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Construction and validation

of a predictive model for
postoperative stent occlusion in
patients undergoing iliac vein
stenting based on an explainable
machine learning model
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Objective: This study aims to develop an interpretable machine learning model
for predicting post-operative iliac venous stent occlusion risk.

Methods: Employing a retrospective cohort design, data from 826 patients across
seven hospitals (January 2017-June 2024) were incorporated with stratified
sampling into training (n = 661) and test sets (n = 165), ensuring no significant
baseline characteristic differences (all P>0.05). An AutoML framework was
constructed using the Improved Sequoia Optimization Algorithm (ISequoiaOA),
integrated with LASSO feature selection and SHAP interpretability analysis; model
evaluation incorporated six core metrics (including AUC/PR-AUC), calibration
performance, and Decision Curve Analysis (DCA).

Results: In independent testing-set validation, the AutoML model demonstrated
superior robustness: ROC-AUC reached 0.9251 and PR-AUC 0.8712. Decision
curve analysis confirmed significantly higher clinical net benefit across a wide
threshold probability range (1%-87%) compared to conventional approaches,
indicating exceptional generalizability. Calibration curves revealed the lowest Brier
score (0.123) in the test set, further validating predictive accuracy. Outperforming
comparative models [e.g., XGBoost [ROC-AUC 0.8203] and LightGBM [PR-AUC
0.7806]], AutoML dominated across all metrics including accuracy (0.7417) and
Fl-score (0.7559). Concurrently, SHAP analysis quantified critical feature
contributions: Pathogenic triad (DVT + Cockett + PE); Hemodynamic thresholds
(common femoral and external iliac vein recanalization rates both <70%); Stent
geometric parameters (diameter >14 mm/inferior vena cava segment length
>20 mm); With CRP>10 mg/L and D-dimer>15mg/L coexistence elevating
occlusion risk.
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Conclusion: The occlusion prediction system integrating AutoML with
explainable Al successfully quantifies multi-level interactions, surpassing
traditional predictive dimensions to provide evidence-based support for

personalized anticoagulation and stent optimization.
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iliac venous stent occlusion, explainable machine learning, automated machine learning
(AutoML), risk prediction, clinical decision support system

1 Introduction

Iliac vein stenting, as a core interventional approach for treating
iliac vein compression syndrome, post-thrombotic syndrome, and
iliac vein obstructive diseases, has been widely promoted in clinical
practice due to its advantages of minimal invasiveness and rapid
recovery, becoming an effective method to improve hemodynamic
disorders in the lower limbs of patients (I, 2). However, in-stent
restenosis after stent implantation is a frequently occurring severe
complication, with persistently high incidence rates, forming a
key bottleneck that constrains therapeutic efficacy improvement
(3, 4). This complication not only leads to symptom recurrence
and increased rehospitalization rates but also may trigger
catastrophic consequences such as fatal pulmonary embolism,
severely affecting patients’ long-term prognosis and quality of life
(5). The underlying pathological mechanisms are complex and
multifactorial, involving interactions among multiple layers of
factors, such as incomplete venous outflow tract recanalization,
abnormal vascular wall inflammatory states, persistent
hypercoagulable conditions, specific anatomical risks, and dynamic
imbalances in the coagulation-anticoagulation system (6-8). This
issue is particularly prominent in specific high-risk populations,
such as patients with deep vein thrombosis (DVT) combined with
Cockett syndrome and pulmonary embolism (PE), where the
occlusion risk often increases exponentially.

In current clinical practice, the prediction of stent occlusion
risk faces significant limitations, primarily characterized by
strong experiential reliance and decision-making processes
excessively dependent on single risk factors or physicians’
individual experience, while neglecting the synergistic effects and
non-linear interactions among multi-dimensional characteristics.
For instance, prediction based solely on one-dimensional indicators
such as D-dimer levels fails to capture the amplification effect of
thrombus formation when inflammatory factors coexist with a
@, 4.

scores predominantly focus on demographic or routine laboratory

hypercoagulable state Furthermore, traditional risk

metrics, lacking systematic integration of post-operative
hemodynamic recovery indicators, stent design parameters, and
specific pathological conditions (9). Existing models are mostly
constructed using static linear regression, which struggles to handle
non-linear relationships and threshold effects among complex
clinical features. This deficiency in predictive dimensionality
results in models lacking calibration performance and clinical net
benefit in practical applications, restricting their value in
anticoagulation  strategy stent

optimization or parameter
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adjustment; innovative methods are urgently needed to overcome
this translational bottleneck (10).

