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The impact of osteoporosis on
arthroscopic rotator cuff repair
and postoperative tendon-to-
bone healing
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Qilong Lai, Hong Jiang and Guanhong Liu®

Orthopedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine,
Suzhou, Jiangsu, China

This review explores the impact of osteoporosis on arthroscopic rotator cuff
repair and subsequent tendon healing, focusing on challenges such as anchor
fixation failure, intraoperative fractures, and limited surgical visibility. It examines
how osteoporosis disrupts the tendon healing microenvironment post-surgery
through mechanisms involving bone metabolism, growth factors, the immune
system, sex hormones, oxidative stress, and adipose infiltration. Effective
surgical planning is crucial to mitigate the adverse effects of osteoporosis on
rotator cuff repair. This review offers recommendations for optimizing surgical
strategies, including anchor selection, placement, and fixation techniques. In
addition, it highlights the potential of anti-osteoporotic drugs and biological
therapies to improve tendon-to-bone union and enhance clinical outcomes.
For cases of inevitable repair failure, remedial strategies are proposed to inform
clinical practice. A systematic literature search was conducted in the PubMed,
Web of Science, and CNKI databases (2000-2025) using the following
keywords: “osteoporosis,” “rotator cuff injury,” “shoulder arthroscopy,” “tendon-
to-bone healing,” and "retear.” The inclusion criteria were as follows: (1) human
or animal studies; (2) MRI-confirmed rotator cuff tears; and (3) full-text articles
in English or Chinese. The exclusion criteria included case reports (n < 10).

KEYWORDS

osteoporosis, rotator cuff injury, shoulder arthroscopy, tendon-to-bone healing,
retear

1 Introduction

Rotator cuff injury is a prevalent shoulder pathology characterized by pain and
functional impairment, particularly in middle-aged and elderly populations (1). Due to
its limited capacity for self-healing, rotator cuff injuries frequently require surgical
intervention. Arthroscopic shoulder surgery is widely used to treat such injuries,
although the risk of postoperative retears remains significant (2). Osteoporosis, which
is characterized by reduced bone mass and deteriorated bone microarchitecture,
represents a metabolic imbalance in bone tissue, resulting in increased fragility and
fracture risk. It is both a risk factor for the initial occurrence of rotator cuff injuries
and a factor that adversely affects postoperative tendon-to-bone healing, thereby
increasing the likelihood of retears (3, 4). Clinically, patients with rotator cuff injuries
and osteoporosis face greater surgical challenges, an elevated risk of impaired tendon-
to-bone healing, and subsequent retears that may necessitate revision surgery,
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significantly increasing the economic burden (5). Recent research
has focused on improving surgical outcomes, optimizing the
tendon-to-bone healing microenvironment, and reducing the
With
technology, clinicians have explored new strategies in surgical

postoperative retear rate. advancements in medical

techniques and bioengineering, offering promising pathways for
enhanced prognosis. This review aims to analyze the impact of
cuff
postoperative tendon-to-bone healing, while also discussing

osteoporosis on  arthroscopic rotator repair and

current clinical strategies for optimizing outcomes.

2 Relationship between osteoporosis
and rotator cuff injury

Osteoporosis increases the risk of rotator cuff injury. In a
matched cohort study by Hong et al. (4), 17,067 osteoporotic
patients and 100,501 non-osteoporotic controls were followed for
7 years. The results revealed 166 and 89 cases of rotator cuff
tears in the osteoporotic and non-osteoporotic groups,
respectively, indicating a 1.79-fold higher risk of rotator cuff tear
their

