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Objective: To analyze the risk factors for the complications of access and to 

construct and validate a nomogram prediction model for their occurrence.

Methods: Patients undergoing endovascular intervention via femoral artery 

access between January 2020 and April 2025 were enrolled in the study. 

Related clinical data were retrospectively collected and analyzed. Patients 

were divided into complication (n = 19) and non-complication (n = 488) 

groups based on the occurrence of postoperative complications associated 

with femoral artery puncture site. The general cohort characteristics were 

compared between the two groups, and the risk factors for the postoperative 

complications were identified based on univariate and multivariate logistic 

regression analyses. A nomogram prediction model was constructed and its 

performance was evaluated using the area under the receiver operating 

characteristic (ROC) curve, the Hosmer-Lemeshow test, calibration curve, and 

decision curve analyses.

Results: Four potential predictors were identified based on the multivariate 

logistic regression analysis results: vascular calcification [odds ratio 

(OR) = 7.952, 95% confidence interval (CI): 1.653–38.254], history of diabetes 

(OR = 18.793, 95% CI: 3.670–96.225), platelet count (OR = 0.980, 95% CI: 

0.967–0.994), and positional relationship between the puncture point and 

femoral head (OR = 6.125, 95% CI: 1.048–35.800). The nomogram model 

incorporating these factors demonstrated strong performance, with an area 

under the ROC curve of 0.924 (95% confidence interval: 0.839–1.000), 

sensitivity of 81.80%, specificity of 95.20%, and overall accuracy of 

94.70%.The Hosmer-Lemeshow test yielded χ2 = 12.535 and P = 0.8184, 

indicating a good model fit. Calibration curves showed strong agreement 

between the nomogram predictions and observed outcomes. Both the ROC 

and decision curve analysis confirmed the nomogram’s robust 

predictive performance.

Conclusions: Platelet count, history of diabetes, vascular calcification, and 

positional relationship between the puncture point and the femoral head are 

independent risk factors for the complications of femoral artery access. The 

nomogram model established based on these indicators demonstrated a high 

accuracy in predicting the risk of complications.
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1 Introduction

Over 7 million percutaneous vascular interventions are 

performed worldwide annually. The common femoral artery is 

the most commonly used target vessel for puncture due to its 

large diameter, superficial location, and anatomical position 

anterior to the femoral head. However, clinical data show that 

approximately 5%–10% of patients experience access site 

complications, such as puncture site bleeding, hematoma, 

pseudoaneurysm, and even retroperitoneal hematoma (1, 2). 

These complications severely impact patients’ quality of life and 

increase healthcare costs. With the rising adoption of 

technologies, such as transcatheter aortic valve replacement and 

thoracic endovascular aortic repair, the growing demand for 

larger-diameter devices for transfemoral access has substantially 

heightened the potential risk of vascular complications (3). 

Scientific strategies for the prevention and control of vascular 

access complications require accurate identification of relevant 

risk factors. Numerous clinical studies have demonstrated that 

the relative position of the femoral head access site, chronic 

hyperglycemia, and calcification at the access site are key factors 

in/uencing the incidence of postoperative complications (4–6). 

However, research on risk prediction models for femoral artery 

access complications remains limited. The present study aimed 

to systematically analyze the independent risk factors for 

femoral artery intervention and construct and validate a 

prediction model that can identify high-risk groups early in 

order to reduce the incidence of postoperative complications.

2 Methods

1. The clinical records of 507 patients who underwent femoral 

artery puncture at Yongchuan Hospital Affiliated with 

Chongqing Medical University between January 2020 and 

April 2025 were retrospectively analyzed. The cohort 

included 398 male and 109 female patients. A /owchart of 

the patient selection process is shown in Figure 1. The 507 

patients were randomly divided into training (n = 304) and 

validation (n = 203) sets at a 6:4 ratio to ensure the 

reproducibility of the model’s training and validation 

processes. The demographic and clinical characteristics of all 

patients in the training and validation sets are represented in 

Table 1. This clinical study adhered to the Declaration of 

Helsinki and met relevant ethical requirements. The study 

was approved by the Medical Ethics Committee of 

Yongchuan Hospital Affiliated with Chongqing Medical 

University.

2. Inclusion criteria: (1) Age of ≥18 years; (2) femoral artery 

puncture access; and 3. Complete medical records; Exclusion 

criteria: (1) Total occlusion of the femoral artery on the 

planned puncture side; (2) Patients who received concurrent 

thrombolysis; (3) Patients with pseudoaneurysm or dissection 

on the puncture side; (4) Patients who received femoral artery 

puncture under direct visualization through a local incision; 

(5) Incomplete medical records; and (6) Age of <18 years.

