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Explainable machine learning- 
based prediction of early and 
mid-term postoperative 
complications in adolescent 
tibial fractures
Yufeng Wang†, Jingxia Bian†, Yang Yuan, Cong Li and Yang Liu*

Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 
China

Background: Adolescent tibial fractures commonly lead to postoperative 
complications. Conventional coagulation markers (PT/APTT/FIB) lack 
combinatorial risk assessment. We developed an explainable ML model 
integrating coagulation and clinical features to predict adverse events.
Methods: A retrospective cohort of 624 surgical patients (13–18 years) was 
analyzed. AutoML with Improved Harmony Search Optimization (IHSO) 
processed features: age, fracture classification, surgery duration, blood loss, 
and 24 h-postoperative labs (coagulation triad/D-dimer/CRP). Primary 
outcome: 90-day composite adverse events (DVT/infection/early callus 
formation disorder/reoperation). SHAP explained predictions.
Results: Baseline characteristics were balanced between training and test sets 
(P > 0.05). The IHSO-optimized algorithm outperformed controls in 91.67% of 
CEC2022 benchmark functions. AutoML model performance significantly 
surpassed conventional methods: training set ROC-AUC: 0.9667, test set 
ROC-AUC: 0.9247 (PR-AUC: 0.8350). Decision curves demonstrated clinical 
net benefit across 6%–99% risk thresholds. Key feature importance ranked as: 
age > operative duration > fibrinogen > fracture classification > APTT > CRP >  
BMI > D-dimer. SHAP analysis revealed: 1) Increasing age significantly 
attenuates the risk contribution of surgery duration; 2) FIB >4.0 g/L + elevated 
CRP indicated coagulation-inflammation cascade; 3) AO-C type fractures 
carried highest risk.
Conclusion: This AutoML model, validated through explainability techniques, 
confirms the core predictive value of age, operative duration, and 
coagulation-inflammation networks for adolescent tibial fracture risk 
management. Though requiring prospective validation, the three-tier warning 
system establishes a stepped framework for individualized intervention. Future 
studies should advance multicenter collaborations integrating dynamic 
monitoring indicators to optimize clinical applicability.
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1 Introduction

Adolescent tibial fractures represent one of the most common 
sports-related lower limb traumas in individuals aged 12–18 years, 
accounting for approximately 15%–25% of lower extremity 
fractures in this age group (1, 2). For such fractures, the early to 
mid-term postoperative period (typically within 3 months after 
surgery) is a critical phase for functional recovery. However, this 
process is frequently complicated by various adverse events. 
Clinically, deep vein thrombosis (DVT), surgical site infection 
(SSI), and impaired early callus formation are particularly 
notable complications, with significantly higher incidence rates 
in open fractures compared to closed fractures (2, 3). Notably, 
current pathophysiological studies suggest that DVT, SSI, and 
callus formation disorders are not isolated events but rather 
share a common underlying mechanism—sustained post- 
traumatic inflammation and hypercoagulability—exhibiting 
complex interactions (4–7). These complications not only 
substantially prolong hospital stays and increase healthcare costs 
but may also cause potential damage to the still-open growth 
plates of adolescents, adversely affecting long-term bone 
development and limb function. Therefore, systematic evaluation 
and early warning of these complications are critically important.

The 24-h postoperative period serves as a critical observation 
window for systemic stress response, during which coagulation 
parameters carry significant prognostic value. Currently, clinical 
practice relies on the conventional coagulation triad 
[prothrombin time (PT), activated partial thromboplastin time 
(APTT), and fibrinogen (FIB)] as a foundational assessment of 
clotting function, yet its clinical value is often confined to 
single-threshold warnings (8–10). The combined dynamic 
patterns of these indicators and their interactions with 
inflammation and traumatic stress remain underexplored for 
predicting comprehensive postoperative complications risks. 
Traditional logistic regression encounters significant challenges 
when modeling such complex relationships, as it fundamentally 
relies on manually constructed interaction terms. This approach 
faces two major limitations during feature space expansion: 
First, the inherent linear kernel structure fails to adequately 
represent high-order nonlinear associations between variables; 
second, the model becomes vulnerable to regression coefficient 
distortion caused by multicollinearity effects (11).

In recent years, explainable artificial intelligence (XAI) 
techniques have offered innovative solutions to these challenges 
(12). This study pioneers the integration of Automated Machine 
Learning (AutoML) with the Shapley value interpretability 
framework to address two core questions: (1) how to utilize 
early postoperative coagulation and inflammatory biomarkers 
(combined with injury severity and patient factors) to construct 
a high-accuracy prediction model for forecasting medium-to- 
early-term postoperative complications in adolescent tibial 
fracture patients, and (2) how to translate “black-box” 
predictions into actionable clinical insights. By establishing an 
integrated decision tool with both predictive power and clinical 
interpretability, this work enables personalized postoperative 
complications risk stratification for adolescent fracture patients, 

providing a theoretical foundation for early, precise 
intervention strategies.

