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Objective: This study aims to develop an interpretable machine learning model 

for predicting post-operative iliac venous stent occlusion risk.

Methods: Employing a retrospective cohort design, data from 826 patients across 

seven hospitals (January 2017–June 2024) were incorporated with stratified 

sampling into training (n = 661) and test sets (n = 165), ensuring no significant 

baseline characteristic differences (all P > 0.05). An AutoML framework was 

constructed using the Improved Sequoia Optimization Algorithm (ISequoiaOA), 

integrated with LASSO feature selection and SHAP interpretability analysis; model 

evaluation incorporated six core metrics (including AUC/PR-AUC), calibration 

performance, and Decision Curve Analysis (DCA).

Results: In independent testing-set validation, the AutoML model demonstrated 

superior robustness: ROC-AUC reached 0.9251 and PR-AUC 0.8712. Decision 

curve analysis confirmed significantly higher clinical net benefit across a wide 

threshold probability range (1%–87%) compared to conventional approaches, 

indicating exceptional generalizability. Calibration curves revealed the lowest Brier 

score (0.123) in the test set, further validating predictive accuracy. Outperforming 

comparative models [e.g., XGBoost [ROC-AUC 0.8203] and LightGBM [PR-AUC 

0.7806]], AutoML dominated across all metrics including accuracy (0.7417) and 

F1-score (0.7559). Concurrently, SHAP analysis quantified critical feature 

contributions: Pathogenic triad (DVT + Cockett + PE); Hemodynamic thresholds 

(common femoral and external iliac vein recanalization rates both <70%); Stent 

geometric parameters (diameter >14 mm/inferior vena cava segment length 

>20 mm); With CRP > 10 mg/L and D-dimer > 1.5 mg/L coexistence elevating 

occlusion risk.
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Conclusion: The occlusion prediction system integrating AutoML with 

explainable AI successfully quantifies multi-level interactions, surpassing 

traditional predictive dimensions to provide evidence-based support for 

personalized anticoagulation and stent optimization.

KEYWORDS

iliac venous stent occlusion, explainable machine learning, automated machine learning 

(AutoML), risk prediction, clinical decision support system

1 Introduction

Iliac vein stenting, as a core interventional approach for treating 

iliac vein compression syndrome, post-thrombotic syndrome, and 

iliac vein obstructive diseases, has been widely promoted in clinical 

practice due to its advantages of minimal invasiveness and rapid 

recovery, becoming an effective method to improve hemodynamic 

disorders in the lower limbs of patients (1, 2). However, in-stent 

restenosis after stent implantation is a frequently occurring severe 

complication, with persistently high incidence rates, forming a 

key bottleneck that constrains therapeutic efficacy improvement 

(3, 4). This complication not only leads to symptom recurrence 

and increased rehospitalization rates but also may trigger 

catastrophic consequences such as fatal pulmonary embolism, 

severely affecting patients’ long-term prognosis and quality of life 

(5). The underlying pathological mechanisms are complex and 

multifactorial, involving interactions among multiple layers of 

factors, such as incomplete venous out*ow tract recanalization, 

abnormal vascular wall in*ammatory states, persistent 

hypercoagulable conditions, specific anatomical risks, and dynamic 

imbalances in the coagulation-anticoagulation system (6–8). This 

issue is particularly prominent in specific high-risk populations, 

such as patients with deep vein thrombosis (DVT) combined with 

Cockett syndrome and pulmonary embolism (PE), where the 

occlusion risk often increases exponentially.

In current clinical practice, the prediction of stent occlusion 

risk faces significant limitations, primarily characterized by 

strong experiential reliance and decision-making processes 

excessively dependent on single risk factors or physicians’ 

individual experience, while neglecting the synergistic effects and 

non-linear interactions among multi-dimensional characteristics. 