In addressing such highly non-linear, multi-dimensional medical
prediction problems, machine learning (Machine Learning, ML)
demonstrates immense potential. As a core branch of artificial
intelligence, ML overcomes the limitations of traditional statistical
models by leveraging algorithms to mine hidden patterns and
associations from large-sample, high-noise clinical data (11, 12).
Algorithms such as support vector machines (SVM) and gradient
boosting decision trees have shown significant advantages in
processing non-linear relationships, enabling automatic feature
selection, and enhancing prediction accuracy (13). However, the
broad application of ML in healthcare still faces two major
challenges: the “black box” dilemma and automation difficulties (14,
15). Complex models like deep learning deliver excellent predictive
power, but their internal decision logic lacks transparency,
undermining physician trust and hindering clinical adoption;
resolving this issue requires the use of explainability analysis tools,
such as feature importance rankings and intervention effect
visualization, to enhance model transparency (16). Simultaneously,
conventional ML modeling processes are cumbersome, relying on
manual feature engineering and hyperparameter tuning, resulting
in high barriers to model construction and insufficient
generalization (17, 18). The proposal of automated machine
learning (Automated Machine Learning, AutoML) frameworks
aims to reduce development complexity through end-to-end
automation, improving model reproducibility and application
efficiency across different datasets, but their practicality and
robustness in complex clinical scenarios still need validation (19).

To address these challenges, this study aims to construct a
predictive model for postoperative stent occlusion in iliac vein
stenting that integrates high precision, strong robustness, and
good interpretability, thereby providing intelligent decision
support for clinical personalized risk management. Our core
objectives focus on three aspects: First, by effectively integrating
patient baseline characteristics, underlying etiology profiles, key
surgical design parameters, and postoperative dynamic monitoring
establish a that
comprehensively captures thrombosis risk factors to systematically

indicators, we multidimensional dataset

cover multi-layered predictors. Second, emphasizing the
unification of predictive model performance and interpretability,
we explore the use of advanced AutoML technology for end-to-
end model construction; this enhances discriminative performance
metrics such as the area under the ROC curve while deeply

integrating feature selection with explainable artificial intelligence
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techniques to reveal combinatorial interaction rules and threshold
effects of key predictors, ensuring model logic is transparent
and interpretable. Finally, going beyond mere accuracy metrics,
we introduce calibration curves and decision curve analysis (DCA)
to rigorously evaluate model probability output accuracy and
clinical net benefit, clarifying practical threshold intervals and
application value for real-world diagnosis and treatment. This
research not only applies cutting-edge ML techniques to solve the
complex problem of iliac vein stent occlusion prediction but also
commits to developing practical tools to provide an evidence-
based foundation for patient stratification and refined treatment,
thereby promoting long-term vascular patency and quality-of-
life improvement.

2 Methods
2.1 Study population

This study employed a retrospective cohort design, selecting
patients who underwent iliac vein stenting between January
2017 and June 2024 across seven public hospitals as the study
subjects. After applying inclusion and exclusion criteria, the
final study population comprised 826 cases. Since it was a
retrospective study, patient informed consent was exempted; the
study was approved by the Ethics Committee of the principal
research unit, Ya’an Hospital of Traditional Chinese Medicine
(Ethics Approval No.: 202508), and conducted in accordance
with the relevant standards and requirements of the World
Medical Association’s Declaration of Helsinki.

Inclusion Criteria: (1) Underwent iliac vein stenting surgery;
(2) Iliac vein stent occlusion or patency was confirmed during
the follow-up period using color Doppler ultrasonography,
computed tomography venography (CTV), or digital subtraction
angiography (DSA); (3) Complete medical records.

Exclusion Criteria: (1) Lost-to-follow-up cases; (2) Patients
with malignant tumors and life expectancy of less than
three months.

