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This review explores the impact of osteoporosis on arthroscopic rotator cuff 

repair and subsequent tendon healing, focusing on challenges such as anchor 

fixation failure, intraoperative fractures, and limited surgical visibility. It examines 

how osteoporosis disrupts the tendon healing microenvironment post-surgery 

through mechanisms involving bone metabolism, growth factors, the immune 

system, sex hormones, oxidative stress, and adipose infiltration. Effective 

surgical planning is crucial to mitigate the adverse effects of osteoporosis on 

rotator cuff repair. This review offers recommendations for optimizing surgical 

strategies, including anchor selection, placement, and fixation techniques. In 

addition, it highlights the potential of anti-osteoporotic drugs and biological 

therapies to improve tendon-to-bone union and enhance clinical outcomes. 

For cases of inevitable repair failure, remedial strategies are proposed to inform 

clinical practice. A systematic literature search was conducted in the PubMed, 

Web of Science, and CNKI databases (2000–2025) using the following 

keywords: “osteoporosis,” “rotator cuff injury,” “shoulder arthroscopy,” “tendon- 

to-bone healing,” and “retear.” The inclusion criteria were as follows: (1) human 

or animal studies; (2) MRI-confirmed rotator cuff tears; and (3) full-text articles 

in English or Chinese. The exclusion criteria included case reports (n < 10).

KEYWORDS

osteoporosis, rotator cuff injury, shoulder arthroscopy, tendon-to-bone healing, 

retear

1 Introduction

Rotator cuff injury is a prevalent shoulder pathology characterized by pain and 

functional impairment, particularly in middle-aged and elderly populations (1). Due to 

its limited capacity for self-healing, rotator cuff injuries frequently require surgical 

intervention. Arthroscopic shoulder surgery is widely used to treat such injuries, 

although the risk of postoperative retears remains significant (2). Osteoporosis, which 

is characterized by reduced bone mass and deteriorated bone microarchitecture, 

represents a metabolic imbalance in bone tissue, resulting in increased fragility and 

fracture risk. It is both a risk factor for the initial occurrence of rotator cuff injuries 

and a factor that adversely affects postoperative tendon-to-bone healing, thereby 

increasing the likelihood of retears (3, 4). Clinically, patients with rotator cuff injuries 

and osteoporosis face greater surgical challenges, an elevated risk of impaired tendon- 

to-bone healing, and subsequent retears that may necessitate revision surgery, 
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significantly increasing the economic burden (5). Recent research 

has focused on improving surgical outcomes, optimizing the 

tendon-to-bone healing microenvironment, and reducing the 

postoperative retear rate. With advancements in medical 

technology, clinicians have explored new strategies in surgical 

techniques and bioengineering, offering promising pathways for 

enhanced prognosis. This review aims to analyze the impact of 

osteoporosis on arthroscopic rotator cuff repair and 

postoperative tendon-to-bone healing, while also discussing 

current clinical strategies for optimizing outcomes.

2 Relationship between osteoporosis 
and rotator cuff injury

Osteoporosis increases the risk of rotator cuff injury. In a 

matched cohort study by Hong et al. (4), 17,067 osteoporotic 

patients and 100,501 non-osteoporotic controls were followed for 

7 years. The results revealed 166 and 89 cases of rotator cuff 

tears in the osteoporotic and non-osteoporotic groups, 

respectively, indicating a 1.79-fold higher risk of rotator cuff tear 

among osteoporotic patients compared with their non- 

osteoporotic counterparts. Age-related decreases in bone mineral 

density (BMD), particularly in the proximal humerus and greater 

tuberosity, complicate the surgical repair of rotator cuff injuries. 

Reduced BMD at these critical sites alters the tendon-to-bone 

healing microenvironment, increasing the risk of postoperative 

retear. In addition, decreased local mechanical stimulation from 

the rotator cuff injury may contribute to secondary osteoporosis 

(5, 6). Chen et al. (7) categorized 74 rotator cuff injury patients 

into three groups based on preoperative bone density (normal 

bone mass, osteopenia, and osteoporosis). After 12 months of 

postoperative follow-up, significantly higher retear rates were 

observed in the osteopenic and osteoporotic groups compared 

with the normal bone density group. Lee et al. (8) performed 

dual-energy x-ray absorptiometry (DEXA) on 87 patients with 

unilateral rotator cuff injuries and analyzed the BMD of various 

regions of interest (ROIs), including the humeral head, lesser 

tuberosity, medial greater tuberosity, middle greater tuberosity, 

lateral greater tuberosity, and the overall proximal humerus. 