For instance, prediction based solely on one-dimensional indicators 

such as D-dimer levels fails to capture the amplification effect of 

thrombus formation when in*ammatory factors coexist with a 

hypercoagulable state (2, 4). Furthermore, traditional risk 

scores predominantly focus on demographic or routine laboratory 

metrics, lacking systematic integration of post-operative 

hemodynamic recovery indicators, stent design parameters, and 

specific pathological conditions (9). Existing models are mostly 

constructed using static linear regression, which struggles to handle 

non-linear relationships and threshold effects among complex 

clinical features. This deficiency in predictive dimensionality 

results in models lacking calibration performance and clinical net 

benefit in practical applications, restricting their value in 

anticoagulation strategy optimization or stent parameter 

adjustment; innovative methods are urgently needed to overcome 

this translational bottleneck (10).

In addressing such highly non-linear, multi-dimensional medical 

prediction problems, machine learning (Machine Learning, ML) 

demonstrates immense potential. As a core branch of artificial 

intelligence, ML overcomes the limitations of traditional statistical 

models by leveraging algorithms to mine hidden patterns and 

associations from large-sample, high-noise clinical data (11, 12). 

Algorithms such as support vector machines (SVM) and gradient 

boosting decision trees have shown significant advantages in 

processing non-linear relationships, enabling automatic feature 

selection, and enhancing prediction accuracy (13). However, the 

broad application of ML in healthcare still faces two major 

challenges: the “black box” dilemma and automation difficulties (14, 

15). Complex models like deep learning deliver excellent predictive 

power, but their internal decision logic lacks transparency, 

undermining physician trust and hindering clinical adoption; 

resolving this issue requires the use of explainability analysis tools, 

such as feature importance rankings and intervention effect 

visualization, to enhance model transparency (16). Simultaneously, 

conventional ML modeling processes are cumbersome, relying on 

manual feature engineering and hyperparameter tuning, resulting 

in high barriers to model construction and insufficient 

generalization (17, 18). The proposal of automated machine 

learning (Automated Machine Learning, AutoML) frameworks 

aims to reduce development complexity through end-to-end 

automation, improving model reproducibility and application 

efficiency across different datasets, but their practicality and 

robustness in complex clinical scenarios still need validation (19).

To address these challenges, this study aims to construct a 

predictive model for postoperative stent occlusion in iliac vein 

stenting that integrates high precision, strong robustness, and 

good interpretability, thereby providing intelligent decision 

support for clinical personalized risk management. Our core 

objectives focus on three aspects: First, by effectively integrating 

patient baseline characteristics, underlying etiology profiles, key 

surgical design parameters, and postoperative dynamic monitoring 

indicators, we establish a multidimensional dataset that 

comprehensively captures thrombosis risk factors to systematically 

cover multi-layered predictors. Second, emphasizing the 

unification of predictive model performance and interpretability, 

we explore the use of advanced AutoML technology for end-to- 

end model construction; this enhances discriminative performance 

metrics such as the area under the ROC curve while deeply 

integrating feature selection with explainable artificial intelligence 
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techniques to reveal combinatorial interaction rules and threshold 

effects of key predictors, ensuring model logic is transparent 

and interpretable. Finally, going beyond mere accuracy metrics, 

we introduce calibration curves and decision curve analysis (DCA) 

to rigorously evaluate model probability output accuracy and 

clinical net benefit, clarifying practical threshold intervals and 

application value for real-world diagnosis and treatment. This 

research not only applies cutting-edge ML techniques to solve the 

complex problem of iliac vein stent occlusion prediction but also 

commits to developing practical tools to provide an evidence- 

based foundation for patient stratification and refined treatment, 

thereby promoting long-term vascular patency and quality-of- 

life improvement.

2 Methods

2.1 Study population

This study employed a retrospective cohort design, selecting 

patients who underwent iliac vein stenting between January 

2017 and June 2024 across seven public hospitals as the study 

subjects. After applying inclusion and exclusion criteria, the 

final study population comprised 826 cases. Since it was a 

retrospective study, patient informed consent was exempted; the 

study was approved by the Ethics Committee of the principal 

research unit, Ya’an Hospital of Traditional Chinese Medicine 

(Ethics Approval No.: 202508), and conducted in accordance 

with the relevant standards and requirements of the World 

Medical Association’s Declaration of Helsinki.

