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Mathematics has established itself as a core analytical tool in sprint 

performance research within sports science, offering quantitative insights that 

inform coaching strategies, training methodologies, and athlete development. 

This mini-review examines eight highly-cited publications by Peter Wey and 

and colleagues, whose work has significantly advanced understanding of 

sprint biomechanics through the integration of mathematical and 

biomechanical modeling approaches. This review analyzes diverse 

methodological applications, ranging from regression models for predicting 

athletic potential to differential equations for kinetic and kinematic analysis of 

sprint mechanics. Critical evaluation of these seminal studies demonstrates 

how mathematical approaches provide objective frameworks for performance 

analysis, enhance predictive capabilities, and offer mechanistic insight into 

sprint performance determinants. Then findings underscore the fundamental 

role of mathematical methods in advancing spring performance research and 

highlight opportunities for further methodological development in sports 

science applications.
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1 Introduction

Sport science is undergoing a fundamental transformation driven by the convergence 

of biomechanics, physiology, and advanced analytics, with mathematics serving as a 

linking mechanism across disciplines—offering a rigorous quantitative framework for 

analyzing, predicting, and optimizing athletic performance. By integrating 

mathematical models and analytical techniques, researchers can identify underlying 

patterns, assess physiological data, and refine training methodologies. These models 

are instrumental in examining movement mechanics, force generation, and energy 

expenditure in various sports, ultimately providing a scientific basis for performance 

optimization (1–4). As disciplines become increasingly mathematical in nature, their 

scientific value and credibility tend to grow correspondingly (5). In the contemporary 

era characterized by advancements in artificial intelligence (AI) and machine learning 

(ML), mathematics has assumed an unprecedented significance in sport science (6). 

This is particularly evident in areas such as injury prediction accuracy, performance 

analysis precision, training program customization, and the overall improvement in 

athletic performance (7).

Mathematics encompasses several core branches, including number theory, algebra, 

geometry, analysis, and set theory, etc. (8). Within this broad field, sport statistics 

represents a specialized application of mathematical principles. In sport science, 

statistical analysis is essential for evaluating athletic performance, informing training 
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strategies, optimizing tactics, guiding player recruitment, and 

supporting effective sports management (9). Given its 

significance, sport statistics is a fundamental component of 

higher education curricula, serving as a required course for 

students pursuing degrees in physical education and sports 

training (10).

Statistics indeed enables us to identify patterns and trends 

within data by systematically analyzing and interpreting it. 

However, its reliability is often overestimated by many 

scientists (11). Moreover, the binary interpretation of p-values 

(significant vs. not significant) does not account for the 

magnitude of effect size or the true significance of results (12). 

The “p-value fallacy” highlights how p-values can be 

manipulated or misinterpreted, particularly in evidence-based 

medicine (13, 14). This is not necessarily an act of forgery but 

rather a methodological choice, which justifies its widespread 

application. Therefore, p-values should not be relied upon in 

isolation as definitive evidence for supporting a model or 

hypothesis in sport science.

Mathematical approaches in sports science encompass a 

diverse range of quantitative methods designed to analyze, 

model, and optimize human athletic performance through 

systematic data analysis and computational techniques. 

Biomechanical modeling involves the application of physics and 

engineering principles to understand human movement 

patterns, joint forces, and energy expenditure during athletic 

activities, providing insights into technique optimization and 

injury prevention mechanisms (15). Statistical analysis serves as 

the foundation for performance evaluation, utilizing descriptive 

statistics, correlation analysis, and regression modeling to 

identify relationships between training variables and 

performance outcomes, enabling evidence-based decision- 

making in athletic preparation (16). Machine learning 

algorithms, including supervised learning methods such as 

decision trees, random forests, and neural networks, analyze 

complex datasets to predict performance trends, classify 

movement patterns, and personalize training interventions based 

on individual athlete characteristics (17). Time-series analysis 

examines performance data collected over extended periods to 

identify trends, seasonal variations, and training adaptations, 

helping coaches understand long-term athletic development and 

optimize periodization strategies (18). Optimization techniques 

employ mathematical algorithms to determine optimal training 

loads, recovery periods, and competition strategies by 

maximizing performance outcomes while minimizing injury risk 

through data-driven modeling approaches that integrate 

physiological constraints with performance objectives (19). 