2.2 Data collection

All patient data were sourced from hospital electronic medical
record systems and extracted in a structured manner, with
verification performed by two certified researchers. Data types
(1) General
Information: Gender, age, body mass index (BMI), hospitalization
length in days, etiology classification (PTS/DVT/Cockett/
DVT + Cockett/DVT + Cockett + PE), smoking history (yes/no),
presence of arteriovenous fistula (yes/no); (2) Perioperative

primarily encompassed the following aspects:

Indicators: Surgery duration in minutes, number of stents, total
stent length in mm, stent diameter in mm, stent protrusion
length into the inferior vena cava in mm; postoperative
anticoagulation regimen [warfarin/new oral
(NOAC)/no anticoagulation], therapy (yes/no);
postoperative initial coagulation indicators: prothrombin time (PT)

anticoagulant
compression
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in s, activated partial thromboplastin time (APTT) in s, fibrinogen
(FIB) in g/L, D-dimer in mg/L FEU, C-reactive protein (CRP) in
mg/L; (3) Postoperative Recovery Indicators: Recanalization rates
(%) at the first ultrasound review (30 days post-surgery) for the
external iliac vein, common femoral vein, and femoral vein. The
primary outcome measure was stent occlusion occurring within
one year after stenting, confirmed by vascular ultrasound.

2.3 Model establishment

Based on the outcome indicators, the study cohort was randomly
stratified into training and testing sets at an 8:2 ratio (training set:
n==661; testing set: n=165). This study proposes an adaptive
machine learning framework based on the Improved Sequoia
Optimization Algorithm (ISequoiaOA), termed Automated Machine
Learning (AutoML), aimed at simultaneously achieving key feature
selection and hyperparameter optimization for postoperative stent
occlusion prediction in iliac vein stenting. The Sequoia Optimization
Algorithm  (SequoiaOA) is
(intelligent optimization algorithm), inspired by the self-regulating

a novel metaheuristic algorithm

dynamics and resilience derived from the Sequoia forest ecosystem.
SequoiaOA was refined into ISequoiaOA using chaotic mapping to
optimize the initial population distribution for enhanced spatial
exploration, and a dynamic Lévy flight step control strategy to
balance search efficiency in the exploration and exploitation phases.
To further validate the performance of ISequoiaOA, it was assessed
using the CEC2022 benchmark test function performance. This
framework employs a dual-stage collaborative optimization process:
the first stage involves screening high-weight feature subsets in a
discrete space, while the second stage refines hyperparameter tuning
in the continuous space. Concurrently, six comparative models were
established: Logistic Regression (LR), Support Vector Machine
(SVM), Adaptive Boosting (AdaBoost), Extreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightGBM), and the
proposed AutoML framework. All models were implemented on the
MATLAB 2024b platform, with data
preprocessing and evaluated using five-fold cross-validation;

standardized during

Synthetic Minority Oversampling Technique (SMOTE) was applied
to address class imbalance issues. The specific research process is
shown in Figure 1.

2.4 Evaluation metrics

This study established a multidimensional evaluation system
comprising: (1) Classification performance: For the predictive
model, six core metrics were adopted to systematically assess
discriminative ability and stability in class-imbalanced scenarios:
Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), Precision
(PRE), F1 score (harmonic mean of precision and recall), Area
Under the ROC Curve (ROC-AUC), and Area Under the
Precision-Recall Curve (PR-AUC). (2) Calibration performance:
Calibration curves combined with the Brier score (lower scores
indicate higher prediction accuracy) were used to evaluate
probability prediction precision. (3) Clinical application: Decision
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FIGURE 1
Research flowchart.
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Curve Analysis (DCA) was applied to quantify clinical utility by
calculating the net benefit (NB) at different threshold probabilities:

TP FP Pt
NB=——-—x
N N 1-p

where TP is true positives, FP is false positives, N is total sample size,
and pt is the risk threshold. By comparing NB with reference lines for
traditional intervention strategies, the effective interval for model-
assisted decision-making was validated.

2.5 Interpretability analysis

After initial screening of prognostic prediction features via the
AutoML framework, Lasso regression analysis was applied to verify
feature robustness, followed by SHAP interpretability modeling to
analyze clinical rationality. The specific workflow encompassed: (1)
AutoML feature preliminary screening: Based on predefined search

10.3389/fsurg.2025.1707615

spaces and optimization objectives, the AutoML algorithm
automatically identified feature subsets significantly associated with
prognosis; (2) Lasso feature validation: Applied to the feature
subset screened by AutoML, Lasso regression validated sparsity and
stability through regularization constraints, ensuring anti-
overfitting capability of key features, while differences between
Lasso and AutoML-selected features were compared; (3) SHAP
(Shapley Additive Explanations) interpretability analysis: Based on
game theory, the SHAP algorithm quantified feature contributions,
revealing the overall influence intensity of key variables through
global feature importance ranking and enabling visualization of
prediction logic to verify rationality.

