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The dual association of serum 
uric acid with the functional 
outcomes of patients after 
hip arthroplasty: 1-year 
follow-up study

Ming Xia, Yu Han, Lihui Sun, Dongbo Li, Chunquan Zhu and  

Dongsong Li*

Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin, China

Background: Serum uric acid (UA) exhibits dual biological roles as both an 

antioxidant and a pro-oxidant, yet its impact on functional recovery after hip 

arthroplasty remains unclear. This study investigated the nonlinear 

relationship between UA levels and 1-year postoperative outcomes in patients 

undergoing hip arthroplasty.

Methods: In this single-center observational study, 468 hip arthroplasty patients 

(September 2018–September 2023) were stratified into functional 

independence (FIM ≥108) and non-independence groups. Serum UA was 

categorized as low, middle, or high. Functional outcomes were assessed 

using the UCLA Activity Scale (UCLAAS) and Patient-Reported Satisfaction 

(PRS) metrics. Restricted cubic splines (RCS) and multivariable regression 

models evaluated nonlinear and linear associations, adjusted for age, 

comorbidities, and laboratory parameters.

Results: A U-shaped relationship emerged between UA levels and functional 

independence ( p < 0.01 for nonlinearity). Both low UA (OR = 2.09, 95% 

CI:1.14–3.85) and high UA (OR = 3.74, 95% CI:1.89–7.41) independently 

predicted reduced functional independence. Secondary outcomes exhibited 

domain-specific effects: only high UA correlated with poorer mobility 

(UCLAAS: β = −0.53, p = 0.015). Multivariable adjustments confirmed the 

robustness of these associations.

Conclusion: Serum UA demonstrates a dual, nonlinear association with 

functional recovery after hip arthroplasty, where extremes perturb redox 

balance and bone remodeling. Monitoring perioperative UA levels and 

targeting individualized thresholds may optimize rehabilitation strategies.
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Introduction

Hip arthroplasty, also known as hip replacement surgery, is a widely performed 

procedure. Arthroplasty aims to alleviate pain and restore mobility in patients with 

severe hip joint damage, typically caused by osteoarthritis, fractures, or other 

degenerative conditions (1). Despite significant advancements in surgical techniques 

and postoperative care, functional recovery and long-term outcomes remain variable 
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among patients (2). Identifying prognostic factors in&uencing 

recovery is essential for optimizing patient management and 

improving postoperative quality of life (3). Among these factors, 

serum uric acid (UA) has emerged as a potential biomarker 

with a dual role in postoperative outcomes (4).

Serum uric acid (UA) is the final product of purine 

metabolism and plays a complex role in human health (5). At 

physiological levels, UA acts as a potent antioxidant, 

neutralizing free radicals and protecting cells from oxidative 

damage (6). However, hyperuricemia (HUA) has been proven to 

be associated with adverse health outcomes. Hyperuricemia is 

linked to gout, cardiovascular diseases, and chronic kidney 

disease, while hypouricemia may exacerbate oxidative stress and 

impair cellular function (7). Recent studies have explored the 

paradoxical relationship between UA and bone health, 

suggesting that UA may in&uence bone metabolism and fracture 

healing (8–10).

The dual effects of UA on bone and functional outcomes may 

be mediated by its complex interactions with oxidative stress, 

in&ammation, and bone remodeling processes (11, 12). 

Moderate UA levels appear to promote bone health by 

enhancing antioxidant defenses and supporting bone repair (13). 

In contrast, excessive UA can trigger in&ammatory responses 

and endothelial dysfunction. Insufficient UA may fail to protect 

against oxidative damage, leading to reduced bone mineral 

density and impaired healing (12, 14).

Given the potential dual association of UA with hip 

arthroplasty outcomes, this study hypothesizes that both hypo- 

and hyperuricemia are independently associated with poorer 

functional recovery and survival in patients undergoing hip 

arthroplasty. Understanding this relationship could pave the way 

for targeted interventions, such as monitoring and modulating 

UA levels, to improve postoperative outcomes and enhance 

patient quality of life. Furthermore, this research aims to address 

a critical gap in the literature by providing robust evidence on 

the role of UA in hip arthroplasty recovery, potentially 

informing personalized treatment strategies for at-risk patients.

