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Objective: This study employs machine learning to analyze data from Chinese 

women’s softball games, identifying key factors determining game outcomes. It 

explores patterns in how different teams develop winning strategies.

Method: This study analyzed data from 81 of 296 games conducted between 

2023 and 2024, using game outcomes (win = 1, loss = 0) as the target variable 

and 98 features as inputs. Machine learning models, including Random Forest 

(RF), XGBoost, KNN, and SVM, were implemented in Python and trained on a 

7:3 train-test split. Model performance was evaluated using AUC, F1-score, 

accuracy, precision, and recall to identify the best-performing model. SHAP 

and PDP were then employed to evaluate feature contributions to game 

outcome predictions.

Results: The RF model achieved the highest accuracy on the test set with an 

AUC of 97.7% (95% CI: 0.938, 0.993). We identified the ten features that had 

the most significant impact on game results, including P-ER, OBP, RBI, and 

AVG. PDP analysis further revealed that an increase in P-ER and P-H 

significantly increased the probability of losing; improvements in OBP and 

AVG substantially increased the chances of winning. Different teams exhibited 

varying strategic emphases in their decisive factors: Team SC relied heavily on 

pitching performance, while SH, LN, and JS prioritized batting strategies.

Conclusion: Feature importance analysis from the RF model indicates that P-ER 

and key batting metrics (e.g., OBP, AVG)are significantly associated with 

predicting game outcomes. These findings highlight their importance in 

predictive models, though further research is needed to confirm their 

practical impact.

KEYWORDS

softball, prediction of victory or defeat, key factors, machine learning, athletic 

performance analysis

1 Introduction

Data have long been fundamental to sports science. During the early days of 

professional sports, “sports data” served as a valuable tool for answering various 

questions in the discipline (1, 2). Currently, data pattern analysis has emerged as a 

leading approach in sports science research. For example, data analysis and data 

mining techniques are frequently employed in studies of professional sports, such as 

ice hockey, soccer, and basketball (3–5). Baseball and softball are gaining popularity 

worldwide as sports integrating technical skills, strategy, and teamwork. With the rapid 
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development of artificial intelligence (AI) technologies, studies 

increasingly utilize AI-driven analysis of baseball and softball 

data to optimize tactics, evaluate player performance, and 

manage injuries (6–10). These data-driven approaches have 

brought new momentum to the advancement of professional 

sports. Moreover, they offer more reliable and credible 

theoretical foundations than traditional statistical methods for 

predicting game outcomes and determining decisive factors.

Game outcomes have always been a central focus in 

competitive sports analysis (11–13). Traditional methods, relying 

on statistical regression and linear analysis (13, 14), often 

overlook complex nonlinear relationships in game data, limiting 

their potential in guiding competitions. With the advancement 

of AI technology, analysis of the intricate nonlinear relationships 

between game processes and outcomes has become increasingly 

feasible. Consequently, leveraging advanced machine learning 

algorithms to uncover hidden patterns in sports competition 

data has become an important interdisciplinary research 

direction in sports science (8, 15, 16). Baseball performance 

analysis frameworks are well-established (17–19), with abundant 

studies on key factors (19, 20), while softball research remains 

nascent, with limited depth and scope. However, given the 

strong similarities between baseball and softball in terms of 

technical execution, game rules, and tactical systems (21), 

existing findings from baseball research can provide valuable 

theoretical and technical insights for the study and analysis of 

softball data.

This exploratory study investigates the key factors in:uencing 

game outcomes in softball matches between evenly matched 

teams. We hypothesize that interpretable machine learning can 

capture nonlinear relationships among pitching, defensive, and 

batting variables and match outcomes. The primary aim of this 

study is to identify the critical determinants of game outcomes 

by modeling nonlinear relationships among key game metrics 

using machine learning algorithms. The secondary aims are to 

employ explainable AI techniques such as SHAP and PDP to 

interpret model outputs and reveal tactical and performance 

variations among teams, and to compare multiple predictive 

models to determine the optimal balance between predictive 

accuracy and interpretability.

2 Sample and method

The study design is shown in Figure 1.

2.1 Research sample

ScorePAD software was used to collect game statistics from the 

2023 to 2024 National Women’s Softball Championship, National 

Women’s Softball League, and National Women’s Softball 

Tournament. Data from 296 games across five competition 

stages were initially gathered. However, as games with 

significant skill disparities between teams offer limited 

competitive value, data cleaning was performed to remove the 

data of such games. A score threshold (T ) was applied for data 

filtering, calculated using (Equation  1):

T ¼

Pn
i¼1 Xi

n
þ 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 (Xi � �X)

n

r

� 2 (1) 

where n = 296, Xi represents the score difference in game i, and �X 

is the average score of all games.

