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Background: Kidney cancer is a highly heterogeneous oncologic disease with 

historically poor prognosis. Precise assessment of the risk of distal metastasis 

can facilitate risk stratification and improve prognosis for kidney cancer patients.

Methods: Data from the Surveillance, Epidemiology, and End Results (SEER) 

database, we identified 40,527 kidney cancer patients diagnosed between 2010 

and 2017 were obtained. LASSO, univariate and multivariate logistic regression 

analyses were employed to screen independent risk factors for distal metastasis. 

Six machine learning (ML) algorithms including logistic regression (LR), Naïve 

Bayes Classifier (NBC), Decision Tree (DT), Random Forest (RF), Gradient 

boosting machine (GBM) and Extreme gradient boosting (XGB), were further 

applied to build the predictive models. After testing with ten-fold cross- 

validation and receiver operating characteristic (ROC) analysis, the model with 

the highest area under curve (AUC) was selected as the best performing model 

to establish the risk predictive nomogram and web calculator.

Results: In distal metastasis risk prediction, the XGB model had the best 

performance in both training (AUC = 0.91) and testing (AUC = 0.851) datasets 

among the six ML algorithms. Variables including marital status, sequence 

number, primary site, grade, pathological type, T-stage, N-stage, the 

calculated risk of XGB, surgical and radiation treatment were incorporated to 

establish a nomogram to predict the 1-, 3-, and 5-years survival probability. 

The calibration plots, decision curve analysis (DCA), ROC curves and Kaplan– 

Meier (KM) curves all verified the predictive utility of the nomogram.

Conclusions: We established a favorable prediction for the occurrence of distal 

metastasis with the ML model. The nomogram based on XGB algorithm can 

contribute to identify high-risk patients and provide optimal clinical strategies.
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1 Introduction

Kidney cancer is among the 10 most malignancy in USA with estimated 76,080 new 

cases and 13,780 deaths in 2021 (1, 2). It is a highly heterogeneous oncologic disease 

originating from the urinary system with historically poor prognosis (3). The 5-year 

survival rate was about 74% for all patients with kidney cancer, 53% for locoregional 
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disease and 8% for metastatic disease (4, 5). Among all patients, 

nearly 91% cases were diagnosed at an age of 45 or older, 

making kidney cancer a disease of the middle- and old-aged (4). 

Renal-cell carcinoma (RCC) occurs in 90% kidney cancer and 

has diverse molecular and histologic subtypes (5).

Though more low-stage and indolent tumors were identified 

with the improvement of early-detection techniques, there are 

still one third of kidney cancer patients present with metastasis 

(4, 6). And nearly 25% localized RCC present with relapses in 

distal sites after treating with nephrectomy (7–9). The common 

sites of RCC metastasis are the lungs (45%), bones and brain 

(10). Due to the immunogenicity of metastatic RCC (mRCC), 

immune checkpoint inhibitors (ICIs), such as nivolumab plus 

ipilimumab and nivolumab monotherapy, were validated to 

improve the prognosis of mRCC (11, 12). Systemic therapies 

targeting angiogenesis and modulating immunity, such as 

sunitinib, bevacizumab and axitinib, have also been optimized 

(13–18). Nevertheless, mRCC still has a limited median survival 

of approximately 12 months (19). Thus, novel targets or 

predictive tools to predict distal metastasis and identify high-risk 

mRCCs are urgently required.

In the 1950s, artificial intelligence (AI) became a branch of 

computer science dedicated to developing algorithms to enable 

machines to perform complex tasks that would normally require 

human intelligence to accomplish. Machine learning (ML) is the 

main area of AI research, The integration of artificial 

intelligence in the medical field is developing rapidly, and there 

have been breakthroughs especially in the diagnosis, treatment 

and efficacy assessment of medicine (20).

Nomogram is a simple and practical tool widely applied in 

prognosis prediction. A few literatures have established 

nomograms to instruct clinical treatment and predict prognosis 

targeting metastasis from kidney cancer (21–23). While our study 

employed six ML algorithms including logistic regression (LR), 

Naïve Bayes Classifier (NBC), Decision Tree (DT), Random Forest 

(RF), Gradient boosting machine (GBM) and Extreme gradient 

boosting (XGB) to analyze the kidney cancer data from the SEER 

database, aimed to obtain the best ML algorithm and construct an 

insightful risk prediction nomogram for distal metastasis.