2 Data and method

2.1 Study subjects

This study adopted a retrospective cohort design and 
consecutively enrolled 624 adolescent tibial fracture patients 
who underwent open reduction and internal fixation (ORIF) at 
a Grade III Class A orthopedic center from January 2019 to 
December 2023. Inclusion criteria: (1) age meeting the medical 
definition of adolescents (13–18 years); (2) closed unilateral 
tibial shaft or metaphyseal fracture confirmed by CT 
(excluding Salter-Harris type IV/V fractures involving the 
epiphysis); (3) fixation using a standardized locking 
compression plate (LCP) system; (4) availability of complete 
90-day postoperative follow-up records. Exclusion criteria: (1) 
open fracture (Gustilo type II or higher); (2) concomitant 
craniocerebral or thoracoabdominal trauma requiring 
emergency surgery; (3) history of coagulation dysfunction 
(coagulation factor activity <50%) or use of anticoagulant/ 
antiplatelet drugs within the past 3 months; (4) renal 
insufficiency (eGFR <60 ml/min/1.73m2) or liver disease 
(Child-Pugh ≥ B). In the final cohort, the training set (n = 499) 
and test set (n = 125) were divided in a 4:1 ratio through 
stratified random sampling to ensure consistent proportions of 
adverse prognostic events between the two groups. This study 
protocol was approved by the hospital ethics committee (Ethics 
Approval Number: IRB-2024-ortho038), and the research 
process strictly adhered to the Declaration of Helsinki and 
relevant norms for medical data management, ensuring full 
protection of patient rights and the legality and compliance of 
data collection, collation, and analysis.

2.2 Data collection and preprocessing

All data were collected through dual channels: the hospital 
electronic medical record (EMR) system and a specialized 
trauma database, encompassing three categories of core 
information: (1) baseline characteristics: Age, sex, body mass 
index (BMI), fracture AO/OTA classification (assessed blindly 
by two attending physicians), injury mechanism (sports injury/ 
traffic accident/fall from height/other), surgical duration (from 
skin incision to suture completion), intraoperative blood loss 
(measured by suction and gauze weighing method). 
(2) Perioperative laboratory indicators: Routine coagulation 
triad (PT, APTT, FIB) and D-dimer (immunoturbidimetric 
method), CRP (latex-enhanced nephelometry) were collected 
under fasting conditions within 24 h postoperatively and 
detected using the Sysmex CS-5100 system. Anticoagulant 
tube specimens were centrifuged within 30 min 
(3,000 rpm × 15 min) and stored at −80 °C for testing. (3) 
Outcome measures: The primary outcome was composite 
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medium-to-early-term postoperative complications adverse 
events occurring within 90 days postoperatively, defined as 
meeting at least one of the following conditions: Symptomatic 
deep vein thrombosis (DVT) or non-fatal pulmonary embolism 
(PE) confirmed by imaging or ultrasound; Confirmed surgical 
site infection (deep or superficial incision infection) requiring 
antibiotic treatment or surgical intervention; Standard 
radiographic evaluation reveals significantly insufficient or 
absent callus formation at the fracture site, manifested as 
clearly visible fracture lines without bridging callus formation; 
Internal fixation failure (e.g., screw loosening, plate fracture); 
Non-infectious wound complications requiring reoperation 
(e.g., poor healing, dehiscence, hematoma compression). 
Events were assessed and confirmed blindly by two senior 
orthopedic surgeons independent of this study, with 
disagreements resolved by a third expert.

Data processing followed three standardized procedures: (1) 
missing data handling: The overall missing rate was <3%, 
meeting conventional standards for low missing-rate datasets. 
For missing values in continuous variables, we employed 
multiple imputation with five imputations and used predictive 
mean matching algorithms to preserve reasonable data 
distributions. For missing categorical variables, mode imputation 
was applied to maintain category completeness. To further 
clarify the missing data mechanism, Little’s test for missing 
completely at random (Little’s MCAR test) was conducted, 
yielding a p-value >0.05, supporting the assumption that data 
were missing completely at random (MCAR)—meaning 
missingness was unrelated to both observed and unobserved 
variables. This validation reinforces the appropriateness of 
multiple imputation and effectively reduces potential selection 
bias due to missingness, particularly in analyses involving 
outcome measures such as adverse events, ensuring robust and 
reliable estimation results. (2) Sample balancing: To address the 
mild imbalance in the training set where adverse events 
accounted for 25.3% (126/499), the SMOTENC (Synthetic 
Minority Over-sampling Technique for Nominal and 
Continuous) algorithm was used to synthesize minority class 
samples, increasing adverse events to 40% (199/499) and 
retaining 70% of the original majority class samples (using a 
cluster cleaning mechanism to suppress noise generation). (3) 
Variable transformation: All continuous variables were 
standardized using Z-score; multicategorical data were one-hot 
encoded. (4) Data quality control: Through dual independent 
entry verification (Kappa consistency coefficient = 0.92) and 
logical checks for discrete variables. The complete feature list is 
provided in Appendix Table S1.

2.3 Prediction model construction

2.3.1 Automated machine learning model
This study employed an automated machine learning 

(AutoML) model based on an optimization algorithm, deeply 
integrating a triple synergistic mechanism encompassing base 
learner selection, feature screening, and hyperparameter 

optimization. This framework unified three types of decision 
spaces into a mixed solution vector:

x ¼ ( k|{z}
model type

j d1, d2, . . . , dm|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
feature selection

j l1, l2, . . . , ln|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
hyperparameter

) 

where k is a discrete variable (1 = Logistic Regression, 2 = Support 
Vector Machine, 3 = Adaboost, 4 = XGBoost, 5 = LightGBM); the 
feature selection vector δ adopts 0/1 encoding; hyperparameters 
λ are dynamically adapted based on model characteristics.