Based on the results of (Equation 1) and the distribution of 

score differences across all games, the score threshold (T ) was 

set to 6, corresponding approximately to the 55th percentile of 

the observed score differences. Games with a score difference 

exceeding this threshold were excluded to maintain data 

quality and ensure that only highly competitive matches were 

analyzed. In addition, a win rate threshold was applied: only 

games in which both teams had a win rate above 54% during 

that competition stage were included (13). These criteria 

ensured that the final dataset comprised high-level matchups 

between closely matched teams. Through these data 

preprocessing strategies, 81 games involving four teams— 

SiChuan (abbreviate as SC), ShangHai (abbreviate as SH), 

LiaoNing (abbreviate as LN), and JianSu (abbreviate as JS)— 

were selected. These games account for the final research 

dataset for this study. The four selected teams are objectively 

regarded as representing the top tier of women’s softball in 

China today.

2.2 Variable selection

In this study, game outcomes—win (labeled as “1”) and loss 

(labeled as “0”)—were used as the target variables for the 

machine learning models. The input features for the models 

were derived from the ScorePAD system, which recorded 

detailed game statistics through post-game analysis and 

computation. Specifically, the data of the system were obtained 

from on-site records. The process of each inning was manually 

entered into the system, which then automatically generated all 

final statistical indicators. Partial data of all games can be 

accessed at http://www.softball.org.cn/. A total of 113 statistical 

indicators were initially collected. To enhance the model’s 

efficiency, irrelevant variables, such as season summary statistics, 

player positions, jersey numbers, and player names, were 

removed, leaving 98 features that constituted the 98-dimensional 

feature space used for this study’s dataset. As these features have 

different scales and units, normalization was performed to 

prevent scale differences from impacting model training.

Furthermore, to facilitate subsequent analysis and 

interpretation of game outcome predictions, the 98 features were 

categorized into three groups based on the offensive and 

defensive roles in softball: (1) Team Batting Totals: Indicators 

re:ecting a team’s batting performance; (2) Team Defense 

Totals: Indicators representing overall team defensive 

performance; (3) Pitching Totals: As pitchers play a distinct and 

critical role in defense, their statistics are classified separately to 
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evaluate their impact on game outcomes. The features and 

classification results are detailed in Table 1. Additionally, all 

statistics collected from the ScorePAD system were recalculated 

to align with the seven-inning format of softball games. If an 

extra inning occurred, the actual number of innings was used to 

ensure the accuracy of the final statistics. The final dataset 

comprised 81 game samples, each represented by a 

98-dimensional feature vector, denoted as (Dij)81�98.

FIGURE 1 

The technical workflow of this study.
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2.3 Model development and selection

As indicated by the features presented in Table 1, softball 

game data, comprising batting, defense, and pitching indicators, 

are inherently heterogeneous, including continuous and 

categorical data. This characteristic presents certain challenges 

for model development. Hence, data normalization was first 

applied. Considering the complexity of factors in:uencing 

softball game outcomes and the special nature of the collected 

data, this study selected Random Forest (RF), XGBoost, 

K-Nearest Neighbors (KNN), and Support Vector Machine 

(SVM) algorithms as candidate machine learning methods for 

game-outcome prediction. These algorithms were implemented 

using Python’s scikit-learn library.

To enhance model generalizability, the sample dataset was 

randomly partitioned (without replacement) into a training data 

set and a testing data set following a 7:3 ratio, with the number 

of samples rounded to the nearest integer. The training data set 

was used for model training and parameter tuning, while the 

testing data set was reserved for performance evaluation. 

Supervised machine learning models based on RF, XGBoost, 

KNN, and SVM were developed to predict softball game 

outcomes. Model parameters were optimized through grid 

search cross-validation (GridSearchCV, CV = 5). Thus, optimal 

parameters were adaptively identified to minimize the loss 

function, as illustrated in (Equation 2):

u�¼ arg min j(u) (2) 

where u is a hyper-parameter of the model, j(u) is the 

loss function.

Model performance was comprehensively evaluated using 

classic metrics from the machine learning domain, including 

AUC, F1-score, accuracy, precision, and recall. The model with 

the best performance was selected based on these metrics, while 

the confusion matrix and calibration were used to illustrate the 

performance of the selected model.

2.4 Experiment design

The collected game data first underwent preprocessing steps, 

including screening and data cleaning, which enabled the 

construction of the experimental dataset. Subsequently, the 

dataset was randomly partitioned (without replacement) into 

training and testing samples. Subsequently, supervised learning 

was performed separately for the four selected machine learning 

algorithms using the training and testing sets. Model results 

obtained from the testing data set were compared and analyzed 

based on the five evaluation metrics mentioned previously, and 

the best-performing model was identified. Finally, with the focus 

on the “win” scenario (target variable = 1), the selected model’s 

predictions were explained, using the SHAP and PDP 

algorithms, from two perspectives: overall feature contributions 

and individual feature effects. These methods reveal how high- 

dimensional input features in:uence model predictions, along 

with the direction and magnitude of such in:uences, providing 

strategic references for customized in-game tactics for 

different teams.

