0.91197 0.97343 0.96031 0.87921 0.88851 0.97005

C16

Wheat rosette 

stunt 0.94324 0.86311 0.89596 0.92522 0.96839 0.97322 0.94257 0.96146 0.91103 0.94269 0.92886 0.92651

C17

Wheat yellow 

leaf 0.90098 0.82543 0.92932 0.90318 0.91102 0.80210 0.95194 0.94044 0.93223 0.98463 0.97859 0.90141

C18

Cocksfoot 

mottle 0.90561 0.93624 0.89502 0.93357 0.97686 0.84349 0.97486 0.95607 0.90579 0.94354 0.88476 0.93528

C19

Cereal 

tillering 0.96231 0.82648 0.98502 0.94094 0.91763 0.90176 0.87386 0.97393 0.94426 0.84185 0.95155 0.94403

C20 Cerocspora 0.98526 0.84506 0.91670 0.90619 0.93966 0.83286 0.90948 0.96464 0.94952 0.83094 0.91955 0.97877

C21 Leaf mottle 0.92412 0.80081 0.94747 0.97613 0.92089 0.93309 0.95329 0.91200 0.95988 0.83646 0.95104 0.93494

C22 Leaf curl 0.91878 0.85445 0.95987 0.93634 0.92114 0.91097 0.94128 0.90357 0.98729 0.86309 0.94738 0.90191

C23 Leaf crumple 0.90775 0.93800 0.88751 0.97358 0.97744 0.97845 0.98906 0.94205 0.91881 0.86252 0.91223 0.90303

C24 Mosaic 0.91977 0.95132 0.97593 0.97941 0.96043 0.92781 0.93263 0.90183 0.94598 0.90185 0.98960 0.95664

C25 Halo spot 0.96298 0.94458 0.88510 0.95537 0.97244 0.92338 0.93645 0.91389 0.98591 0.98174 0.98081 0.90386

C26 Wrinkled 0.90281 0.94030 0.92995 0.97890 0.91187 0.96305 0.92950 0.94952 0.98964 0.92978 0.93420 0.97655

C27 Darkened 0.91310 0.89780 0.88420 0.93334 0.97880 0.94258 0.87233 0.92434 0.93634 0.91393 0.89226 0.92292

C28 Dwarf 0.98748 0.81800 0.92468 0.93417 0.92486 0.79953 0.87068 0.91151 0.95973 0.91801 0.92761 0.96967

C29 Foliar 0.90988 0.87814 0.94598 0.94375 0.95136 0.92528 0.87139 0.93110 0.95101 0.84594 0.98134 0.90219

C30 Leaf roll 0.92429 0.96578 0.98911 0.92686 0.92148 0.86127 0.91299 0.95873 0.98766 0.81361 0.97882 0.91745

C31 Spotted 0.92260 0.90793 0.88430 0.97380 0.90707 0.82887 0.94904 0.95899 0.93602 0.87560 0.87683 0.97784
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TABLE 4  Results of PSDataset with transfer deep learning in fungal stress.

Class Class 
name

ResNet101 InceptionNetV4 DenseNet

Precision Recall F1 
score

Accuracy Precision Recall F1 
score

Accuracy Precision Recall F1 
score

Accuracy

C32 Fungi 0.77100 0.80419 0.77343 0.82007 0.75761 0.77362 0.90382 0.93597 0.84386 0.94489 0.77587 0.84214

C33 Rice Blast 0.83566 0.92247 0.87094 0.84704 0.83682 0.93217 0.93703 0.81975 0.71750 0.75141 0.82194 0.91940

C34 Leaf scald 0.80591 0.91081 0.85341 0.89245 0.89531 0.76238 0.83727 0.82205 0.93088 0.80332 0.85589 0.82571

C35 Eyespot 0.86072 0.89071 0.94142 0.92053 0.75502 0.70355 0.81371 0.82444 0.88701 0.89960 0.84042 0.92275

C36 Leaf Rust 0.84305 0.93191 0.78287 0.89181 0.88439 0.85205 0.90870 0.86641 0.87425 0.84877 0.78681 0.82180