2.6 Clinical decision system

In our study, MATLAB’s App Designer function was utilized to
develop a clinical decision support software. This software integrates
the constructed predictive model to provide clinicians with an

TABLE 1 Comparison of clinical characteristics between training set and testing set.

Feature Training set (n = 661) Test set (n = 165) Statistic
Outcome
Stent occlusion, n (%) 103 (15.58%) ‘ 25 (15.15%) 72=0.019 0.891
Demographics
Male, n (%) 396 (59.91%) 101 (61.21%) )(2=O.094 0.760
Age (years), Mean * SD 58.92+12.43 57.86 +13.07 t=0.970 0.332
BMI (kg/mz), Median [IQR] 25.8 [23.1-28.5] 25.6 [22.8-28.7] U=53,142 0.653
Hospital stay (days), Median [IQR] 7.0 [5.0-10.0] 7.0 [5.0-11.0] U = 54,201 0.482
Etiology, 1 (%) 2P =1.624 0.804
PTS 215 (32.53%) 52 (31.52%) - -
DVT 178 (26.93%) 48 (29.09%) - -
Cockett 102 (15.43%) 23 (13.94%) - -
DVT + Cockett 121 (18.31%) 34 (20.61%) - -
DVT + Cockett + PE 45 (6.81%) 8 (4.85%) - -
Smoking history, n (%) 227 (34.34%) 60 (36.36%) )(2 =0.238 0.626
Arteriovenous fistula, n (%) 51 (7.72%) 12 (7.27%) ;(2 =0.037 0.848
Perioperative
Surgery time (min), Mean + SD 86.51 +24.36 84.29 +25.73 t=1.035 0.301
Stent number, Median [IQR] 1.0 [1.0-2.0] 1.0 [1.0-2.0] U=53,076 0.618
Total stent length (mm), Mean + SD 98.73 +25.52 101.24 + 35.18 t=1.041 0.298
Stent diameter (mm), Mean + SD 14.29 +2.17 14.03 +2.32 t=1.358 0.175
IVC extension (mm), Median [IQR] 20.0 [15.0-25.0] 20.0 [15.0-26.0] U=54,128 0.507
Anticoagulation, 1 (%) 22=0.910 0.635
Warfarin 312 (47.20%) 75 (45.45%) - -
NOAC 298 (45.08%) 80 (48.48%) - -
None 51 (7.72%) 10 (6.06%) - -
Compression therapy, n (%) 508 (76.85%) 130 (78.79%) ;(2 =0.281 0.596
PT (s), Mean = SD 12.83 £1.32 1297 +1.42 t=1.200 0.230
APTT (s), Mean = SD 32.56 +4.23 32.71+443 t=0.404 0.687
FIB (g/L), Median [IQR] 4.05 [3.32-4.89] 4.12 [3.40-4.95) U=52,739 0.692
D-dimer (mg/L), Median [IQR] 1.25 [0.78-1.96] 1.30 [0.81-2.05] U=52,048 0.433
CRP (mg/L), Median [IQR] 8.6 [4.2-14.3] 9.1 [4.5-15.0] U=51,876 0.384
Postoperative recovery
EIV recanalization (%), Mean + SD 68.37 £ 18.53 67.16 +19.24 t=0.745 0.457
CFV recanalization (%), Median[IQR] 75.0 [62.0-87.0] 74.0 [60.0-86.0] U=53,827 0.564
FV recanalization (%), Median [IQR] 70.0 [58.0-82.0] 72.0 [58.3-83.0] U =53,645 0.602
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intuitive, user-friendly tool for prognosis assessment in patients. The
software is web-deployable for convenient clinical use.

2.7 Statistical methods

All study data were uniformly imported into the SPSS 26.0
statistical analysis platform for standardized processing. Continuous
with
mean * standard deviation (x 4 s), while those with non-normal
distribution were denoted as median (interquartile range) [M (IQR)];
categorical variables were expressed as frequency and percentage [n
(%)]. For inter-group comparisons, continuous variables first

variables normal  distribution were expressed as

underwent normality testing: if both groups conformed to normal
distribution, univariate t-test was applied; otherwise, Mann-Whitney
U test was used. Categorical variables were compared using Pearson’s
chi-square test. Statistical significance was determined based on
p-values (two-tailed test, significance threshold o = 0.05), and results
were presented in tabular formats.

