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Explainable machine learning-
based prediction of early and
mid-term postoperative
complications in adolescent
tibial fractures

Yufeng Wang', Jingxia Bian', Yang Yuan, Cong Li and Yang Liu*

Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai,
China

Background: Adolescent tibial fractures commonly lead to postoperative
complications. Conventional coagulation markers (PT/APTT/FIB) lack
combinatorial risk assessment. We developed an explainable ML model
integrating coagulation and clinical features to predict adverse events.
Methods: A retrospective cohort of 624 surgical patients (13-18 years) was
analyzed. AutoML with Improved Harmony Search Optimization (IHSO)
processed features: age, fracture classification, surgery duration, blood loss,
and 24 h-postoperative labs (coagulation triad/D-dimer/CRP). Primary
outcome: 90-day composite adverse events (DVT/infection/early callus
formation disorder/reoperation). SHAP explained predictions.

Results: Baseline characteristics were balanced between training and test sets
(P>0.05). The IHSO-optimized algorithm outperformed controls in 91.67% of
CEC2022 benchmark functions. AutoML model performance significantly
surpassed conventional methods: training set ROC-AUC: 0.9667, test set
ROC-AUC: 0.9247 (PR-AUC: 0.8350). Decision curves demonstrated clinical
net benefit across 6%—99% risk thresholds. Key feature importance ranked as:
age > operative duration > fibrinogen > fracture  classification > APTT > CRP >
BMI>D-dimer. SHAP analysis revealed: 1) Increasing age significantly
attenuates the risk contribution of surgery duration; 2) FIB >4.0 g/L + elevated
CRP indicated coagulation-inflammation cascade; 3) AO-C type fractures
carried highest risk.

Conclusion: This AutoML model, validated through explainability techniques,
confirms the core predictive value of age, operative duration, and
coagulation-inflammation networks for adolescent tibial fracture risk
management. Though requiring prospective validation, the three-tier warning
system establishes a stepped framework for individualized intervention. Future
studies should advance multicenter collaborations integrating dynamic
monitoring indicators to optimize clinical applicability.
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1 Introduction

Adolescent tibial fractures represent one of the most common
sports-related lower limb traumas in individuals aged 12-18 years,
accounting for approximately 15%-25% of lower extremity
fractures in this age group (1, 2). For such fractures, the early to
mid-term postoperative period (typically within 3 months after
surgery) is a critical phase for functional recovery. However, this
process is frequently complicated by various adverse events.
Clinically, deep vein thrombosis (DVT), surgical site infection
(SSI), and impaired early callus formation are particularly
notable complications, with significantly higher incidence rates
in open fractures compared to closed fractures (2, 3). Notably,
current pathophysiological studies suggest that DVT, SSI, and
callus formation disorders are not isolated events but rather
share a common underlying mechanism—sustained post-
traumatic  inflammation and hypercoagulability—exhibiting
complex interactions (4-7). These complications not only
substantially prolong hospital stays and increase healthcare costs
but may also cause potential damage to the still-open growth
plates of adolescents, adversely affecting long-term bone
development and limb function. Therefore, systematic evaluation
and early warning of these complications are critically important.

The 24-h postoperative period serves as a critical observation
window for systemic stress response, during which coagulation
parameters carry significant prognostic value. Currently, clinical
triad
[prothrombin time (PT), activated partial thromboplastin time
(APTT), and fibrinogen (FIB)] as a foundational assessment of
clotting function, yet its clinical value is often confined to
(8-10).
indicators and

practice relies on the conventional coagulation

single-threshold ~warnings The combined dynamic
of these their with
inflammation and traumatic stress remain underexplored for

patterns interactions
predicting comprehensive postoperative complications risks.
Traditional logistic regression encounters significant challenges
when modeling such complex relationships, as it fundamentally
relies on manually constructed interaction terms. This approach
faces two major limitations during feature space expansion:
First, the inherent linear kernel structure fails to adequately
represent high-order nonlinear associations between variables;
second, the model becomes vulnerable to regression coefficient
distortion caused by multicollinearity effects (11).

In recent years, explainable artificial intelligence (XAI)
techniques have offered innovative solutions to these challenges
(12). This study pioneers the integration of Automated Machine
Learning (AutoML) with the Shapley value interpretability
framework to address two core questions: (1) how to utilize
early postoperative coagulation and inflammatory biomarkers
(combined with injury severity and patient factors) to construct
a high-accuracy prediction model for forecasting medium-to-
early-term postoperative complications in adolescent tibial
(2) how to “black-box”
predictions into actionable clinical insights. By establishing an

fracture patients, and translate
integrated decision tool with both predictive power and clinical
interpretability, this work enables personalized postoperative

complications risk stratification for adolescent fracture patients,
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providing a theoretical foundation for early, precise

intervention strategies.