osteoporotic counterparts. Age-related decreases in bone mineral

among osteoporotic patients compared with non-
density (BMD), particularly in the proximal humerus and greater
tuberosity, complicate the surgical repair of rotator cuff injuries.
Reduced BMD at these critical sites alters the tendon-to-bone
healing microenvironment, increasing the risk of postoperative
retear. In addition, decreased local mechanical stimulation from
the rotator cuff injury may contribute to secondary osteoporosis
(5, 6). Chen et al. (7) categorized 74 rotator cuff injury patients
into three groups based on preoperative bone density (normal
bone mass, osteopenia, and osteoporosis). After 12 months of
postoperative follow-up, significantly higher retear rates were
observed in the osteopenic and osteoporotic groups compared
with the normal bone density group. Lee et al. (8) performed
dual-energy x-ray absorptiometry (DEXA) on 87 patients with
unilateral rotator cuff injuries and analyzed the BMD of various
regions of interest (ROIs), including the humeral head, lesser
tuberosity, medial greater tuberosity, middle greater tuberosity,
lateral greater tuberosity, and the overall proximal humerus.
Their results demonstrated significantly lower BMD in all ROIs
on the injured side compared with the contralateral healthy side
(all p<0.05).

Thus, thorough osteoporosis screening is essential for middle-
aged and elderly patients with rotator cuff injuries, and timely
intervention should be implemented for those diagnosed
with osteoporosis.

3 Influence of osteoporosis on rotator
cuff repair surgery
3.1 Increased risk of anchor fixation failure

Patients with osteoporosis face greater challenges in achieving
stable anchor fixation compared with those without osteoporosis.
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Localized osteoporosis frequently leads to early postoperative
anchor loosening or dislodgement, resulting in long-term
instability of the bone bed. This instability compromises the
healing microenvironment and increases the risk of rotator cuff
retears (6). Tingart et al. (9) conducted a cadaveric study to
examine the relationship between proximal humeral BMD and
anchor pull-out strength. They found a significant positive
correlation, highlighting the need for thorough preoperative
osteoporosis evaluation, optimization of surgical techniques,
real-time

careful selection, and

stability to mitigate the

implant intraoperative

monitoring of anchor risk of

postoperative retears.

3.2 Increased risk of intraoperative fracture

The risk of intraoperative fractures in osteoporotic patients
primarily results from reduced bone strength combined with
concentrated mechanical stress during surgery. Shoulder
arthroscopy is typically performed with the patient in a lateral
decubitus position, maintaining prolonged arm abduction to
maximize the space between the humerus and glenoid (10).
However, in osteoporotic patients, excessive abduction
traction may predispose the proximal humerus to fractures. In
addition, localized compression during cannula insertion
can cause fractures at the entry site. Careful management
of the footprint bone bed is also critical, as excessive
abrasion in this area can disrupt the subchondral bone
plate, potentially leading to localized humeral head collapse
(5). Furthermore, careful drilling of anchor pilot holes and
precise control of suture tension are essential, as excessive
drilling to further

speed and tension may contribute

localized fractures.

3.3 Limited surgical visualization

Patients with osteoporosis often experience reduced bone
density, which leads to weakened capsular attachment sites or
humeral head joint surface collapse, resulting in joint
misalignment. The passive stretching of the capsule required
to maintain joint stability can cause capsular laxity, negatively
affecting surgical visualization. Restricted visibility prolongs
the operative time, increasing the risk of infection. In
addition,
precision, raising the risk of incorrect anchor placement or

diminished  visibility = compromises  surgical
inadvertent damage to neurovascular structures and tendons.
Higher irrigation pressures, necessary to maintain joint space
increase the risk of fluid extravasation,

expansion, also

potentially causing localized limb swelling and adverse effects
(11).

intraoperative monitoring of skin tension and limb swelling is

on peripheral vasculature Therefore, continuous

essential to avoid excessive irrigation pressures and

related complications.
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4 Influence of osteoporosis on
postoperative tendon-to-bone
healing

The normal tendon-to-bone junction (enthesis) consists of a
highly specialized tissue architecture, including bone, calcified
fibrocartilage, non-calcified fibrocartilage, and tendon, which
effectively distributes mechanical stress between the tendon and
bone, thereby enhancing biomechanical properties (12). Surgical
intervention is the primary treatment for injuries at the tendon-
indicate that
surgically repaired tendon-to-bone junctions typically heal as

to-bone interface. However, clinical studies
disorganized scar tissue, rather than restoring the original four-
layer structure. The irregular extracellular matrix and reduced
elasticity of scar tissue significantly impair biomechanical
function (13). In patients with osteoporosis, the altered healing
microenvironment often results in poor tendon-to-bone
integration, significantly increasing the risk of postoperative
retears (3). Key mechanisms by which osteoporosis affects

tendon-to-bone healing (Figure 1) include the following.