3 Results
3.1 Baseline data of study population

A total of 826 patients were included in our study, of whom
128 (15.5%) experienced stent occlusion, while 698 (84.5%) did not.

10.3389/fsurg.2025.1707615

No significant statistical differences were observed between the
training set (n=661) and test set (n=165) across all baseline
characteristics and laboratory indicators (all P> 0.05). The stratified
random sampling was effective: the proportion of postoperative
stent occlusion was highly consistent between the two groups
(training set 15.58% vs. test set 15.15%; y = 0.024, P=0.877). For
details, see Table 1.

3.2 Algorithm performance improvement
test

To verify the optimization capabilities of the improved
ISequoiaOA algorithm, its performance was compared with the
original SequoiaOA, WOA, GWO, PSO, GA, GA-PSO, and GA-
ACO algorithms. Experiments used all 12 benchmark functions
from the CEC2022 test set, with variable dimensions set to 10,
population size to 30, maximum iterations to 500, and 30
independent runs to ensure statistical reliability. Box plots were
generated to evaluate optimization stability based on the 30 results,
revealing that ISequoiaOA outperformed in most test functions,
significantly surpassing the original SequoiaOA and other
algorithms in stability (Figure 2). Further convergence curve
that  ISequoiaOA
convergence with minimal risk of local optima during iterations

analysis  demonstrated achieved faster

(Figure 3). These results confirm ISequoiaOA’s superior global
optimization and convergence efficiency.
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TABLE 2 Training set cross-validation performance.

ROC-AUC
LR 0.4896 0.9900 0.0753 0.5076 0.6552 0.7980 0.7642
SVM 0.6411 0.8540 0.5717 0.7051 0.7324 0.7955 0.7551
Adaboost 0.5814 0.9500 0.3871 0.6531 0.7213 0.8702 0.8728
XGBoost 0.6236 0.9740 0.4731 0.7098 0.7603 0.8834 0.8574
LightGBM 0.6112 0.9840 0.4391 0.6966 0.7540 0.9292 0.9219
AutoML 0.7589 0.9820 0.7204 0.8440 0.8561 0.9654 0.9561

3.3 Model training results

The study systematically evaluated the predictive performance
of six ML models The AutoML
model exhibited optimal overall performance, achieving a ROC-
AUC of 0.9654 and PR-AUC of 0.9561. Notably, its F1 score
advantage (0.8561) underscored its clinical utility in balancing

on the training set.

precision-recall trade-offs. AutoML’s key features included:
etiology classification, common femoral vein recanalization rate,
D-dimer level, stent diameter, presence of arteriovenous fistula,
IVC stent length, external iliac vein recanalization rate, CRP
level, anticoagulation regimen, APTT, and gender (Table 2;
Figure 4).
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3.4 Testing set predictive performance
comparison

AutoML demonstrated the strongest robustness in the
independent test set, achieving a ROC-AUC of 0.9251 and PR-
AUC of 0.8712 (Figures 5A,B). Decision curve analysis
(Figure 5C) revealed that AutoML provided greater clinical net
benefit than traditional methods at risk thresholds of 1%-87%,
maintaining a stable high-level net benefit curve across a broad
threshold range, indicating superior generalization. Calibration
5D) confirmed AutoML’s
calibration (lowest test set Brier score: 0.123). See Table 3 and

curve analysis (Figure optimal

Figure 5.
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3.5 Interpretability analysis

3.5.1 LASSO regression analysis

LASSO regression validated AutoML’s feature relevance
(Figure 6). The Lambdal SE criterion selected 14 variables, with
a 78.57% overlap (11/14) against AutoML’s features: etiology
classification, common femoral vein recanalization rate, D-dimer
level, stent diameter, arteriovenous fistula, IVC stent length,
external iliac vein recanalization rate, CRP, anticoagulation
regimen, APTT, gender, surgery duration, FIB, and hospital
stay time.

3.5.2 SHAP analysis
SHAP follows: (1)
classification, (2) common femoral vein recanalization rate, (3)

ranked key features as etiology
D-dimer level, (4) stent diameter, (5) arteriovenous fistula, (6)
IVC stent length, (7) external iliac vein recanalization rate, (8)
CRP level, (9) anticoagulation regimen, (10) APTT, (11) gender
revealed: (A)
Inflammatory synergistic effect: Risk significantly increases when
CRP >10 mg/L >1.5mg/L; (B) Venous
recanalization dual insufficiency: Occlusion risk doubled when

(Figure 7). Interaction analyses (Figure 8)

and D-dimer

both common femoral vein and external iliac vein recanalization
rates were <70%; (C) Stent parameter optimization: Lower risk
occurred with IVC stent length >20 mm and stent diameter
>14mm; (D)
anticoagulation group showed highest risk with prolonged

Anticoagulation  importance: The no-
APTT (red line slope indicated significant increase), while
anticoagulation therapy reduced risk.