2.5 Statistical methods

Statistical analysis was conducted on the experimental dataset 

used in this study. SPSS 26 software was employed to perform the 

Shapiro–Wilk test for normality. If the resulting p-value exceeded 

0.05, indicating normal data distribution, descriptive statistics 

were presented as “mean ± standard deviation” (�x+ s). The 

paired-sample t-test was used to compare differences between 

the winning and losing groups. For data not following a normal 

distribution (p < 0.05), descriptive statistics were expressed using 

TABLE 1 Feature classification and variable names.

Feature 
group

Indicators

Team batting totals At-Bats (AB), Runs (R), Hits (H), Doubles (2B), Triples (3B), Home Runs (HR), Runs Batted In (RBI), Sacrifice Hits (SH), Sacrifice Flies (SF), 

Intentional Walks (IBB), Walks (BB), Strikeouts (K), Stolen Bases (SB), Caught Stealing (CS), Grounded into Double Plays (GDP), Batting Average 

(AVG), Bunt Foul 3rd Strikes (Kbf), Bunt Singles (BH), Catcher Interference (CINT), Caught Stealing 2nd (CS2), Caught Stealing 3rd (CS3), Caught 

Stealing Home (CSH), Fielder’s Choice (FC), Hits with 1 Out (1OutH), Hits with 2 Outs (2OutH), Hits with No Outs (NoOutH), Solo Home Runs 

(SoloHR), Infield Singles (IFH), Lineouts (LO), Obstruction (OBSTR), On-Base Percentage (OBP), On-base Plus Slugging Percentage (OPS), Plate 

Appearances (PA), Reach on Error (ERRCH), Runners Advanced (RA), Slugging Percentage (SLG), Stolen Base Percentage (SB%), Stolen On (STLON), 

Called Strikeouts (Kc), Hit by Pitch (HB), Batting Avg. with 2 Outs (2OutAvg), RBI with 2 Outs (2OutRBI), Stolen 2nd Base (STL2), Stolen 3rd Base 

(STL3), Hits with Runners in Scoring Position (RISPH), Batting Average with Runners in Scoring Position (RISP%)

Team Defense 

Totals

Total Chances (TC), Putouts (PO), Assists (A), Errors (E), Double Plays (DP), Best Defensive Plays (BP), Errors—fielding (Ef), Errors—throwing (Et), 

Fielding Percentage (FLD%), Flyouts (FLYO), Foulouts (FOULO), Groundouts (GO), Passed Ball Percentage (PB%), Pickoffs (PKO), Pitches Received 

(PCHR), Total Chances (TC)

Pitching Totals First Batter Average (P-FBAVG), First Batter Reach Percentage (P-FBR%), First Batter Reach (P-FBR), Walks (P-BB), Intentional Walks (P-IBB), 

Double Plays Induced (P-DPI), Doubles (P-2B), Earned Run (P-ER), First Pitch Strike Percentage (P-FPS%), First Pitch Strikes (P-FPS), Flyouts (P- 

FLYO), Groundouts (P-GO), Hits (P-H), Home Runs (P-HR), At-Bats Against (P-AP), Pitches-Balls (P-B), Pitches Put In-play (P-I), Pitches Behind in 

Count (P-BP), Pitches from Even Counts (P-EP), Pitches Fouled off (P-F), Pitches—Strikes (P-S), Total Pitches (P-TopP), Sacrifice Flies (P-SF), 

Sacrifice Hits (P-SH), Strikeout Percentage (P-K%), Strikeouts (P-K), Called Strikeouts (P-Kc), Strikeouts to Walks Percentage (P-KW%), Total At-Bats 

(P-TAB), Total Batters Faced (P-TBF), Triples (P-3B), Wild Pitches (P-WP), First Batter At-Bats (P-FBAB), First Batter Hits (P-FBH), Total First 

Batters Faced (P-FBF), and Innings Pitched (P-IP)
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median and interquartile range (M [P25, P75]), and the Mann– 

Whitney U test was used to assess inter-group differences, with 

the significance set at p < 0.05. If an indicator showed a 

statistically significant difference under this criterion, the 

conclusion was that the indicator differed significantly between 

the winning and losing groups.

2.6 Team-level normalized SHAP 
calculation

To compare differences in feature importance across teams, 

the SHAP values were normalized at the team level. Using the 

trained model, we analyzed the top ten features ranked by their 

overall SHAP importance. This approach aimed to illustrate how 

the common key features identified by the overall model 

contribute specifically within samples from different teams. 