4.1 Imbalanced bone metabolism

Normal bone metabolism results from the precise coordination
between osteoclasts and osteoblasts, maintaining skeletal integrity
through the continuous resorption of old bone and formation of
new bone. In osteoporosis, the dynamic balance between bone
resorption and formation is disrupted; osteoclast activity is
enhanced, accelerating bone resorption, while osteoblast function,
particularly the differentiation and activity of mesenchymal stem
cells (MSCs), is suppressed. This imbalance directly impacts the
tendon-to-bone interface. Xu et al. (14), using an osteoporotic rat
model, investigated the effect of osteoporosis on tendon-to-bone
They found that early
postoperative healing at the tendon-to-bone interface was

healing after rotator cuff repair.

impaired due to heightened osteoclast activity. MSCs exert
multiple regulatory functions through exosome secretion. In a rat

10.3389/fsurg.2025.1683843

(15)

demonstrated that bone marrow MSC-derived exosomes (BMSC-

model of rotator cuff reconstruction, Huang et al.
Exos) increased failure load and stiffness at the repair site,
induced angiogenesis at the tendon-to-bone interface, and
promoted healing. However, in osteoporosis, MSC function is
often abnormal, with a shift toward enhanced adipogenic
differentiation and reduced osteogenic and chondrogenic
differentiation (16), thus hindering fibrocartilage regeneration at

the interface and impairing effective tendon-to-bone healing.

4.2 Growth factor function is inhibited

Growth factors are cytokines or proteins that play pivotal roles
in cell differentiation throughout the healing process. In tendon-
to-bone healing, key growth factors such as bone morphogenetic
proteins (BMPs), transforming growth factor (TGF), vascular
endothelial growth factor (VEGF), and fibroblast growth factor
(FGF) regulate cell proliferation, differentiation, and extracellular
matrix synthesis, promoting fibrocartilage regeneration and
angiogenesis, which are essential for effective tendon-to-bone
integration (17). In the pathological microenvironment of
osteoporosis, the normal regulatory functions of growth factors
may be impaired, or their associated signaling pathways may be
disrupted (18, 19), potentially leading to delayed healing at the
tendon-to-bone interface or reduced structural strength.
Clinically, growth factors can be used as adjuncts to enhance
repair; however, their therapeutic outcomes remain inconsistent,
influenced by factors such as delivery method, dosage, and
timing of application. Achieving precise, controlled local release
of growth their effects the

microenvironment remains a key challenge for future research.

factors to optimize in

4.3 Decreased sex hormone levels

Previous studies have shown a strong association between sex
hormones and tendon-to-bone healing. Tashjian et al. (20)
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effects  of
supplementation in male mice following rotator cuff repair.

investigated the estrogen and testosterone
Histological analysis at 8 weeks post-surgery revealed that
with
significantly improved tendon healing quality. Similarly, Tanaka

supplementation either estrogen or testosterone
et al. (21), using an ovariectomized rat model, examined the
impact of estrogen deficiency on tendon-to-bone healing after
rotator cuff repair. Their results indicated that insufficient
estrogen impaired fibrocartilage-like tissue formation at the
tendon-to-bone interface, thereby hindering the healing process.

Therefore, in postmenopausal women or elderly male patients,
it may be beneficial to assess sex hormone levels and, when
appropriate, consider hormone replacement therapy or other
interventions to tendon-to-bone

endocrine improve the

healing microenvironment.