Inclusion Criteria: (1) Underwent iliac vein stenting surgery; 

(2) Iliac vein stent occlusion or patency was confirmed during 

the follow-up period using color Doppler ultrasonography, 

computed tomography venography (CTV), or digital subtraction 

angiography (DSA); (3) Complete medical records.

Exclusion Criteria: (1) Lost-to-follow-up cases; (2) Patients 

with malignant tumors and life expectancy of less than 

three months.

2.2 Data collection

All patient data were sourced from hospital electronic medical 

record systems and extracted in a structured manner, with 

verification performed by two certified researchers. Data types 

primarily encompassed the following aspects: (1) General 

Information: Gender, age, body mass index (BMI), hospitalization 

length in days, etiology classification (PTS/DVT/Cockett/ 

DVT + Cockett/DVT + Cockett + PE), smoking history (yes/no), 

presence of arteriovenous fistula (yes/no); (2) Perioperative 

Indicators: Surgery duration in minutes, number of stents, total 

stent length in mm, stent diameter in mm, stent protrusion 

length into the inferior vena cava in mm; postoperative 

anticoagulation regimen [warfarin/new oral anticoagulant 

(NOAC)/no anticoagulation], compression therapy (yes/no); 

postoperative initial coagulation indicators: prothrombin time (PT) 

in s, activated partial thromboplastin time (APTT) in s, fibrinogen 

(FIB) in g/L, D-dimer in mg/L FEU, C-reactive protein (CRP) in 

mg/L; (3) Postoperative Recovery Indicators: Recanalization rates 

(%) at the first ultrasound review (30 days post-surgery) for the 

external iliac vein, common femoral vein, and femoral vein. The 

primary outcome measure was stent occlusion occurring within 

one year after stenting, confirmed by vascular ultrasound.

2.3 Model establishment

Based on the outcome indicators, the study cohort was randomly 

stratified into training and testing sets at an 8:2 ratio (training set: 

n = 661; testing set: n = 165). This study proposes an adaptive 

machine learning framework based on the Improved Sequoia 

Optimization Algorithm (ISequoiaOA), termed Automated Machine 

Learning (AutoML), aimed at simultaneously achieving key feature 

selection and hyperparameter optimization for postoperative stent 

occlusion prediction in iliac vein stenting. The Sequoia Optimization 

Algorithm (SequoiaOA) is a novel metaheuristic algorithm 

(intelligent optimization algorithm), inspired by the self-regulating 

dynamics and resilience derived from the Sequoia forest ecosystem. 

SequoiaOA was refined into ISequoiaOA using chaotic mapping to 

optimize the initial population distribution for enhanced spatial 

exploration, and a dynamic Lévy *ight step control strategy to 

balance search efficiency in the exploration and exploitation phases. 

To further validate the performance of ISequoiaOA, it was assessed 

using the CEC2022 benchmark test function performance. This 

framework employs a dual-stage collaborative optimization process: 

the first stage involves screening high-weight feature subsets in a 

discrete space, while the second stage refines hyperparameter tuning 

in the continuous space. Concurrently, six comparative models were 

established: Logistic Regression (LR), Support Vector Machine 

(SVM), Adaptive Boosting (AdaBoost), Extreme Gradient Boosting 

(XGBoost), Light Gradient Boosting Machine (LightGBM), and the 

proposed AutoML framework. All models were implemented on the 

MATLAB 2024b platform, with data standardized during 

preprocessing and evaluated using five-fold cross-validation; 

Synthetic Minority Oversampling Technique (SMOTE) was applied 

to address class imbalance issues. The specific research process is 

shown in Figure 1.

