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Pushing the boundaries in
autologous breast
reconstruction: innovations from
iImaging to artificial intelligence
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Theresa Promny, Elisabeth Eschenbacher and Andreas Arkudas

Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative
Medicine, University Hospital Erlangen, Erlangen, Germany

Breast cancer remains the most commonly diagnosed malignancy among
women worldwide, with surgical intervention, ranging from breast-conserving
procedures to total mastectomy, representing a cornerstone of curative
treatment. In this context, breast reconstruction has become an essential
component of comprehensive cancer treatment, addressing not only physical
restoration but also playing a vital role in psychosocial rehabilitation and body
image. Among the various reconstructive options, autologous tissue transfer
has emerged as the preferred method for many patients, offering durable and
natural-feeling results. In particular, abdominal-based free flaps such as the
Deep Inferior Epigastric Perforator (DIEP) flap and the muscle-sparing
Transverse Rectus Abdominis Myocutaneous (ms-TRAM) flap offer excellent
results with reduced donor side morbidity. As the global number of breast
cancer continues to rise, the demand for safe, individualized, and functionally
superior reconstructive options rises as well. This article aims to provide a
general overview of current surgical approaches and to highlight perspectives
for future innovations in improving autologous breast reconstruction and
patient satisfaction.
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From observation to precision: the evolution of
preoperative imaging in autologous breast
reconstruction

Since the pioneering days of free flap surgery, the approach to autologous breast
reconstruction has undergone remarkable transformation (1, 2). Due to advanced
wound care tools, wound bed preparation has made it possible to transplant free flaps
to the chest in contaminated and irradiated areas at an earlier time point (3). The
seminal introduction of his first “free abdominoplasty flap”, which basically was a free
Transverse Rectus Abdominis Myocutaneous (TRAM) flap by Holmstrém (4), followed
by the refinement of perforator flap techniques such as the Deep Inferior Epigastric
Perforator (DIEP) flap introduced by Koshima (5), marked milestones that
revolutionized reconstructive options after mastectomy. In the early phases of these
techniques, flap planning relied heavily on tactile surgical experience and clinical
acumen—primarily through direct observation of skin perfusion and rudimentary
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Doppler ultrasound to locate suitable perforators (6, 7). However,
with growing recognition of the complexity of abdominal vascular
anatomy and the critical importance of optimizing flap perfusion
while minimizing donor site morbidity, a paradigm shift occurred
(8, 9).
sophisticated

The field has steadily moved toward increasingly

and  standardized  preoperative  imaging
protocols (10).

Today, Computed Tomography Angiography (CTA) has
emerged as the clinical gold standard for preoperative mapping
of the perforators of the inferior epigastric artery (11) (see
1).  With CTA

unparalleled  spatial anatomical

Figure near-perfect  sensitivity, offers

resolution and precise
visualization, dramatically improving surgical planning and
intraoperative confidence (12). It represents a major leap
forward from earlier tools such as handheld Doppler and
Duplex sonography, which—though still valuable—lack the
depth and clarity required for consistently reliable results in
complex cases. Cinematic rendering of data acquired by CT-
angiography allows for completely three-dimensional depicting
of vessels and could well become an integrated part of the
imaging algorithm (13, 14).

Magnetic Resonance Angiography (MRA) has become a
valuable alternative for patients with contraindications to
iodinated contrast or ionizing radiation, such as those with renal
impairment or contrast allergies. While more resource-intensive
and not yet universally available, MRA provides high-quality
vascular imaging and continues to gain ground as an adjunct or
substitute in selected scenarios (15). This method is promising
but needs further validation.

Beyond vascular imaging, the field is rapidly embracing next-
generation visualization tools. Techniques such as cinematic
rendering and the creation of 3D-printed models of individual

10.3389/fsurg.2025.1679524

patients’ vascular anatomy offer surgeons a tangible, spatially
accurate reference to guide dissection and flap elevation (16, 17).
These innovations are not only enhancing operative planning
but also serve as powerful tools in surgical training and patient
education (18). Furthermore modern Artificial Intelligence (AI)
driven modalities are rapidly being developed and optimized for
clinical application (19). The field of tissue engineering (TE)
and regenerative medicine (RM) is also using 3D printing
techniques with the aim to once produce tissue repair from the
laboratory without the hitherto unavoidable donor site for
autologous tissue, but those have not yet entered the clinical
stage (20). Potential side effects of cultured cells in such
replacement tissue need further investigations (21). Further on
the effect of pre- or postoperative irradiation and appropriate
imaging or influencing the radiation effects will be another step
to further advance breast reconstruction (22).