4.4 Persistent low-grade immune
activation
Tendon-to-bone  healing  progresses  through three
overlapping phases: inflammation, repair, and remodeling. The
inflammatory phase is crucial, with macrophages playing an
active role throughout the process. During this phase,
macrophages polarize into the M1 phenotype, secreting pro-
inflammatory cytokines such as interleukin-1f (IL-1B) and
tumor necrosis factor-o. (TNF-0) to mediate inflammation,
clear necrotic tissue, and promote fibroblast proliferation. In
the repair and remodeling phases, macrophages shift toward
the M2 phenotype, producing anti-inflammatory cytokines
interleukin-10 (IL-10) and TGF-f to

inflammation and facilitate tissue repair (22, 23). Osteoporosis

such as suppress

is often associated with persistent low-grade immune
activation, characterized by a higher M1/M2 macrophage ratio
and a shift toward MI

accumulation of pro-inflammatory cytokines, intensifying local

polarization. This leads to the

inflammation, which hinders tendon-to-bone healing (24-26).
In addition, excessive early postoperative inflammation may
further impair the healing microenvironment. To mitigate the
negative effects of excessive inflammation, non-steroidal anti-
inflammatory drugs (NSAIDs), cryotherapy, laser therapy, and
other physical modalities may help reduce local inflammation
and improve postoperative outcomes.

4.5 Oxidative stress

Oxidative stress occurs when there is an imbalance between
the production of reactive oxygen species (ROS) and the body’s
ROS
accumulation, cellular damage, apoptosis, and impaired cellular

antioxidant defense systems, leading to excessive
function (27). Clinical studies have shown that patients with
osteoporosis exhibit significantly lower total serum antioxidant
capacity and higher serum peroxide levels (28). In another
study, postmenopausal women were classified into normal bone

mass, osteopenia, and osteoporosis groups based on BMD.
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Serum measurements revealed that catalase, superoxide
dismutase 2 (SOD2), and peroxiredoxin 2 (PRX2) levels were
significantly reduced in the abnormal bone mass groups
compared with the normal group (29). This pathological
imbalance between oxidative and antioxidative systems
negatively impacts tendon-to-bone healing. Itoigawa et al. (2)
found that oxidative stress and superoxide dismutase (SOD)
levels were significantly higher in patients with postoperative
retears compared with those with successful tendon healing
after arthroscopic rotator cuff repair. Uehara et al. (30), using
a rat rotator cuff repair model, demonstrated that antioxidant
treatments, such as N-acetylcysteine (NAC) and vitamin C
(VQC), at the

accelerated the healing process.

reduced oxidative stress repair site and

4.6 Fatty infiltration

Studies have shown that osteoporosis is often accompanied by
fatty infiltration (31-33). Fatty infiltration of shoulder musculature
can impair fibrocartilage formation at the tendon-to-bone
interface, leading to poor healing outcomes (3, 34). Yang et al.
(35) reported that fatty infiltration of the rotator cuff muscles,
particularly the infraspinatus, significantly increased the risk of
postoperative retears and was associated with lower shoulder
function scores. Li et al. (36), using a rat rotator cuff injury
model, demonstrated that overexpression or knock-out of the
ubiquitin ligase NEDD4 could regulate adipocyte differentiation
and lipid metabolism, thereby reducing fatty infiltration and
promoting tendon-to-bone healing. Therefore, prolonged
immobilization of the shoulder joint after a rotator cuff injury
should be avoided to prevent disuse osteoporosis and fatty
infiltration. For patients already experiencing fatty infiltration,
pharmacological interventions targeting lipid metabolism may

be considered.

4.7 Vitamin D deficiency

Vitamin D, particularly its active form 1,25-dihydroxyvitamin
D;, enhances the intestinal absorption of calcium and phosphorus,
providing essential substrates for bone mineralization, and works
synergistically with parathyroid hormone (PTH) to regulate bone
metabolism and maintain serum calcium homeostasis. Vitamin
D deficiency is detrimental to tendon-to-bone healing. Chen
et al. (37) included 89 patients with full-thickness rotator cuff
tears undergoing arthroscopic repair, categorizing them into
control and deficiency groups based on serum vitamin D levels.
The results showed that the deficiency group had a significantly
higher retear rate compared with the control group and was
more prone to early postoperative pain. As osteoporosis is
frequently accompanied by vitamin D deficiency, combined
supplementation with calcium and vitamin D during treatment
may help improve bone quality and promote tendon-to-
bone healing.
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5 Strategies to improve prognosis

To mitigate the impact of osteoporosis on rotator cuff repair
and improve outcomes, current approaches focus on two main
strategies: first, optimizing surgical techniques to prevent anchor
pull-out, and second, enhancing bone quality at fixation sites
through osteoporosis medication or biological therapies to
promote tendon-to-bone union (Figure 2).