2 Data and method
2.1 Study subjects

This study adopted a retrospective cohort design and
consecutively enrolled 624 adolescent tibial fracture patients
who underwent open reduction and internal fixation (ORIF) at
a Grade III Class A orthopedic center from January 2019 to
December 2023. Inclusion criteria: (1) age meeting the medical
definition of adolescents (13-18 years); (2) closed unilateral
tibial shaft or confirmed by CT
(excluding Salter-Harris type IV/V fractures involving the
epiphysis);  (3)
compression plate (LCP) system; (4) availability of complete

metaphyseal fracture

fixation wusing a standardized locking
90-day postoperative follow-up records. Exclusion criteria: (1)
open fracture (Gustilo type II or higher); (2) concomitant
craniocerebral or  thoracoabdominal trauma requiring
emergency surgery; (3) history of coagulation dysfunction
(coagulation factor activity <50%) or use of anticoagulant/
antiplatelet drugs within the past 3 months; (4) renal
insufficiency (eGFR <60 ml/min/1.73m?) or liver disease
(Child-Pugh > B). In the final cohort, the training set (n =499)
and test set (n=125) were divided in a 4:1 ratio through
stratified random sampling to ensure consistent proportions of
adverse prognostic events between the two groups. This study
protocol was approved by the hospital ethics committee (Ethics
Approval Number: IRB-2024-ortho038), and the research
process strictly adhered to the Declaration of Helsinki and
relevant norms for medical data management, ensuring full
protection of patient rights and the legality and compliance of

data collection, collation, and analysis.

2.2 Data collection and preprocessing

All data were collected through dual channels: the hospital
electronic medical record (EMR) system and a specialized
trauma database, encompassing three categories of core
information: (1) baseline characteristics: Age, sex, body mass
index (BMI), fracture AO/OTA classification (assessed blindly
by two attending physicians), injury mechanism (sports injury/
traffic accident/fall from height/other), surgical duration (from
skin incision to suture completion), intraoperative blood loss
(measured by suction and gauze weighing method).
(2) Perioperative laboratory indicators: Routine coagulation
triad (PT, APTT, FIB) and D-dimer (immunoturbidimetric
method), CRP (latex-enhanced nephelometry) were collected
under fasting conditions within 24h postoperatively and
detected using the Sysmex CS-5100 system. Anticoagulant
tube  specimens centrifuged ~ within 30 min
(3,000 rpm x 15 min) and stored at —80°C for testing. (3)

Outcome measures: The primary outcome was composite

were
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medium-to-early-term postoperative complications adverse
events occurring within 90 days postoperatively, defined as
meeting at least one of the following conditions: Symptomatic
deep vein thrombosis (DVT) or non-fatal pulmonary embolism
(PE) confirmed by imaging or ultrasound; Confirmed surgical
site infection (deep or superficial incision infection) requiring
Standard

radiographic evaluation reveals significantly insufficient or

antibiotic treatment or surgical intervention;
absent callus formation at the fracture site, manifested as
clearly visible fracture lines without bridging callus formation;
Internal fixation failure (e.g., screw loosening, plate fracture);

Non-infectious wound complications requiring reoperation

(e.g., poor healing, dehiscence, hematoma compression).
Events were assessed and confirmed blindly by two senior
orthopedic surgeons independent of this study, with

disagreements resolved by a third expert.

Data processing followed three standardized procedures: (1)
missing data handling: The overall missing rate was <3%,
meeting conventional standards for low missing-rate datasets.
For missing values in continuous variables, we employed
multiple imputation with five imputations and used predictive
data
distributions. For missing categorical variables, mode imputation

mean matching algorithms to preserve reasonable
was applied to maintain category completeness. To further
clarify the missing data mechanism, Little’s test for missing
completely at random (Little's MCAR test) was conducted,
yielding a p-value >0.05, supporting the assumption that data
(MCAR)—meaning

missingness was unrelated to both observed and unobserved

were missing completely at random
variables. This validation reinforces the appropriateness of
multiple imputation and effectively reduces potential selection
bias due to missingness, particularly in analyses involving
outcome measures such as adverse events, ensuring robust and
reliable estimation results. (2) Sample balancing: To address the
mild imbalance in the training set where adverse events
accounted for 25.3% (126/499), the SMOTENC (Synthetic
Minority ~ Over-sampling Technique for Nominal and
Continuous) algorithm was used to synthesize minority class
samples, increasing adverse events to 40% (199/499) and
retaining 70% of the original majority class samples (using a
cluster cleaning mechanism to suppress noise generation). (3)
Variable

standardized using Z-score; multicategorical data were one-hot

transformation: ~All continuous variables were
encoded. (4) Data quality control: Through dual independent
entry verification (Kappa consistency coefficient=0.92) and
logical checks for discrete variables. The complete feature list is

provided in Appendix Table SI.

2.3 Prediction model construction

2.3.1 Automated machine learning model

This study employed an automated machine learning
(AutoML) model based on an optimization algorithm, deeply
integrating a triple synergistic mechanism encompassing base
learner selection, feature

screening, and hyperparameter
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optimization. This framework unified three types of decision
spaces into a mixed solution vector:

B | AL Ags

feature selection

- An)

hyperparameter

x:( k |81,82,..

model type

where k is a discrete variable (1 = Logistic Regression, 2 = Support
Vector Machine, 3 = Adaboost, 4 = XGBoost, 5 = LightGBM); the
feature selection vector ¢ adopts 0/1 encoding; hyperparameters
/A are dynamically adapted based on model characteristics.