2 Methods

2.1 Source of data

In our study, data were extracted from the SEER database. The 

inclusion criteria were adopted as follows: (1) with primary kidney 

cancer; (2) diagnosed based on positive histology from 2010 to 

2017, and the included histological subtypes including RCC, 

transitional cell carcinoma, clear cell adenocarcinoma, and other 

kidney cancer; (3) with complete survival and follow-up data 

until 2017; (4) age ≥18 years. Exclusion criteria were practiced as 

follows: (1) multiple primary malignant tumors; (2) unknown 

tumor characteristics and demographic information; (3) diagnosed 

via a death certificate; (4) with unknown distal metastasis and 

survival status; (5) died of causes other than kidney cancer. This 

research was conducted after obtaining informed consent from all 

patients and was approved by the ethics committee.

2.2 Data collection and follow-up

The included demographic features include marital status, age 

at diagnosis, race ethnicity and sex. We also extracted the 

following clinicopathological characteristics: tumor size, 

sequence number, primary site, grade, laterality, pathological 

type, TNM-staging, surgical approaches, the status of 

radiotherapy, chemotherapy and systemic therapy. Based on 

AJCC staging system, histological grades were divided into grade 

1–4, corresponding to well-differentiated, moderately 

differentiated, poorly differentiated and undifferentiated in turn. 

CT examination, radionuclide bone scan and PET-CT are 

recommended to identify and evaluate the suspected metastatic 

lesions. While pathological biopsy is the gold criterion of 

diagnosis for the metastatic sites. The presence of distal 

metastasis was defined as the primary endpoint event, while 

survival time was the sub-endpoint event. All enrolled patients 

were followed up through outpatient review or telephone calls.

2.3 Statistical analysis

Qualitative data including demographics and 

clinicopathological characteristics were compared via Pearson 

Chi-square test. T-test were utilized to compare quantitative 

data on normal distribution, while Wilcoxon rank test for 

abnormal distribution. Six different machine learning algorithms 

were utilized to analyze our data: LR, NBC, DT, RF, GBM and 

XGB. The model having the highest AUC was regarded as the 

best performing model. All analyses were conducted utilizing 

R version 4.3.1 and SPSS version 25.0. P < 0.05 indicated 

statistical significance in all analyses.

3 Results

3.1 Baseline characteristics

A total of 40,527 patients from SEER database diagnosed 

between 2010 and 2017 were enrolled in this study. Among these 

patients, there were 38,525 kidney cancer patients and 2002 renal 

pelvis cancer patients at initial diagnosis. The detailed 

clinicopathological features of the whole cohort were presented in 

Table 1. The training group included 40,527 patients and 

validation group included 801 patients. And the correlation 

analysis of these features was displayed in Figures 1A,B.

3.2 Risk factors for distal metastasis

There were 4,874 metastatic patients during the follow-up. To 

identify independent risk factors for distal metastasis, LASSO 
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TABLE 1 Baseline patient data for training and validation groups.

Variable Level Training group 
(N = 40,527)

Validation group 
(N = 801)

P

Marital (%) Married 25,058 (61.83) 509 (63.55) 0.3406

Unmarried 15,469 (38.17) 292 (36.45)

Age (median [IQR]) NA 64.000 [55.000, 73.000] 64.000 [55.000, 73.000] 0.5425

Tumor.Size (median [IQR]) NA 41.000 [26.000, 67.000] 40.000 [26.000, 70.000] 0.7579

Race.ethnicity (%) Black 5,068 (12.51) 0 (0.00) <0.0001

Chinese 493 (1.22) 801 (100.00)

Other 3,197 (7.89) 0 (0.00)

White 31,769 (78.39) 0 (0.00)

Sex (%) Female 14,278 (35.23) 290 (36.20) 0.5934

Male 26,249 (64.77) 511 (63.80)

Sequence.number (%) More 13,360 (32.97) 245 (30.59) 0.1673

One primary only 27,167 (67.03) 556 (69.41)

Time [mean (SD)] NA 39.125 (30.668) 37.527 (30.902) 0.1443

Status (%) Alive 29,880 (73.73) 583 (72.78) 0.5749

Dead 10,647 (26.27) 218 (27.22)