Considering that SHAP values can be either positive or negative, 

we used the absolute SHAP values to represent the magnitude 

of feature importance rather than the direction of in:uence. The 

top ten features were selected based on the highest mean 

absolute SHAP values calculated from the entire dataset using 

the trained model. The calculation of the mean absolute SHAP 

value at the team level is shown in (Equation 3):

�S jt ¼
1

nt

X

nt

i¼1

jsijtj (3) 

For team t, which has nt games and a feature set j ∈ {1, …, 10}, the 

SHAP value of the j-th feature in the i-th game is denoted as sijt . 

Subsequently, normalization was performed within each team to 

re:ect the relative contribution proportion of each feature. The 

calculation formula is shown in (Equation 4):

Normalized SHAP jt ¼
�S jt

P10
k¼1

�Skt

� 100% (4) 

The normalized results were used to compare the relative 

contributions of the top ten key features across different teams, 

thereby revealing both the common and distinct winning factors 

among teams.

2.7 Estimation of 95% confidence intervals

To quantify the uncertainty of model predictions and 

performance metrics, 95% confidence intervals (CIs) were 

calculated using a Bootstrap resampling approach with 1,000 

iterations. For RF and XGBoost, CIs for prediction probabilities 

were derived by resampling individual tree predictions, while for 

KNN and SVM, CIs were obtained by resampling the training 

set and retraining the models. Performance metrics were 

evaluated on the test set with Bootstrap resampling. At the team 

level, SHAP values of the top 10 features were bootstrapped 

within each team, and 95% CIs were calculated based on the 

distribution of mean absolute SHAP values after normalization.

3 Results

3.1 Results of independent samples tests

The evaluation results comparing the statistical indicators 

between the winning and losing teams are shown in Table 2. 

The dataset comprises indicators from winning and losing teams 

across games. That is, AB, R, H, 2B, RBI, SH, BB, IBB, GDP, 

AVG, 1OutH, 2OutH, NoOutH, OBP, OPS, PA, ERRCH, SLG, 

HB, 2OutAvg, 2OutRBI, RISPH, RISP%, PO, E, Ef, FLD%, 

PCHR, P-FBAVG, P-FBR%, P-FBR, P-BB, P-DPI, P-2B, P-ER, 

P-FPS, P-H, P-HR, P-B, P-I, P-BP, P-S, P-TotP, P-SH, P-K%, 

P-K, P-KW%, P-TAB, P-TBF, P-FBH, P-FBF, P-IP. As shown, 

all indicator differences are statistically significant (p < 0.05), 

clearly demonstrating the appropriateness and representativeness 

of the selected dataset.

3.2 Model training and selection

Table 3 presents the evaluation metrics for the four 

machine-learning models, which are based on the testing 

dataset described in Section 1.3. Corresponding performance 

indicators are visualized in Figure 2a, and the ROC curves 

illustrating the win-loss predictions of each of the four 

models are presented in Figure 2b. Figure 2a demonstrates 

that, excluding the KNN model, all the models exhibit strong 

generalization capabilities on the test dataset. 

A comprehensive assessment of Table 3 and Figures 2a–b

shows that the RF model obtained the highest ROC AUC and 

F1 scores among the compared models, implying 

comparatively better predictive performance and 

generalization within this dataset.

This superior performance is primarily attributed to the RF 

being an ensemble learning method based on decision trees. It 

constructs multiple decision trees and combines their outputs, 

enhancing predictive accuracy and stability. Given a training 

dataset ¼ {(xi, yi)}N
i¼1, where xi represents input features and yi 

denotes corresponding labels, RF employs Bootstrap Sampling 

to select multiple subsets randomly from the training dataset 

to train M decision trees fm(x). The final prediction is 

obtained through an ensemble strategy. For classification 

tasks, the majority voting method is applied, as shown in 

(Equation 5):

ŷ ¼ arg max
X

M

m¼1

c( fm(x) ¼ c) (5) 

where c(�) is an indicator function, and c represents the class 

labels. For regression tasks, a simple averaging approach is 
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used, as shown in (Equation 6):

ŷ ¼
1

M

X

M

m¼1

fm(x) (6) 

Additionally, to further enhance generalization, RF introduces 

feature subset selection at each split during the construction 

of each tree. Specifically, at each node, only subset k of the 

total d features (k � d) is randomly selected for optimal 

splitting, as illustrated by (Equation 7):

k ¼ blog2d þ 1c (7) 

This method effectively reduces correlations between individual 

decision trees, enhancing overall model stability. Consequently, 

RF demonstrates strong predictive performance for game 

outcome predictions. The key hyperparameters optimized in 

this study include max_depth = 5, n_estimators = 100, 

min_samples_split = 5 and min_samples_leaf = 2. The other 

hyper-parameters were configured at their default values. 