The optimization process is driven by a swarm intelligence
algorithm. Each evaluation executes core operations: first,
determining the base learner type based on the k-value; then
screening feature subsets via the J vector; finally, injecting 4
parameters into the model architecture. Configured models
undergo comprehensive evaluation via 10-fold cross-validation,
forming a synergistic feedback loop of “model architecture-
feature representation-parameter configuration.” The core of
collaborative optimization is the dynamically weighted fitness
function:

f(X) = Wl(t) . ACCCV +w, - (1 — @) + w3 - €Xp (_T/Tmax)

This function integrates three key dimensions: model accuracy
(ACC term), feature sparsity, and time-computational cost
(exponential decay term). Weight coefficients w;, w,, w; are
dynamically adjusted per iteration t: initial phases prioritize
accuracy (w; dominant); mid-phases balance accuracy and
sparsity; final phases emphasize model simplification (w,
adjusted), with w, and w; set to equal weights. Traditional
machine learning models (LR and SVM) and ensemble learning
models (Adaboost, XGBoost, and LightGBM) were included for
performance comparison. The AutoML flowchart is shown in

Figure 1.

2.3.2 Improved swarm intelligence algorithm
method
This
Optimization

Holistic
guide

study employed the classical Swarm
(HSO) (13) AutoML

optimization. HSO is a novel nature-metaphor-independent

algorithm to

swarm intelligence optimization method. Unlike traditional
algorithms that rely solely on individual experience or local
neighborhoods for search decisions, HSO instead leverages the
information distribution and fitness landscape of the entire
population to guide optimization paths—akin to a
comprehensively depicted “swarm map,” where each individual’s
actions are precisely adjusted within this panoramic framework.
The algorithm intentionally eschews specific natural analogies or
bio-inspiration in its design, focusing instead on rational
mechanisms. It achieves a dynamic balance between global
exploration and local exploitation through root-mean-square
fitness-guided displacement coefficients, a selection process
controlled by simulated annealing strategies, and an adaptive

perturbation mechanism.
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FIGURE 1
Flowchart of the automated machine learning model.

Building upon the original HSO, this study first reconstructs
the initial population using chaotic mapping, enhancing search
space diversity via nonlinear stochastic sequence generation
strategies. Second, a dynamic spiral exploration mechanism is
integrated, combined with Cauchy mutation perturbation to
adjust the
individuals. This enhances the algorithm’s adaptability to

global-local convergence balance capability of
complex parameter spaces, ultimately yielding IHSO (Improved
Holistic Swarm Optimization).

To further validate the performance of IHSO, the CEC2022
standard test functions were adopted to evaluate the algorithm
(14).

Particle

Comparative algorithms included the original HSO,
Swarm Optimization (PSO) (15), Hawks
Optimization (HHO) (16), and Whale Optimization Algorithm
(WOA) (17). Twelve benchmark functions were selected, with
the variable dimension of all test functions set to 10, population

Harris

size to 30, and maximum iterations to 500. Each algorithm was
independently run 30 times to ensure statistical reliability, with
the results of these 30 runs ultimately compared. At the
data level, dual validation was

empirical conducted by
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constructing a clinical prognosis prediction model: Robustness
testing was performed through artificially injecting progressive
data disturbances (0%-15% noise combined with 0%-30%
missing values); meanwhile, a feature selection module was
designed to evaluate the model’s complexity control capability.

2.3.3 Model predictive performance
evaluation metrics

This study constructed a composite evaluation system from
three
performance, and clinical application—to systematically validate

dimensions—classification ~ performance, calibration

the comprehensive efficacy of the model in prognostic
prediction tasks. The specific metrics include:

1. Classification Performance:

Basic Metrics: Accuracy (ACC), Sensitivity (SEN), and Specificity
(SPE) quantify the model’s overall discriminative power, ability to
identify positive samples, and ability to exclude negative samples,
respectively. Comprehensive Metric: The Fl-score was used to

evaluate the balance between precision and recall. Curve

frontiersin.org



Wang et al.

Evaluation: The Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) measures the model’s ability to distinguish
between different outcomes. The Area Under the Precision-
Recall Curve (AUC-PR) evaluates the model’s robustness in
imbalanced sample scenarios. The DeLong test was employed to
compare the statistical differences in AUC-ROC between
different models.

(2) Calibration Performance:

Calibration curves combined with the Brier score (lower values
indicate greater prediction accuracy) were used to assess the
accuracy of probability predictions.