5.1 Enhancing stability of internal fixation

5.1.1 Increase the number of anchor points
Increasing the number of fixation points can effectively
distribute stress across the bone-anchor interface, reducing
stress concentration at the tendon-to-bone junction, lowering
the risk of anchor loosening or failure, and improving anchor
pull-out strength (5). However, the number of anchors is
limited by the tear size and footprint area. Research suggests a
minimum distance of 6 mm between anchors to maintain pull-
out strength; therefore, anchors should be spaced at least 6 mm
apart during placement (38). Clinicians should carefully
evaluate tendon tear size, footprint dimensions, and local bone
quality, as excessive anchor placement may prolong surgery,
infection, and raise

increase the risk of the patient’s

economic burden.

5.1.2 Single-row, double-row, and suture bridge
techniques

The suture technique in rotator cuff repair is crucial for
reattaching the tendon to the greater tuberosity. Common
methods include single-row, double-row, and suture bridge
techniques. Gu et al. (39) reported significantly lower retear
rates with double-row techniques compared with single-row
techniques. However, they also found no significant difference
in outcomes between single- and double-row techniques for
tears smaller than 3 cm. The suture bridge technique, an
enhanced variation of double-row suturing, has demonstrated
improved clinical outcomes in previous studies (40).

Frontiers in Surgery

5.1.3 Appropriate anchor specification and type
The mechanical fixation strength (pull-out strength) of suture
anchors depends on factors such as thread pitch, thread count,
length, dimensions, and anchor geometry. Various anchor
designs, materials, and dimensions have been developed, each
exhibiting different biomechanical performances (41). Chae
et al. (42) identified that increasing anchor length, thread count,
thread height, and the contact area between anchor threads and
surrounding bone enhances anchor pull-out strength. Clinically,
commonly used anchors include metal anchors, polymer
[e.g., (PEEK)], bioabsorbable
anchors, biocomposite anchors, and all-suture anchors. Yang

anchors polyetheretherketone
et al. (43) conducted biomechanical comparisons of different
anchor types used in rotator cuff repairs. They found that PEEK
anchors exhibited the highest ultimate failure load, while
biocomposite anchors had the lowest. All-suture anchors
demonstrated the highest stiffness, while PEEK anchors had the
lowest stiffness. Regarding displacement, metal anchors
exhibited minimal displacement, followed by all-suture anchors.
Importantly, they noted that BMD significantly influences
anchor performance. All-suture anchors performed superiorly in
osteoporotic bone models. This is primarily due to their
superior stress dispersion capabilities, lower bone volume
requirements, and reduced bone intrusion. Unlike traditional
anchors, the full-thread anchor evenly distributes tensile forces
through high-strength suture material, minimizing stress
concentration in fragile bone areas, thereby reducing the risk of
anchor loosening or fracture. Simultaneously, its compact size
and design result in minimal bone intrusion, reducing the risk
of bone damage. Moreover, it does not rely on substantial bone
volume for stability. Instead, it capitalizes on the relatively well-
preserved mechanical properties of cortical bone in osteoporotic
skeletons, ensuring effective fixation even in osteoporotic
patients and guaranteeing the stability of the repair. Therefore,
in osteoporotic patients, the use of all-suture anchors should be
considered if local bone conditions permit.

The angle of anchor implantation is also crucial. Liu et al. (44)
reported that, at equivalent bone densities, anchors implanted
perpendicularly (at a 90° enhanced

angle) significantly

biomechanical stability. In addition, perpendicular implantation
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facilitates suture knotting during surgery and improves

postoperative recovery of the supraspinatus muscle.