Their results demonstrated significantly lower BMD in all ROIs 

on the injured side compared with the contralateral healthy side 

(all p < 0.05).

Thus, thorough osteoporosis screening is essential for middle- 

aged and elderly patients with rotator cuff injuries, and timely 

intervention should be implemented for those diagnosed 

with osteoporosis.

3 Influence of osteoporosis on rotator 
cuff repair surgery

3.1 Increased risk of anchor fixation failure

Patients with osteoporosis face greater challenges in achieving 

stable anchor fixation compared with those without osteoporosis. 

Localized osteoporosis frequently leads to early postoperative 

anchor loosening or dislodgement, resulting in long-term 

instability of the bone bed. This instability compromises the 

healing microenvironment and increases the risk of rotator cuff 

retears (6). Tingart et al. (9) conducted a cadaveric study to 

examine the relationship between proximal humeral BMD and 

anchor pull-out strength. They found a significant positive 

correlation, highlighting the need for thorough preoperative 

osteoporosis evaluation, optimization of surgical techniques, 

careful implant selection, and real-time intraoperative 

monitoring of anchor stability to mitigate the risk of 

postoperative retears.

3.2 Increased risk of intraoperative fracture

The risk of intraoperative fractures in osteoporotic patients 

primarily results from reduced bone strength combined with 

concentrated mechanical stress during surgery. Shoulder 

arthroscopy is typically performed with the patient in a lateral 

decubitus position, maintaining prolonged arm abduction to 

maximize the space between the humerus and glenoid (10). 

However, in osteoporotic patients, excessive abduction 

traction may predispose the proximal humerus to fractures. In 

addition, localized compression during cannula insertion 

can cause fractures at the entry site. Careful management 

of the footprint bone bed is also critical, as excessive 

abrasion in this area can disrupt the subchondral bone 

plate, potentially leading to localized humeral head collapse 

(5). Furthermore, careful drilling of anchor pilot holes and 

precise control of suture tension are essential, as excessive 

drilling speed and tension may contribute to further 

localized fractures.

3.3 Limited surgical visualization

Patients with osteoporosis often experience reduced bone 

density, which leads to weakened capsular attachment sites or 

humeral head joint surface collapse, resulting in joint 

misalignment. The passive stretching of the capsule required 

to maintain joint stability can cause capsular laxity, negatively 

affecting surgical visualization. Restricted visibility prolongs 

the operative time, increasing the risk of infection. In 

addition, diminished visibility compromises surgical 

precision, raising the risk of incorrect anchor placement or 

inadvertent damage to neurovascular structures and tendons. 

Higher irrigation pressures, necessary to maintain joint space 

expansion, also increase the risk of >uid extravasation, 

potentially causing localized limb swelling and adverse effects 

on peripheral vasculature (11). Therefore, continuous 

intraoperative monitoring of skin tension and limb swelling is 

essential to avoid excessive irrigation pressures and 

related complications.
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4 Influence of osteoporosis on 
postoperative tendon-to-bone 
healing

The normal tendon-to-bone junction (enthesis) consists of a 

highly specialized tissue architecture, including bone, calcified 

fibrocartilage, non-calcified fibrocartilage, and tendon, which 

effectively distributes mechanical stress between the tendon and 

bone, thereby enhancing biomechanical properties (12). Surgical 

intervention is the primary treatment for injuries at the tendon- 

to-bone interface. However, clinical studies indicate that 

surgically repaired tendon-to-bone junctions typically heal as 

disorganized scar tissue, rather than restoring the original four- 

layer structure. The irregular extracellular matrix and reduced 

elasticity of scar tissue significantly impair biomechanical 

function (13). In patients with osteoporosis, the altered healing 

microenvironment often results in poor tendon-to-bone 

integration, significantly increasing the risk of postoperative 

retears (3). Key mechanisms by which osteoporosis affects 

tendon-to-bone healing (Figure 1) include the following.