The optimization process is driven by a swarm intelligence 
algorithm. Each evaluation executes core operations: first, 
determining the base learner type based on the k-value; then 
screening feature subsets via the δ vector; finally, injecting λ 
parameters into the model architecture. Configured models 
undergo comprehensive evaluation via 10-fold cross-validation, 
forming a synergistic feedback loop of “model architecture- 
feature representation-parameter configuration.” The core of 
collaborative optimization is the dynamically weighted fitness 
function:

f (x) ¼ w1(t) � ACCCV þ w2 � 1 �
kdk0

m

� �

þ w3 � exp (� T=Tmax) 

This function integrates three key dimensions: model accuracy 
(ACC term), feature sparsity, and time-computational cost 
(exponential decay term). Weight coefficients w1, w2, w3 are 
dynamically adjusted per iteration t: initial phases prioritize 
accuracy (w1 dominant); mid-phases balance accuracy and 
sparsity; final phases emphasize model simplification (w1 

adjusted), with w2 and w3 set to equal weights. Traditional 
machine learning models (LR and SVM) and ensemble learning 
models (Adaboost, XGBoost, and LightGBM) were included for 
performance comparison. The AutoML flowchart is shown in 
Figure 1.

2.3.2 Improved swarm intelligence algorithm 
method

This study employed the classical Holistic Swarm 
Optimization (HSO) (13) algorithm to guide AutoML 
optimization. HSO is a novel nature-metaphor-independent 
swarm intelligence optimization method. Unlike traditional 
algorithms that rely solely on individual experience or local 
neighborhoods for search decisions, HSO instead leverages the 
information distribution and fitness landscape of the entire 
population to guide optimization paths—akin to a 
comprehensively depicted “swarm map,” where each individual’s 
actions are precisely adjusted within this panoramic framework. 
The algorithm intentionally eschews specific natural analogies or 
bio-inspiration in its design, focusing instead on rational 
mechanisms. It achieves a dynamic balance between global 
exploration and local exploitation through root-mean-square 
fitness-guided displacement coefficients, a selection process 
controlled by simulated annealing strategies, and an adaptive 
perturbation mechanism.
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Building upon the original HSO, this study first reconstructs 
the initial population using chaotic mapping, enhancing search 
space diversity via nonlinear stochastic sequence generation 
strategies. Second, a dynamic spiral exploration mechanism is 
integrated, combined with Cauchy mutation perturbation to 
adjust the global-local convergence balance capability of 
individuals. This enhances the algorithm’s adaptability to 
complex parameter spaces, ultimately yielding IHSO (Improved 
Holistic Swarm Optimization).

To further validate the performance of IHSO, the CEC2022 
standard test functions were adopted to evaluate the algorithm 
(14). Comparative algorithms included the original HSO, 
Particle Swarm Optimization (PSO) (15), Harris Hawks 
Optimization (HHO) (16), and Whale Optimization Algorithm 
(WOA) (17). Twelve benchmark functions were selected, with 
the variable dimension of all test functions set to 10, population 
size to 30, and maximum iterations to 500. Each algorithm was 
independently run 30 times to ensure statistical reliability, with 
the results of these 30 runs ultimately compared. At the 
empirical data level, dual validation was conducted by 

constructing a clinical prognosis prediction model: Robustness 
testing was performed through artificially injecting progressive 
data disturbances (0%–15% noise combined with 0%–30% 
missing values); meanwhile, a feature selection module was 
designed to evaluate the model’s complexity control capability.

2.3.3 Model predictive performance 
evaluation metrics

This study constructed a composite evaluation system from 
three dimensions—classification performance, calibration 
performance, and clinical application—to systematically validate 
the comprehensive efficacy of the model in prognostic 
prediction tasks. The specific metrics include: 

1. Classification Performance:

Basic Metrics: Accuracy (ACC), Sensitivity (SEN), and Specificity 
(SPE) quantify the model’s overall discriminative power, ability to 
identify positive samples, and ability to exclude negative samples, 
respectively. Comprehensive Metric: The F1-score was used to 
evaluate the balance between precision and recall. Curve 

FIGURE 1 

Flowchart of the automated machine learning model.
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Evaluation: The Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC) measures the model’s ability to distinguish 
between different outcomes. The Area Under the Precision- 
Recall Curve (AUC-PR) evaluates the model’s robustness in 
imbalanced sample scenarios. The DeLong test was employed to 
compare the statistical differences in AUC-ROC between 
different models. 

(2) Calibration Performance:

Calibration curves combined with the Brier score (lower values 
indicate greater prediction accuracy) were used to assess the 
accuracy of probability predictions. 

(3) Clinical Application:

This study employed Decision Curve Analysis (DCA) to quantify 
the clinical utility value of the prediction model. This method 
evaluates the clinical decision-making efficacy of the model 
across continuous risk thresholds by calculating the Net Benefit 
(NB), objectively measuring the benefit-risk balance of model- 
guided interventions. The calculation of Net Benefit integrates 
the benefit of correctly identifying true positive cases with the 
cost of misclassifying false positive cases. This method 
overcomes the limitation of traditional metrics in quantifying 
clinical utility, intuitively demonstrating the value of the model’s 
intervention recommendations under different risk preferences 
and providing an empirical basis for personalized treatment.