3. The study preliminarily formulated 18 risk factors based on 

expert consultation and literature review. The following 

FIGURE 1 

Flowchart of a screening process. A total of 507 participants were included in the analysis: 304 in the training and 203 in the validation cohorts.
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patient information was collected: age, sex, body mass index 

(BMI), Vascular calcification, thrombosis, and Vascular 

tortuosity, history of hypertension, history of diabetes and 

smoking, operation duration, Hospitalization duration, 

platelet count, international normalized ratio, serum 

creatinine level, Chronic Kidney Disease (CKD), maximum 

sheath size, Surgery duration, vascular closure device (VCD), 

and positional relationship between the puncture site and 

the femoral head. The patient information recorded at 

discharge was considered the observation endpoint. Based on 

the model sample size calculation formula (4), 5–10 cases 

were required to validate each variable.

2.1 Statistical methods

Data analysis and graphs were generated using SPSS 23.0 and 

R packages. Continuous data were evaluated for normality using 

the Kolmogorov–Smirnov test. Normally distributed continuous 

data were expressed as ‘x ± s, and inter-group comparisons were 

performed using the independent sample t-test. Continuous data 

that did not follow a normal distribution were expressed as M 

(Q1, Q3), and the Mann–Whitney U test was used for inter- 

group comparisons. Count data were expressed as percentages 

(%), and the chi-square test or Fisher’s exact test was used for 

inter-group comparisons. Univariate and multivariate logistic 

regression model was used to analyze the risk factors of 

complications. A nomogram prediction model was constructed 

based on the identified independent risk factors. The receiver 

operating characteristic (ROC) curve was utilized to determine 

the efficacy of the nomogram model in predicting 

complications. The calibration curve was employed to evaluate 

the model’s calibration rate. The clinical decision curve was used 

to assess the clinical benefit of the model. A two-sided P < 0.05 

was considered statistically significant.

2.2 Data collection

Two team members completed all data collection between 

January 2025 and April 2025. All researchers underwent 

standardized training and assessment to ensure the 

standardization of data collection and research methods and to 

prevent data bias or errors due to human factors. Only those 

who passed the assessment were allowed to participate in the 

study. Furthermore, data entry was performed by two persons 

and was double-checked to ensure its accuracy, completeness, 

and authenticity. Any errors or discrepancies were reported to 

the researchers for prompt evaluation and correction.

3 Results

We conducted eligibility assessment for 752 patients who 

underwent endovascular intervention via femoral artery 

puncture between January 2020 and April 2025 using the 

hospital’s electronic medical record system. After excluding 245 

patients who met the exclusion criteria, 507 patients (398 males 

and 109 females) were ultimately enrolled in this study. Using 

RStudio 4.5.1, these 507 patients were randomly divided into a 

training set (n = 304) and a validation set (n = 203) at a 6:4 

ratio. The demographic and clinical characteristics of all patients 

in both the training and validation sets are presented in Table 1. 

Among these patients, a total of 19 cases developed 

postoperative complications, including three cases of 

postoperative bleeding (0.6%), 15 cases of hematoma (3%), and 

one case of pseudoaneurysm (0.2%). Four potential predictors 

were identified based on the multivariate logistic regression 

analysis results (Table 2): vascular calcification [odds ratio 

(OR) = 7.952, 95% confidence interval (CI): 1.653–38.254], 

history of diabetes (OR = 18.793, 95% CI: 3.670–96.225), platelet 

count (OR = 0.980, 95% CI: 0.967–0.994), and positional 

relationship between the puncture point and femoral head 

(OR = 6.125, 95% CI: 1.048–35.800). The four independent 

predictors were then employed to develop a nomogram 

associated with femoral artery access complications (Figure 2).

The ROC curves were plotted and the area under the ROC 

curve (AUC) values were calculated in order to test the 

discriminatory ability of the nomogram. The AUC values for the 

training and validation sets were 0.924 (95% CI: 0.839–1.000) 

and 0.946 (95% CI: 0.896–0.997), respectively, demonstrating 

good diagnostic performance (Figure 3). The sensitivity, 

specificity, and accuracy under the optimal cutoff value were 

81.80%, 95.20%, and 94.70%, respectively. Nomogram 

calibration was evaluated based on the calibration curves and 

the Hosmer-Lemeshow goodness-of-fit test (Figure 4). The 

calibration curves demonstrated that the nomogram’s 

predictions of femoral artery access complications were 

consistent with the actual incidence. The Hosmer-Lemeshow 

test yielded a p-value of 0.8184 for the training set and 0.9983 

for the validation set. Overall, the nomogram showed strong 

agreement between the observed outcomes and predictions.