4.1 Imbalanced bone metabolism

Normal bone metabolism results from the precise coordination 

between osteoclasts and osteoblasts, maintaining skeletal integrity 

through the continuous resorption of old bone and formation of 

new bone. In osteoporosis, the dynamic balance between bone 

resorption and formation is disrupted; osteoclast activity is 

enhanced, accelerating bone resorption, while osteoblast function, 

particularly the differentiation and activity of mesenchymal stem 

cells (MSCs), is suppressed. This imbalance directly impacts the 

tendon-to-bone interface. Xu et al. (14), using an osteoporotic rat 

model, investigated the effect of osteoporosis on tendon-to-bone 

healing after rotator cuff repair. They found that early 

postoperative healing at the tendon-to-bone interface was 

impaired due to heightened osteoclast activity. MSCs exert 

multiple regulatory functions through exosome secretion. In a rat 

model of rotator cuff reconstruction, Huang et al. (15) 

demonstrated that bone marrow MSC-derived exosomes (BMSC- 

Exos) increased failure load and stiffness at the repair site, 

induced angiogenesis at the tendon-to-bone interface, and 

promoted healing. However, in osteoporosis, MSC function is 

often abnormal, with a shift toward enhanced adipogenic 

differentiation and reduced osteogenic and chondrogenic 

differentiation (16), thus hindering fibrocartilage regeneration at 

the interface and impairing effective tendon-to-bone healing.

4.2 Growth factor function is inhibited

Growth factors are cytokines or proteins that play pivotal roles 

in cell differentiation throughout the healing process. In tendon- 

to-bone healing, key growth factors such as bone morphogenetic 

proteins (BMPs), transforming growth factor (TGF), vascular 

endothelial growth factor (VEGF), and fibroblast growth factor 

(FGF) regulate cell proliferation, differentiation, and extracellular 

matrix synthesis, promoting fibrocartilage regeneration and 

angiogenesis, which are essential for effective tendon-to-bone 

integration (17). In the pathological microenvironment of 

osteoporosis, the normal regulatory functions of growth factors 

may be impaired, or their associated signaling pathways may be 

disrupted (18, 19), potentially leading to delayed healing at the 

tendon-to-bone interface or reduced structural strength. 

Clinically, growth factors can be used as adjuncts to enhance 

repair; however, their therapeutic outcomes remain inconsistent, 

in>uenced by factors such as delivery method, dosage, and 

timing of application. Achieving precise, controlled local release 

of growth factors to optimize their effects in the 

microenvironment remains a key challenge for future research.

4.3 Decreased sex hormone levels

Previous studies have shown a strong association between sex 

hormones and tendon-to-bone healing. Tashjian et al. (20) 

FIGURE 1 

This diagram illustrates the mechanisms by which osteoporosis affects the healing process of the tendon-bone, involving bone metabolism, 

inflammation, oxidative stress, adipokines, and growth factors.
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investigated the effects of estrogen and testosterone 

supplementation in male mice following rotator cuff repair. 

Histological analysis at 8 weeks post-surgery revealed that 

supplementation with either estrogen or testosterone 

significantly improved tendon healing quality. Similarly, Tanaka 

et al. (21), using an ovariectomized rat model, examined the 

impact of estrogen deficiency on tendon-to-bone healing after 

rotator cuff repair. Their results indicated that insufficient 

estrogen impaired fibrocartilage-like tissue formation at the 

tendon-to-bone interface, thereby hindering the healing process.

Therefore, in postmenopausal women or elderly male patients, 

it may be beneficial to assess sex hormone levels and, when 

appropriate, consider hormone replacement therapy or other 

endocrine interventions to improve the tendon-to-bone 

healing microenvironment.

4.4 Persistent low-grade immune 
activation

Tendon-to-bone healing progresses through three 

overlapping phases: in>ammation, repair, and remodeling. The 

in>ammatory phase is crucial, with macrophages playing an 

active role throughout the process. During this phase, 

macrophages polarize into the M1 phenotype, secreting pro- 

in>ammatory cytokines such as interleukin-1β (IL-1β) and 

tumor necrosis factor-α (TNF-α) to mediate in>ammation, 

clear necrotic tissue, and promote fibroblast proliferation. In 

the repair and remodeling phases, macrophages shift toward 

the M2 phenotype, producing anti-in>ammatory cytokines 

such as interleukin-10 (IL-10) and TGF-β to suppress 

in>ammation and facilitate tissue repair (22, 23). Osteoporosis 

is often associated with persistent low-grade immune 

activation, characterized by a higher M1/M2 macrophage ratio 

and a shift toward M1 polarization. This leads to the 

accumulation of pro-in>ammatory cytokines, intensifying local 

in>ammation, which hinders tendon-to-bone healing (24–26). 