2.4 Interpretability analysis

After preliminary feature screening for prognostic prediction 
via the AutoML framework, the study further employed LASSO 
regression analysis to validate the robustness of the selected 
features. Finally, the SHAP interpretability model was utilized to 
analyze the clinical rationality of these features. The specific 
workflow is as follows: 

1. AutoML Initial Feature Screening:

Based on predefined search spaces and optimization objectives, 
AutoML algorithms automatically identified the subset of 
features significantly associated with prognosis. 

(1) LASSO Feature Validation:

LASSO regression was applied to the feature subset screened by 
AutoML. The sparsity and stability of these features were 
validated through a regularization constraint mechanism, 
ensuring the key features’ resistance to overfitting. Differences 
between features selected by LASSO and those automatically 
screened by AutoML were compared. 

(2) SHAP (Shapley Additive Explanations) Interpretability 
Analysis:

The SHAP algorithm, constructed based on game theory, 
quantified the contribution of model features. Global feature 
importance rankings revealed the overall impact strength of key 
variables, enabling visualization of the prediction logic and 
thereby validating its rationality.

2.5 Statistical analysis

The research data were uniformly imported into the SPSS26.0 
statistical analysis platform for standardized processing. 
Continuous variables conforming to normal distribution were 
expressed as mean ± standard deviation (x ± s); continuous 
variables not conforming to normal distribution were expressed as 
median (interquartile range) [M (P25, P75)]; categorical variables 
were expressed as frequency and percentage [n(%)]. For 
intergroup comparisons, for continuous variables, normality tests 
were first performed. If both groups of data conformed to normal 
distribution, a one-way t-test was used for intergroup comparison; 
if the data did not conform to normal distribution, the Mann– 
Whitney U test was used for intergroup comparison. For 
categorical variables, intergroup comparison was performed using 
Pearson’s chi-square test. The test efficacy was based on the 
P-value (two-sided test, significance threshold set to α = 0.05). The 
research results were presented in a structured tabular format.

3 Result

3.1 Comparison of baseline data

The average age of the overall sample was (15.64 ± 1.78) years, 
comprising 402 males and 222 females. The training set (n = 499) 
and the test set (n = 125) showed no statistically significant 
differences in all baseline characteristics and laboratory 
indicators (all P > 0.05), indicating effective random stratified 
sampling: the proportions of poor prognosis events were highly 
consistent between the two groups (training set 25.25% vs. test 
set 25.60%, χ2 = 0.006, P = 0.936). Details are presented in Table 1.

3.2 Improved algorithm simulation test

3.2.1 Standard test function simulation 
experiments

Based on a standardized evaluation framework, this study 
systematically compared the improved IHSO algorithm with the 
original HSO and other swarm intelligence algorithms (PSO, 
HHO, WOA) across 12 benchmark functions of the CEC2022 test 
system. Statistical robustness was verified through 30 independent 
repeated experiments. The results demonstrated that the improved 
algorithm achieved optimal solutions in 11 functions (91.67%) 
(Figure 2A). Its solution distribution range exhibited significant 
convergence with fewer outliers, indicating that the proposed 
mechanism effectively enhanced optimization stability. Dynamic 
iteration analysis (Figure 2B) revealed that IHSO achieved the 
fastest convergence speed in key test functions (F1, F3, F5, F6, F7, 
F9, and F10), proving its comprehensive improvement in 
balancing global exploration (rapid early-stage decline) and local 
exploitation (fine-tuned late-stage optimization) capabilities.

3.2.2 Analysis of real-world clinical data
By artificially injecting progressive data perturbations, this 

study evaluated the performance of prognostic prediction 
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models based on real-world clinical data. Experimental results 
demonstrated that all intelligent algorithms exhibited 
performance degradation trends as perturbation intensity 
increased (Figure 3). Under original data conditions, the five 
types of algorithms achieved an average prediction accuracy of 
AUC = 0.84; however, under extreme perturbation scenarios 
(15% noise combined with 30% missing values), model 
performance significantly declined to an average AUC = 0.71, 
representing a relative decrease of 15.5%. Among them, the 
IHSO algorithm displayed optimal stability: its prediction 
accuracy decreased from AUC = 0.91 in the original scenario to 
AUC = 0.78 in high-perturbation scenarios, with a relative 
decline (14.3%) significantly lower than other algorithm groups 
(all declines >20%).

At the key feature identification level, the IHSO algorithm 
demonstrated excellent compactness characteristics (Figure 4). 

It stably screened out 8 highly correlated predictors (average 
correlation coefficient r = 0.67, SD = 0.08), representing a 26% 
reduction compared to the average of 10.8 features selected by 
other algorithms. This feature refinement mechanism effectively 
reduced model complexity while maintaining prediction accuracy.

3.3 Training set cross-validation 
comparison

This study systematically evaluated the prediction performance 
of six machine learning models on the training set, including 
metrics such as precision, sensitivity, specificity, accuracy, 
F1-score, and area under the curve. The results demonstrated that 
the AutoML model exhibited comprehensively optimal 
performance, with its ROC-AUC reaching 0.9667 and PR-AUC at 
0.9182. Notably, AutoML showed particularly outstanding 
advantages in the F1-score (0.8928), indicating its stronger clinical 
application value in balancing precision and recall. The features 
ultimately selected by AutoML were: age, surgery duration, FIB, 
AO/OTA, APTT, CRP, BMI, and D-dimer. Details are provided 
in Table 2 and Figure 5.