Methods

Study design

This study is an observational study conducted at the 

Department of Orthopedics, the First Hospital of Jilin 

University. The study was approved by the Ethics Committee of 

First Hospital of Jilin University (2022-085) and followed the 

principles of the Declaration of Helsinki. All participants 

provided written informed consent, and patient privacy was 

strictly safeguarded. The study included patients who underwent 

hip arthroplasty in our department between September 2018 

and September 2023. The patients who met the specified 

inclusion criteria were included, and those who met the 

exclusion criteria were excluded. Inclusion criteria: a. underwent 

hip arthroplasty (total hip arthroplasty or hemiarthroplasty); 

b. consent to participate in the study. Exclusion criteria: a. with 

severe hepatic diseases; b. with severe renal diseases; c. loss to 

follow-up; d. unavailable data; e. died during the follow-up 

(Figure 1). All surgeries were performed by the senior author 

(Dongsong Li) or in his presence and direction.

Variables

Baseline demographics (age, BMI, sex, residence, smoke and 

alcoholism history), comorbidities (osteoporosis, hypertension, 

and so on), fracture history, surgical variables (diagnosis, 

surgical procedures, and anesthesia), and laboratory parameters 

including hemoglobin (Hb) (g/L), international normalized ratio 

(INR), blood glucose (GLU) (mmol/L), albumin (ALB) (g/L) 

and UA (µmol/L), were extracted from electronic medical 

records. Abnormal electrocardiograms or radiographs were 

adjudicated by two independent specialists. Charlson 

comorbidity index (CCI) was calculated to comprehensively 

conclude the preoperative comorbid condition (15). 

Hyperuricemia was defined as UA >420 μmol/L for both males 

and females according to clinical guidelines.

Outcomes and follow-up

Patients were prospectively followed for one year. The primary 

outcome was functional independence, defined as a Functional 

Independence Measure (FIM) score ≥108 at 1-year follow-up 

(16). The FIM is a therapist-administered 18-item scale assessing 

self-care, mobility, and cognition, with total scores ranging from 

18 (complete dependence) to 126 (complete independence). 

Secondary outcomes included: Daily activity level measured by 

the UCLA Activity Scale (UCLAAS); Patient-Reported 

Satisfaction (PRS) using Likert-scale questionnaires (1 = "Very 

dissatisfied” to 5 = "Very satisfied”): Surgery Satisfaction Score 

(SSS); Pain Satisfaction Score (PSS); Activity Satisfaction 

Score (ASS); Health Satisfaction Score (HSS); Life Satisfaction 

Score (LSS).

Statistical analyses

Continuous variables were presented as mean ± standard 

deviation, whereas categorical variables were reported as count 

(percentage). The distribution of continuous variables was 

evaluated using the Shapiro–Wilk test. Group comparisons 

utilized the Student’s t-test (normal) or the Wilcoxon rank-sum 

test (non-normal). Categorical variables were analyzed via chi- 

square/Fisher’s exact tests. Restricted cubic splines (RCS) with 

four knots analyzed nonlinear relationships between UA levels 

and outcomes based on multiple regression models, and the 

cutoff values of UA were identified according to the RCS (4). 

The outcomes of patients with different UA groups were 

compared. Lastly, multivariable logistic and linear regression 

(adjusted for age, BMI, and CCI ≥4) quantified UA’s association 

with outcome. The significance level was set at p < 0.05, and 
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Bonferroni correction was used to adjust the p-values to reduce 

the impact of multiple tests. All analyses were performed using 

R software version 4.2.2 (R Foundation for Statistical 

Computing, Vienna, Austria).

Results

Population characteristics

Finally, this study enrolled 468 patients following hip 

arthroplasty, stratified into functional independence (n = 393, 

FIM ≥108) and non-independence (n = 75) groups at 1-year 

follow-up. The baseline characteristics of patients included in 

this study are summarized in Table 1. Significant differences 

were observed in age and comorbidity burden between groups. 

Patients with functional independence were younger (58.6 ± 12.9 

vs. 63.7 ± 13.2 years, p < 0.001) and had lower rates of Charlson 

Comorbidity Index ≥3 (8.65% vs. 18.67%, p = 0.009) compared 

to the non-independence group. No significant differences were 

noted in sex (54.5% vs. 56.0% female, p = 0.289), BMI (24.2 ± 3.9 

vs. 23.8 ± 3.9 kg/m2, p = 0.805), or lifestyle factors (smoking: 

44.0% vs. 50.7%, p = 0.728). Laboratory parameters revealed 

higher hemoglobin levels (132.2 ± 19.4 vs. 124.7 ± 21.5 g/L, 

p = 0.003) and lower INR (0.96 ± 0.08 vs. 1.00 ± 0.09, p < 0.001) 

in the independence group 1. Continuous UA levels did 

not differ significantly between groups (336.4 ± 100.95 vs. 