C37 False smut 0.73662 0.78063 0.79266 0.85247 0.91978 0.88630 0.77520 0.91479 0.83916 0.70642 0.86472 0.87753

C38 Brown spot 0.71464 0.67720 0.76650 0.80305 0.75128 0.76530 0.94386 0.80871 0.74634 0.78827 0.90827 0.84284

C39 Leaf smut 0.71600 0.83664 0.88506 0.84153 0.76654 0.94248 0.85602 0.86984 0.89180 0.71522 0.76562 0.86655

C40 Leaf mold 0.86858 0.87112 0.76582 0.84480 0.84226 0.65773 0.93760 0.89394 0.71897 0.79079 0.90233 0.94437

C41 Kernel smut 0.74594 0.83306 0.89607 0.94323 0.86013 0.71113 0.90553 0.91051 0.73726 0.90879 0.76214 0.92324

C42 Downy mildew 0.93363 0.84369 0.85114 0.97878 0.84729 0.84708 0.88586 0.92205 0.74024 0.77352 0.82524 0.89733

C43

Black horse 

riding 0.74671 0.93727 0.90261 0.85631 0.81872 0.72176 0.89467 0.80591 0.94892 0.73211 0.89779 0.82515

C44

Verticillium 

wilt 0.83715 0.68630 0.92499 0.96761 0.90795 0.80782 0.82052 0.93200 0.84397 0.77839 0.77670 0.81227

C45 Anthracnose 0.71840 0.88288 0.86252 0.83135 0.81555 0.79471 0.87135 0.85600 0.86243 0.73945 0.86565 0.90259

C46

Powdery 

mildew 0.86781 0.90369 0.87580 0.91396 0.72101 0.74554 0.82507 0.84999 0.80474 0.94158 0.78437 0.81952

C47

Aggregate 

sheath 0.94470 0.74446 0.82472 0.84276 0.73051 0.70677 0.87032 0.87269 0.70716 0.86832 0.76395 0.80356
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TABLE 5  Results of PSDataset with transfer deep learning in pest stress.

Class Class 
name

ResNet101 InceptionNetV4 DenseNet

Precision Recall F1 
score

Accuracy Precision Recall F1 
score

Accuracy Precision Recall F1 
score

Accuracy

C52 Thrips 0.97601 0.98127 0.88924 0.94551 0.96872 0.89567 0.97322 0.96599 0.94848 0.80265 0.97837 0.94048

C51 Termites 0.9092 0.93228 0.98061 0.89784 0.96777 0.81727 0.97204 0.94754 0.97946 0.80547 0.91211 0.96447

C59 Jassides 0.91635 0.94525 0.88559 0.9331 0.96233 0.86315 0.91237 0.93416 0.97285 0.9072 0.98201 0.95844

C58 Aphids 0.9275 0.93881 0.9014 0.96411 0.89612 0.92596 0.88913 0.93885 0.96068 0.85181 0.93155 0.89057

C57 Hispa 0.92985 0.9364 0.89252 0.97364 0.92488 0.83457 0.93845 0.91526 0.93652 0.82726 0.97538 0.90005

C54 Whiteflies 0.89608 0.86334 0.95254 0.91183 0.91633 0.82403 0.94294 0.92689 0.95618 0.9804 0.91523 0.94688

C56 Leaf hopper 0.97532 0.95975 0.87135 0.93797 0.97492 0.93426 0.94237 0.93677 0.95504 0.79757 0.96158 0.97656

C53 Weevils 0.94265 0.79619 0.91109 0.9667 0.90024 0.86214 0.89653 0.91281 0.9898 0.9425 0.95099 0.96297

C50

Red cotton 

bug 0.98943 0.9635 0.92927 0.94659 0.89983 0.8809 0.96324 0.94122 0.96043 0.98722 0.87309 0.93121

C48

Cotton boll 

Warm 0.95946 0.87162 0.97265 0.97752 0.94891 0.95618 0.94969 0.93418 0.97341 0.88863 0.91836 0.9482

C55 Borer Attack 0.96844 0.89368 0.88757 0.93599 0.92951 0.92089 0.89829 0.89035 0.9843 0.98122 0.9748 0.96884

C49

Mites and 

nematode 0.92305 0.97387 0.88979 0.95185 0.94596 0.81028 0.96555 0.97636 0.93692 0.88003 0.94671 0.92325
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TABLE 6  Results of PSDataset with transfer deep learning in weeds stress.