(3) Clinical Application:

This study employed Decision Curve Analysis (DCA) to quantify
the clinical utility value of the prediction model. This method
evaluates the clinical decision-making efficacy of the model
across continuous risk thresholds by calculating the Net Benefit
(NB), objectively measuring the benefit-risk balance of model-
guided interventions. The calculation of Net Benefit integrates
the benefit of correctly identifying true positive cases with the
This method
overcomes the limitation of traditional metrics in quantifying

cost of misclassifying false positive cases.
clinical utility, intuitively demonstrating the value of the model’s
intervention recommendations under different risk preferences
and providing an empirical basis for personalized treatment.

2.4 Interpretability analysis

After preliminary feature screening for prognostic prediction
via the AutoML framework, the study further employed LASSO
regression analysis to validate the robustness of the selected
features. Finally, the SHAP interpretability model was utilized to
analyze the clinical rationality of these features. The specific
workflow is as follows:

1. AutoML Initial Feature Screening:

Based on predefined search spaces and optimization objectives,
AutoML algorithms automatically identified the subset of
features significantly associated with prognosis.

(1) LASSO Feature Validation:

LASSO regression was applied to the feature subset screened by
AutoML. The sparsity and stability of these features were
validated
ensuring the key features’ resistance to overfitting. Differences

through a regularization constraint mechanism,
between features selected by LASSO and those automatically

screened by AutoML were compared.

(2) SHAP (Shapley Additive Explanations)
Analysis:

Interpretability

The SHAP algorithm, constructed based on game theory,
quantified the contribution of model features. Global feature
importance rankings revealed the overall impact strength of key
variables, enabling visualization of the prediction logic and
thereby validating its rationality.
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2.5 Statistical analysis

The research data were uniformly imported into the SPSS26.0

statistical ~analysis platform for standardized processing.
Continuous variables conforming to normal distribution were
(x £5);

variables not conforming to normal distribution were expressed as

expressed as mean +standard deviation continuous
median (interquartile range) [M (P25, P75)]; categorical variables
frequency and percentage [n(%)]. For

intergroup comparisons, for continuous variables, normality tests

were expressed as

were first performed. If both groups of data conformed to normal
distribution, a one-way t-test was used for intergroup comparison;
if the data did not conform to normal distribution, the Mann-
Whitney U test was used for intergroup comparison. For
categorical variables, intergroup comparison was performed using
Pearson’s chi-square test. The test efficacy was based on the
P-value (two-sided test, significance threshold set to o =0.05). The
research results were presented in a structured tabular format.

3 Result
3.1 Comparison of baseline data

The average age of the overall sample was (15.64 + 1.78) years,
comprising 402 males and 222 females. The training set (n =499)
and the test set (n=125) showed no statistically significant
differences in all baseline characteristics and laboratory
indicators (all P>0.05), indicating effective random stratified
sampling: the proportions of poor prognosis events were highly
consistent between the two groups (training set 25.25% vs. test

set 25.60%, y* = 0.006, P = 0.936). Details are presented in Table 1.

3.2 Improved algorithm simulation test

3.2.1 Standard test function simulation
experiments

Based on a standardized evaluation framework, this study
systematically compared the improved IHSO algorithm with the
original HSO and other swarm intelligence algorithms (PSO,
HHO, WOA) across 12 benchmark functions of the CEC2022 test
system. Statistical robustness was verified through 30 independent
repeated experiments. The results demonstrated that the improved
algorithm achieved optimal solutions in 11 functions (91.67%)
(Figure 2A). Its solution distribution range exhibited significant
convergence with fewer outliers, indicating that the proposed
mechanism effectively enhanced optimization stability. Dynamic
iteration analysis (Figure 2B) revealed that IHSO achieved the
fastest convergence speed in key test functions (F1, F3, F5, F6, F7,
F9, and F10), proving its comprehensive improvement in
balancing global exploration (rapid early-stage decline) and local
exploitation (fine-tuned late-stage optimization) capabilities.

3.2.2 Analysis of real-world clinical data
By artificially injecting progressive data perturbations, this
study evaluated the performance of prognostic prediction
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TABLE 1 Comparison of baseline characteristics between training and
test sets.

Feature Training = Test set Statistic P-

set value
Poor outcome events, n | 126 (25.25%) 32 (25.60%) | x*=0.006 0.936
(%)
Age (years) 1542+ 1.75 15.64 +1.87 t=1.240 0.216
(Mean + SD)
Male sex, n (%) 322 (64.53%) 80 (64.00%) )(2 =0.012 0.912
BMI (kg/mz) 20.35 [18.15- | 20.49 [18.33- | U=29,608 0.425
22.71] 22.92]
[Median (IQR)]
AO/OTA Fracture 72=0.030 | 0985
Classification, n (%)
Type A (Simple) 177 (35.47%) 44 (35.20%) — —
Type B (Wedge) 198 (39.68%) 49 (39.20%) — —
Type C (Complex) 124 (24.85%) 32 (25.60%) — —
Injury mechanism, n x> =0.165 0.983

(%)
Sports injury 211 (42.28%) | 52 (41.60%) — —
Traffic accident 197 (39.48%) 49 (39.20%) — —
Fall from height (>3 m) 15 (

9 (

Other

60 (12.02%) 12.00%) — —
31 (5.61%) 6.40%) — —
110 [87-138] | 115 [90-143]