Decision curves showed that the risk of femoral artery access 

complications was more accurately predicted using the 

nomogram when the risk threshold probability was between 3% 

and 100% in the present study and between 3% and 99% in the 

validation set (Figure 5).

4 Discussion

The femoral artery access complication prediction model 

developed in the present study is easy to implement and 

demonstrates strong predictive performance. It shifts the clinical 

approach from reactive intervention after symptom onset to 

proactive and targeted prevention before complications occur. 

ROC curves were used to evaluate the discrimination ability of 

the model. AUC values of 0.5–0.7 indicated low accuracy, AUC 

values of >0.7–0.9 represented moderate accuracy, and those 

≥0.9 showed high accuracy (5).

The present study suggests that platelet count, vascular 

calcification, diabetes history, and relative position of the 
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puncture point to the femoral head are independent risk factors 

for the complications of femoral artery access. The complication 

rate was 3.8% (19/507) in the 507 analyzed cases, which was 

lower than that reported in previous studies. The lower 

complication rate was primarily attributed to a systematic and 

precise order of operations, such as comprehensively assessing 

the target vessel calcification burden, thrombus distribution, and 

vascular tortuosity using preoperative computed tomography 

imaging and artificial intelligence analysis, precisely locating the 

spatial relationship between the puncture site and the femoral 

head based on intraoperative Digital Subtraction Angiography 

guidance to optimize the puncture path, and performing all 

procedures by the same experienced vascular interventional 

physician (6, 7). In this study, all three patients with post- 

procedural bleeding received continued manual compression at 

the femoral artery puncture site for 30 min, followed by the 

application of an elastic compression bandage for 6 h. Patients 

who developed a puncture site hematoma did not receive any 

specific additional intervention. For the patient diagnosed with a 

pseudoaneurysm, follow-up color Doppler ultrasound performed 

24 h postoperatively revealed a small aneurysm sac diameter, 

and thus no specific treatment was administered.

TABLE 1 Differences in characteristics between the training and validation groups.

Variables Total (n = 507) Training group (n = 304) Validation group (n = 203) t/Z/χ2 p

Complication [n (%)] <0.001 1

No 488 (96.25) 293 (96.38) 195 (96.06)

Yes 19 (3.75) 11 (3.62) 8 (3.94)

VCD [n (%)] 2.083 0.353

Vascular occluder 375 (73.96) 228 (75.00) 147 (72.41)

Suture-mediated vascular Closure device 132 (26.04) 76 (25.00) 56 (27.59)

PP—FH position relationship [n (%)] 0.644 0.422

Above 462 (91) 274 (90) 188 (93)

Around 45 (9) 30 (10) 15 (7)

Sex [n (%)] 0.036 0.85

Female 109 (21) 64 (21) 45 (22)

Male 398 (79) 240 (79) 158 (78)

Vascular calcification [n (%)] 0.262 0.609

No 426 (84) 258 (85) 168 (83)

Yes 81 (16) 46 (15) 35 (17)

Thrombosis [n (%)] 0.305 0.581

No 453 (89) 274 (90) 179 (88)

Yes 54 (11) 30 (10) 24 (12)

Vascular tortuosity [n (%)] 0.572 0.409

No 501 (99) 299 (98) 202 (100)

Yes 6 (1) 5 (2) 1 (0)

Hypertension [n (%)] 2.229 0.135

No 274 (54) 173 (57) 101 (50)

Yes 233 (46) 131 (43) 102 (50)

Diabetes [n (%)] 1.885 0.173

No 420 (83) 258 (85) 162 (80)

Yes 87 (17) 46 (15) 41 (20)

History of smoking [n (%)] 0.911 0.34

No 218 (43) 125 (41) 93 (46)

Yes 289 (57) 179 (59) 110 (54)

CKD [n (%)] 0.816 0.366

No 488 (96) 295 (97) 193 (95)

Yes 19 (4) 9 (3) 10 (5)

Maximum sheath size [n (%)] 4.897 0.724

≤8F 387 (76.33) 236 (77.63) 151 (74.38)

>8F 120 (23.67) 68 (22.37) 52 (25.62)