In addition, excessive early postoperative in>ammation may 

further impair the healing microenvironment. To mitigate the 

negative effects of excessive in>ammation, non-steroidal anti- 

in>ammatory drugs (NSAIDs), cryotherapy, laser therapy, and 

other physical modalities may help reduce local in>ammation 

and improve postoperative outcomes.

4.5 Oxidative stress

Oxidative stress occurs when there is an imbalance between 

the production of reactive oxygen species (ROS) and the body’s 

antioxidant defense systems, leading to excessive ROS 

accumulation, cellular damage, apoptosis, and impaired cellular 

function (27). Clinical studies have shown that patients with 

osteoporosis exhibit significantly lower total serum antioxidant 

capacity and higher serum peroxide levels (28). In another 

study, postmenopausal women were classified into normal bone 

mass, osteopenia, and osteoporosis groups based on BMD. 

Serum measurements revealed that catalase, superoxide 

dismutase 2 (SOD2), and peroxiredoxin 2 (PRX2) levels were 

significantly reduced in the abnormal bone mass groups 

compared with the normal group (29). This pathological 

imbalance between oxidative and antioxidative systems 

negatively impacts tendon-to-bone healing. Itoigawa et al. (2) 

found that oxidative stress and superoxide dismutase (SOD) 

levels were significantly higher in patients with postoperative 

retears compared with those with successful tendon healing 

after arthroscopic rotator cuff repair. Uehara et al. (30), using 

a rat rotator cuff repair model, demonstrated that antioxidant 

treatments, such as N-acetylcysteine (NAC) and vitamin C 

(VC), reduced oxidative stress at the repair site and 

accelerated the healing process.

4.6 Fatty infiltration

Studies have shown that osteoporosis is often accompanied by 

fatty infiltration (31–33). Fatty infiltration of shoulder musculature 

can impair fibrocartilage formation at the tendon-to-bone 

interface, leading to poor healing outcomes (3, 34). Yang et al. 

(35) reported that fatty infiltration of the rotator cuff muscles, 

particularly the infraspinatus, significantly increased the risk of 

postoperative retears and was associated with lower shoulder 

function scores. Li et al. (36), using a rat rotator cuff injury 

model, demonstrated that overexpression or knock-out of the 

ubiquitin ligase NEDD4 could regulate adipocyte differentiation 

and lipid metabolism, thereby reducing fatty infiltration and 

promoting tendon-to-bone healing. Therefore, prolonged 

immobilization of the shoulder joint after a rotator cuff injury 

should be avoided to prevent disuse osteoporosis and fatty 

infiltration. For patients already experiencing fatty infiltration, 

pharmacological interventions targeting lipid metabolism may 

be considered.

4.7 Vitamin D deficiency

Vitamin D, particularly its active form 1,25-dihydroxyvitamin 

D3, enhances the intestinal absorption of calcium and phosphorus, 

providing essential substrates for bone mineralization, and works 

synergistically with parathyroid hormone (PTH) to regulate bone 

metabolism and maintain serum calcium homeostasis. Vitamin 

D deficiency is detrimental to tendon-to-bone healing. Chen 

et al. (37) included 89 patients with full-thickness rotator cuff 

tears undergoing arthroscopic repair, categorizing them into 

control and deficiency groups based on serum vitamin D levels. 

The results showed that the deficiency group had a significantly 

higher retear rate compared with the control group and was 

more prone to early postoperative pain. As osteoporosis is 

frequently accompanied by vitamin D deficiency, combined 

supplementation with calcium and vitamin D during treatment 

may help improve bone quality and promote tendon-to- 

bone healing.
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5 Strategies to improve prognosis

To mitigate the impact of osteoporosis on rotator cuff repair 

and improve outcomes, current approaches focus on two main 

strategies: first, optimizing surgical techniques to prevent anchor 

pull-out, and second, enhancing bone quality at fixation sites 

through osteoporosis medication or biological therapies to 

promote tendon-to-bone union (Figure 2).