Surgery duration (min) U=29,521 0.44

[Median (IQR)]

Blood loss (ml) 148 [107-193] | 155 [115-200] | U=29,650 | 0.352

[Median (IQR)]

Postoperative lab parameters

PT (s), Mean + SD 12.55 + 1.00 1258 £1.07 | t=0.295 | 0.768

APTT (s), Mean + SD 33.42+3.45 33514357 | t=0259 | 0795

FIB (g/L), Mean + SD 3.63+0.85 3.60 +£0.92 t=0347 | 0.729

D-dimer (mg/L FEU) 0.85 [0.61- 0.87 [0.63- | U=29,143 | 0.583
1.18] 1.21]

[Median (IQR)]

CRP (mg/L) 19.35 [13.25- | 20.15 [13.88- | U=28,897 | 0.681
26.85] 27.58]

[Median (IQR)]

SD, standard deviation; IQR, interquartile range; AO/OTA, Arbeitsgemeinschaft fiir
Osteosynthesefragen/Orthopaedic Trauma Association; FET, Fisher’s exact test; PT,
prothrombin time; APTT, activated partial thromboplastin time; FIB, fibrinogen; FEU,
fibrinogen equivalent units; CRP, C-reactive protein.

models based on real-world clinical data. Experimental results
that all exhibited
degradation intensity

demonstrated intelligent  algorithms

performance trends as perturbation
increased (Figure 3). Under original data conditions, the five
types of algorithms achieved an average prediction accuracy of
AUC=0.84; however, under extreme perturbation scenarios
(15%

performance significantly declined to an average AUC=0.71,

noise combined with 30% missing values), model

representing a relative decrease of 15.5%. Among them, the
IHSO algorithm displayed optimal stability: its prediction
accuracy decreased from AUC=0.91 in the original scenario to
AUC=0.78 in high-perturbation scenarios, with a relative
decline (14.3%) significantly lower than other algorithm groups
(all declines >20%).

At the key feature identification level, the IHSO algorithm
demonstrated excellent compactness characteristics (Figure 4).
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It stably screened out 8 highly correlated predictors (average
correlation coefficient r=0.67, SD =0.08), representing a 26%
reduction compared to the average of 10.8 features selected by
other algorithms. This feature refinement mechanism effectively
reduced model complexity while maintaining prediction accuracy.

3.3 Training set cross-validation
comparison

This study systematically evaluated the prediction performance
of six machine learning models on the training set, including
metrics such as precision, sensitivity, specificity, accuracy,
Fl-score, and area under the curve. The results demonstrated that
the AutoML model exhibited comprehensively optimal
performance, with its ROC-AUC reaching 0.9667 and PR-AUC at
0.9182. Notably, AutoML

advantages in the F1-score (0.8928), indicating its stronger clinical

showed particularly outstanding

application value in balancing precision and recall. The features
ultimately selected by AutoML were: age, surgery duration, FIB,
AO/OTA, APTT, CRP, BMI, and D-dimer. Details are provided
in Table 2 and Figure 5.

3.4 Test set prediction performance
comparison

In this study, in the prediction task of medium-to-early-term
postoperative complications adverse events after adolescent tibial
fracture surgery, the performance of six machine learning
models on the test set was systematically evaluated. The results
showed that AutoML exhibited the strongest robustness in the
independent test set, with ROC-AUC reaching 0.9247 and PR-
AUC at 0.8350 (Figure A,B); Decision curve analysis (Figure 3C)
showed that applying the AutoML prediction model in the test
set within the risk threshold range of 6% to 99% could bring
greater clinical net benefit compared to traditional methods; the
net benefit curve of this model could maintain a high level and
remain stable over a wide range of threshold probabilities,
indicating its good generalization ability and stable prediction
performance; Calibration curve analysis (Figure 3D) confirmed
that the predictive calibration performance of the AutoML
model was significantly better than other models, with its test
set Brier score (0.164) being the lowest. Details are provided in
Table 3 and Figure 6.

3.5 Subgroup analysis

Stratified analyses were conducted by gender (male and
female) and age (divided into two subgroups: 13-15 years and
16-18 years). The results showed significant differences among
gender subgroups, with female demonstrating
significantly better prognostic prediction performance than
males (AUC: 0.8851 for females vs. 0.9617 for males, p <0.05).

No statistically significant difference was observed between age

patients
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FIGURE 2

Performance simulation test of swarm intelligence algorithm optimization. (A) Box plots of optimization results after 30 independent runs of each
algorithm on CEC2022 test functions, demonstrating the optimization stability and robustness of each algorithm; (B) convergence curves of each
algorithm during the optimization process, reflecting their convergence speed and ability to avoid local optima.
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FIGURE 3
Robustness comparison of intelligent algorithms in predicting composite postoperative outcomes. This figure demonstrates the stability
performance of five intelligent algorithms (IHSO/HSO/PSO/HHO/WOA) under increasing data interference scenarios. The boxplots represent the
distribution of cross-validated AUC values from 10 repeated experiments, while the scatter points indicate single experimental results. Algorithm
color coding: IHSO (forest green), HSO (blue), PSO (red), HHO (purple), WOA (cyan). The red dashed line indicates the clinically acceptable
threshold (AUC = 0.7), values below which are considered insufficient for clinical reference.

subgroups (AUC: 0.9200 for 13-15 years vs. 0.9254 for 16-18
years, p >0.05). See Figure 7 for details.