353.63 ± 159.31 μmol/L, p = 0.852) while the patients with 

independence have significantly high rates of HUA (19.34% vs. 

32.00%, p = 0.014).

Nonlinear associations

RCS analysis revealed a U-shaped relationship between serum 

uric acid (UA) and functional independence (Figure 2). RCS was 

established based on three models, including univariate models, 

models adjusted for age and sex, and models adjusted for the 

variables with significant differences in Table 1 (age, CCI, INR, 

and Hb). For the primary outcome, the risk of functional 

dependence increased at both extremes of UA levels compared 

to intermediate levels, and this nonlinear pattern persisted 

across all multivariable models. Similar nonlinear U-shape 

trends were observed for secondary outcomes in UCLAAS, PSS, 

and ASS. To better explore the relationships, we further divided 

the populations according to the cutoff values of UA 

determined by RCS models: low UA: <259.77 μmol/L; middle 

UA: ≥259.77 μmol/L and <436.32 μmol/L; high UA: 

FIGURE 1 

Flow chart of our study.
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≥436.32 μmol/L. Moreover, according to the quantiles of UA, the 

patients were also grouped into Q1–Q4 groups (low values of UA 

to high levels of UA).

Outcomes

Dichotomous (HUA vs. normal), tiered (low/mid/high UA), 

and quartile-based (Q1-Q4) analyses consistently demonstrated 

worse functional outcomes at UA extremes (Figure 3). The 

baseline characteristics of patients grouped by different UA levels 

were summarized in Supplementary Table S1–S3. HUA was 

associated with lower functional independence rates and lower 

SSS scores compared with normal individuals (all p < 0.05). 

Similar to the nonlinear analysis, patients with low UA and high 

UA may have significantly lower functional independence rates 

compared with normal individuals. For the secondary outcomes, 

the adults with high UA may have lower UCLAAS compared 

with those with middle UA. Surprisingly, patients with moderate 

UA seemed to have lower ASS scores. In the four-tier system, 

compared with UA Q3, the patients with UA Q1 and Q4 may 

have significantly higher nonfunctional independence rates. 

Similarly, UA Q3 may relate to lower PSS and ASS scores, which 

seems paradoxical compared with the primary outcome analysis. 

Sex-stratified analyses confirmed that the U-shaped relationship 

persisted in both sexes (Supplementary Tables S4, S5). In males, 

low UA and high UA were linked to higher non-functional 

independence rates and lower UCLAAS. In females, tiered (low/ 

mid/high UA) and quartile-based (Q1-Q4) UA were associated 

with PSS and ASS scores, whereas middle UA conferred the most 

favorable outcomes.

Multivariate analysis

To avoid the bias caused by co-factors, we further established 

multivariate models to explore the associations between UA and 

outcomes. We established three kinds of models for FIM: 

univariate models, multivariate models adjusted for the factors 

selected by stepwise method (INR, Hb, age, residence, and 

reason for surgery), and multivariate models adjusted for factors 

with significance in univariate models (INR, Hb, age, CCI, and 

osteoporosis, Supplementary Table S6). The results of 

multivariable models for FIM were summarized in Table 2. UA 

as a continuous variable showed no significant association with 

the primary outcome (OR: 1.001, 95% CI 0.999–1.003; p = 0.224) 

in univariate models, while showing significant associations in 

multivariate models 1 and 2. HUA and extreme UA levels (Low/ 

High UA, Q1/Q4) exhibited clinically meaningful associations 

with adverse outcomes (all p < 0.05) in all models.

The results of multivariate models for secondary outcomes 

were summarized in Table 3. For UCLAAS, continuous UA, 

HUA, high UA, and UA Q4 were all significantly associated 

with lower UCLAAS scores, while the low UA and UA Q1 were 

not significant. For other outcomes, low UA and UA Q1 were 

estimated to relate to higher ASS scores significantly (all p < 0.05).

Discussion

This study revealed a U-shaped association between UA and 

functional outcomes in hip arthroplasty patients, where both low 

levels of UA and high levels of UA independently predicted 

reduced functional independence at 1-year follow-up. These 

TABLE 1 Baseline characteristics of our study.