5.1 Enhancing stability of internal fixation

5.1.1 Increase the number of anchor points
Increasing the number of fixation points can effectively 

distribute stress across the bone–anchor interface, reducing 

stress concentration at the tendon-to-bone junction, lowering 

the risk of anchor loosening or failure, and improving anchor 

pull-out strength (5). However, the number of anchors is 

limited by the tear size and footprint area. Research suggests a 

minimum distance of 6 mm between anchors to maintain pull- 

out strength; therefore, anchors should be spaced at least 6 mm 

apart during placement (38). Clinicians should carefully 

evaluate tendon tear size, footprint dimensions, and local bone 

quality, as excessive anchor placement may prolong surgery, 

increase the risk of infection, and raise the patient’s 

economic burden.

5.1.2 Single-row, double-row, and suture bridge 

techniques
The suture technique in rotator cuff repair is crucial for 

reattaching the tendon to the greater tuberosity. Common 

methods include single-row, double-row, and suture bridge 

techniques. Gu et al. (39) reported significantly lower retear 

rates with double-row techniques compared with single-row 

techniques. However, they also found no significant difference 

in outcomes between single- and double-row techniques for 

tears smaller than 3 cm. The suture bridge technique, an 

enhanced variation of double-row suturing, has demonstrated 

improved clinical outcomes in previous studies (40).

5.1.3 Appropriate anchor specification and type
The mechanical fixation strength (pull-out strength) of suture 

anchors depends on factors such as thread pitch, thread count, 

length, dimensions, and anchor geometry. Various anchor 

designs, materials, and dimensions have been developed, each 

exhibiting different biomechanical performances (41). Chae 

et al. (42) identified that increasing anchor length, thread count, 

thread height, and the contact area between anchor threads and 

surrounding bone enhances anchor pull-out strength. Clinically, 

commonly used anchors include metal anchors, polymer 

anchors [e.g., polyetheretherketone (PEEK)], bioabsorbable 

anchors, biocomposite anchors, and all-suture anchors. Yang 

et al. (43) conducted biomechanical comparisons of different 

anchor types used in rotator cuff repairs. They found that PEEK 

anchors exhibited the highest ultimate failure load, while 

biocomposite anchors had the lowest. All-suture anchors 

demonstrated the highest stiffness, while PEEK anchors had the 

lowest stiffness. Regarding displacement, metal anchors 

exhibited minimal displacement, followed by all-suture anchors. 

Importantly, they noted that BMD significantly in>uences 

anchor performance. All-suture anchors performed superiorly in 

osteoporotic bone models. This is primarily due to their 

superior stress dispersion capabilities, lower bone volume 

requirements, and reduced bone intrusion. Unlike traditional 

anchors, the full-thread anchor evenly distributes tensile forces 

through high-strength suture material, minimizing stress 

concentration in fragile bone areas, thereby reducing the risk of 

anchor loosening or fracture. Simultaneously, its compact size 

and design result in minimal bone intrusion, reducing the risk 

of bone damage. Moreover, it does not rely on substantial bone 

volume for stability. Instead, it capitalizes on the relatively well- 

preserved mechanical properties of cortical bone in osteoporotic 

skeletons, ensuring effective fixation even in osteoporotic 

patients and guaranteeing the stability of the repair. Therefore, 

in osteoporotic patients, the use of all-suture anchors should be 

considered if local bone conditions permit.

The angle of anchor implantation is also crucial. Liu et al. (44) 

reported that, at equivalent bone densities, anchors implanted 

perpendicularly (at a 90° angle) significantly enhanced 

biomechanical stability. In addition, perpendicular implantation 

FIGURE 2 

This diagram illustrates the clinical decision pathway for patients with rotator cuff injuries complicated by osteoporosis.
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facilitates suture knotting during surgery and improves 

postoperative recovery of the supraspinatus muscle.