Primary.Site (%) C64.9-Kidney 38,525 (95.06) 718 (89.64) <0.0001

C65.9-Renal pelvis 2,002 (4.94) 83 (10.36)

Grade (%) Moderately differentiated 13,895 (34.29) 296 (36.95) <0.0001

Poorly differentiated 8,519 (21.02) 239 (29.84)

Undifferentiated; anaplastic 3,210 (7.92) 63 (7.87)

Unknown 11,708 (28.89) 127 (15.86)

Well differentiated 3,195 (7.88) 76 (9.49)

Laterality (%) Left 20,044 (49.46) 391 (48.81) 0.0231

Other 77 (0.19) 5 (0.62)

Right 20,406 (50.35) 405 (50.56)

Pathological (%) 8,312/3: Renal cell carcinoma 7,381 (18.21) 136 (16.98) 0.0079

8,120/3: Transitional cell carcinoma, NOS 1,088 (2.68) 33 (4.12)

8,130/3: Papillary transitional cell carcinoma 995 (2.46) 26 (3.25)

8,260/3: Papillary adenocarcinoma, NOS 5,028 (12.41) 76 (9.49)

8,310/3: Clear cell adenocarcinoma 21,479 (53.00) 442 (55.18)

8,317/3: Renal cell carcinoma, chromophobe type 2,136 (5.27) 49 (6.12)

Other(n < 1,000) 2,420 (5.97) 39 (4.87)

T (%) T1 26,430 (65.22) 481 (60.05) 0.0238

T2 4,036 (9.96) 100 (12.48)

T3 8,075 (19.92) 174 (21.72)

T4 1,101 (2.72) 23 (2.87)

TX 885 (2.18) 23 (2.87)

N (%) N0 36,472 (89.99) 707 (88.26) 0.0142

N1 2,349 (5.80) 64 (7.99)

N2 195 (0.48) 0 (0.00)

NX 1,511 (3.73) 30 (3.75)

M (%) M0 35,653 (87.97) 678 (84.64) 0.005

M1 4,874 (12.03) 123 (15.36)

Surgery (%) Any nephrectomy in continuity with the 

resectiont

308 (0.76) 7 (0.87) 0.0034

Complete/total/simple nephrectomy 3,601 (8.89) 80 (9.99)

Local tumor destruction 2,000 (4.93) 51 (6.37)

Local tumor excision 852 (2.10) 30 (3.75)

No surgery of primary site 7,371 (18.19) 156 (19.48)

Partial/subtotal nephrectomy/partial ureterectomy 11,472 (28.31) 198 (24.72)

Radical nephrectomy 14,923 (36.82) 279 (34.83)

Radiation (%) None/Unknown 38,930 (96.06) 770 (96.13) 0.9922

Yes 1,597 (3.94) 31 (3.87)

Chemotherapy (%) None/Unknown 37,102 (91.55) 708 (88.39) 0.0019

Yes 3,425 (8.45) 93 (11.61)

Systemic (%) None/Unknown 38,183 (94.22) 743 (92.76) 0.0951

Yes 2,344 (5.78) 58 (7.24)
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(Figures 2A,B), univariate and multivariate regression analyses 

(Table 2) were utilized in order. The results of univariate 

analysis demonstrated that age, grade, T-stage, N-stage and 

tumor size (p = 0.007, p < 0.001, p < 0.001, p < 0.001, respectively) 

were related to distal metastasis. While multivariate analysis 

further confirmed that these variables can independently 

inLuence the distal metastasis of kidney cancer patients.