Class Class name ResNet101 InceptionNetV4 DenseNet

Precision Recall F1 
score

Accuracy Precision Recall F1 
score

Accuracy Precision Recall F1 
score

Accuracy

C71 Target 0.93332 0.95884 0.91975 0.94012 0.92549 0.89142 0.91068 0.91982 0.89335 0.87948 0.89656 0.89349

C69 Pigweed 0.95368 0.83228 0.94137 0.90799 0.93454 0.92056 0.94677 0.97645 0.92662 0.79296 0.88163 0.95179

C70 Purselane 0.98525 0.82238 0.98452 0.97705 0.98941 0.89937 0.91878 0.89499 0.93904 0.7978 0.90029 0.96378

C64 Nutsedge 0.92467 0.97631 0.92194 0.94786 0.93922 0.93833 0.96152 0.93024 0.95539 0.91766 0.93975 0.96517

C63 Knotweed 0.93524 0.91189 0.92003 0.96289 0.94926 0.87738 0.98533 0.96082 0.95062 0.90357 0.91407 0.93141

C67 Parennial 0.98596 0.8505 0.93645 0.97367 0.94114 0.79746 0.95112 0.95279 0.91822 0.89556 0.95798 0.97824

C60 Amarnathen 0.94164 0.94305 0.93784 0.95265 0.92988 0.87325 0.97362 0.94284 0.97988 0.94156 0.90282 0.97274

C61 Paragrass 0.96196 0.88452 0.94439 0.90042 0.97581 0.98143 0.88488 0.90905 0.96882 0.97126 0.87309 0.91617

C68 Phalaris minor 0.90592 0.84243 0.87013 0.90961 0.93174 0.85126 0.88123 0.9563 0.9432 0.88523 0.88127 0.9725

C66 Dactynloctenium 0.96555 0.92206 0.88751 0.97984 0.95535 0.84092 0.90369 0.9535 0.92216 0.81354 0.93719 0.97398

C65

Chrozophpora 

tinctoria 0.98225 0.90833 0.92231 0.90401 0.93653 0.81157 0.92349 0.91082 0.90322 0.91341 0.91869 0.91438

C62 Broadleaf 0.96456 0.94643 0.87968 0.931 0.98142 0.86275 0.9309 0.95187 0.89168 0.9793 0.89129 0.96609
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TABLE 7  Results of PSDataset with transfer deep learning in bacterial stress.

Class Class 
name

ResNet101 InceptionNetV4 DenseNet

Precision Recall F1 
Score

Accuracy Precision Recall F1 
Score

Accuracy Precision Recall F1 
Score

Accuracy

C1 Brown Spot 0.90445 0.82309 0.92104 0.91042 0.90022 0.8779 0.97159 0.93179 0.93849 0.85812 0.89577 0.97519

C2 Leaf Smut 0.98441 0.8454 0.98084 0.90273 0.98547 0.89862 0.97563 0.93485 0.91215 0.91785 0.92438 0.94654

C3 Bacterial 

Blight

0.96239 0.98262 0.97467 0.90165 0.90681 0.972 0.87895 0.95818 0.97584 0.84163 0.93111 0.9229

C4 Tungro 0.94897 0.87451 0.96171 0.91285 0.93275 0.86663 0.91812 0.93659 0.93955 0.90157 0.90636 0.96162

C5 Frogeye Leaf 

Spot

0.95802 0.81127 0.96675 0.9559 0.92976 0.97543 0.98838 0.91787 0.94109 0.80873 0.93364 0.97227

C6 Sheath 

Blight

0.94829 0.79092 0.96038 0.97791 0.97732 0.96145 0.93918 0.9233 0.98506 0.93895 0.97359 0.92124