5.1.4 Bone grafting and cement augmentation

During arthroscopic rotator cuff repair, bone grafting or 

cement augmentation can effectively address defects caused by 

osteoporotic bone resorption or subchondral cystic lesions. Levy 

et al. (45) compressed cancellous allograft bone into proximal 

humeral cystic defects, creating a robust bone bed for anchor 

fixation and enhancing fixation strength. Fang et al. (46) 

demonstrated that autologous osteochondral tissue and 

periosteal grafts significantly promoted fibrocartilage 

regeneration at the tendon-to-bone interface. However, 

arthroscopic bone grafting remains technically challenging and 

is unsuitable for osteoporosis without significant bone defects. 

Therefore, clinical preference often favors injectable bone 

cement for bone augmentation and improved anchor fixation 

strength. Aziz et al. (47) demonstrated in cadaveric studies that 

polymethylmethacrylate (PMMA) cement significantly enhanced 

anchor pull-out strength. However, the non-absorbable nature of 

PMMA complicates revision surgeries and poses a risk of intra- 

articular extravasation during injection. In addition, thermal 

effects during cement curing may lead to osteonecrosis. Novel 

bioabsorbable fiber-reinforced bone cements offer similar tensile 

strength to PMMA without thermal effects and are absorbable, 

representing promising enhancement materials (48). Further 

research into the biocompatibility and safety of the degradation 

products from these new cements is needed.

5.1.5 Patch augmentation techniques
Patch augmentation involves placing graft materials around 

torn rotator cuff tendons to provide mechanical support, 

distribute stress, and promote tissue healing. Both synthetic and 

biological patches are currently used clinically. Wang et al. (49) 

demonstrated improved biomechanical properties and tendon- 

to-bone healing using decellularized amniotic membrane (DAM) 

in a rat supraspinatus tendon tear model. Similarly, another 

study (50) showed that acellular amniotic membrane (AAM) 

facilitated tendon-to-bone healing more effectively when 

interposed between the tendon and bone, rather than when 

merely overlaid. Synthetic patches may induce chronic 

in>ammation or infections due to poor tissue compatibility, 

potentially leading to repair failure (51). Biological patches carry 

the risk of immunological rejection, and mismatched 

degradation rates may negatively affect repair outcomes. In 

addition, decellularized tendon grafts face unresolved issues, 

such as inferior biomechanical properties compared with normal 

tendons post-decellularization (52). Therefore, further research 

is needed to enhance the properties of these biomaterials for 

improved tendon repair.

5.1.6 Optimization of footprint management
Proper management of the tendon footprint is crucial for 

ensuring anchor stability and promoting favorable tendon-to- 

bone healing. Hyatt et al. (53) studied human humeral 

specimens to examine the biomechanical impact of cortical bone 

decortication on anchor fixation. The results showed 

significantly reduced anchor pull-out strength in decorticated 

specimens (62.84 ± 38.04 N/mm) compared with non- 

decorticated specimens (244.04 ± 89.06 N/mm; P < 0.0001). 

Therefore, excessive cortical bone decortication at the footprint 

should be avoided, particularly in osteoporotic patients. In 

addition, Sun et al. (54) demonstrated in a rabbit rotator cuff 

tear model that preserving remnant tendon tissues significantly 

enhanced biomechanical and histological outcomes, improving 

overall rotator cuff healing.

5.2 Mitigating the effects of osteoporosis 
on tendon-to-bone healing

5.2.1 Application of anti-osteoporosis 
medications

Postoperative administration of anti-osteoporosis medications 

can enhance tendon-to-bone healing following rotator cuff repair. 

Current medications for osteoporosis include foundational 

treatments (e.g., calcium and vitamin D), antiresorptive agents 

(e.g., bisphosphonates, RANKL inhibitors), anabolic agents (e.g., 

PTH analogues), and alternative treatments (e.g., strontium salts, 

traditional Chinese medicines, and their extracts) (55). Zhao 

et al. (56) demonstrated in a retrospective study that intravenous 

zoledronic acid significantly reduced retear rates after rotator 

cuff repair in elderly osteoporotic patients. Xu et al. (57) 

explored the effects of abaloparatide (ABL) and denosumab 

(Dmab) on tendon-to-bone healing using an osteoporotic rat 

model with chronic rotator cuff tears, finding both drugs 

beneficial, with ABL’s anabolic effects yielding superior 

outcomes compared with Dmab’s antiresorptive effects. 