3.3 Performance of six machine learning 
algorithms

The predictive performance of six machine learning 

algorithms was compared via 10-fold cross validation in inner 

training dataset and ROC analysis in testing dataset. We found 

XGB had the best performance in predicting distal metastasis in 

both training (AUC = 0.91) and testing (AUC = 0.851) datasets 

(Figure 3A). Then T-stage, N-stage, grade, tumor size and age 

were arranged as per their relative importance in each algorithm 

(Figure 3B). This order was derived using the built-in gain- 

based importance metric of the XGBoost algorithm, which 

measures the average improvement in model accuracy brought 

by each feature across all trees. The fact that tumor size, 

N stage, and Grade emerged as the top three most important 

features suggests that these factors are strongly associated with 

the occurrence of distant metastasis in our model. This finding 

aligns well with established clinical knowledge, as larger tumor 

size, presence of nodal involvement, and higher histological 

grade are widely recognized as key indicators of aggressive 

disease and metastatic potential (24). A heatmap showing the 

predictive accuracy rate of six algorithms and the actual survival 

status of the testing dataset was displayed in Figure 3C. The cut- 

off value of XGB algorithm calculated by ROC curve was 0.492 

(Figure 3D). The probability density function (PDF) for patients 

with non-distal metastases was concentrating on a metastasis 

risk between 0.0 and 0.5, while the PDF for patients with distal 

metastases was concentrated in a portion representing the 

metastasis risk (Figure 3E). The clinical utility curves (CUCs) of 

the XGB algorithm was also conducted, which exhibited the 

significant clinical utility (Figure 3F).

3.4 Establish the nomogram prediction 
model

Based on the clinicopathological characteristics listed in 

Table 1, together with the predicted risk of the XGB algorithm, 

we next employed LASSO Cox analysis to screen independent 

risk factors to predict survival possibility. Variables including 

marital status, sequence number, primary site, grade, 

pathological type, T-stage, N-stage, the calculated risk of XGB, 

surgical and radiation treatment were incorporated to establish 

a nomogram to predict the 1-, 3-, and 5-years survival 

probability (Figure 4A). The ROC and calibration curves of both 

training and test sets at 1, 3, and 5 years all displayed good 

consistency between actual and predictive values (Figures 4B,C). 

And then, the DCA was applied to check the clinical 

practicability (Figure 4D). The net benefits of the nomogram, in 

1-, 3-, 5-year OS prediction, were all superior to the states when 

all patients survived or none. Furthermore, the Kaplan–Meier 

FIGURE 1 

The correlation analysis of features. (A) The correlation of variables. Yellow indicates positive correlation and purple indicates negative correlation. (B) 

Correlation heat map.
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FIGURE 2 

LASSO survival analysis. (A) Coefficient profile plots showing how the size of the coefficients of clinical factors shrinks with increasing value of the 

penalty, with the factors and their regression coefficients selected for the model based on the optimal for the LASSO model. (B) Penalty plot for the 

LASSO model; color error bars indicate standard error. LASSO, least absolute shrinkage and selection operator.
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curves for samples stratified by above incorporated variables 

demonstrated (Figure 4E).

4 Discussion

The advent of the era of precision medicine has provided more 

advanced research tools for the development of clinical medicine. 

AI, as a branch of computer science, is gradually penetrating into 

the research field of precision medicine through algorithms that 

simulate human intelligence (25). AI uses intelligent algorithms 

to mine and extract medical data resources in order to improve 

the accuracy and effectiveness of clinical treatment. The 

combination of AI and medical research is one of the key 

research directions in biomedicine, especially in oncology, which 

provides a more accurate aid for clinicians’ diagnosis and 

treatment (26). In recent years, AI has been rapidly developed 

and fruitful results have been achieved in the field of kidney 

cancer research. As a malignant tumor with high heterogeneity, 

kidney cancer has various pathological types, and there are 

obvious individualized differences in patients’ treatment effects 

and clinical prognosis (27). The technologies of AI can provide 

important support for individualized diagnosis and treatment of 

kidney cancer.