Although only a limited number of studies have investigated
the application of dynamic infrared thermography (DIRT) in
DIEP reconstruction exists, it has been proposed that use of
DIRT during the operation could allow the tailoring of the
identify
vascularization problems in an early stage (23). Nevertheless, up

surgery and postoperative use may potentially
to date additional high-quality studies are needed to ensure the
true value for the pre-, per- and postoperative phase of DIEP-
flap reconstructions.

Three-dimensional surface imaging and volumetric simulation
technologies have also entered clinical practice, providing a non-
invasive means of assessing body contour, estimating flap
volume, and simulating postoperative outcomes (9). These tools
foster clearer communication between patient and surgeon and
support shared decision-making by setting realistic expectations
(24) (see Figure 2).

FIGURE 1

intraoperative dissection time.

CTA-based perforator mapping enabling precise identification of vessel course and caliber, which facilitates tailored flap design and minimizes
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FIGURE 2

difference is calculated.

3D surface imaging of a patient after mastectomy of the left breast and autologous breast reconstruction. This kind of imaging is used for
preoperative planning, providing volumetric assessment and symmetry simulation to improve patient—surgeon communication before breast
reduction on the right breast. The panels (A-E) show the different measurements of the breasts. With these measurements the volume

left volume: 416.7 cc

left volume: 17.3 cc

During surgery, real-time assessment of flap vascularity has

been significantly advanced by the wuse of fluorescence
angiography with indocyanine green (ICG) (25). This technique
provides immediate visual feedback on tissue perfusion, enabling
surgeons to identify poorly perfused areas early and adjust the
surgical plan accordingly (26). As a result, the risk of partial flap
necrosis is substantially reduced, contributing to improved

surgical outcomes and flap viability.

Advancements in surgical techniques
and robotic integration

The landscape of reconstructive breast surgery is rapidly
advancing toward less invasive, precision-driven methods, with a
growing emphasis on robotic and microsurgical innovations.
Robotic-assisted procedures, particularly with platforms like the
Da Vinci Surgical System, have introduced the possibility of
laparoscopic flap harvest with the aim to possibly reduce the
length of the anterior rectus sheath fascial incision. It has also
been speculated that this evolution could hold the promise of
minimizing donor site morbidity and postoperative recovery
times. However, these approaches often require transperitoneal
access, which brings inherent risks such as bowel injury,
adhesion formation, or postoperative ileus—factors that
necessitate careful patient selection and surgical planning.

However, it needs to be mentioned that the robotic DIEP
harvest technique involves entering the peritoneal cavity, unlike
standard extraperitoneal techniques that preserve peritoneal
integrity. This carries intraabdominal complications and
potential risks of bowel injury, adhesions, seroma, especially in
patients with prior surgeries (27). In these patients, adhesions
may hinder robotic maneuverability and safe port placement. In

addition, laparoscopy can lead to a loss of the peritoneal barrier
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and may increase postoperative discomfort and complications
(28). The risk of multiple 8 mm-10 mm fascial defects by the
port punctures needs to be taken into account together with the
posterior rectus sheath violation by the intentional incision of
the posterior rectus sheath (28). This may weaken abdominal
wall integrity and should be considered. Robotic DIEP-flap
harvest from the lower abdomen has been demonstrated to
increase both ischemia time and total operative time. When
considered in conjunction with the multiple port incisions, the
claim that the technique is truly “minimally invasive” is called
into question, despite the proposed reduction in fascial defects.
Although the robotic-assisted DIEP flap technique therefore
represents a notable advancement in microsurgical innovation, it
is important to critically assess its limitations to avoid an overly
favorable portrayal that may overlook significant surgical and
should
rigorous scientific evaluation, including data on hernia rates at

logistical complexities. Future research incorporate
both the fascial incision and robotic port sites, precise
measurements of flap ischemia time (16, 29), and thorough
cost-benefit analyses that address clinical outcomes, operative
efficiency, and healthcare resource utilization.