2.4 Evaluation metrics

This study established a multidimensional evaluation system 

comprising: (1) Classification performance: For the predictive 

model, six core metrics were adopted to systematically assess 

discriminative ability and stability in class-imbalanced scenarios: 

Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), Precision 

(PRE), F1 score (harmonic mean of precision and recall), Area 

Under the ROC Curve (ROC-AUC), and Area Under the 

Precision-Recall Curve (PR-AUC). (2) Calibration performance: 

Calibration curves combined with the Brier score (lower scores 

indicate higher prediction accuracy) were used to evaluate 

probability prediction precision. (3) Clinical application: Decision 
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FIGURE 1 

Research flowchart.
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Curve Analysis (DCA) was applied to quantify clinical utility by 

calculating the net benefit (NB) at different threshold probabilities:

NB ¼

TP

N
�

FP

N
�

pt

1 � pt 

where TP is true positives, FP is false positives, N is total sample size, 

and pt is the risk threshold. By comparing NB with reference lines for 

traditional intervention strategies, the effective interval for model- 

assisted decision-making was validated.

2.5 Interpretability analysis

After initial screening of prognostic prediction features via the 

AutoML framework, Lasso regression analysis was applied to verify 

feature robustness, followed by SHAP interpretability modeling to 

analyze clinical rationality. The specific work*ow encompassed: (1) 

AutoML feature preliminary screening: Based on predefined search 

spaces and optimization objectives, the AutoML algorithm 

automatically identified feature subsets significantly associated with 

prognosis; (2) Lasso feature validation: Applied to the feature 

subset screened by AutoML, Lasso regression validated sparsity and 

stability through regularization constraints, ensuring anti- 

overfitting capability of key features, while differences between 

Lasso and AutoML-selected features were compared; (3) SHAP 

(Shapley Additive Explanations) interpretability analysis: Based on 

game theory, the SHAP algorithm quantified feature contributions, 

revealing the overall in*uence intensity of key variables through 

global feature importance ranking and enabling visualization of 

prediction logic to verify rationality.

2.6 Clinical decision system

In our study, MATLAB’s App Designer function was utilized to 

develop a clinical decision support software. This software integrates 

the constructed predictive model to provide clinicians with an 

TABLE 1 Comparison of clinical characteristics between training set and testing set.

Feature Training set (n = 661) Test set (n = 165) Statistic P-value

Outcome

Stent occlusion, n (%) 103 (15.58%) 25 (15.15%) χ2 = 0.019 0.891

Demographics

Male, n (%) 396 (59.91%) 101 (61.21%) χ2 = 0.094 0.760

Age (years), Mean ± SD 58.92 ± 12.43 57.86 ± 13.07 t = 0.970 0.332

BMI (kg/m2), Median [IQR] 25.8 [23.1–28.5] 25.6 [22.8–28.7] U = 53,142 0.653

Hospital stay (days), Median [IQR] 7.0 [5.0–10.0] 7.0 [5.0–11.0] U = 54,201 0.482

Etiology, n (%) χ2 = 1.624 0.804

PTS 215 (32.53%) 52 (31.52%) – –

DVT 178 (26.93%) 48 (29.09%) – –

Cockett 102 (15.43%) 23 (13.94%) – –

DVT + Cockett 121 (18.31%) 34 (20.61%) – –

DVT + Cockett + PE 45 (6.81%) 8 (4.85%) – –

Smoking history, n (%) 227 (34.34%) 60 (36.36%) χ2 = 0.238 0.626

Arteriovenous fistula, n (%) 51 (7.72%) 12 (7.27%) χ2 = 0.037 0.848

Perioperative

Surgery time (min), Mean ± SD 86.51 ± 24.36 84.29 ± 25.73 t = 1.035 0.301

Stent number, Median [IQR] 1.0 [1.0–2.0] 1.0 [1.0–2.0] U = 53,076 0.618

Total stent length (mm), Mean ± SD 98.73 ± 25.52 101.24 ± 35.18 t = 1.041 0.298

Stent diameter (mm), Mean ± SD 14.29 ± 2.17 14.03 ± 2.32 t = 1.358 0.175

IVC extension (mm), Median [IQR] 20.0 [15.0–25.0] 20.0 [15.0–26.0] U = 54,128 0.507