3.4 Test set prediction performance 
comparison

In this study, in the prediction task of medium-to-early-term 
postoperative complications adverse events after adolescent tibial 
fracture surgery, the performance of six machine learning 
models on the test set was systematically evaluated. The results 
showed that AutoML exhibited the strongest robustness in the 
independent test set, with ROC-AUC reaching 0.9247 and PR- 
AUC at 0.8350 (Figure A,B); Decision curve analysis (Figure 3C) 
showed that applying the AutoML prediction model in the test 
set within the risk threshold range of 6% to 99% could bring 
greater clinical net benefit compared to traditional methods; the 
net benefit curve of this model could maintain a high level and 
remain stable over a wide range of threshold probabilities, 
indicating its good generalization ability and stable prediction 
performance; Calibration curve analysis (Figure 3D) confirmed 
that the predictive calibration performance of the AutoML 
model was significantly better than other models, with its test 
set Brier score (0.164) being the lowest. Details are provided in 
Table 3 and Figure 6.

3.5 Subgroup analysis

Stratified analyses were conducted by gender (male and 
female) and age (divided into two subgroups: 13–15 years and 
16–18 years). The results showed significant differences among 
gender subgroups, with female patients demonstrating 
significantly better prognostic prediction performance than 
males (AUC: 0.8851 for females vs. 0.9617 for males, p < 0.05). 
No statistically significant difference was observed between age 

TABLE 1 Comparison of baseline characteristics between training and 
test sets.

Feature Training 
set

Test set Statistic P- 
value

(n = 499) (n = 125)
Poor outcome events, n 
(%)

126 (25.25%) 32 (25.60%) χ2 = 0.006 0.936

Age (years) 15.42 ± 1.75 15.64 ± 1.87 t = 1.240 0.216

(Mean ± SD)
Male sex, n (%) 322 (64.53%) 80 (64.00%) χ2 = 0.012 0.912
BMI (kg/m2) 20.35 [18.15– 

22.71]
20.49 [18.33– 

22.92]
U = 29,608 0.425

[Median (IQR)]
AO/OTA Fracture 
Classification, n (%)

χ2 = 0.030 0.985

Type A (Simple) 177 (35.47%) 44 (35.20%) — —
Type B (Wedge) 198 (39.68%) 49 (39.20%) — —
Type C (Complex) 124 (24.85%) 32 (25.60%) — —
Injury mechanism, n 
(%)

χ2 = 0.165 0.983

Sports injury 211 (42.28%) 52 (41.60%) — —
Traffic accident 197 (39.48%) 49 (39.20%) — —
Fall from height (≥3 m) 60 (12.02%) 15 (12.00%) — —
Other 31 (5.61%) 9 (6.40%) — —
Surgery duration (min) 110 [87–138] 115 [90–143] U = 29,521 0.44

[Median (IQR)]
Blood loss (ml) 148 [107–193] 155 [115–200] U = 29,650 0.352

[Median (IQR)]

Postoperative lab parameters
PT (s), Mean ± SD 12.55 ± 1.00 12.58 ± 1.07 t = 0.295 0.768
APTT (s), Mean ± SD 33.42 ± 3.45 33.51 ± 3.57 t = 0.259 0.795
FIB (g/L), Mean ± SD 3.63 ± 0.85 3.60 ± 0.92 t = 0.347 0.729
D-dimer (mg/L FEU) 0.85 [0.61– 

1.18]
0.87 [0.63– 

1.21]
U = 29,143 0.583

[Median (IQR)]
CRP (mg/L) 19.35 [13.25– 

26.85]
20.15 [13.88– 

27.58]
U = 28,897 0.681

[Median (IQR)]

SD, standard deviation; IQR, interquartile range; AO/OTA, Arbeitsgemeinschaft für 
Osteosynthesefragen/Orthopaedic Trauma Association; FET, Fisher’s exact test; PT, 
prothrombin time; APTT, activated partial thromboplastin time; FIB, fibrinogen; FEU, 
fibrinogen equivalent units; CRP, C-reactive protein.
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FIGURE 2 

Performance simulation test of swarm intelligence algorithm optimization. (A) Box plots of optimization results after 30 independent runs of each 
algorithm on CEC2022 test functions, demonstrating the optimization stability and robustness of each algorithm; (B) convergence curves of each 
algorithm during the optimization process, reflecting their convergence speed and ability to avoid local optima.
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subgroups (AUC: 0.9200 for 13–15 years vs. 0.9254 for 16–18 
years, p > 0.05). See Figure 7 for details.

3.6 Interpretability analysis

3.6.1 Feature validation
Adopted LASSO regression for feature screening on the 

training set data (Figure 8), to validate the effectiveness of the 
AutoML model in feature screening. LASSO selected variables 
within one standard error of the minimum MSE in the sparse 
model (Lambda1SE), screened out 9 variables: age, surgery time, 
FIB, AO/OTA, APTT, CRP, BMI, D-dimer, blood loss, with an 
overlap rate with AutoML screened features of 88.89% (8/9).