Signal processing methods filter and analyze physiological data 

from wearable sensors, heart rate monitors, and GPS devices to 

extract meaningful performance indicators and eliminate noise 

from raw measurement data (20, 21). These mathematical 

frameworks collectively provide sports scientists with 

quantitative tools to transform raw performance data into 

actionable insights, though their methodological diversity and 

application-specific nature often preclude standardized 

implementation across different sporting contexts.

Sprint performance has long fascinated sport scientists, who 

strive to unravel the complex interplay between biomechanics, 

physiology, and morphology that underpins world-class speed 

(22–24). In recent decades, mathematical methods have emerged 

as foundational tools in deciphering these elements—not merely 

as adjuncts to statistics but as powerful engines for modeling, 

prediction, and theoretical innovation (25). Mathematical 

applications in sprint performance research encompass diverse 

methodologies and heterogeneous analytical approaches, 

precluding quantitative synthesis through meta-analysis (26, 27). 

Despite substantial research activity, no comprehensive review 

has synthesized how mathematics contributes to understanding 

sprint biomechanics and performance optimization (28, 29). 

This knowledge gap is particularly significant given the 

increasing integration of advanced mathematical tools in 

sports science practice (30, 31). Due to the methodological 

diversity across mathematical modeling studies (32, 33) and 

the limited number of directly comparable investigations (34, 

35), a pilot study of narrative mini review focusing on 

conceptual synthesis rather than statistical pooling will 

provide researchers, coaches and practitioners with accessible 

guidance on applying mathematical insights to sprint 

performance enhancement (36, 37).

Among prominent researchers in sprint biomechanics, Peter 

Weyand’s contributions are particularly noteworthy for 

establishing foundational mathematical frameworks, including 

force-velocity relationships and metabolic power models that 

continue to in>uence contemporary research. The wide 

application and high citation impact of Weyand’s mathematical 

approaches provide an ideal foundation for examining the 

evolution and practical utility of quantitative methods in sprint 

performance analysis. Drawing from eight highly cited papers 

(co-)authored by Peter Weyand and colleagues, this mini review 

explores how diverse mathematical strategies—from force-time 

curve analysis to computational simulations—propel our 

understanding of sprinting to new levels of accuracy and 

reliability, revealing both the rigor of the field and a promising 

roadmap for future research in human performance.

2 Methods

This mini-review employed a purposive sampling approach to 

examine mathematical applications in sprint performance research 

through the lens of in>uential biomechanical investigations. 

A three-stage selection protocol was implemented to ensure 

methodological rigor and thematic coherence.

2.1 Selection criteria

2.1.1 Primary author criterion
Studies were required to include Peter Weyand as an author 

(first, corresponding, or co-author), based on his established 

expertise in locomotion biomechanics and physiology. Weyand’s 

scholarly impact (>6,000 citations, h-index of 32) and 
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specialized focus on human and animal locomotion provided a 

coherent theoretical framework for examining mathematical 

approaches in sprint research.

2.1.2 Content inclusion criteria

Papers must explicitly address one or more core 

biomechanical parameters of human sprinting: (a) ground 

reaction forces and contact mechanics, (b) metabolic energy 

expenditure and efficiency, and (c) velocity-related kinematic 

variables. Studies examining these parameters in relation to 

sprint performance optimization were prioritized.

2.1.3 Methodological requirements
Selected studies must demonstrate explicit application of 

mathematical or computational methods, including but not 

limited to: biomechanical modeling, statistical regression 

analysis, kinematic simulations, force-velocity profiling, or 

energy cost calculations.