Anticoagulation, n (%) χ2 = 0.910 0.635

Warfarin 312 (47.20%) 75 (45.45%) – –

NOAC 298 (45.08%) 80 (48.48%) – –

None 51 (7.72%) 10 (6.06%) – –

Compression therapy, n (%) 508 (76.85%) 130 (78.79%) χ2 = 0.281 0.596

PT (s), Mean ± SD 12.83 ± 1.32 12.97 ± 1.42 t = 1.200 0.230

APTT (s), Mean ± SD 32.56 ± 4.23 32.71 ± 4.43 t = 0.404 0.687

FIB (g/L), Median [IQR] 4.05 [3.32–4.89] 4.12 [3.40–4.95] U = 52,739 0.692

D-dimer (mg/L), Median [IQR] 1.25 [0.78–1.96] 1.30 [0.81–2.05] U = 52,048 0.433

CRP (mg/L), Median [IQR] 8.6 [4.2–14.3] 9.1 [4.5–15.0] U = 51,876 0.384

Postoperative recovery

EIV recanalization (%), Mean ± SD 68.37 ± 18.53 67.16 ± 19.24 t = 0.745 0.457

CFV recanalization (%), Median[IQR] 75.0 [62.0–87.0] 74.0 [60.0–86.0] U = 53,827 0.564

FV recanalization (%), Median [IQR] 70.0 [58.0–82.0] 72.0 [58.3–83.0] U = 53,645 0.602
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intuitive, user-friendly tool for prognosis assessment in patients. The 

software is web-deployable for convenient clinical use.

2.7 Statistical methods

All study data were uniformly imported into the SPSS 26.0 

statistical analysis platform for standardized processing. Continuous 

variables with normal distribution were expressed as 

mean ± standard deviation (�x+ s), while those with non-normal 

distribution were denoted as median (interquartile range) [M (IQR)]; 

categorical variables were expressed as frequency and percentage [n 

(%)]. For inter-group comparisons, continuous variables first 

underwent normality testing: if both groups conformed to normal 

distribution, univariate t-test was applied; otherwise, Mann–Whitney 

U test was used. Categorical variables were compared using Pearson’s 

chi-square test. Statistical significance was determined based on 

p-values (two-tailed test, significance threshold α = 0.05), and results 

were presented in tabular formats.

3 Results

3.1 Baseline data of study population

A total of 826 patients were included in our study, of whom 

128 (15.5%) experienced stent occlusion, while 698 (84.5%) did not. 

No significant statistical differences were observed between the 

training set (n = 661) and test set (n = 165) across all baseline 

characteristics and laboratory indicators (all P > 0.05). The stratified 

random sampling was effective: the proportion of postoperative 

stent occlusion was highly consistent between the two groups 

(training set 15.58% vs. test set 15.15%; χ2 = 0.024, P = 0.877). For 

details, see Table 1.

3.2 Algorithm performance improvement 
test

To verify the optimization capabilities of the improved 

ISequoiaOA algorithm, its performance was compared with the 

original SequoiaOA, WOA, GWO, PSO, GA, GA-PSO, and GA- 

ACO algorithms. Experiments used all 12 benchmark functions 

from the CEC2022 test set, with variable dimensions set to 10, 

population size to 30, maximum iterations to 500, and 30 

independent runs to ensure statistical reliability. Box plots were 

generated to evaluate optimization stability based on the 30 results, 

revealing that ISequoiaOA outperformed in most test functions, 

significantly surpassing the original SequoiaOA and other 

algorithms in stability (Figure 2). Further convergence curve 

analysis demonstrated that ISequoiaOA achieved faster 

convergence with minimal risk of local optima during iterations 

(Figure 3). These results confirm ISequoiaOA’s superior global 

optimization and convergence efficiency.

FIGURE 2 

Comparative performance of swarm intelligence algorithms.
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3.3 Model training results

The study systematically evaluated the predictive performance 

of six ML models on the training set. The AutoML 

model exhibited optimal overall performance, achieving a ROC- 

AUC of 0.9654 and PR-AUC of 0.9561. Notably, its F1 score 

advantage (0.8561) underscored its clinical utility in balancing 

precision-recall trade-offs. AutoML’s key features included: 

etiology classification, common femoral vein recanalization rate, 

D-dimer level, stent diameter, presence of arteriovenous fistula, 

IVC stent length, external iliac vein recanalization rate, CRP 

level, anticoagulation regimen, APTT, and gender (Table 2; 

Figure 4).