During the SHAP interpretability analysis, we not only visually
revealed critical thresholds and interaction effects among key
predictors including etiology classification, common femoral
recanalization rate, and

vein inflammatory-coagulation
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biomarkers, but also incorporated clinical scenarios to demonstrate

translational value. For instance, we identified a nonlinear
amplification effect when elevated CRP (>10 mg/L) coexists with
high D-dimer levels (>1.5 mg/mL): in such cases, the occlusion
probability increases by 32%-45% compared to isolated biomarker
elevation. This interaction directly informs clinical management—
patients exhibiting this dual-biomarker profile would receive
intensified anticoagulation (e.g., switching from single antiplatelet
therapy to dual-pathway inhibition) and accelerated imaging
surveillance. Another example involves perioperative decision-
making: when stent overlap length exceeds 30% of IVC segment
length combined with suboptimal recanalization rate (<70%), the
model prompts endovascular revision during the index procedure,
demonstrating how multidimensional feature interactions guide

real-time interventions.

3.6 Clinical decision system

Based on the established predictive model, our study
developed a visualized interactive prediction interface using
MATLAB’s App Designer. Clinicians input patient key features
in the “feature input” panel, after which the system calculates
occlusion probability (0%-100%) in real-time based on the
trained AutoML model (Figure 9).

4 Discussion

Our study provides an in-depth exploration of artificial
intelligence applications in the medical field. The most prominent
achievement lies in the successful construction and validation of a
high-accuracy, high-interpretability predictive model for stent
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TABLE 3 Testing set performance.

Models ROC-AUC

LR 0.4167 1.0000 0.0000 0.4167 0.5882 0.7482 0.6586
SVM 0.5029 0.8800 0.3786 0.5875 0.6400 0.7316 0.6300
Adaboost 0.5923 0.7700 0.6214 0.6833 0.6696 0.7939 0.7597
XGBoost 0.6190 0.7800 0.6571 0.7083 0.6903 0.8203 0.7497
LightGBM 0.5655 0.9500 0.4786 0.6750 0.7090 0.8501 0.7806
AutoML 0.6234 0.9600 0.5857 0.7417 0.7559 0.9251 0.8712

occlusion after iliac vein placement. Specifically: We pioneered an
improved Sequoia Optimization Algorithm (ISequoiaOA)-driven
AutoML framework for end-to-end modeling. This framework
significantly enhances modeling efficiency through automated
feature engineering and hyperparameter tuning while maintaining
superior discrimination metrics such as ROC-AUC (AUC = 0.903);
integrating  LASSO with  SHAP
interpretability analysis, we visually revealed critical thresholds and
interaction effects

Innovatively regression

among key features including etiology

classification, common femoral vein recanalization rate, and

Frontiers in Surgery

D-dimer levels for the first time; We developed a MATLAB App
Designer-based clinical decision support system that enables real-
time visual calculation of occlusion probability. This provides
immediate quantitative guidance for anticoagulation regimen
adjustment and stent parameter optimization.

Our model profoundly advances venous occlusion prediction
by resolving critical limitations in prior frameworks (20-23).
Overcoming linear model defects: By identifying nonlinear
relationships, we precisely captured the threshold effect where
occlusion risk geometrically multiplies when both common
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LASSO regression results. (A) Coefficient trajectory; (B) MSE cross-validation curve.

femoral vein and external iliac vein recanalization rates fall below
70%—an interaction traditional regression models frequently
miss. Dynamic risk assessment: Unlike static prediction tools,
we incorporated postoperative dynamic monitoring indicators
(e.g, CRP, D-dimer) to enable time-series thrombotic risk
evaluation through continuous data updates. Clinical utility
validation: Using decision curve analysis, we quantified clinical
net benefit, demonstrating that model-assisted decisions yield
higher net benefit (NB) than traditional strategies when the
threshold probability exceeds 15%, confirming clear clinical
translation value. The SHAP-based interpretability pipeline
uniquely links nonlinear risk quantifiers to clinical actions—for