C7 Leaf Blast 0.95957 0.96759 0.92977 0.97783 0.92086 0.92746 0.97418 0.96844 0.95192 0.80882 0.89828 0.93966

C8 Leaf Blight 0.97259 0.97341 0.95674 0.9718 0.95381 0.95762 0.89119 0.93166 0.95538 0.91659 0.95076 0.95325

C9 Fusarium 

Head Blight

0.91202 0.91874 0.9573 0.93988 0.96548 0.82838 0.87613 0.97119 0.93802 0.93185 0.95778 0.92226

C10 Seeding 

Blight

0.94602 0.87269 0.96152 0.91196 0.93305 0.94693 0.96735 0.95062 0.96717 0.84001 0.96501 0.91123

C11 Leaf Scald 0.98575 0.95536 0.94838 0.93157 0.90671 0.90547 0.94247 0.94407 0.98587 0.98798 0.93246 0.94363

C12 Red Smut 0.92581 0.79044 0.9827 0.95001 0.98366 0.93574 0.96551 0.90085 0.97066 0.81264 0.93431 0.9269

C13 False Smut 0.96172 0.91618 0.95445 0.9776 0.92267 0.80395 0.95533 0.95253 0.96998 0.92052 0.8862 0.9602

C14 Foot Rot 0.94031 0.81349 0.95428 0.96995 0.90144 0.90942 0.88395 0.91656 0.97347 0.94615 0.92954 0.90591
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Together, these results illustrate that while deeper networks like 
ResNet101 and InceptionNetV4 tend to offer higher sensitivity and 
nuanced classification, lighter models such as DenseNet provide 
efficiency gains at some cost to detection consistency. This trade-off is 
critical for selecting appropriate models tailored to the operational 
demands and resource constraints of urban agriculture systems. 
Figure 3 present the class wise confusion matrix results. Tables 3–8 
present the class-wise learning matrices results.

The other models were less precise than ResNet50 and ResNet101. 
They reduce false positive rates, which is crucial in agricultural 
management since stress detection errors can waste resources and cost 
money. When misclassification costs are high, such as pesticide 
applications or targeted treatments in limited urban farming sites, 
these models are ideal. But InceptionNetV4 had the top recall scores 
in several stress classes, including Bacterial Blight. In crowded urban 
agricultural settings where missing stressed plants is more dangerous 
than false positives, this technique is useful for reducing infectious 
disease spread. Proactive stress management and yield protection in 
urban agriculture are supported by InceptionNetV4’s capacity to 
detect virtually all true positives. VGG16 and InceptionNetV4 yielded 
strong F1 scores across stress classes, indicating a good precision-
recall balance. These models are versatile across a variety of detection 
priorities and provide a reliable baseline for general stress 
classification. Identifying stressed plants correctly and minimising 
overprediction mistakes may favour their selection. ResNet50’s 
0.94837 accuracy in diagnosing Brown Spot symptoms supports these 
findings, demonstrating the model’s great general ability. For recall-
focused applications, DenseNet may need domain-specific 
improvements because of its larger accuracy variability. In urban 
agriculture, these patterns help inform model selection based on 
operational priorities and hardware capabilities. The residual learning 
approach of ResNet50 and ResNet101 mitigates gradient deterioration 
in deep networks, enabling extensive feature extraction and higher 
precision. In urban agriculture’s varied environments, their image 
variation resistance makes them excellent. An application with few 
false positives saves resources and accurately identifies stress. Multi-
resolution feature extraction in InceptionNetV4’s inception modules 
improves its sensitivity to minor stress symptoms. This architectural 
advantage improves recall performance, allowing detection of more 
stress manifestations, which is critical in applications where early 
detection reduces disease spread and crop loss. VGG16’s stable 
performance balance requires further adjustment, such as transfer 
learning or enriched augmentation, because of its weaker recall. 
Improved detection coverage, especially for complex or less obvious 
stresses relevant to urban agriculture, may result. Resource-
constrained devices benefit from DenseNet’s simplified architecture. 
Reduced accuracy and F1 scores for some stress classes result from 
this efficiency’s loss of representational power. Hybrid models 
combining DenseNet with more robust classifiers or domain-specific 
fine-tuning could optimise on-device urban agricultural monitoring 
systems. The confusion metrics for ResNet-101 across all 78 classes 
(C1–C78) of the PSDataset are detailed in Supplementary Table 2 and 
Figure 3.