3.4 Testing set predictive performance 
comparison

AutoML demonstrated the strongest robustness in the 

independent test set, achieving a ROC-AUC of 0.9251 and PR- 

AUC of 0.8712 (Figures 5A,B). Decision curve analysis 

(Figure 5C) revealed that AutoML provided greater clinical net 

benefit than traditional methods at risk thresholds of 1%–87%, 

maintaining a stable high-level net benefit curve across a broad 

threshold range, indicating superior generalization. Calibration 

curve analysis (Figure 5D) confirmed AutoML’s optimal 

calibration (lowest test set Brier score: 0.123). See Table 3 and 

Figure 5.

FIGURE 3 

Convergence performance of swarm intelligence algorithms.

TABLE 2 Training set cross-validation performance.

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.4896 0.9900 0.0753 0.5076 0.6552 0.7980 0.7642

SVM 0.6411 0.8540 0.5717 0.7051 0.7324 0.7955 0.7551

Adaboost 0.5814 0.9500 0.3871 0.6531 0.7213 0.8702 0.8728

XGBoost 0.6236 0.9740 0.4731 0.7098 0.7603 0.8834 0.8574

LightGBM 0.6112 0.9840 0.4391 0.6966 0.7540 0.9292 0.9219

AutoML 0.7589 0.9820 0.7204 0.8440 0.8561 0.9654 0.9561
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3.5 Interpretability analysis

3.5.1 LASSO regression analysis
LASSO regression validated AutoML’s feature relevance 

(Figure 6). The Lambda1 SE criterion selected 14 variables, with 

a 78.57% overlap (11/14) against AutoML’s features: etiology 

classification, common femoral vein recanalization rate, D-dimer 

level, stent diameter, arteriovenous fistula, IVC stent length, 

external iliac vein recanalization rate, CRP, anticoagulation 

regimen, APTT, gender, surgery duration, FIB, and hospital 

stay time.

3.5.2 SHAP analysis
SHAP ranked key features as follows: (1) etiology 

classification, (2) common femoral vein recanalization rate, (3) 

D-dimer level, (4) stent diameter, (5) arteriovenous fistula, (6) 

IVC stent length, (7) external iliac vein recanalization rate, (8) 

CRP level, (9) anticoagulation regimen, (10) APTT, (11) gender 

(Figure 7). Interaction analyses (Figure 8) revealed: (A) 

In*ammatory synergistic effect: Risk significantly increases when 

CRP >10 mg/L and D-dimer >1.5 mg/L; (B) Venous 

recanalization dual insufficiency: Occlusion risk doubled when 

both common femoral vein and external iliac vein recanalization 

rates were <70%; (C) Stent parameter optimization: Lower risk 

occurred with IVC stent length >20 mm and stent diameter 

>14 mm; (D) Anticoagulation importance: The no- 

anticoagulation group showed highest risk with prolonged 

APTT (red line slope indicated significant increase), while 

anticoagulation therapy reduced risk.

During the SHAP interpretability analysis, we not only visually 

revealed critical thresholds and interaction effects among key 

predictors including etiology classification, common femoral 

vein recanalization rate, and in*ammatory-coagulation 

biomarkers, but also incorporated clinical scenarios to demonstrate 

translational value. For instance, we identified a nonlinear 

amplification effect when elevated CRP (>10 mg/L) coexists with 

high D-dimer levels (>1.5 mg/mL): in such cases, the occlusion 

probability increases by 32%–45% compared to isolated biomarker 

elevation. This interaction directly informs clinical management– 

patients exhibiting this dual-biomarker profile would receive 

intensified anticoagulation (e.g., switching from single antiplatelet 

therapy to dual-pathway inhibition) and accelerated imaging 

surveillance. Another example involves perioperative decision- 

making: when stent overlap length exceeds 30% of IVC segment 

length combined with suboptimal recanalization rate (<70%), the 

model prompts endovascular revision during the index procedure, 

demonstrating how multidimensional feature interactions guide 

real-time interventions.