Variables All 
n = 468

With independence 
n = 393

Without independence 
n = 75

p

Age (years) 59.41 ± 13.07 58.59 ± 12.89 63.72 ± 13.20 0.001

BMI (kg/m2) 24.12 ± 3.91 24.17 ± 3.90 23.83 ± 3.95 0.581

Sex (female) 256 (54.70%) 214 (54.45%) 42 (56.00%) 0.805

Residence (rural) 211 (45.09%) 173 (44.02%) 38 (50.67%) 0.289

Smoking history (yes) 19 (4.06%) 17 (4.33%) 2 (2.67%) 0.728

Alcoholism history (yes) 28 (5.98%) 26 (6.62%) 2 (2.67%) 0.291

Osteoporosis (yes) 22 (4.70%) 15 (3.82%) 7 (9.33%) 0.077

Fracture history (yes) 58 (12.39%) 49 (12.47%) 9 (12.00%) 0.91

Hypertension (yes) 142 (30.34%) 116 (29.52%) 26 (34.67%) 0.374

CCI (≥3) 48 (10.26%) 34 (8.65%) 14 (18.67%) 0.009

Electrocardiogram (abnormal) 142 (30.34%) 114 (29.01%) 28 (37.33%) 0.151

Reason for surgery (fracture) 110 (23.50%) 89 (22.65%) 21 (28.00%) 0.316

Surgical procedures (total arthroplasty) 437 (93.38%) 368 (93.64%) 69 (92.00%) 0.787

Surgery side (right) 195 (41.67%) 165 (41.98%) 30 (40.00%) 0.749

Anesthesia (spinal) 93 (19.87%) 77 (19.59%) 16 (21.33%) 0.729

HUA (yes) 100 (21.37%) 76 (19.34%) 24 (32.00%) 0.014

INR 0.97 ± 0.08 0.96 ± 0.08 1.00 ± 0.09 <0.001

Hb (g/L) 131.01 ± 19.93 132.22 ± 19.42 124.69 ± 21.47 0.003

GLU (mmol/L) 5.67 ± 2.31 5.66 ± 2.41 5.76 ± 1.70 0.359

ALB (g/L) 38.33 ± 4.82 38.41 ± 4.54 37.94 ± 6.11 0.127

UA (µmol/L) 339.14 ± 112.32 336.38 ± 100.95 353.63 ± 159.31 0.852

Continuous variables were expressed as mean ± standard deviation, and categorical variables were presented as count (percent). BMI, body mass index; CCI, charlson comorbidity index; 

INR, international normalized ratio; Hb, hemoglobin; GLU, blood glucose; UA, uric acid; HUA, hyperuricemia.
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FIGURE 2 

Results of restricted cubic splines (RCS) models. (A) non-adjusted models of UA for functional independence; (B) models of UA for functional 

independence and adjusted for age and sex; (C) models of UA for functional independence and adjusted for age, CCI, INR, and Hb; (D) non- 

adjusted models of UA for UCLAAS; (E) models of UA for UCLAAS and adjusted for age and sex; (F) models of UA for UCLAAS and adjusted for 

age, CCI, INR, and Hb; (G) non-adjusted models of UA for SSS; (H): models of UA for SSS and adjusted for age and sex; (I) models of UA for SSS 

and adjusted for age, CCI, INR, and Hb; (J) non-adjusted models of UA for PSS; (K) models of UA for PSS and adjusted for age and sex; (L) 

models of UA for PSS and adjusted for age, CCI, INR, and Hb; (M) non-adjusted models of UA for ASS; (N) models of UA for ASS and adjusted 

for age and sex; (O) models of UA for ASS and adjusted for age, CCI, INR, and Hb; (P) non-adjusted models of UA for HSS; (Q) models of UA for 

HSS and adjusted for age and sex; (R) models of UA for HSS and adjusted for age, CCI, INR, and Hb; (S) non-adjusted models of UA for LSS; (T) 

models of UA for LSS and adjusted for age and sex; (U) models of UA for LSS and adjusted for age, CCI, INR, and Hb.
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FIGURE 3 

Comparison of outcomes across different UA groups. (A) no functional independence rates of individuals grouped by normal and HUA; (B) no 

functional independence rates of individuals grouped by low, middle, and high UA; (C) no functional independence rates of individuals grouped 

by UA quartiles; (D) UCLAAS of individuals grouped by normal and HUA; (E) UCLAAS of individuals grouped by low, middle, and high UA; 

(F) UCLAAS of individuals grouped by UA quartiles; (G) five PRS scores of individuals grouped by normal and HUA; (H) five PRS scores of 

individuals grouped by low, middle, and high UA; (I) five PRS scores of individuals grouped by UA quartiles.
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findings align with prior evidence demonstrating a dual role of UA 

in bone health, where extremes disrupt redox balance, exacerbating 

oxidative stress and impeding recovery. Notably, secondary 

outcomes exhibited domain-specific effects: while high UA was 

uniformly detrimental to mobility (UCLAAS: β = −0.533, 

p = 0.015), hypouricemia paradoxically correlated with improved 

activity satisfaction (ASS: β = 0.355, p = 0.007). This dichotomy 

highlights context-dependent mechanisms in&uencing UA’s impact 

on postoperative recovery.