5.1.4 Bone grafting and cement augmentation
During arthroscopic rotator cuff repair, bone grafting or
cement augmentation can effectively address defects caused by
osteoporotic bone resorption or subchondral cystic lesions. Levy
et al. (45) compressed cancellous allograft bone into proximal
humeral cystic defects, creating a robust bone bed for anchor
fixation and enhancing fixation strength. Fang et al. (46)
that
grafts

demonstrated autologous osteochondral tissue and

periosteal significantly =~ promoted  fibrocartilage

regeneration at the tendon-to-bone interface. However,
arthroscopic bone grafting remains technically challenging and
is unsuitable for osteoporosis without significant bone defects.
Therefore, clinical preference often favors injectable bone
cement for bone augmentation and improved anchor fixation
strength. Aziz et al. (47) demonstrated in cadaveric studies that
polymethylmethacrylate (PMMA) cement significantly enhanced
anchor pull-out strength. However, the non-absorbable nature of
PMMA complicates revision surgeries and poses a risk of intra-
articular extravasation during injection. In addition, thermal
effects during cement curing may lead to osteonecrosis. Novel
bioabsorbable fiber-reinforced bone cements offer similar tensile
strength to PMMA without thermal effects and are absorbable,
representing promising enhancement materials (48). Further
research into the biocompatibility and safety of the degradation

products from these new cements is needed.

5.1.5 Patch augmentation techniques

Patch augmentation involves placing graft materials around
torn rotator cuff tendons to provide mechanical support,
distribute stress, and promote tissue healing. Both synthetic and
biological patches are currently used clinically. Wang et al. (49)
demonstrated improved biomechanical properties and tendon-
to-bone healing using decellularized amniotic membrane (DAM)
in a rat supraspinatus tendon tear model. Similarly, another
study (50) showed that acellular amniotic membrane (AAM)
facilitated
interposed between the tendon and bone, rather than when

tendon-to-bone healing more effectively when

merely overlaid. Synthetic patches may induce chronic

inflammation or infections due to poor tissue compatibility,
potentially leading to repair failure (51). Biological patches carry
the risk of
degradation rates may negatively affect repair outcomes. In

immunological rejection, and mismatched
addition, decellularized tendon grafts face unresolved issues,
such as inferior biomechanical properties compared with normal
tendons post-decellularization (52). Therefore, further research
is needed to enhance the properties of these biomaterials for

improved tendon repair.

5.1.6 Optimization of footprint management
Proper management of the tendon footprint is crucial for

ensuring anchor stability and promoting favorable tendon-to-

bone healing. Hyatt et al. (53) studied human humeral

specimens to examine the biomechanical impact of cortical bone
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The
significantly reduced anchor pull-out strength in decorticated
(62.84 +38.04 N/mm) compared with non-
(244.04 £ 89.06 N/mm; P <0.0001).
Therefore, excessive cortical bone decortication at the footprint

decortication on anchor fixation. results showed
specimens

decorticated  specimens
should be avoided, particularly in osteoporotic patients. In
addition, Sun et al. (54) demonstrated in a rabbit rotator cuff
tear model that preserving remnant tendon tissues significantly
enhanced biomechanical and histological outcomes, improving

overall rotator cuff healing.

5.2 Mitigating the effects of osteoporosis
on tendon-to-bone healing

5.2.1 Application of anti-osteoporosis
medications

Postoperative administration of anti-osteoporosis medications
can enhance tendon-to-bone healing following rotator cuff repair.
Current medications for osteoporosis include foundational
treatments (e.g., calcium and vitamin D), antiresorptive agents
(e.g., bisphosphonates, RANKL inhibitors), anabolic agents (e.g.,
PTH analogues), and alternative treatments (e.g., strontium salts,
traditional Chinese medicines, and their extracts) (55). Zhao
et al. (56) demonstrated in a retrospective study that intravenous
zoledronic acid significantly reduced retear rates after rotator
cuff repair in elderly osteoporotic patients. Xu et al. (57)
explored the effects of abaloparatide (ABL) and denosumab
(Dmab) on tendon-to-bone healing using an osteoporotic rat
model with chronic rotator cuff tears, finding both drugs
with ABL’s
compared with Dmab’s