Given these advantages, the outputs from the RF model were 

chosen as inputs for subsequent SHAP and PDP analyses 

in this study. The performance of the selected model is shown 

in Figure 3.

3.3 Identification of game outcome– 
associated factors using the SHAP 
algorithm

Based on the RF prediction model described in Section 2.2, the 

SHAP algorithm was used to calculate the Shapley values for each 

feature in the dataset (Dij)81�98, quantifying their respective 

contributions to the RF model’s game outcome predictions. For 

a model with n input features, the Shapley value fi of feature i 

is calculated using cooperative game theory, as shown in 

(Equation 8):

fi ¼
X

S,N,i[S

(jSj � 1)!(n � jSj)!

n!
[v(S) � v(S � {i})] (8) 

where N represents the set of all features, S is a subset containing 

a portion of these features, jSj denotes the size (number of 

elements) of subset S, and v(S) is the model prediction 

corresponding to feature subset S.

The top ten features ranked by Shapley value through 

comparative calculations include P-ER, OBP, RBI, R, P-H, AVG, 

P-IP, RISP%, RISPH, P-K. Figure 4a presents the mean Shapley 

values for all features, while Figure 4b shows the top 20 features 

ranked by Shapley value across the dataset. Given the large 

number (98) of total features, Figure 4b is termed the “Global 

Feature Importance” plot for convenience. In Figure 4b, each 

row on the y-axis represents an individual feature, while the 

x-axis indicates the magnitude of the Shapley values. A larger T
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Shapley value signifies greater contribution to the predictive 

outcome. Positive Shapley values imply a positive impact on 

the predicted outcome, whereas negative values indicate the 

opposite. The color of each dot corresponds to the value of a 

feature instance, transitioning from blue (low feature values) 

to red (high feature values). As illustrated in Figure 4b, 

features such as OBP, RBI, R, AVG, P-IP, RISP%, RISPH, 

P-K, PO, SLG, OPS, FLD%, P-K%, 2OutRBI have red dots 

clustered toward the right side of the x-axis, with blue dots 

clustered toward the left side. This pattern suggests that as 

FIGURE 2 

Evaluation metrics of 4 models. (a) Bar chart of model evaluation metrics. (b) Roc curves for identifying “Win” in the test sets of four models.

FIGURE 3 

The performance of the selected model. (a) Confusion Matrix. (b) Calibration.

TABLE 3 Performance of 4 models.

Models ROC AUC F1 Score Accuracy Precision Recall AUC 95%CI

KNN 0.785 0.688 0.755 1 0.500 (0.690,0.920)

SVM 0.932 0.818 0.837 0.900 0.750 (0.838,0.983)

XGboost 0.953 0.844 0.837 0.905 0.791 (0.901,0.989)

RF 0.977 0.864 0.878 0.950 0.791 (0.938,0.993)
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the values of these features increase, they positively in:uence 

game outcome prediction. Conversely, for features like P-ER, 

P-H, P-BP, P-I, Ef, P-B, blue dots are clustered toward the 

right, while red dots are clustered toward the left—lower 

values for these features negatively impact game outcome 

prediction (i.e., predicting win or loss).

3.4 Feature explanation using PDP

3.4.1 One-Dimensional PDP analysis results

Using the top ten features identified by SHAP analysis in 

Section 2.3, including P-ER and OBP, we further employed the 

PDP algorithm to analyze how individual features in:uenced the 

predicted game outcomes. For one-dimensional PDP analysis, 

given the model f (x) described in (Equation 4), where x is a 

feature vector, the PDP effect of feature jth is calculated 

according to (Equation 9):

PDPj(xj) ¼
1

n

X

n

i¼1

f (xij, x�i) (9) 

where xij represents the value of feature jth in sample i, while x�i 

denotes all other features in sample i except for feature jth.

Figure 5 presents the PDP analysis results, with all analyses 

based on the dataset (Dij)81�98 used in this study.

3.4.2 Two-dimensional PDP analysis results
To further examine the interaction effects among important 

features contributing to game outcomes, this study analyzed the 

top six features ranked by Shapley value. Since Runs Batted In 

(RBI) and Runs Scored (R) have direct and dominant effects on 

game results, this section focuses on the interaction effects of 

other potential key features. Therefore, the remaining four 

features—Earned Runs (P-ER), On-Base Percentage (OBP), Hits 

(P-H), and Batting Average (AVG)—were selected for two- 

dimensional PDP analysis. The results are illustrated in Figure 6; 

the X-axis and Y-axis represent the values of the two interacting 

features, while the Z-axis, visualized through contour shading, 

represents their combined effect on winning probability. Lighter 

colors correspond to higher winning probabilities, while darker 

colors indicate lower winning probabilities. When the Z-axis 

value exceeds 0.5, the interaction effect of the selected feature 

pair has a significant positive contribution to the game outcome 

(i.e., increasing the probability of winning). Figures 6a–f

provides an intuitive visualization of how selected feature 

interactions in:uence game results, offering quantitative insights 

into decisive factors for further strategic analysis.