Our results resonate with emerging studies on UA’s dual 

effects on musculoskeletal health. A meta-analysis of 909,803 

individuals linked moderate UA levels to higher bone mineral 

density (BMD) and revealed the U-shape relationships between 

UA and fracture risk (17). Mechanistically, UA modulates 

osteoblast-osteoclast equilibrium: low UA may fail to neutralize 

oxidative stress, impairing bone repair, while high UA may 

induce in&ammation via NLRP3 in&ammasome activation and 

osteocyte apoptosis (18, 19). Hip fracture cohorts similarly 

report J-shaped mortality curves. Hyperuricemia may amplify 

endothelial dysfunction and renal impairment, and 

hypouricemia may exacerbate frailty (4, 20).

Several potential mechanisms of UA may support our 

conclusion. At physiological levels, UA scavenges reactive oxygen 

species (ROS), which may potentially protect osteoblasts from 

oxidative damage (21). At low UA levels, reduced scavenging of 

reactive oxygen species may accelerate osteoblast apoptosis and 

impair collagen synthesis, delaying fracture consolidation (22). This 

is compounded by vitamin D dysregulation—low UA correlates 

with 25 (OH) vitamin D deficiency, which promotes secondary 

hyperparathyroidism and bone resorption via upregulated RANKL/ 

TABLE 2 Logistics models of different UA groups for functional independence.

Variables Univariate models Multivariate models 1 Multivariate models 2

OR (95% CI) p OR (95% CI) p OR (95% CI) p

UA (continuous) 1.001 [0.999, 1.003] 0.224 1.003 [1.000, 1.005] 0.03 1.003 [1.000, 1.005] 0.017

HUA 1.963 [1.124, 3.362] 0.015 2.753 [1.484, 5.076] 0.001 2.954 [1.598, 5.433] <0.001

Low UA 2.307 [1.281, 4.145] 0.005 2.071 [1.118, 3.833] 0.02 2.092 [1.135, 3.851] 0.017

Middle UA Ref Ref Ref Ref Ref Ref

High UA 2.855 [1.507, 5.357] 0.001 3.464 [1.744, 6.882] <0.001 3.739 [1.891, 7.407] <0.001

UA Q1 2.194 [1.082, 4.640] 0.033 2.242 [1.075, 4.875] 0.035 2.269 [1.084, 4.967] 0.034

UA Q2 Ref Ref Ref Ref Ref Ref

UA Q3 0.733 [0.301, 1.741] 0.484 0.925 [0.366, 2.290] 0.867 0.945 [0.369, 2.378] 0.905

UA Q4 2.242 [1.105, 4.745] 0.029 3.081 [1.427, 6.979] 0.005 3.288 [1.498, 7.611] 0.004

UA, uric acid; HUA, hyperuricemia. Multivariate models 1 were adjusted by the variables selected by stepwise methods (INR, Hb, age, residence, and reason for surgery), and multivariate 

models 2 were adjusted by the significantly different variables in univariate models, including INR, Hb, age, CCI, and osteoporosis.

TABLE 3 Multivariate models of different UA groups for secondary outcomes.

Variables UCLAAS SSS PSS

Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p

UA (continuous) −0.002 [−0.003, −0.000] 0.035 0.000 [−0.001, 0.001] 0.491 0.000 [−0.001, 0.001] 0.847

HUA −0.533 [−0.963, −0.102] 0.015 0.205 [−0.078, 0.488] 0.155 0.168 [−0.112, 0.448] 0.238

Low UA −0.395 [−0.804, 0.013] 0.058 −0.092 [−0.362, 0.178] 0.502 0.121 [−0.145, 0.388] 0.371

Middle UA Ref Ref Ref Ref Ref Ref

High UA −0.706 [−1.172, −0.240] 0.003 0.115 [−0.193, 0.424] 0.463 0.193 [−0.112, 0.497] 0.214