Over the past two decades, the detection rate of small renal 

masses has risen significantly, largely attributable to advances in 

cross-sectional imaging. Partial nephrectomy (PN) is now widely 

established as the standard treatment for T1 renal parenchymal 

tumors (28). However, 20%-50% of kidney cancer patients have 

a distal metastasis or local invasion at initial diagnosis (24). The 

therapeutic landscape for metastatic renal cell carcinoma has 

significantly broadened. Interferon alfa, once a conventional 

option, has been largely superseded by newer agents that 

demonstrate superior efficacy, including improved response rates 

and/or prolonged progression-free survival. These advancements 

comprise antiangiogenic agents directed against VEGF and its 

receptors, mTOR inhibitors, and immune checkpoint inhibitors, 

collectively leading to enhanced clinical outcomes and a wider 

array of therapeutic strategies for this challenging malignancy 

(5). However, despite these advancements, the treatment of 

distantly metastatic renal cancer remains a formidable clinical 

challenge. The early detection of distal metastasis is a crucial 

measure for clinical decision-making and appropriate 

management of RCC patients. In this research, a nomogram was 

built for predicting the risk of distal metastasis in 40,527 kidney 

cancer patients extracted from the SEER database. We identified 

ten clinicopathological and demographic features as risk and 

prognostic predictors, including marital status, sequence 

number, primary site, grade, pathological type, T-stage, N-stage, 

the calculated risk of XGB, surgical and radiation treatment.

The impact of marital status on the survival possibility of 

mRCC was explored previously, which displayed the favorable 

prognostic effect of marriage on mRCC patients (29–32). 

Married patients tended to enjoy better survival outcomes than 

widowed patients in the aspects of both overall survival (OS) 

and cancer-specific survival (CSS). This may due to the 

unhealthy lifestyles and scanty financial resources of unmarried 

patients. Unmarried status was proved to be a barrier for 

obtaining treatment in mRCC patients (33). While married 

patients were more likely to receive financial and psychological 

TABLE 2 Univariate and multivariate logistic regression for distal metastasis of renal carcinoma.

Characteristics Univariate logistics regression Multivariable logistics regression

OR CI P OR CI P

Age 1.02 1.02–1.02 <0.001 1 1–1.01 0.007

Grade

Well differentiated Ref Ref Ref Ref Ref Ref

Moderately differentiated 1.77 1.32–2.39 <0.001 1.25 0.92–1.69 0.161

Poorly differentiated 7.18 5.38–9.58 <0.001 2.49 1.85–3.37 <0.001

Undifferentiated; anaplastic 19.95 14.92–26.68 <0.001 3.63 2.67–4.94 <0.001

unknown 19.74 14.88–26.19 <0.001 9.23 6.89–12.36 <0.001

N

N0 Ref Ref Ref Ref Ref Ref

N1 24.08 21.92–26.45 <0.001 8.69 7.81–9.67 <0.001

N2 7.03 5.24–9.43 <0.001 2.18 1.57–3.04 <0.001

NX 6.05 5.4–6.78 <0.001 3.05 2.63–3.53 <0.001

Primary.Site

C64.9-Kidney Ref Ref Ref Ref Ref Ref

C65.9-Renal pelvis 1.02 0.89–1.17 0.82 NA NA NA

T

T1 Ref Ref Ref Ref Ref Ref

T2 6.51 5.89–7.18 <0.001 2.79 2.45–3.18 <0.001

T3 7.61 7.02–8.26 <0.001 3.91 3.5–4.36 <0.001

T4 33.89 29.61–38.79 <0.001 7.8 6.54–9.3 <0.001

TX 39.14 33.73–45.43 <0.001 9.44 7.94–11.22 <0.001

Tumor.Size 1.02 1.02–1.02 <0.001 1.01 1.01–1.01 <0.001
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FIGURE 3 

The predictive performance of six machine learning algorithms. (A) 10-fold cross-validation of machine learning algorithms. (B) Relative importance 

ranking of features. (C) Heat map of accuracy rate of prediction results. (D) ROC curve of XGB algorithm. (E) Transfer risk density. (F) The clinical utility 

curves (CUCs) of the XGB algorithm.
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support from their spouses, so that they can get timely medical 

care and medication reminders, and avoid psychological distress 

and depression (31, 34–37).

In our nomogram, we incorporated some vital tumor biological 

characteristics. The inLuence of histologic subtype on the metastatic 

potential of RCC was demonstrated in this study. Indeed, previous 

studies have found that ccRCC owned the highest metastasis risk, 

followed by pRCC and chRCC (38). Besides, poorly differentiated 

RCC generally had inferior prognosis (39–41). With the degree of 

RCC differentiation from well to poor, the rate of distal metastasis 

increased (42). This rate can increase by 50% with regional lymph 

node involvement (43).The tumor size was also an independent 

risk predictor, with a 2% metastatic proportion for RCC with 

mean size at 23 mm. When the size of renal neoplasms ≥3 cm, 

the risk of distal metastasis was higher (44, 45). A linear positive 

connection can be seen between tumor size and the metastatic rate.