3.6 Interpretability analysis

3.6.1 Feature validation

Adopted LASSO regression for feature screening on the
training set data (Figure 8), to validate the effectiveness of the
AutoML model in feature screening. LASSO selected variables
within one standard error of the minimum MSE in the sparse
model (LambdalSE), screened out 9 variables: age, surgery time,
FIB, AO/OTA, APTT, CRP, BMI, D-dimer, blood loss, with an
overlap rate with AutoML screened features of 88.89% (8/9).

3.6.2 SHAP analysis

According to the SHAP analysis results in Figure 6, the
importance ranking is: age, surgery time, FIB, AO/OTA, APPT,
CRP, BMI, D-dimer (Figures 9A,B); the baseline risk of complex
fractures is higher than that of simple fractures (Figure 9C); the
interaction effect between age and surgery duration (Figure 9D)
shows that increasing age significantly attenuates the risk
contribution of surgery duration. This is manifested as a
concentrated negative shift in the SHAP values of the age
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variable for older age groups (>15 years) undergoing prolonged
surgeries (>130 min), with the lowest value reaching —0.3;
fibrinogen (FIB) > 4.0 g/L, along with elevated C-reactive protein
(CRP), suggests the presence of a coagulation-inflammation
cascade (Figure 9E); interaction between APTT and BMI
(Figure 9F), a median activated partial thromboplastin time
(APTT) (33-36s) combined with a higher body mass index
(BMI) (>22 kg/mz) indicates an increased risk of thrombosis.

3.7 Clinical decision system

This system designs a visual and interactive prediction
interface. After clinicians input key indicators such as the
patient’s age, surgery duration, fibrinogen (FIB) level, and
fracture AO classification in the “Feature Input” panel, the
system calculates the probability (0%-100%) of medium-to-
early-term postoperative complications adverse events in real-
time based on the trained AutoML model (Figure 10).

This risk probability is visually presented through a three-tier
warning risk  (<30%)
rehabilitation follow-up; moderate risk (30%-70%) initiates an
high risk (>70%)
immediate intervention. For different risk levels, distinct clinical

system: low recommends routine

enhanced monitoring scheme; requires
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FIGURE 4
Clinical feature analysis and feature selection optimization. This study compared the correlation strength between 12 clinical features and
postoperative outcomes, and evaluated the feature selection performance of the IHSO algorithm against other optimization algorithms (HSO,
PSO, HHO, WOA). The left panel displays the correlation coefficients (r) between each feature and the outcomes, with dark blue indicating highly
correlated features (r>0.5), light blue indicating weakly correlated features (r<0.5), and the gray dashed line representing the correlation
threshold of 0.5. The right panel shows the feature selection results of the algorithms, where dark green squares (%) represent features selected
by IHSO, and light blue squares (/) represent features selected by other algorithms.

TABLE 2 Prediction performance metrics of training set cross-validation.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.3181 0.9365 0.3217 0.4770 0.4748 0.8150 0.6392

SVM 02725 0.9841 0.1126 03327 0.4269 0.7859 0.6005
Adaboost 0.3833 0.9127 0.5040 0.6072 0.5399 0.8511 0.7257
XGBoost 0.4754 0.9206 0.6568 0.7234 0.6270 0.9092 0.8203
LightGBM 0.3761 0.9762 0.4531 0.5852 0.5430 0.9060 0.7893
AutoML 0.7452 0.9286 0.8928 0.9018 0.8269 0.9667 0.9182
intervention pathways can be adopted: (1) low-risk patients: pulsed electromagnetic field stimulation), and upgrade
Implement a standard rehabilitation plan (outpatient follow-up  pharmacological intervention (rivaroxaban+low molecular
at postoperative weeks 1, 2, and 4), with recommended basic ~ weight heparin bridging); (3) high-risk patients: Initiate

anticoagulation measures and early weight-bearing training  multidisciplinary consultation

(orthopedics/hematology/

(progressively reaching 50% body weight load within 4 weeks
postoperatively); (2) moderate-risk patients: Increase vascular
ultrasound monitoring to twice weekly (to exclude DVT),
elevate physical therapy frequency to every other day (including
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rehabilitation) within 48 h, enforce inpatient monitoring for >7
days, adjust drug regimen to therapeutic anticoagulation dose
(enoxaparin 1 mg/kg bid), and implant a remote bone healing
monitoring sensor (transmitting callus CT value changes daily).
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TABLE 3 Prediction performance metrics of test set.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC
LR 0.2672 0.9688 0.0860 0.3120 0.4189 0.7345 0.5310
SVM 0.2581 1.0000 0.0108 0.2640 0.4103 0.7513 0.5366
Adaboost 03229 0.9688 0.3011 0.4720 0.4844 0.8007 0.6380
XGBoost 03131 0.9688 0.2688 0.4480 0.4733 0.8357 0.6540
LightGBM 0.4906 0.8125 0.7097 0.7360 0.6118 0.8629 07113
AutoML 0.5357 0.9375 0.7204 0.7760 0.6818 0.9247 0.8350