UA Q1 −0.375 [−0.855, 0.105] 0.126 −0.108 [−0.424, 0.208] 0.5 0.134 [−0.177, 0.445] 0.397

UA Q2 Ref Ref Ref Ref Ref Ref

UA Q3 0.155 [−0.341, 0.650] 0.539 −0.215 [−0.541, 0.111] 0.195 −0.172 [−0.493, 0.148] 0.292

UA Q4 −0.512 [−1.017, −0.008] 0.047 0.150 [−0.183, 0.482] 0.377 0.298 [−0.029, 0.625] 0.074

Variables ASS HSS LSS

Coefficient (95% CI) p Coefficient (95% CI) p Coefficient (95% CI) p

UA (continuous) −0.001 [−0.002, 0.000] 0.279 −0.000 [−0.001, 0.001] 0.794 0.000 [−0.001, 0.002] 0.632

HUA 0.107 [−0.168, 0.381] 0.446 0.020 [−0.271, 0.310] 0.894 0.169 [−0.175, 0.512] 0.335

Low UA 0.355 [0.095, 0.615] 0.007 0.046 [−0.230, 0.323] 0.742 0.263 [−0.064, 0.590] 0.115

Middle UA Ref Ref Ref Ref Ref Ref

High UA 0.184 [−0.113, 0.481] 0.223 0.037 [−0.279, 0.353] 0.819 0.220 [−0.153, 0.593] 0.247

UA Q1 0.400 [0.096, 0.704] 0.01 0.083 [−0.242, 0.408] 0.617 0.166 [−0.218, 0.550] 0.395

UA Q2 Ref Ref Ref Ref Ref Ref

UA Q3 −0.060 [−0.374, 0.253] 0.706 −0.018 [−0.353, 0.318] 0.917 −0.180 [−0.576, 0.217] 0.374

UA Q4 0.265 [−0.055, 0.584] 0.104 0.048 [−0.294, 0.389] 0.784 0.095 [−0.309, 0.498] 0.645

UA, uric acid; HUA, hyperuricemia. Models were adjusted by INR, Hb, age, CCI, and osteoporosis.
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OPG signaling (23). Additionally, hypouricemia may exacerbate 

neuro-muscular dysfunction due to diminished purine metabolite 

recycling, further hindering rehabilitation efforts (24).

However, on the other side, excess UA generates intracellular 

ROS and may potentially promote osteoclastogenesis (25, 26). 

Moreover, HUA accelerates CKD progression, worsening 

osteoporosis via hyperparathyroidism and phosphate retention— 

this aligns with our high UA group’s increased nonfunction 

independence risk (27). In the view of in&ammation, elevated 

UA upregulates IL-1β and TNF-α, impairing bone-healing 

signaling pathways and functional recovery (28).

The inverse association between low UA and improved 

activity satisfaction (ASS) may re&ect behavioral adaptation: 

patients with lower UA, despite reduced mobility, might engage 

in compensatory strategies, enhancing perceived satisfaction. 

Alternatively, hypouricemia-related neuroprotective effects could 

improve pain tolerance, biasing self-reported scores. Further 

research is needed to disentangle psychological and organic 

contributors (29).

Our study has several limitations. First, its single-center design 

in a tertiary hospital in China may restrict generalizability to other 

populations and healthcare systems, and the observed U-shaped 

association should be validated in multicenter, multinational 

cohorts. In addition to the single-center design, our study carries 

residual selection bias: the convenience sample of hospitalized 

patients may have preferentially enrolled individuals in better 

overall health, potentially underestimating the true risks associated 

with extreme UA concentrations. Furthermore, detailed 

information on diet, micronutrient supplementation, and physical 

activity variables known to in&uence both uric acid levels and 

functional recovery was not collected; future multicenter studies 

should incorporate validated questionnaires and wearable devices 

to address these unmeasured confounders. Additionally, UA was 

measured only once during the perioperative period to test its 

prognostic utility; the absence of serial post-operative UA 

assessments, together with the lack of bone-turnover and 

in&ammatory biomarkers, such as CTX, P1NP, and IL-6, 

constrains mechanistic interpretation and should be addressed in 

future longitudinal studies. Lastly, the paradoxical ASS score 

findings might also re&ect residual confounding from 

psychosocial factors not captured in clinical metrics.

Conclusion

Serum UA demonstrates a dual, nonlinear association with 

functional recovery after hip arthroplasty, where extremes 

perturb redox balance and bone remodeling. Monitoring 

perioperative UA levels and targeting individualized thresholds 

may optimize rehabilitation strategies.
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