Age 64 (54.73) 63 (54.73) 65 (54.73) −0.401 0.688

BMI 23.44 (21.14, 25.18) 23.44 (21.26, 25.4） 23.44 (20.82, 25) −0.047 0.963

Surgery duration (min) 120 (70, 190) 120 (75, 200) 110 (70, 187.5) −1.406 0.16

Hospitalization duration (day) 9 (6, 12.5) 9 (6, 13) 9 (6, 12) −0.135 0.893

Platelet count 177 (124.5, 232.5) 178 (126.5, 223) 176 (124, 241) −0.938 0.349

INR 1.05 (0.97, 1.14) 1.05 (0.98, 1.14) 1.05 (0.97, 1.16) −0.09 0.929

Serum creatinine 68 (56, 80) 68 (55, 79.25) 68 (57, 80) −0.127 0.9

PP—FH position relationship: the positional relationship between the puncture point and femoral head; INR, international normalized ratio; CKD, prior diagnosis of CKD was established at 

a tertiary hospital. Vascular calcification, the CT attenuation value of calcified foci is ≥130 Hounsfield Units. Vascular tortuosity: the “double iliac sign” was visualized on a single CT 

axial plane.
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Research indicates that the optimal femoral artery puncture 

site is located at the midline level of the femoral head, which 

serves as a key bony landmark to indicate femoral artery course. 

The central plane of the femoral head closely corresponds to the 

anatomical course of the femoral artery. Schnyder et al. (8, 9) 

found that the femoral artery bifurcation is located at or slightly 

below the level of the femoral head midline in 98% of patients. 

Puncture at the level of the femoral head midline can avoid 

retroperitoneal bleeding caused by high-level puncture into the 

external iliac artery (10). Ahn et al. found that the safe distance 

between the puncture point and the femoral artery bifurcation is 

the largest and the risk of complications is the lowest when the 

TABLE 2 Multivariate logistic regression analysis results.

Variables B S.E. Wald P OR 95%CI

Vascular calcification 2.073 0.801 6.692 0.010 7.952 1.653– 

38.254

Diabetes 2.933 0.833 12.393 0.000 18.793 3.670– 

96.225

PP-FH position 

relationship

1.812 0.901 4.048 0.044 6.125 1.048– 

35.800

Platelet count -.020 0.007 8.234 0.004 0.980 0.967– 

0.994

Constant −2.655 0.982 7.309 0.007 0.070

PP—FH position relationship: the positional relationship between the puncture point and 

femoral head.

FIGURE 2 

Nomogram model of femoral artery interventional access complications. PP—FH position relationship: the positional relationship between the 

puncture point and femoral head.

FIGURE 3 

ROC validation of the nomogram prediction of femoral artery interventional access complications. The area under the curve represents the 

performance of the nomogram in the (A) training and (B) validation sets.
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puncture point is at the level of the femoral head midline. 

Moreover, femoral artery calcification is typically 

concentrated at the arterial bifurcation, whereas the vascular 

wall at the level of the femoral head midline generally 

exhibits minimal calcification (10). Puncturing calcified 

vessels often results in needle tip deviation or incomplete 

vessel entry, increasing the risk of repeated puncture attempts 

and subsequent hematoma formation (11). However, it is 

difficult to monitor the long blood vessels on the same 

interface due to the probe scanning range limitations. The 

femoral head provides a firm bony support for post- 

procedural compression at the vascular puncture site, 

facilitating effective vessel closure through compression 

devices or manual pressure, thereby significantly reducing 

time to hemostasis and minimizing vascular displacement (7, 

12–14). In addition, the distance between the femoral nerve 

and the blood vessels at this level is the largest (1–2 cm 

lateral), which can prevent nerve damage (15).

Long-term hyperglycemia exacerbates vascular lesions through 

multiple pathological mechanisms, including inducing endothelial 

cell dysfunction, increasing vascular permeability, and promoting 

low-density lipoprotein cholesterol (LDL-C) to penetrate the 

intima, oxidize, and form early atherosclerotic lesions (16). The 

hyperglycemic environment produces excessive reactive oxygen 

species, accelerating LDL-C oxidation and further promoting 

atherosclerosis progression (17). In addition, persistent 

hyperglycemia enhances the accumulation of advanced glycation 

end products (AGEs) by activating the Receptor for Advanced 

Glycation End Products (RAGE) receptor pathway. This 

condition increases collagen cross-linking and reduces elastic 

fiber content in the vascular wall, promoting vascular sclerosis 

(18–20). It simultaneously stimulates the proliferation and 

migration of vascular smooth muscle cells, thereby accelerating 

vascular calcification (20). The formation of calcified plaques 

significantly increases vascular fragility and the risk of vascular 

tearing or rupture during puncture operations (21, 22), weakens 

the vascular contraction and hemostasis ability, and reduces the 

efficiency of vascular closure devices (VCDs).