However, discontinuing anti-osteoporosis medication may lead 

to deterioration in bone quality. This “bone deterioration” refers 

not to an absolute decline in bone quality, but to the gradual 

weakening or even disappearance of the benefits provided by the 

medication—specifically, the increase in bone density and 

reduction in fracture risk. Therefore, determining an appropriate 

treatment duration and implementing regular monitoring is 

crucial. Treatment cycles are not indefinite but are planned 

based on pharmacokinetics and the patient’s fracture risk. For 

example, bisphosphonates enter an evaluation phase after an 

initial 3–5 years of treatment. During this period, regular bone 

density monitoring and biomarker testing can re>ect drug 

efficacy and bone metabolic status, helping clinicians adjust 

treatment regimens. Reports have also indicated that 

osteoporosis medications can cause adverse reactions such as 

osteonecrosis of the jaw and hypocalcemia. Thus, individualized 

treatment, considering patient-specific bone quality and overall 

health status, is essential.

5.2.2 Biological therapies
Biological therapies include cellular treatments [platelet-rich 

plasma (PRP), stem cell therapy], growth factors, scaffolds, and 

gene therapy. PRP contains multiple growth factors that can 

enhance tendon-to-bone healing after rotator cuff repair. Peng 
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et al. (58) reported reduced retear rates and improved clinical 

outcomes with PRP during arthroscopic rotator cuff repairs. 

However, further exploration is needed regarding optimal PRP 

concentration, bioactive component mechanisms, and the timing 

of application. Scaffold technologies, which serve as carriers for 

growth factors and stem cells, can activate repair potential at the 

injury site, providing temporary mechanical support and 

promoting organized regeneration through biomimetic structures 

(17). Advances in 3D printing have enhanced scaffold fabrication, 

allowing the creation of bioactive scaffolds that replicate natural 

tendon structure, maintain mechanical strength, and improve 

cellular communication and tendon-to-bone integration (59). Ni 

et al. (60) developed a 3D-printed polycaprolactone (PCL) 

scaffold loaded with basic FGF and bone marrow mesenchymal 

stem cells (BMSCs), significantly improving biomechanical 

strength, histological scores, and local bone density 2 weeks post- 

surgery in a rat rotator cuff tear model. Nevertheless, precise 

control of scaffold degradation rates to match tissue regeneration 

remains challenging, and immunological reactions requiring 

prolonged immunosuppression are potential drawbacks. Gene 

therapy involves targeting osteogenic genes (e.g., Runx2 and 

Osterix) to the tendon-to-bone interface via adenovirus or 

liposomes. Xie et al. (61) used an adenoviral vector carrying the 

Runx2 gene to transfect human amniotic mesenchymal stem cells 

(hAMSCs), directing differentiation toward ligament fibroblasts 

and enhancing tendon-to-bone healing in a rabbit anterior 

cruciate ligament (ACL) reconstruction model. However, the risk 

of viral integration into host genomes, leading to uncontrolled 

gene expression, remains a concern.

5.3 Appropriate postoperative rehabilitation

Postoperative rehabilitation is critical following rotator cuff 

repair. Yoo et al. (62) randomly assigned 75 patients to early or 

delayed rehabilitation protocols and found no significant 

differences between the groups in postoperative range of motion, 

functional outcomes, muscle strength recovery, or tendon healing 

during short- and midterm follow-ups. Therefore, rehabilitation 

strategies should balance the risk of fixation failure associated 

with early rehabilitation against the risk of joint stiffness from 

delayed rehabilitation. Patient-specific factors, such as bone 

quality, tear size, and fixation technique, are crucial. In addition, 

combining extracorporeal shockwave therapy with rehabilitation 

exercises has shown superior outcomes in reducing early 

postoperative shoulder pain and accelerating tendon healing at 

anchor sites compared with rehabilitation alone (63).

6 Salvage strategies following failed 
rotator cuff repair

When anchor fixation failure or retear occurs postoperatively, 

timely salvage strategies should be implemented. For patients with 

good tendon quality, if significant anchor loosening is observed, 

the loose anchors should be removed, and new anchor points 

should be selected for refixation. For anchors with minimal 

loosening, they may be retained and supplemented with additional 

anchors for reinforced fixation (64). Intraoperatively, adjustments 

to suture techniques, alternative anchor types, or cement 

augmentation can be considered to reattach the tendon. However, 

revision surgery carries a higher risk of infection, and scar tissue 

or adhesions from the initial procedure may complicate surgery.