4 Discussion

This study addresses the clinical needs for postoperative
management of adolescent tibial fractures by constructing an
integrated risk prediction system based on explainable machine
learning. By integrating the Improved Harmony Search
Optimization (IHSO) algorithm with an automated machine
(AutoML)

balances prediction accuracy and clinical interpretability. The

learning framework, the model systematically
eight key predictors selected by AutoML have clear clinical
pathological foundations: age and surgery duration serve as
primary drivers, reflecting the special sensitivity of adolescents
in the skeletal development stage to surgical trauma; fibrinogen
(FIB) PT/APTT

importance, highlighting its “double-edged sword” characteristic

surpasses traditional indicators in core
—acting as both a substrate for thrombosis and a medium for
tissue repair (8, 18); the FIB-CRP interaction effect, visualized
through SHAP plots, confirms the pathological hub role of the
(19-21); and the AO

classification (especially type C complex fractures) serves as an

coagulation-inflammation  cascade
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objective measure of anatomical injury severity through
mechanisms such as periosteal blood supply disruption and
instability (22). This

overcomes the limitations of single-indicator threshold warnings,

mechanical combination of features
achieving a holistic assessment of multidimensional pathological
Additionally, noted that postoperative
normalization of D-dimer levels could serve as a biological

networks. it was
marker of surgical success, with its prognostic value potentially
deriving from its ability to quantify postoperative recovery
capacity following surgical stress.

Regarding outcome measures, we adopted a pathophysiology-
driven approach, considering that systemic stress responses in
adolescents following tibial fractures exhibit distinct features
compared to adults, with more pronounced crosstalk among
coagulation, inflammation, and bone metabolism networks (5,
23). Multiple preclinical studies support this notion, suggesting
that deep vein thrombosis (DVT), surgical site infection (SSI),
and impaired early callus formation may share common driving
pathways. For activated thrombin-

instance, persistently

protease-activated receptor (PAR) signaling post-trauma has
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been identified as a key integrating factor: upregulation of this
pathway not only promotes a hypercoagulable state (potentially
increasing DVT risk) but also exacerbates local inflammation
and tissue damage through neutrophil extracellular trap (NET)
release (linked to SSI risk), while simultaneously disrupting
osteogenic signal transduction during early callus formation
(affecting the initial healing process) (4, 5, 7). This pleiotropic
mechanism implies that DVT, SSI, and impaired bone healing
but different
stemming the
pathophysiological axis. Therefore, given this shared biological
of
concurrently predicting the risk of multiple complications is

are not isolated events rather clinical

manifestations  potentially from same

foundation, developing an integrated model capable
rationally justified (6, 24). From a clinical decision-making
perspective, the application value of composite endpoints lies in

providing a comprehensive risk assessment tool that assists
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physicians in early identification of high-risk patients, thereby

enabling targeted preventive strategies and optimized
postoperative management. For example, in high-risk adolescent
tibial fracture cases, the composite endpoint could screen for
with

facilitating multidisciplinary interventions. Furthermore, this

individuals elevated multisystem complication risks,
model is adaptable for postoperative monitoring, such as
integrating multiple indicators during routine follow-ups to
both the of

interventions. In summary, the composite endpoint design not

enhance timeliness and comprehensiveness
only strengthens the biological plausibility of predictive models
but also improves their clinical applicability and generalizability.

At the methodological level, the improved IHSO algorithm
significantly enhances the stability and efficiency of the feature
selection process through chaotic mapping initialization and

dynamic spiral exploration mechanisms. More importantly, this
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FIGURE 7
Predictive performance results of subgroup analysis in the test set. (A) Gender subgroup analysis; (B) age subgroup analysis.

study deeply integrates the game-theoretic interpretability
framework (SHAP) into the AutoML workflow, generating three
innovative values: first, the global feature importance ranking
provides physicians with decision priority references, such as the
higher regulatory value of surgery duration over BMI; second,
the interaction effect plot reveals that in adolescents over 15
years old, the increase in age significantly reduces the
contribution intensity of surgery duration to risk, which may be
related to the enhancement of surgical stress compensation
ability after growth plate closure (25, 26); third, the APTT-BMI
“paradox effect” (where normal APTT becomes a risk factor in
high-BMI populations) provides clinical evidence for the theory
that adipokines interfere with coagulation balance (27, 28). The
model maintains excellent performance on an independent test
set, and decision curve analysis shows clinical net benefit across
a 6%-99% risk threshold range, demonstrating the practical
value of this computational pathology approach. However,
compared to other orthopedic prediction models, this study
adopts a composite endpoint design that more closely aligns
with real clinical scenarios—covering synergistic pathological
processes such as DVT, SSI, and delayed healing—avoiding the
one-sidedness of predicting single complications.