3.6.2 SHAP analysis
According to the SHAP analysis results in Figure 6, the 

importance ranking is: age, surgery time, FIB, AO/OTA, APPT, 
CRP, BMI, D-dimer (Figures 9A,B); the baseline risk of complex 
fractures is higher than that of simple fractures (Figure 9C); the 
interaction effect between age and surgery duration (Figure 9D) 
shows that increasing age significantly attenuates the risk 
contribution of surgery duration. This is manifested as a 
concentrated negative shift in the SHAP values of the age 

variable for older age groups (>15 years) undergoing prolonged 
surgeries (>130 min), with the lowest value reaching −0.3; 
fibrinogen (FIB) > 4.0 g/L, along with elevated C-reactive protein 
(CRP), suggests the presence of a coagulation-inflammation 
cascade (Figure 9E); interaction between APTT and BMI 
(Figure 9F), a median activated partial thromboplastin time 
(APTT) (33–36 s) combined with a higher body mass index 
(BMI) (>22 kg/m2) indicates an increased risk of thrombosis.

3.7 Clinical decision system

This system designs a visual and interactive prediction 
interface. After clinicians input key indicators such as the 
patient’s age, surgery duration, fibrinogen (FIB) level, and 
fracture AO classification in the “Feature Input” panel, the 
system calculates the probability (0%–100%) of medium-to- 
early-term postoperative complications adverse events in real- 
time based on the trained AutoML model (Figure 10).

This risk probability is visually presented through a three-tier 
warning system: low risk (<30%) recommends routine 
rehabilitation follow-up; moderate risk (30%–70%) initiates an 
enhanced monitoring scheme; high risk (>70%) requires 
immediate intervention. For different risk levels, distinct clinical 

FIGURE 3 

Robustness comparison of intelligent algorithms in predicting composite postoperative outcomes. This figure demonstrates the stability 
performance of five intelligent algorithms (IHSO/HSO/PSO/HHO/WOA) under increasing data interference scenarios. The boxplots represent the 
distribution of cross-validated AUC values from 10 repeated experiments, while the scatter points indicate single experimental results. Algorithm 
color coding: IHSO (forest green), HSO (blue), PSO (red), HHO (purple), WOA (cyan). The red dashed line indicates the clinically acceptable 
threshold (AUC = 0.7), values below which are considered insufficient for clinical reference.
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intervention pathways can be adopted: (1) low-risk patients: 
Implement a standard rehabilitation plan (outpatient follow-up 
at postoperative weeks 1, 2, and 4), with recommended basic 
anticoagulation measures and early weight-bearing training 
(progressively reaching 50% body weight load within 4 weeks 
postoperatively); (2) moderate-risk patients: Increase vascular 
ultrasound monitoring to twice weekly (to exclude DVT), 
elevate physical therapy frequency to every other day (including 

pulsed electromagnetic field stimulation), and upgrade 
pharmacological intervention (rivaroxaban + low molecular 
weight heparin bridging); (3) high-risk patients: Initiate 
multidisciplinary consultation (orthopedics/hematology/ 
rehabilitation) within 48 h, enforce inpatient monitoring for ≥7 
days, adjust drug regimen to therapeutic anticoagulation dose 
(enoxaparin 1 mg/kg bid), and implant a remote bone healing 
monitoring sensor (transmitting callus CT value changes daily).

FIGURE 4 

Clinical feature analysis and feature selection optimization. This study compared the correlation strength between 12 clinical features and 
postoperative outcomes, and evaluated the feature selection performance of the IHSO algorithm against other optimization algorithms (HSO, 
PSO, HHO, WOA). The left panel displays the correlation coefficients (r) between each feature and the outcomes, with dark blue indicating highly 
correlated features (r > 0.5), light blue indicating weakly correlated features (r ≤ 0.5), and the gray dashed line representing the correlation 
threshold of 0.5. The right panel shows the feature selection results of the algorithms, where dark green squares (★) represent features selected 
by IHSO, and light blue squares (✓) represent features selected by other algorithms.

TABLE 2 Prediction performance metrics of training set cross-validation.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC
LR 0.3181 0.9365 0.3217 0.4770 0.4748 0.8150 0.6392
SVM 0.2725 0.9841 0.1126 0.3327 0.4269 0.7859 0.6005
Adaboost 0.3833 0.9127 0.5040 0.6072 0.5399 0.8511 0.7257
XGBoost 0.4754 0.9206 0.6568 0.7234 0.6270 0.9092 0.8203
LightGBM 0.3761 0.9762 0.4531 0.5852 0.5430 0.9060 0.7893
AutoML 0.7452 0.9286 0.8928 0.9018 0.8269 0.9667 0.9182
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4 Discussion

This study addresses the clinical needs for postoperative 
management of adolescent tibial fractures by constructing an 
integrated risk prediction system based on explainable machine 
learning. By integrating the Improved Harmony Search 
Optimization (IHSO) algorithm with an automated machine 
learning (AutoML) framework, the model systematically 
balances prediction accuracy and clinical interpretability. The 
eight key predictors selected by AutoML have clear clinical 
pathological foundations: age and surgery duration serve as 
primary drivers, reflecting the special sensitivity of adolescents 
in the skeletal development stage to surgical trauma; fibrinogen 
(FIB) surpasses traditional PT/APTT indicators in core 
importance, highlighting its “double-edged sword” characteristic 
—acting as both a substrate for thrombosis and a medium for 
tissue repair (8, 18); the FIB-CRP interaction effect, visualized 
through SHAP plots, confirms the pathological hub role of the 
coagulation-inflammation cascade (19–21); and the AO 
classification (especially type C complex fractures) serves as an 

objective measure of anatomical injury severity through 
mechanisms such as periosteal blood supply disruption and 
mechanical instability (22). This combination of features 
overcomes the limitations of single-indicator threshold warnings, 
achieving a holistic assessment of multidimensional pathological 
networks. Additionally, it was noted that postoperative 
normalization of D-dimer levels could serve as a biological 
marker of surgical success, with its prognostic value potentially 
deriving from its ability to quantify postoperative recovery 
capacity following surgical stress.