In summary initial clinical data are encouraging, yet
widespread adoption is tempered by longer operative times and
the technical demands of setup and intraoperative coordination.
The current state of development in robotic microsurgery needs
to be further improved to definitely enter the daily clinical
While Wessel et al

replacement of surgeons by robotic systems remains improbable,

routine. suggest that the complete

these technologies are expected to assume an increasingly

impactful role in supporting and improving surgical

performance. Continued technological advancement will
necessitate rigorous research and well-designed clinical trials to
optimize robotic platforms and substantiate their broader

integration into routine surgical care (30).
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studied
reconstructive breast microsurgery is vascularized lymph node

A promising and increasingly approach in
transfer (VLNT), particularly when using abdominally based free
flaps, as a therapeutic option for postmastectomy lymphedema
(31). This method seeks to reestablish normal lymphatic
drainage by transplanting viable lymphatic tissue along with its
blood supply. Almadani demonstrated that simultaneous VLNT
can be safely integrated with autologous breast reconstruction to
treat or prevent breast cancer-related lymphedema. Nonetheless,
they emphasize the need for further research to standardize
protocols for data collection and to effectively report patient
outcomes related to both lymphedema and immediate lymphatic
reconstruction (32).

Preliminary patient-reported outcomes have been encouraging
—many individuals report decreased reliance on compression
garments, improved limb comfort, and a subjective sense of
enhanced quality of life. However, when scrutinized under
objective clinical parameters—such as limb circumference,
bioimpedance, or volumetric reductions—the results from larger
cohort studies have been modest and somewhat inconsistent.

These findings highlight the need for standardized outcome
better-defined

patient selection criteria. Further prospective, controlled studies

measures, surgical protocols, and improved
will be essential to clarify which patients are most likely to
benefit, and under what clinical circumstances VLNT offers the
most durable and clinically meaningful improvements in

lymphatic function (33, 34).

Postoperative monitoring

Conventional flap monitoring involves clinical evaluation of a
skin island (35). Non-invasive and reliable methods for early
identification of postoperative complications of free flaps that
allow higher rates of salvage rate and reduce the need for
staff with
monitoring have been investigated and proposed ever since free

specific continuous on-site presence for flap
flap surgery became a clinical routine procedure (36). Lindelauf
et al. reported that tissue oximetry following DIEP flap breast
reconstruction can potentially facilitate a decrease in hospital
costs since its readings enable physicians to intervene in an early
stage of tissue malperfusion, contributing to minimizing
complications and that it may eliminate the need for specialized
(37).

literature, no firm conclusions can yet be drawn regarding cost-

postoperative care However, based on the current
effectiveness of standard implementation.

While novel technologies such as surface probes (38),
implantable Doppler probes (39), and flow couplers represent
promising advancements in the intraoperative and postoperative
monitoring of free flap anastomotic patency (40), their clinical
implementation is still accompanied by important limitations
and areas of uncertainty. These tools are designed to offer
alternatives to traditional external skin paddles for monitoring,
aiming to enhance early detection of complications, particularly
the aesthetic
outcome. For example, implantable Doppler probes provide

venous insufficiency, without compromising
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continuous auditory signals indicating flow at the anastomotic
site, while flow couplers integrate a Doppler sensor into the
venous coupler ring, potentially allowing for non-invasive
assessment of venous outflow. While surface and implantable
monitoring systems hold substantial promise for improving flap
surveillance, their clinical utility remains partially validated.
Until larger, prospective, and ideally randomized studies
confirm their efficacy and cost-effectiveness, these technologies
should be considered as adjuncts, not replacements, to clinical
judgment and traditional monitoring protocols.

Another innovation is the O2C (Oxygen to See) system, which
noninvasively ~measures tissue oxygenation, hemoglobin
concentration, and blood flow, offering real-time perfusion
diagnostics to distinguish between arterial and venous
complications (41, 42). Also, hyperspectral imaging alone or
together with thermography has been propagated as another
promising tool for perfusion controls in DIEP flaps (43, 44),
similar to other application in reconstructive and hand surgery
(45, 46). However, at the moment a lack of standardization
hampers a more widespread clinical use and solid prospective

studies are warranted.

Artificial intelligence in reconstructive
breast surgery

The integration of Al is rapidly advancing within the field of
reconstructive surgery, offering transformative potential across
the entire perioperative continuum. Al-driven tools are being
developed and validated for a range of applications, from
preoperative  planning to intraoperative guidance and
postoperative monitoring. Ozmen and coauthors developed a
machine learning model to predict 30-day readmission risk
using a large national surgical quality database. They reported a
stacked machine learning approach that demonstrates a strong
predictive capability for post-DIEP flap readmissions, with high
identifying The

suggests utility in preoperative

sensitivity  for at-risk  patients. model’s

performance clinical risk
stratification and resource allocation (47). Implementation could
enable targeted intervention strategies to potentially reduce
readmission rates in high-risk populations.