The six applied algorithms are objective, reliable and 

repeatable in processing big data and can contribute to the 

inherent paradigm shift in healthcare, thus widely applied in 

identifying disease progression, improving early diagnosis and 

predicting survival outcomes. These advantages can facilitate the 

rational and effective employment of healthcare sources (46). By 

comparing the AUC values, XGB was found to have the best 

predictive performance. PDF and CUC further proved its 

powerful predictions.

Surgical treatment is very crucial for the primary lesion of RCC 

patients, because the metastasis risk can remarkably increase without 

nephrectomy (47). Brain metastasis is a typical site of metastasis and 

its metastatic rate ranged from 2% to 16% in mRCC (48). RCC 

patients with brain metastasis displayed limited responses to 

current treatment options with a short median overall survival of 

only 5–8 months (5, 47, 49, 50). And nonsurgical treatment was a 

risk factor for brain metastasis from RCC. Bone is another 

common metastatic site and bone metastasis often occurs in the 

mid-shaft bone, including osteolytic, osteogenic and mixed lesions. 

Bone metastasis can lead to skeletal-related events (SRE), such as 

fractures, hypercalcemia and spinal cord compression, which can 

have severe inLuence on patients’ quality of life and survival 

outcomes (51). Although kidney cancer was insensitive to 

radiotherapy, it can reduce the risk of above SREs (52, 53). 

According to the findings of Hua et al, radiotherapy can not 

reduce the all-cause mortality (ACM) and kidney cancer-special 

mortality (KCSM) of kidney cancer patients with bone metastasis. 

While for bone metastasis patients, the conclusions about the 

surgery were discordant. For intermediate-risk patients, the effect 

of using sunitinib alone was no less than nephrectomy followed 

by sunitinib (2). While another study proved that ACM and 

KCSM of patients were markedly improved after surgery. The 

indications for surgery yet to be explored. And when analyzing 

the metastatic status and frequencies of renal pelvis cell carcinoma 

(RPCC), lung and brain were found to be the most and least 

common metastatic lesions, respectively (54, 55). The inLuence of 

the sequence number was also explored. In a previous study, RCC 

patients with only one primary tumor were more likely to develop 

bone metastasis. The lack of necessary survival time to form bone 

metastasis may explain it. While our study demonstrated that 

more sequence number was related to a worse prognosis.

The ethical implications of applying our predictive model 

clinically are crucial, particularly concerning patient privacy and 

data protection in real-world implementation. To address these 

concerns in potential future applications, we propose the 

following safeguards: (1) All patient data used by the model will 

be rigorously anonymized and encrypted both at rest and during 

transmission. (2) Where feasible, we recommend implementing 

federated learning techniques that allow the model to be trained 

and updated across institutions without transferring sensitive 

patient data. (3) Compliance with Regulations: Any clinical 

implementation will strictly follow established regulations and 

FIGURE 4 

The survival prediction. (A) Nomogram. (B) The calibration curve. (C) 

ROC curves. (D) Decision curve analysis. (E) The Kaplan–Meier 

curves for samples stratified.
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other relevant data protection frameworks. (4) Robust access 

controls and detailed audit trails will be implemented to 

monitor data usage and prevent unauthorized access.

Although this study included a sufficient number of patients 

and summarized their information as detailed as possible, the 

limitations of this study should be notified. First, this was a 

retrospective study and had inevitable selection bias. Second, 

apart from the included variables, we may miss some vital 

biomarkers, genetic mutations, tumor markers, comorbidities, 

clinical symptoms and treatment responses. Third, we only 

knew whether these patients received radiation or 

chemotherapy, but the detailed radiotherapy dose or toxic 

effects of chemotherapy were unknown, which can also affect 

the risk prediction. The information about immunotherapy was 

also lack. Moreover, more external multi-center data are 

required to verify the accuracy of prediction model.

5 Conclusion

The current study identified marital status, sequence number, 

primary site, grade, pathological type, T-stage, N-stage, the 

calculated risk of XGB, surgical and radiation treatment as 

independent prognostic factors of survival possibility in RCC 

patients. These DM-related risk factors were included to 

establish a predictive nomogram to screen RCC patients with a 

high risk of DM.
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