3.5 Analysis of decisive factors for sample 
teams

Table 4 and Figure 7 illustrate the contributions of the decisive 

factors identified by the RF model for the four sample teams (SC, 

FIGURE 4 

The Shapley value of features. (a) The average Shapley value of features. (b) The global feature importance.
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n = 21; SH, n = 16; LN, n = 23; JS, n = 21). The results reveal 

distinct strategic differences among teams in terms of the 

relative importance of different factors affecting game outcomes. 

SC relies heavily on pitching performance, with pitching 

indicators contributing 54.26% to their overall key factors. The 

most in:uential factors for SC are Earned Runs (P-ER) and Hits 

(P-H)—SC’s winning strategy focuses on limiting opponents’ 

scoring and maintaining control over the game through strong 

pitching performance. The batting totals of teams SH, LN, and 

JS are more important contributing factors. These three teams 

place higher emphasis on offensive performance, with offensive 

indicators contributing 56.76%, 61.38%, and 65.63% to their 

decisive factors, respectively. In particular, Runs Batted In (RBI) 

and Batting Average (AVG) stand out as the most significant 

offensive contributors for these teams. This highlights the 

importance of scoring ability and batting efficiency in their 

winning strategies. LN and JS also rely heavily on Batting 

Average with Runners in Scoring Position (RISP%)—these teams 

prioritize capitalizing on key offensive opportunities to 

maximize scoring potential.

4 Discussion

This study developed machine learning models to investigate 

the key factors in:uencing game outcomes and employed SHAP 

and PDP algorithms to identify variables that significantly 

contribute to winning or losing. The findings enhance the 

understanding of performance determinants and offer potential 

guidance for data-driven decision-making in competitive contexts.

FIGURE 5 

The 1-D PDP of the top ten features ranked by the Shapley value. The X-axis represents the selected feature (count or percentage), and the Y-axis 

represents the predicted probability of winning at each corresponding feature value. (a–j) displays the partial dependence plots (PDPs) for the top 10 

features based on SHAP values.
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4.1 Analysis of key factors

As shown in Table 2 and Figure 4, the top ten features 

(i.e., factors) ranked by Shapley value exhibit statistically 

significant differences between winning and losing teams 

(p < 0.05, Table 2) and have a positive impacts on the outcome 

variable. The winning teams generally have higher mean or 

median values for positive key indicators compared to the losing 

teams, and vice versa. To further examine pitching and batting 

indicators, we analyze the impact of five key metrics in pitching 

(P-ER and P-H) and batting (OBP, AVG and SLG)). Among 

pitching indicators, Pitcher’s Earned Runs (P-ER) was identified 

as the most in:uential winning factor in this study. This finding 

aligns with previous NCAA Division I softball analytics, where 

P-ER is widely used as a core metric for evaluating pitcher 

performance (22). P-ER represents runs allowed directly because 

of pitching performance, such as runs scored after a walk or hits 

leading to runners advancing. A low P-ER indicates that the 

pitcher effectively suppresses opposing batters, making it difficult 

for them to make solid contact. Teams with lower P-ER typically 

have stronger pitching performance. Pitcher’s Hits Allowed (P-H) 

is a key factor contributing to P-ER. Figures 6d,f indicate that 

FIGURE 6 

The 2-D PDP interaction effects of the P-RE, OBP, P-H, and AVG. The X-axis and Y-axis represent the selected feature (count or percentage), Z-axis 

(represented by color) predicted win probability under the interaction effects of the selected variables. (a–f) shows the 2D PDP interaction plots for 

several key variables.

TABLE 4 Shapley values (absolute) of decisive factors for team victories.

Indicators SC (95%CI) SH (95%CI) LN (95%CI) JS (95%CI)

P-ER 0.0195 (0.0173, 0.0229) 0.0100 (0.0083, 0.0117) 0.0059 (0.0043, 0.0067) 0.0040 (0.0028, 0.0053)

P-H 0.0154 (0.0121, 0.0178) 0.0081 (0.0073, 0.0089) 0.0087 (0.0083, 0.0091) 0.0088 (0.0063, 0.0108)

P-IP 0.0017 (0.0001, 0.0031) 0.0027 (0.0025, 0.0030) 0.0039 (0, 0.0077) 0.0040 (0.0017, 0.0063)

P-K 0.0006 (0, 0.0010) 0.0016 (0.0009, 0.0022) 0.0007 (0, 0.0015) 0.0003 (0, 0.0005)