3.6 Clinical decision system

Based on the established predictive model, our study 

developed a visualized interactive prediction interface using 

MATLAB’s App Designer. Clinicians input patient key features 

in the “feature input” panel, after which the system calculates 

occlusion probability (0%–100%) in real-time based on the 

trained AutoML model (Figure 9).

4 Discussion

Our study provides an in-depth exploration of artificial 

intelligence applications in the medical field. The most prominent 

achievement lies in the successful construction and validation of a 

high-accuracy, high-interpretability predictive model for stent 

FIGURE 4 

Training set cross-validation performance. (A) ROC curve; (B) PR curve.
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occlusion after iliac vein placement. Specifically: We pioneered an 

improved Sequoia Optimization Algorithm (ISequoiaOA)-driven 

AutoML framework for end-to-end modeling. This framework 

significantly enhances modeling efficiency through automated 

feature engineering and hyperparameter tuning while maintaining 

superior discrimination metrics such as ROC-AUC (AUC = 0.903); 

Innovatively integrating LASSO regression with SHAP 

interpretability analysis, we visually revealed critical thresholds and 

interaction effects among key features including etiology 

classification, common femoral vein recanalization rate, and 

D-dimer levels for the first time; We developed a MATLAB App 

Designer-based clinical decision support system that enables real- 

time visual calculation of occlusion probability. This provides 

immediate quantitative guidance for anticoagulation regimen 

adjustment and stent parameter optimization.

Our model profoundly advances venous occlusion prediction 

by resolving critical limitations in prior frameworks (20–23). 

Overcoming linear model defects: By identifying nonlinear 

relationships, we precisely captured the threshold effect where 

occlusion risk geometrically multiplies when both common 

FIGURE 5 

Testing set predictive performance. (A) ROC curve; (B) PR curve; (C) DCA curve; (D) Calibration curve.

TABLE 3 Testing set performance.

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.4167 1.0000 0.0000 0.4167 0.5882 0.7482 0.6586

SVM 0.5029 0.8800 0.3786 0.5875 0.6400 0.7316 0.6300

Adaboost 0.5923 0.7700 0.6214 0.6833 0.6696 0.7939 0.7597

XGBoost 0.6190 0.7800 0.6571 0.7083 0.6903 0.8203 0.7497

LightGBM 0.5655 0.9500 0.4786 0.6750 0.7090 0.8501 0.7806

AutoML 0.6234 0.9600 0.5857 0.7417 0.7559 0.9251 0.8712
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femoral vein and external iliac vein recanalization rates fall below 

70%—an interaction traditional regression models frequently 

miss. Dynamic risk assessment: Unlike static prediction tools, 

we incorporated postoperative dynamic monitoring indicators 

(e.g., CRP, D-dimer) to enable time-series thrombotic risk 

evaluation through continuous data updates. Clinical utility 

validation: Using decision curve analysis, we quantified clinical 

net benefit, demonstrating that model-assisted decisions yield 

higher net benefit (NB) than traditional strategies when the 

threshold probability exceeds 15%, confirming clear clinical 

translation value. The SHAP-based interpretability pipeline 

uniquely links nonlinear risk quantifiers to clinical actions—for 

instance, outputting probability thresholds that trigger targeted 

interventions like dual-pathway anticoagulation or re- 

intervention planning. Crucially, this tool holds greatest 

clinical utility in two complex scenarios: (1) Multifactorial risk 

escalation—such as patients with acute DVT superimposed 

on May-Thurner anatomy and CRP >10 mg/L—where the 

model’s interaction detection quantifies synergistic occlusion 

risk and directly prompts intensified anticoagulation with 

extended surveillance; (2) Intraoperative decision support for 

cases of malignant tumor-induced iliac vein compression 

(e.g., retroperitoneal tumors), where the model’s real-time 

hemodynamic parameter assessment guides the necessity of 

FIGURE 6 

LASSO regression results. (A) Coefficient trajectory; (B) MSE cross-validation curve.
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concomitant IVC filter placement. Such precision management 

reduces unnecessary interventions in low-risk cohorts while 

concentrating resources on high-risk patients.