beneficial, anabolic effects yielding superior

effects.
However, discontinuing anti-osteoporosis medication may lead

outcomes antiresorptive
to deterioration in bone quality. This “bone deterioration” refers
not to an absolute decline in bone quality, but to the gradual
weakening or even disappearance of the benefits provided by the
medication—specifically, the increase in bone density and
reduction in fracture risk. Therefore, determining an appropriate
treatment duration and implementing regular monitoring is
crucial. Treatment cycles are not indefinite but are planned
based on pharmacokinetics and the patient’s fracture risk. For
example, bisphosphonates enter an evaluation phase after an
initial 3-5 years of treatment. During this period, regular bone
density monitoring and biomarker testing can reflect drug
efficacy and bone metabolic status, helping clinicians adjust
that
osteoporosis medications can cause adverse reactions such as

treatment regimens. Reports have also indicated
osteonecrosis of the jaw and hypocalcemia. Thus, individualized
treatment, considering patient-specific bone quality and overall

health status, is essential.

5.2.2 Biological therapies

Biological therapies include cellular treatments [platelet-rich
plasma (PRP), stem cell therapy], growth factors, scaffolds, and
gene therapy. PRP contains multiple growth factors that can
enhance tendon-to-bone healing after rotator cuff repair. Peng
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et al. (58) reported reduced retear rates and improved clinical
outcomes with PRP during arthroscopic rotator cuff repairs.
However, further exploration is needed regarding optimal PRP
concentration, bioactive component mechanisms, and the timing
of application. Scaffold technologies, which serve as carriers for
growth factors and stem cells, can activate repair potential at the
injury site, providing temporary mechanical support and
promoting organized regeneration through biomimetic structures
(17). Advances in 3D printing have enhanced scaffold fabrication,
allowing the creation of bioactive scaffolds that replicate natural
tendon structure, maintain mechanical strength, and improve
cellular communication and tendon-to-bone integration (59). Ni
et al. (60) developed a 3D-printed polycaprolactone (PCL)
scaffold loaded with basic FGF and bone marrow mesenchymal
(BMSCs),

strength, histological scores, and local bone density 2 weeks post-

stem cells significantly improving biomechanical
surgery in a rat rotator cuff tear model. Nevertheless, precise
control of scaffold degradation rates to match tissue regeneration
remains challenging, and immunological reactions requiring
prolonged immunosuppression are potential drawbacks. Gene
therapy involves targeting osteogenic genes (e.g, Runx2 and
Osterix) to the tendon-to-bone interface via adenovirus or
liposomes. Xie et al. (61) used an adenoviral vector carrying the
Runx2 gene to transfect human amniotic mesenchymal stem cells
(hAMSCs), directing differentiation toward ligament fibroblasts
and enhancing tendon-to-bone healing in a rabbit anterior
cruciate ligament (ACL) reconstruction model. However, the risk
of viral integration into host genomes, leading to uncontrolled
gene expression, remains a concern.

5.3 Appropriate postoperative rehabilitation

Postoperative rehabilitation is critical following rotator cuff
repair. Yoo et al. (62) randomly assigned 75 patients to early or
and found no

delayed rehabilitation protocols

differences between the groups in postoperative range of motion,

significant

functional outcomes, muscle strength recovery, or tendon healing
during short- and midterm follow-ups. Therefore, rehabilitation
strategies should balance the risk of fixation failure associated
with early rehabilitation against the risk of joint stiffness from
delayed rehabilitation. Patient-specific factors, such as bone
quality, tear size, and fixation technique, are crucial. In addition,
combining extracorporeal shockwave therapy with rehabilitation
exercises has shown superior outcomes in reducing early
postoperative shoulder pain and accelerating tendon healing at
anchor sites compared with rehabilitation alone (63).

6 Salvage strategies following failed
rotator cuff repair

When anchor fixation failure or retear occurs postoperatively,
timely salvage strategies should be implemented. For patients with
good tendon quality, if significant anchor loosening is observed,
the loose anchors should be removed, and new anchor points
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should be selected for refixation. For anchors with minimal
loosening, they may be retained and supplemented with additional
anchors for reinforced fixation (64). Intraoperatively, adjustments

types, or

augmentation can be considered to reattach the tendon. However,

to suture techniques, alternative anchor cement
revision surgery carries a higher risk of infection, and scar tissue
or adhesions from the initial procedure may complicate surgery.