Regarding outcome measures, we adopted a pathophysiology- 
driven approach, considering that systemic stress responses in 
adolescents following tibial fractures exhibit distinct features 
compared to adults, with more pronounced crosstalk among 
coagulation, inflammation, and bone metabolism networks (5, 
23). Multiple preclinical studies support this notion, suggesting 
that deep vein thrombosis (DVT), surgical site infection (SSI), 
and impaired early callus formation may share common driving 
pathways. For instance, persistently activated thrombin– 
protease-activated receptor (PAR) signaling post-trauma has 

FIGURE 5 

Performance of training Set cross-validation. (A) Training set ROC curve; (B) Training set PR curve.

TABLE 3 Prediction performance metrics of test set.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC
LR 0.2672 0.9688 0.0860 0.3120 0.4189 0.7345 0.5310
SVM 0.2581 1.0000 0.0108 0.2640 0.4103 0.7513 0.5366
Adaboost 0.3229 0.9688 0.3011 0.4720 0.4844 0.8007 0.6380
XGBoost 0.3131 0.9688 0.2688 0.4480 0.4733 0.8357 0.6540
LightGBM 0.4906 0.8125 0.7097 0.7360 0.6118 0.8629 0.7113
AutoML 0.5357 0.9375 0.7204 0.7760 0.6818 0.9247 0.8350
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been identified as a key integrating factor: upregulation of this 
pathway not only promotes a hypercoagulable state (potentially 
increasing DVT risk) but also exacerbates local inflammation 
and tissue damage through neutrophil extracellular trap (NET) 
release (linked to SSI risk), while simultaneously disrupting 
osteogenic signal transduction during early callus formation 
(affecting the initial healing process) (4, 5, 7). This pleiotropic 
mechanism implies that DVT, SSI, and impaired bone healing 
are not isolated events but rather different clinical 
manifestations potentially stemming from the same 
pathophysiological axis. Therefore, given this shared biological 
foundation, developing an integrated model capable of 
concurrently predicting the risk of multiple complications is 
rationally justified (6, 24). From a clinical decision-making 
perspective, the application value of composite endpoints lies in 
providing a comprehensive risk assessment tool that assists 

physicians in early identification of high-risk patients, thereby 
enabling targeted preventive strategies and optimized 
postoperative management. For example, in high-risk adolescent 
tibial fracture cases, the composite endpoint could screen for 
individuals with elevated multisystem complication risks, 
facilitating multidisciplinary interventions. Furthermore, this 
model is adaptable for postoperative monitoring, such as 
integrating multiple indicators during routine follow-ups to 
enhance both the timeliness and comprehensiveness of 
interventions. In summary, the composite endpoint design not 
only strengthens the biological plausibility of predictive models 
but also improves their clinical applicability and generalizability.

At the methodological level, the improved IHSO algorithm 
significantly enhances the stability and efficiency of the feature 
selection process through chaotic mapping initialization and 
dynamic spiral exploration mechanisms. More importantly, this 

FIGURE 6 

Performance of test Set. (A) Test set ROC curve; (B) test set PR curve; (C) test set DCA curve; (D) test set calibration curve.
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study deeply integrates the game-theoretic interpretability 
framework (SHAP) into the AutoML workflow, generating three 
innovative values: first, the global feature importance ranking 
provides physicians with decision priority references, such as the 
higher regulatory value of surgery duration over BMI; second, 
the interaction effect plot reveals that in adolescents over 15 
years old, the increase in age significantly reduces the 
contribution intensity of surgery duration to risk, which may be 
related to the enhancement of surgical stress compensation 
ability after growth plate closure (25, 26); third, the APTT-BMI 
“paradox effect” (where normal APTT becomes a risk factor in 
high-BMI populations) provides clinical evidence for the theory 
that adipokines interfere with coagulation balance (27, 28). The 
model maintains excellent performance on an independent test 
set, and decision curve analysis shows clinical net benefit across 
a 6%–99% risk threshold range, demonstrating the practical 
value of this computational pathology approach. However, 
compared to other orthopedic prediction models, this study 
adopts a composite endpoint design that more closely aligns 
with real clinical scenarios—covering synergistic pathological 
processes such as DVT, SSI, and delayed healing—avoiding the 
one-sidedness of predicting single complications.