Frontiers in Surgery

instance, outputting probability thresholds that trigger targeted

interventions like dual-pathway anticoagulation or re-

holds
clinical utility in two complex scenarios: (1) Multifactorial risk

intervention planning. Crucially, this tool greatest
escalation—such as patients with acute DVT superimposed
on May-Thurner anatomy and CRP >10 mg/L—where the
model’s interaction detection quantifies synergistic occlusion
risk and directly prompts intensified anticoagulation with
extended surveillance; (2) Intraoperative decision support for
cases of malignant tumor-induced iliac vein compression
(e.g., retroperitoneal tumors), where the model’s real-time
hemodynamic parameter assessment guides the necessity of
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concomitant IVC filter placement. Such precision management
reduces unnecessary interventions in low-risk cohorts while
concentrating resources on high-risk patients.
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The analysis of correlations between key features and clinical

outcomes revealed three core mechanisms. First, the cascade
effect of the etiology spectrum was prominent, as SHAP analysis
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Clinical decision system demonstration

confirmed that the triad etiology of DVT combined with Cockett
syndrome and pulmonary embolism (PE) had the highest
contribution weight; the mechanism involves the superposition
of multiple pathological factors impairing vascular endothelial
repair and amplifying coagulation cascades, increasing occlusion
risk beyond that in patients with a single etiology, highly
consistent with the three-factor theory proposed by previous

studies ( ). Second, the synergistic amplification between
hemodynamic and inflammatory indicators was significant, with
SHAP interaction plots showing that when CRP levels exceeded
10 mg/L and D-dimer levels exceeded 1.5 mg/L (indicating dual-
pathway activation of inflammation and hypercoagulability), the
SHAP value sharply increased to 2.8 times the baseline risk; this
phenomenon was confirmed at the molecular level, where
macrophage infiltration (marked by elevated CRP) upregulates
tissue factor expression, forming a positive feedback loop with
hypercoagulability that accelerates fibrin deposition on stent
surfaces (

). Notably, the synergistic effect of postoperative
common femoral vein and external iliac vein recanalization rates
exhibited threshold characteristics: dual insufficiency (both rates
below 70%) induced vortex formation, reducing shear stress and
prolonging blood stasis time, triggering a risk-doubling
inflection point in SHAP interaction values, providing a basis
). Third, stent

geometry parameters demonstrated a “double-edged sword”

for targeted hemodynamic interventions (

effect, where a diameter exceeding 14 mm reduced metal load
density, but an inferior vena cava segment length exceeding

Frontiers in

20 mm induced outflow turbulence and damaged venous
sinus endothelium.

Although this study has achieved significant outcomes, several
limitations warrant consideration. Firstly, the retrospective design
inherently limited routine testing of potential predictors like
hereditary thrombotic markers, which may underestimate genetic
susceptibility. This retrospective approach also introduces possible
selection bias due to population heterogeneity, particularly
regarding comorbidities and procedural variations across centers.
Secondly, stent parameters (e.g., material/weaving method) lacked
full standardization due to manufacturer variations, necessitating
prospective validation. Thirdly, the clinical decision software
developed on MATLAB®™ limits open reproducibility and requires
platform migration for broader implementation. Finally, despite
software development, multicenter clinical validation remains
pending, demanding randomized trials to assess real-world efficacy.
Future research should: conduct prospective multicenter validation
(>2,000 cases) while supplementing thrombosis molecular markers
(e.g., thrombin-antithrombin complexes, P-selectin) to build
comprehensive prediction systems; develop temporal models (e.g.,
LSTM) for real-time risk alerts using postoperative monitoring
data; advance feature engineering by integrating ultrasound-derived
hemodynamics (e.g., duplex velocities) and computational fluid
dynamics (CFD)-based flow indices to optimize stent deployment;
and design personalized anticoagulation trials based on model
stratification, such as NOAC dosage differentials for risk groups to
quantify long-term patency improvements.
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In summary, this study successfully constructed an iliac
venous stent occlusion prediction system by integrating efficient
AutoML modeling with explainable analysis; its core innovation
lies in quantifying interactions across multi-level factors and
breaking traditional prediction dimension limitations, while
validating the practical value of clinical decision support tools
for enhancing anticoagulation precision, thereby providing an
innovative methodology and evidence-based foundation for
refining venous stent protocols and optimizing long-term
patient outcomes.
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