OBP 0.0010 (0.0003, 0.0018) 0.0006 (0.0004, 0.0008) 0.0009 (0.0005, 0.0014) 0.0010 (0.0002, 0.0019)

RBI 0.0054 (0.0034, 0.0079) 0.0066 (0.0063, 0.0070) 0.0070 (0.0059, 0.0083) 0.0071 (0.0063, 0.0078)

R 0.0110 (0.0093, 0.0122) 0.0125 (0.0083, 0.0168) 0.0110 (0.0099, 0.0123) 0.0130 (0.0099, 0.0164)

AVG 0.0041 (0.0033, 0.0048) 0.0044 (0.0034, 0.0055) 0.0060 (0.0044, 0.0078) 0.0054 (0.0043, 0.0066)

RISP% 0.0068 (0.0031, 0.0092) 0.0015 (0.0009, 0.0019) 0.0019 (0.0011, 0.0029) 0.0018 (0.0011, 0.0025)

RISPH 0.0007 (0.0004, 0.0011) 0.0040 (0.0033, 0.0047) 0.0037 (0.0033, 0.0042) 0.0043 (0.0037, 0.0048)

Pitching Metrics 54.2566% 43.2400% 38.6154% 34.3655%

Offensive Metrics 45.7434% 56.7600% 61.3846% 65.6345%

Total 100% 100% 100% 100%
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when a pitcher allows a certain number of hits, the team’s offensive 

ability (AVG > 30% or OBP > 40%) must compensate for the 

defensive shortcomings to maintain a chance of winning. The 

data from this study indicate that when P-H exceeds 11, the 

team’s probability of winning decreases significantly. Figure 6b

shows that P-ER and P-H exhibit a strong negative interaction 

effect with offensive metrics, suggesting that pitching performance 

is crucial in determining the outcome of a game. Among batting 

indicators, On-Base Percentage (OBP) and Batting Average 

(AVG) ranked 2nd and 5th, respectively, in terms of winning 

impact. Hakes et al. (18) found that OBP and Slugging 

Percentage (SLG) are key differentiators of winning probability in 

Major League Baseball (MLB), as they are highly correlated with 

Runs (R). This study further reveals that OBP contributes 

approximately twice as much to winning probability as SLG. 

Interestingly, AVG ranks higher than SLG in terms of Shapley 

values—AVG has a greater impact on winning in softball when 

compared to SLG. This difference can be attributed to variations 

between baseball and softball in terms of game dynamics, 

including field dimensions and tactical priorities. Smaller softball 

fields result in less time for outfielders to react, restricting base 

advancement on extra-base hits and making multi-base hits less 

common. Softball strategies emphasize short-ball tactics, focusing 

on bunting and aggressive baserunning to create scoring 

opportunities. Shorter base paths (18.3 m in softball) encourage a 

single-hit, station-to-station offensive approach to generate runs. 

These factors explain why Batting Average (AVG) has a more 

significant impact on winning probability in softball than 

Slugging Percentage (SLG). Moreover, Runs Batted In (RBI), Hits 

with Runners in Scoring Position (RISPH), and Batting Average 

with Runners in Scoring Position (RISP%) ranked 3rd, 8th, and 

9th, respectively, in terms of winning impact. These offensive 

statistics are more directly related to scoring than OBP and AVG. 

RBI serves as a crucial measure of a player’s contribution to team 

scoring. A high RBI value indicates that a batter successfully 

capitalizes on scoring opportunities, increasing team offensive 

efficiency. RISPH and RISP% measure a team’s ability to convert 

scoring opportunities into runs. Higher RISPH and RISP% values 

indicate that the team efficiently capitalizes on scoring 

opportunities by driving runners home when possible. This 

significantly boosts winning probability.

In summary, this section highlights the pivotal roles of both 

pitching and batting performance—particularly metrics such as 

P-ER, OBP, and AVG—in in:uencing game outcomes, and 

underscores the importance of effective run prevention and 

timely hitting in maximizing a team’s winning probability.

4.2 Discussion on customized winning 
strategies of different teams

The findings obtained from Figures 4–7 and Table 4 reveal 

significant differences in pitching- and batting-focused strategies 

based on the top ten key indicators. This section further 

analyzes the customized winning strategies of the four teams 

respectively. SC relies heavily on pitching performance, with 

pitching indicators contributing 54.26% to their overall key 

factors (Table 4). P-ER and P-H are the most in:uential 

factors in SC’s strategy. This indicates that SC prioritizes 

controlling opponents’ scoring to maintain an advantage, 

emphasizing the pitcher’s central role in game strategy. Their 

approach maximizes game control by minimizing runs allowed. 