In terms of population inclusion, the adolescent age definition 
(13–18 years) serves as the anatomical basis for model 
construction, with this standard calibrated by three pieces of 
evidence: developmental anatomy confirms that this stage covers 
the critical period of tibial growth plate closure, where growth 
plates in Sauvegard stage III–IV are highly sensitive to traction 
injuries; epidemiological data show that 14–17 years is the peak 
age for tibial shaft fractures, coinciding with high incidences of 

sports and traffic injuries; the boundary consideration also 
excludes pathological fracture patterns in those under 13 years 
(such as abuse fractures) and groups over 18 years who are 
suitable for adult internal fixation protocols (29, 30). However, 
this rigid division may overlook the specificity of individuals in 
the rapid growth period at 12–13 years, manifesting as a 
discontinuity in the risk spectrum for growth plate injuries, and 
future research needs to explore boundary effects.

In subgroup analyses, we stratified patients by gender and age 
to evaluate the predictive performance of the AutoML model 
across different populations. The results showed significant 
differences in gender subgroups but no notable variations in age 
subgroups. Specifically, the model demonstrated higher 
predictive sensitivity among female patients, which may be 
related to fluctuations in estrogen levels during adolescence. 
These differential results highlight the model’s applicability in 
personalized medicine—for instance, clinical implementation 
could prioritize gender-specific risk-adjusted monitoring 
strategies, whereas the homogeneity in age factors supports the 
model’s broader suitability for this adolescent population. Future 
research should further integrate biomarkers such as hormone 
levels to refine predictive accuracy for gender subgroups.

It is also crucial to clearly recognize the multiple limitations of 
this study: as a single-center retrospective study, although the 624 
samples were validated for balance through stratified random 
sampling, selection bias cannot be overcome; population 
characteristics are concentrated in tertiary hospitals, not 
incorporating diagnostic and therapeutic variations in primary 
care settings; the decision system was only tested in a simulated 
environment, and its real-world effectiveness needs to be 

FIGURE 7 

Predictive performance results of subgroup analysis in the test set. (A) Gender subgroup analysis; (B) age subgroup analysis.
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FIGURE 8 

LASSO regression results. (A) LASSO trajectory plot; (B) LASSO cross-validation fitting plot.
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FIGURE 9 

Machine learning interpretability analysis. (A) Shapley summary plot; (B) shapley feature importance plot; (C) SHAP values for different AO/OTA 
classifications; (D) SHAP interaction plot for age and surgery duration; (E) SHAP interaction plot for fibrinogen and C-reactive protein; (F) SHAP 
interaction plot for APTT and BMI.

FIGURE 10 

Clinical decision system for early postoperative rehabilitation adverse events in adolescent tibial fractures.
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verified through pragmatic clinical trials with a stepped-wedge 
design; the lack of dynamic monitoring dimensions is 
particularly critical—postoperative changes in coagulation 
indicators within 72 h (such as the peak slope of D-dimer) were 
not captured, potentially missing important early warning 
signals of compensatory hypercoagulability; individual 
differences in anticoagulant drug metabolism (such as CYP2C9 
gene polymorphisms) were also not included in the current model.

The future research optimization path should focus on four 
dimensions: (1) the primary task is to conduct prospective 
multicenter validation, with emphasis on monitoring the clinical 
compliance and misjudgment costs of the decision system in real 
workflows (establishing a traceability mechanism for missed 
adverse event reporting). (2) Building upon this, developing 
dynamic monitoring modules requires integrating minimally 
invasive sensing technologies to collect localized perfusion 
parameters such as tissue oxygen saturation and intraosseous 
pressure in real time. When selecting minimally invasive sensing 
devices, priority should be given to those with high 
biocompatibility, moderate sampling frequency (e.g., 1–5 times per 
min), and compliance with medical device safety standards to 
ensure patient safety and data reliability. Simultaneously, dynamic 
data must seamlessly interface with existing electronic health 
record systems through standardized protocols (such as HL7 or 
FHIR) to enable automatic uploading and integration, facilitating 
real-time access and analysis by clinicians. (3) For different clinical 
scenarios, implementation strategies should be differentially 
designed. For instance, ICU settings may deploy high-precision 
continuous monitoring devices to meet critical patient needs, 
while general wards may adopt intermittent monitoring solutions 
to balance resources and efficiency, thereby enhancing system 
versatility. Moreover, at the algorithmic level, privacy-preserving 
federated learning frameworks should be implemented to adapt 
the system to regional healthcare disparities (e.g., accessibility of 
anticoagulants in urban vs. rural hospitals). (4) Finally, a 
prediction-intervention feedback loop must be established, 
leveraging electronic health record systems to automatically track 
intervention outcomes (e.g., D-dimer decline rates after 
anticoagulation regimen escalation), enabling model self-evolution.

5 Conclusion

This study establishes an explainable early warning model that 
integrates improved intelligent algorithms with an AutoML 
framework, effectively predicting composite endpoint events 
after adolescent tibial fracture surgery. The model identifies key 
clinical features such as age, surgery duration, and FIB, along 
with their interaction effects, providing new perspectives for risk 
mechanism analysis. SHAP-based visualization techniques reveal 
key pathological processes such as synergistic damage from age- 
surgery duration and the FIB-CRP cascade, supporting 
transparent clinical decision-making. Although the three-tier 
warning system has not been validated in real environments, its 
stepwise management framework provides a feasible pathway for 
individualized interventions. With the advancement of 

prospective multicenter studies and the development of dynamic 
monitoring technologies, this system is expected to optimize 
adolescent fracture rehabilitation management practices and 
enhance surgical safety margins.
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