AGEs also impair the function of endothelial progenitor cells, 

delaying vascular repair and resulting in prolonged hemostasis 

FIGURE 4 

Calibration curves of femoral artery interventional access complications. The diagonal dotted line represents a perfect prediction by an ideal model. 

The solid line represents the performance of the (A) training and (B) validation sets, which indicated that a closer fit to the diagonal dotted line 

showed a better prediction.

FIGURE 5 

Decision curve analysis of femoral artery interventional access complications. The thick solid line represents the assumption that all patients did not 

develop complications after puncture. The thin solid line represents the assumption that all patients developed complications after puncture. The red 

line represents the risk nomogram for the (A) training and (B) validation sets.
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and extended compression time. This, in turn, increases the risk of a 

hematoma and pseudoaneurysm formation at the puncture site. 

Additionally, hyperglycemia can directly activate platelets, 

stimulate thromboxane A2 release, and enhance platelet 

aggregation and adhesion (23–25). Studies have shown that 

platelet reactivity in diabetic patients is significantly higher than 

that in non-diabetic patients (26). The accompanying endothelial 

damage reduces the secretion of nitric oxide and prostacyclin and 

induces abnormalities in the morphology and function of red 

blood cells and platelets, leading to a hypercoagulable state of 

blood (27–29). In this context, local hemodynamic changes after 

femoral artery puncture can easily induce thrombosis at the 

puncture site, thereby causing lower limb arterial embolism and 

circulatory disorders. It is worth noting that the peripheral nerve 

and microvascular lesions associated with diabetes can cause local 

tissue perfusion insufficiency and nutrient deficiency, 

significantly delaying the wound healing process and increasing 

the risk of complications, such as wound dehiscence and infection.

Vascular calcification can be classified into atherosclerosis-related 

intimal calcification and non-occlusive medial calcification based on 

its anatomical location, the latter primarily contributing to increased 

vascular stiffness and reduced compliance. Clinical studies have 

confirmed that severe vascular calcification can significantly impact 

VCD effectiveness and is an independent risk factor limiting 

successful VCD application (30). Additionally, calcified plaques 

create irregularities in the vessel wall, increasing the risk of intimal 

tearing and plaque rupture, which may lead to thrombosis or lipid 

embolism. The associated luminal stenosis further contributes to 

thrombus formation by disrupting normal hemodynamics (31, 32). 

Studies have shown that ultrasound guidance can increase the 

success rate of vascular closure device (VCD) deployment and 

reduce the incidence of complications (33). Calcified plaques can 

interfere with the accurate positioning of blood vessels using 

ultrasound (34) and cause the course of blood vessels to be 

relatively fixed, increasing the difficulty of the operation. Severe 

calcification in specific areas, such as the aorta and dialysis access 

vessels, is more likely to cause ischemia or even fatal 

complications. These risks are further heightened in the presence 

of hypertension or coagulation disorders (35, 36). Therefore, 

calcification of the anterior femoral artery wall has been reported 

as an independent risk factor for adverse events, such as vascular 

puncture complications and vascular suture device failure (37).

Therefore, appropriate perioperative preventive measures can 

be implemented, including establishing and strictly adhering to 

a standardized operating procedure for femoral artery puncture, 

improving preoperative evaluations, planning surgical and 

puncture procedures based on patient CT and three-dimensional 

reconstruction images, maintaining adequate glycemic control, 

enhancing theoretical knowledge and technical skills training, 

and standardizing postoperative monitoring, so as to minimize 

surgical trauma and reduce the incidence of severe postoperative 

complications.

The present study had several limitations. As a single-center 

retrospective analysis investigation, it was subject to inherent 

biases. Additionally, the low incidence of complications and 

limited sample size underscore the need for further studies with 

larger cohorts. The absence of long-term follow-up data and the 

omission of certain potential risk factors may render the 

conclusions somewhat limited and subjective. The sample size of 

the constructed model was relatively small, and only internal 

validation methods were used for verification. Therefore, future 

large-sample, multicenter prospective studies are needed to 

further revise and optimize the model to improve its 

generalization ability and better meet the clinical needs.

5 Conclusions

Platelet count, vascular calcification, positional relationship 

between the puncture site and the femoral head, and diabetes 

are the independent risk factors for femoral artery access 

complications. The nomogram prediction model developed 

based on these risk factors demonstrated a strong predictive value.
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