For poor tendon quality, where re-suturing is not feasible,
alternative options include tendon transfer procedures such as
latissimus dorsi transfer (LDT) or pectoralis major transfer
(PMT), superior capsular reconstruction (SCR), or reverse total
shoulder arthroplasty (RTSA). LDT is primarily indicated for
irreparable posterosuperior rotator cuff tears, with studies
showing that arthroscopy-assisted LDT can restore flexion and
abduction comparable to the asymptomatic contralateral
shoulder and healthy controls (65). PMT is effective for
irreparable subscapularis tears, improving anterior shoulder
stability and internal rotation strength. SCR, suitable for massive
irreparable tears without severe glenohumeral arthritis, uses
autograft or allograft tissue to reconstruct the superior capsule,
restoring humeral head stability, reducing superior migration,
and improving shoulder function (66). Mihata et al. (67)
followed patients for 10 years after SCR using autologous fascia
lata grafts, reporting high rates of return to sports and work
with sustained clinical and structural improvements.

Subacromial balloon spacer implantation has emerged as a
novel approach, involving the insertion of an absorbable balloon
in the subacromial space. This device cushions the humeral
head from the acromion during deltoid activation and arm
abduction, potentially improving biomechanics and reducing
pain (68, 69). However, clinical results have been mixed. Verma
et al. (70) randomized 184 patients with massive irreparable
posterosuperior tears to balloon implantation or partial repair,
finding that the balloon could substitute for partial repair,
offering superior early functional recovery and pain relief. In
contrast, Haque et al. (71) reported no additional benefit of
balloon implantation over arthroscopic debridement alone in a
randomized controlled trial. Therefore, the clinical effectiveness
of subacromial balloon spacers warrants further investigation.

For irreparable rotator cuff tears with concurrent joint
degeneration, RTSA is often the preferred option. While it does
not restore the rotator cuff, it effectively relieves pain and, through
the “ball-and-socket reversal” design, medializes and lowers the
center of rotation, enabling the deltoid muscle-particularly its
anterior and middle fibers to compensate for lost abduction
function. Even in the complete absence of supraspinatus and
infraspinatus function, this allows restoration of arm elevation.
However, osteoporosis-related risks, such as prosthesis loosening
and periprosthetic fractures, remain important considerations.

7 Conclusion

Arthroscopic treatment of rotator cuff injuries complicated by
osteoporosis presents dual challenges: osteoporosis not only
increases the risk of injury but also disrupts the postoperative
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tendon-to-bone healing microenvironment, leading to anchor
loosening, high retear rates, and suboptimal functional recovery.
Current strategies, including optimization of anchor fixation
techniques, the use of anti-osteoporosis medications, and the
application of biological therapies, have improved repair stability
and healing quality. In addition, salvage options such as revision
repair and tendon transfer provide solutions for failed cases.
However, systemic anti-osteoporosis therapies lack precise
regulation of the local healing microenvironment, and biomaterials
still face challenges related to compatibility and degradation rate
matching. Moreover, individualized surgical planning requires
more objective guidance from reliable biomarkers.

To address these challenges, future research should focus on
several key areas aimed at precisely regulating the local
microenvironment and optimizing therapeutic strategies. First,
locally targeted drug delivery systems will become a major research
direction. For example, developing injectable hydrogels loaded with
bisphosphonates or teriparatide will enable precise local drug
release, synergistically inhibiting bone resorption and promoting
regeneration to improve tendon healing. In addition, novel
hold

biomimetic mineralized collagen scaffolds and nanobioceramic

composite materials immense potential, particularly
composites. These materials offer superior osseointegration and
mechanical strength, while also modulating local bioactivity to
accelerate postoperative healing. Beyond material innovations,
precision medicine will play a pivotal role in future research.
Integrating imaging techniques with serum biomarkers will enable
the development of personalized postoperative prognosis prediction
models, guiding the formulation of tailored treatment and

rehabilitation plans.
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