In contrast, SH, LN, and JS place higher emphasis on batting 

performance, with offensive indicators contributing 56.76%, 

61.38%, and 65.63%, respectively, to their overall key factors 

(Table 4). The core offensive key factors for these teams are 

RBI and AVG—these teams focus on enhancing scoring ability 

and batting performance to increase their likelihood of 

FIGURE 7 

Normalized contribution values of Key decisive factors for each team.
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winning. Such an offense-driven strategy enables these teams to 

gain an advantage through high-efficiency offensive play, 

regardless of game scenarios. Further analysis reveals that 

Batting Average with Runners in Scoring Position (RISP%) 

plays a particularly significant role in LN’s and JS’s success. 

This suggests that LN and JS prioritize scoring in key offensive 

situations, emphasizing clutch hitting in high-pressure 

moments to maintain a competitive edge. The strong impact of 

RISP% also highlights these teams’ focus on executing under 

pressure, which requires advanced tactical skills and strong 

mental resilience.

In summary, SC, SH, LN, and JS exhibit distinct 

dependencies on pitching and offensive performance. 

However, regardless of the primary winning strategy, RBI and 

AVG consistently emerge as critical factors across all teams. 

This finding reinforces that scoring ability and stable batting 

performance remain core determinants of victory, regardless 

of whether a team prioritizes offense or pitching. Cairney (20) 

found that in MLB, the contribution ratio of offensive and 

defensive abilities to winning probability is approximately 1:1. 

Similarly, this study suggests that a balanced approach 

between offense and defense is crucial for overall team 

performance and resilience. JS and LN, as traditional domestic 

powerhouses, dominate offensively in national competitions. 

Nevertheless, against teams with no significant weaknesses in 

either pitching or offense, such as the USA and Japan, their 

reliance on offense may not be sufficient. When facing such 

elite opponents, dominant pitching performances can 

neutralize strong offenses, making it difficult for JS and LN to 

generate runs. Hence, this study recommends that the Chinese 

women’s softball teams also focus on strengthening their 

pitching depth.

5 Conclusion and future outlook

5.1 Conclusion

This study developed a RF-based model to investigate the 

key factors in:uencing game outcomes and utilized SHAP 

and PDP algorithms to analyze the explainability of the 

model. Based on this approach, a systematic analysis was 

conducted to identify key factors in:uencing game outcomes 

and to explore interactions among different features. First, the 

SHAP explainability analysis revealed that batting and 

pitching indicators are crucial in determining game outcomes. 

Among these indicators, Pitcher’s Earned Runs (P-ER) 

demonstrated the highest importance and explanatory power, 

while other metrics, such as On-Base Percentage (OBP), 

Pitcher’s Hits Allowed (P-H), and Batting Average (AVG), 

also contributed significantly to predicting game results. 

Second, the two-dimensional PDP analysis demonstrated that 

P-ER and P-H are strong negative-effect indicators—an 

increase in either metric substantially reduces the probability 

of winning. In particular, excessive earned runs or hits 

allowed by a pitcher could significantly reduce a team’s 

likelihood of securing victory. Finally, this study identified 

team-specific differences in winning strategies. While SC 

relies primarily on pitching performance, SH, LN, and JS 

adopt offense-dominant strategies.

5.2 Limitations and future directions

Although this study successfully mined decisive factors using 

machine learning models and explainability techniques and 

revealed notable differences in pitching and offensive strategies 

among the four sample teams, several limitations remain. First, 

although machine learning excels in handling complex 

nonlinear relationships, feature selection remains critical in 

determining the accuracy and effectiveness of predictions. In 

MLB, new performance metrics have been continuously 

introduced in recent years to evaluate batting and pitching 

performance. For instance, emerging batting metrics include 

Batting Average on Balls in Play (BABIP), Weighted On-Base 

Average (wOBA), and Expected Weighted On-Base Average 

(xwOBA). In pitching, commonly used indicators include 

Fielding Independent Pitching (FIP) and Adjusted Earned Run 

Average (ERA). Owing to limitations of the current ScorePAD 

system, this study could not incorporate these metrics, 

presenting a constraint in feature engineering. Second, the 

dataset used in this study was primarily drawn from Chinese 

softball teams, with a relatively limited sample size. This 

restricts the generalizability of the findings. Moving forward, 

expanding the dataset to include international competitions 

and long-term game records will be crucial for improving the 

applicability of the research findings. Performing a global-scale 

study with multi-year data will be a key focus of future 

research. Finally, although the indicators with high SHAP 

values indeed represent quantitative process descriptions that 

determine game outcomes in the real world, caution is still 

required when applying model-derived features to practical 

contexts. In addition, the PDP assumes independence among 

features, and given the correlations between some variables, its 

interpretation should be approached carefully. Further 

validation using accumulated local effects (ALE) or conditional 

analyses is recommended.
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