For poor tendon quality, where re-suturing is not feasible, 

alternative options include tendon transfer procedures such as 

latissimus dorsi transfer (LDT) or pectoralis major transfer 

(PMT), superior capsular reconstruction (SCR), or reverse total 

shoulder arthroplasty (RTSA). LDT is primarily indicated for 

irreparable posterosuperior rotator cuff tears, with studies 

showing that arthroscopy-assisted LDT can restore >exion and 

abduction comparable to the asymptomatic contralateral 

shoulder and healthy controls (65). PMT is effective for 

irreparable subscapularis tears, improving anterior shoulder 

stability and internal rotation strength. SCR, suitable for massive 

irreparable tears without severe glenohumeral arthritis, uses 

autograft or allograft tissue to reconstruct the superior capsule, 

restoring humeral head stability, reducing superior migration, 

and improving shoulder function (66). Mihata et al. (67) 

followed patients for 10 years after SCR using autologous fascia 

lata grafts, reporting high rates of return to sports and work 

with sustained clinical and structural improvements.

Subacromial balloon spacer implantation has emerged as a 

novel approach, involving the insertion of an absorbable balloon 

in the subacromial space. This device cushions the humeral 

head from the acromion during deltoid activation and arm 

abduction, potentially improving biomechanics and reducing 

pain (68, 69). However, clinical results have been mixed. Verma 

et al. (70) randomized 184 patients with massive irreparable 

posterosuperior tears to balloon implantation or partial repair, 

finding that the balloon could substitute for partial repair, 

offering superior early functional recovery and pain relief. In 

contrast, Haque et al. (71) reported no additional benefit of 

balloon implantation over arthroscopic debridement alone in a 

randomized controlled trial. Therefore, the clinical effectiveness 

of subacromial balloon spacers warrants further investigation.

For irreparable rotator cuff tears with concurrent joint 

degeneration, RTSA is often the preferred option. While it does 

not restore the rotator cuff, it effectively relieves pain and, through 

the “ball-and-socket reversal” design, medializes and lowers the 

center of rotation, enabling the deltoid muscle-particularly its 

anterior and middle fibers to compensate for lost abduction 

function. Even in the complete absence of supraspinatus and 

infraspinatus function, this allows restoration of arm elevation. 

However, osteoporosis-related risks, such as prosthesis loosening 

and periprosthetic fractures, remain important considerations.

7 Conclusion

Arthroscopic treatment of rotator cuff injuries complicated by 

osteoporosis presents dual challenges: osteoporosis not only 

increases the risk of injury but also disrupts the postoperative 
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tendon-to-bone healing microenvironment, leading to anchor 

loosening, high retear rates, and suboptimal functional recovery. 

Current strategies, including optimization of anchor fixation 

techniques, the use of anti-osteoporosis medications, and the 

application of biological therapies, have improved repair stability 

and healing quality. In addition, salvage options such as revision 

repair and tendon transfer provide solutions for failed cases. 

However, systemic anti-osteoporosis therapies lack precise 

regulation of the local healing microenvironment, and biomaterials 

still face challenges related to compatibility and degradation rate 

matching. Moreover, individualized surgical planning requires 

more objective guidance from reliable biomarkers.

To address these challenges, future research should focus on 

several key areas aimed at precisely regulating the local 

microenvironment and optimizing therapeutic strategies. First, 

locally targeted drug delivery systems will become a major research 

direction. For example, developing injectable hydrogels loaded with 

bisphosphonates or teriparatide will enable precise local drug 

release, synergistically inhibiting bone resorption and promoting 

regeneration to improve tendon healing. In addition, novel 

composite materials hold immense potential, particularly 

biomimetic mineralized collagen scaffolds and nanobioceramic 

composites. These materials offer superior osseointegration and 

mechanical strength, while also modulating local bioactivity to 

accelerate postoperative healing. Beyond material innovations, 

precision medicine will play a pivotal role in future research. 

Integrating imaging techniques with serum biomarkers will enable 

the development of personalized postoperative prognosis prediction 

models, guiding the formulation of tailored treatment and 

rehabilitation plans.
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