In terms of population inclusion, the adolescent age definition
(13-18 years)
construction, with this standard calibrated by three pieces of

serves as the anatomical basis for model
evidence: developmental anatomy confirms that this stage covers
the critical period of tibial growth plate closure, where growth
plates in Sauvegard stage III-IV are highly sensitive to traction
injuries; epidemiological data show that 14-17 years is the peak

age for tibial shaft fractures, coinciding with high incidences of
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sports and traffic injuries; the boundary consideration also
excludes pathological fracture patterns in those under 13 years
(such as abuse fractures) and groups over 18 years who are
suitable for adult internal fixation protocols (29, 30). However,
this rigid division may overlook the specificity of individuals in
the rapid growth period at 12-13 years, manifesting as a
discontinuity in the risk spectrum for growth plate injuries, and
future research needs to explore boundary effects.

In subgroup analyses, we stratified patients by gender and age
to evaluate the predictive performance of the AutoML model
across different populations. The results showed significant
differences in gender subgroups but no notable variations in age
subgroups. Specifically, the model demonstrated higher
predictive sensitivity among female patients, which may be
related to fluctuations in estrogen levels during adolescence.
These differential results highlight the model’s applicability in
personalized medicine—for instance, clinical implementation
could prioritize gender-specific risk-adjusted monitoring
strategies, whereas the homogeneity in age factors supports the
model’s broader suitability for this adolescent population. Future
research should further integrate biomarkers such as hormone
levels to refine predictive accuracy for gender subgroups.

It is also crucial to clearly recognize the multiple limitations of
this study: as a single-center retrospective study, although the 624
samples were validated for balance through stratified random
selection bias

sampling, cannot be overcome; population

characteristics are concentrated in tertiary hospitals, not
incorporating diagnostic and therapeutic variations in primary
care settings; the decision system was only tested in a simulated

environment, and its real-world effectiveness needs to be
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LASSO regression results. (A) LASSO trajectory plot; (B) LASSO cross-validation fitting plot.
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verified through pragmatic clinical trials with a stepped-wedge

design; the lack of dynamic monitoring dimensions is

particularly critical—postoperative changes in coagulation
indicators within 72 h (such as the peak slope of D-dimer) were
not captured, potentially missing important early warning
signals of compensatory  hypercoagulability;  individual
differences in anticoagulant drug metabolism (such as CYP2C9
gene polymorphisms) were also not included in the current model.

The future research optimization path should focus on four
dimensions: (1) the primary task is to conduct prospective
multicenter validation, with emphasis on monitoring the clinical
compliance and misjudgment costs of the decision system in real
workflows (establishing a traceability mechanism for missed
adverse event reporting). (2) Building upon this, developing
dynamic monitoring modules requires integrating minimally
invasive sensing technologies to collect localized perfusion
parameters such as tissue oxygen saturation and intraosseous
pressure in real time. When selecting minimally invasive sensing
priority should be those with high
biocompatibility, moderate sampling frequency (e.g., 1-5 times per

min), and compliance with medical device safety standards to

devices, given to

ensure patient safety and data reliability. Simultaneously, dynamic
data must seamlessly interface with existing electronic health
record systems through standardized protocols (such as HL7 or
FHIR) to enable automatic uploading and integration, facilitating
real-time access and analysis by clinicians. (3) For different clinical
should be differentially
designed. For instance, ICU settings may deploy high-precision

scenarios, implementation strategies
continuous monitoring devices to meet critical patient needs,
while general wards may adopt intermittent monitoring solutions
to balance resources and efficiency, thereby enhancing system
versatility. Moreover, at the algorithmic level, privacy-preserving
federated learning frameworks should be implemented to adapt
the system to regional healthcare disparities (e.g., accessibility of
anticoagulants in urban vs. rural hospitals). (4) Finally, a
established,
leveraging electronic health record systems to automatically track
(e.g, D-dimer
anticoagulation regimen escalation), enabling model self-evolution.

prediction-intervention feedback loop must be

intervention outcomes decline rates after

5 Conclusion

This study establishes an explainable early warning model that
integrates improved intelligent algorithms with an AutoML
framework, effectively predicting composite endpoint events
after adolescent tibial fracture surgery. The model identifies key
clinical features such as age, surgery duration, and FIB, along
with their interaction effects, providing new perspectives for risk
mechanism analysis. SHAP-based visualization techniques reveal
key pathological processes such as synergistic damage from age-
FIB-CRP cascade, supporting
transparent clinical decision-making. Although the three-tier

surgery duration and the

warning system has not been validated in real environments, its
stepwise management framework provides a feasible pathway for
With the advancement of

individualized interventions.
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prospective multicenter studies and the development of dynamic
monitoring technologies, this system is expected to optimize
adolescent fracture rehabilitation management practices and
enhance surgical safety margins.
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