Loss of training and validation accuracy exhibited pertinent 
patterns in this dataset. At the outset, the models exhibited 
commendable speed of learning, as seen by the rapid improvement in 
both training and validation accuracies. Predictably and effectively 
utilizing the training data, the training accuracy quickly attained a T
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FIGURE 3

The confusion matrix displays the results for the ResNet101 across different stress classes: (a) bacterial stress classes, (b) viral stress classes, (c) fungal 
stress classes, (d) pest stress classes, (e) weed stress classes and (f) Abiotic stress class.
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peak level before levelling out. In a manner analogous to the training 
accuracy, the validation accuracy exhibited an initial surge followed 
by a plateau. Following epoch 100, the accuracy of the model remained 
mostly unaffected by the fine-tuning, since there was no statistically 
significant change seen.

In terms of training and validation loss, the training loss 
decreased significantly before levelling off as the model improved 
its fit to the training data. However, upon fine-tuning, the 
validation loss began to diverge and increase somewhat, which 
may suggest that the model has a propensity to overfit the training 
data, hence impairing its capacity to generalise to the 
validation set.

To summarise, while the model showed signs of effective learning 
during the first step (training and validation metrics increased 
together), no significant improvements were seen during the fine-
tuning stage. As the validation loss and training loss both increased at 
the same time, a slight concern of overfitting became apparent. 
Figure 5 shows the learning matrices during the training and testing 
of the proposed model.

Figure 6 presented the performance comparison of the ResNet101 
with the optimised ResNet 101 with SSO, which consistently 
outperforms its competitors on important performance metrics like 
accuracy, precision, Recall, and F1 score. This is because it can reliably 
identify true positives, keep the ratio of false positives to negatives 
under control, and accurately predict positive cases. This enhancement 
results in increased overall accuracy, which in turn makes the 
optimised model more reliable. Thus, optimisation methods like 
Sparrow Search Optimisation improve the performance of deep 

learning models without skewing any of the metrics used for 
evaluation. While the impact of these advancements on real-world 
applications is significant, it is important to note that actual gains may 
differ and that future research should focus on optimising for specific 
use cases.

5 Conclusion

This research introduces an advanced deep learning framework 
for urban agriculture, a key component of smart cities. Our method 
combines ResNet101 with the SSO algorithm to create a highly 
effective solution for the early detection of plant stress. This 
approach significantly outperforms traditional and other deep 
learning models, achieving a peak F1-score of 98.9%. This 
technology is crucial for smart urban environments where space is 
limited and minimizing crop waste is a priority. By enabling urban 
farmers to make timely interventions, our framework helps prevent 
significant losses and maximize yields, directly contributing to 
both urban food sustainability and global food security goals like 
the UN’s Zero Hunger Sustainable Development Goal (SDG 2). 
Ultimately, this research provides a practical, high-performance 
tool for resilient and sustainable urban food systems. Urban 
agriculture is a rapidly growing solution to food security 
challenges, particularly in densely populated areas. In smart cities, 
vertical farming and rooftop farming provide a means of 
integrating food production into urban spaces, using advanced 

FIGURE 4

Annotated sample of multiple plant stress identification.
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technologies like IoT, sensors, and AI to optimize crop 
management. The proposed ResNet101 + SSO model provides a 
practical tool for these environments, where early detection of 
plant stress can make a substantial difference in minimizing crop 
loss and waste.

In conclusion, the proposed model not only optimizes plant 
stress detection but also has significant implications for urban 
sustainability, resource efficiency, and food security in smart cities. 
Through innovations in deep learning, this research supports a 
more resilient and productive urban agricultural system, capable 
of meeting the growing demand for food in a rapidly 
urbanizing world.
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