In the preoperative phase, machine learning algorithms
trained on radiologic datasets -particularly from CTA and MRI
scans—have demonstrated the ability to identify and rank
perforators, thereby streamlining perforator flap planning and
reducing both time and interobserver variability. These tools
may enhance the precision of DIEP and ms-TRAM flap
surgeries, optimizing donor site selection and potentially
improving outcomes.

Al-based predictive modeling is also being explored to forecast
patient-specific risk profiles (48, 49). By incorporating multivariate
data such as body mass index (BMI), comorbidities, surgical
technique, smoking behavior, and prior interventions, these
models may assist surgeons in personalizing risk stratification,

surgical decision-making, and patient counseling.

frontiersin.org



Scherrer et al.

Intraoperatively, AI holds promise for real-time decision
support. Applications under investigation include aesthetic
outcome prediction, augmented surgical navigation, and
integration with robotic platforms for automated or semi-
automated tissue dissection. Combined with augmented reality
(AR), AI could enable surgeons to visualize subsurface vascular
anatomy or highlight critical structures dynamically, enhancing
operative precision and safety (50, 51).

In the postoperative setting, Al-based platforms are being
tested for automated flap monitoring. By analyzing serial
photographs captured via smartphone or tablet, these systems
could potentially detect early signs of vascular compromise or
wound complications and alert the clinical team. While these
approaches are promising—especially for outpatient follow-up or
remote care—they rely on the availability of high-quality
training datasets and must be critically evaluated for algorithmic
bias, particularly those arising from sociodemographic, ethnic,
or geographic disparities.

While emerging technologies in imaging, robotics, and Al
hold significant promise, their current clinical integration is
limited by heterogeneous study designs, small sample sizes, and
short follow-up periods. High costs, restricted availability, and
the need for specialized training also constrain widespread
adoption. Furthermore, many AI tools have not undergone
robust external validation, and their performance in diverse
patient populations remains unclear. Future research should
prioritize large-scale, multi-center trials, standardized outcome
measures, and cost-effectiveness analyses to ensure these
innovations can be safely and equitably implemented.

Additionally one obstacle to clinical implementation of the
latest Al-driven technology is the question of lega liablity in
case complications occur which harm the patient. This issue
needs to be solved in the future to allow the introduction of AI
technology into routine clinical practice. Evidence base for
certain innovations is therefore at the moment naturally
restricted to small series or early feasibility studies.

In summary, AI stands to redefine many aspects of
reconstructive surgery by enhancing precision, efficiency, and
personalization. However, its integration must be approached
with methodological rigor, robust validation, and ethical
consideration to ensure equitable and safe implementation in

clinical practice.

Conclusion

Autologous breast reconstruction stands at the forefront of

innovation in reconstructive surgery, driven by rapid

advancements in  preoperative  imaging,  microsurgical
techniques, robotic assistance, and the integration of artificial
intelligence. The evolution from basic clinical assessment to
high-resolution vascular imaging and dynamic intraoperative
visualization has dramatically refined surgical planning and
execution. Simultaneously, the emergence of robotics and
microsurgical platforms enables greater precision, reduced

invasiveness, and the potential for decreased donor-site morbidity.
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Moreover, Al-powered tools offer new dimensions in
personalized risk assessment, aesthetic outcome prediction, and
automated postoperative monitoring, marking a paradigm shift
toward  data-driven, patient-specific  surgical  strategies.
Collectively, these technological breakthroughs aim to improve
surgical safety, reproducibility, and functional and aesthetic
outcomes, while enhancing patient satisfaction and quality of life.

Nevertheless, the clinical integration of these innovations must
proceed with methodological rigor and ethical oversight. Large-
scale, multi-center trials are necessary to validate emerging
their

applicability across diverse patient populations. Challenges such

techniques and technologies to ensure equitable
as cost-effectiveness, training requirements, regulatory approval,
and algorithmic transparency must be addressed proactively to
facilitate responsible and sustainable implementation.

In summary, while autologous breast reconstruction has
already made significant strides, it continues to evolve as a
dynamic field at the intersection of surgical artistry and
technological innovation. The path forward lies in harmonizing
these advances with evidence-based practice and patient-
centered care, thereby expanding access to safe, individualized,

and high-quality reconstructive solutions.
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