The analysis of correlations between key features and clinical 

outcomes revealed three core mechanisms. First, the cascade 

effect of the etiology spectrum was prominent, as SHAP analysis 

FIGURE 7 

Key features—overall SHAP value comparison. (A) SHAP summary plot; (B) SHAP feature importance plot.

FIGURE 8 

SHAP interaction analysis of key feature pairs.
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confirmed that the triad etiology of DVT combined with Cockett 

syndrome and pulmonary embolism (PE) had the highest 

contribution weight; the mechanism involves the superposition 

of multiple pathological factors impairing vascular endothelial 

repair and amplifying coagulation cascades, increasing occlusion 

risk beyond that in patients with a single etiology, highly 

consistent with the three-factor theory proposed by previous 

studies (24–26). Second, the synergistic amplification between 

hemodynamic and in*ammatory indicators was significant, with 

SHAP interaction plots showing that when CRP levels exceeded 

10 mg/L and D-dimer levels exceeded 1.5 mg/L (indicating dual- 

pathway activation of in*ammation and hypercoagulability), the 

SHAP value sharply increased to 2.8 times the baseline risk; this 

phenomenon was confirmed at the molecular level, where 

macrophage infiltration (marked by elevated CRP) upregulates 

tissue factor expression, forming a positive feedback loop with 

hypercoagulability that accelerates fibrin deposition on stent 

surfaces (27–29). Notably, the synergistic effect of postoperative 

common femoral vein and external iliac vein recanalization rates 

exhibited threshold characteristics: dual insufficiency (both rates 

below 70%) induced vortex formation, reducing shear stress and 

prolonging blood stasis time, triggering a risk-doubling 

in*ection point in SHAP interaction values, providing a basis 

for targeted hemodynamic interventions (30). Third, stent 

geometry parameters demonstrated a “double-edged sword” 

effect, where a diameter exceeding 14 mm reduced metal load 

density, but an inferior vena cava segment length exceeding 

20 mm induced out*ow turbulence and damaged venous 

sinus endothelium.

Although this study has achieved significant outcomes, several 

limitations warrant consideration. Firstly, the retrospective design 

inherently limited routine testing of potential predictors like 

hereditary thrombotic markers, which may underestimate genetic 

susceptibility. This retrospective approach also introduces possible 

selection bias due to population heterogeneity, particularly 

regarding comorbidities and procedural variations across centers. 

Secondly, stent parameters (e.g., material/weaving method) lacked 

full standardization due to manufacturer variations, necessitating 

prospective validation. Thirdly, the clinical decision software 

developed on MATLAB® limits open reproducibility and requires 

platform migration for broader implementation. Finally, despite 

software development, multicenter clinical validation remains 

pending, demanding randomized trials to assess real-world efficacy. 

Future research should: conduct prospective multicenter validation 

(>2,000 cases) while supplementing thrombosis molecular markers 

(e.g., thrombin-antithrombin complexes, P-selectin) to build 

comprehensive prediction systems; develop temporal models (e.g., 

LSTM) for real-time risk alerts using postoperative monitoring 

data; advance feature engineering by integrating ultrasound-derived 

hemodynamics (e.g., duplex velocities) and computational *uid 

dynamics (CFD)-based *ow indices to optimize stent deployment; 

and design personalized anticoagulation trials based on model 

stratification, such as NOAC dosage differentials for risk groups to 

quantify long-term patency improvements.

FIGURE 9 

Clinical decision system demonstration.
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In summary, this study successfully constructed an iliac 

venous stent occlusion prediction system by integrating efficient 

AutoML modeling with explainable analysis; its core innovation 

lies in quantifying interactions across multi-level factors and 

breaking traditional prediction dimension limitations, while 

validating the practical value of clinical decision support tools 

for enhancing anticoagulation precision, thereby providing an 

innovative methodology and evidence-based foundation for 

refining venous stent protocols and optimizing long-term 

patient outcomes.
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