2.2 Search and selection process

From Weyand’s complete publication corpus, identified 

through Google Scholar (n > 100) and Web of Science All 

Databases (Au = Weyand P*; n > 50), studies were initially 

screened by title and abstract (n = 20) for relevance to sprint 

biomechanics. Full-text review was then conducted to assess 

mathematical methodology application and sprint- 

specific content.

2.3 Final sample

Eight studies meeting all inclusion criteria were purposively 

selected for comprehensive analysis, representing a focused 

examination of mathematical approaches across key 

biomechanical domains in sprint performance research. Table 1

provides a detailed overview of these selected studies.

3 Results

In sprint research by Weyand and colleagues, mathematics 

transcends descriptive statistics, enabling modeling, prediction, 

optimization, and engineering design. For example, force-time 

curve analyses have anchored biomechanical inquiry, allowing 

both students and scientists to directly engage with calculus, 

systems modeling, and real kinetic data (38). Comparative 

computational approaches—such as examining prosthetic vs. 

biological limb mechanics—bridge engineering, physics, human 

biology, and even ethics (39). See Table 2 for how these eight 

highly cited studies exemplify this interdisciplinary, 

mathematically intensive approach to sport science.

4 Discussion

The collective work of Weyand and colleagues presents a 

compelling case for the indispensable role of mathematical 

modeling in advancing our understanding of human 

locomotion. The research program moves beyond qualitative 

description, employing a suite of quantitative techniques to 

dissect the fundamental principles governing running 

performance. This integrative approach allows for the 

formulation of general, predictive theories rather than merely 

documenting observed phenomena.

The foundational layer of this work is built upon statistical 

modeling, which provides the critical link between theory and 

experiment. The consistent use of linear regression and ANOVA 

across studies (38, 39) rigorously establishes the relationships 

between key biomechanical variables, such as contact time and 

ground reaction force. More importantly, metrics like the 

coefficient of determination (R2) and root mean square error 

(RMSE) (40, 41) serve as objective, quantitative benchmarks for 

model validity. This transforms theoretical models from 

conceptual frameworks into tools with tested predictive power.

At the core of the mechanistic explanations are dynamical 

systems formulated through differential equations. The 

progression from simple spring-mass models to more 

sophisticated two-mass representations (29, 41) exemplifies the 

iterative process of scientific modeling. Each model embodies a 

specific hypothesis about how the body generates force, and its 

failure or success in predicting experimental GRF waveforms (as 

quantified by R2) directly informs physiological understanding. 

These models successfully isolate the primary mechanical 

TABLE 1 Basic information of eight selected studies on sprint 
performance.

No. Papers 
selected

Citationsa/b Paper title

1 (38) 821/1,395 Faster top running speeds are 

achieved with greater ground forces 
not more rapid leg movements

2 (45) 244/423 The biological limits to running 

speed are imposed from the ground 
up

3 (39) 135/227 The fastest runner on artificial legs: 

different limbs, similar function?

4 (40) 135/222 Are running speeds maximized with 
simple-spring stance mechanics?

5 (43) 97/160 High-speed running performance: a 

new approach to assessment and 
prediction

6 (41) 91/146 A general relationship links gait 

mechanics and running ground 
reaction forces

7 (44) 82/144 Running performance has a 

structural basis

8 (42) 77/117 High-speed running performance is 
largely unaffected by hypoxic 

reductions in aerobic power

aThe citation number is retrieved on October 1, 2025 from Web of Science All Databases.
bThe citation number is retrieved on August 27, 2025 from (https://scholar.google.com/ 

scholar?hl=en&as_sdt=0%2C5&q=peter+weyand).
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determinants of performance—body mass, leg acceleration, and 

contact time—and describe their interactions through 

mathematical laws.

For modeling performance over time, exponential decrements 

functions have proven highly effective. The repeated successful 

application of the form Spd ¼ Spdaer þ (Spdan � Spdaer) � e�kt to 

model the decline in speed and anaerobic energy (42, 43) 

suggests that a fundamental, first-order process governs high- 

intensity energy utilization. The decay constant k provides a 

quantitative measure of fatigue resistance, offering a powerful 

metric to assess the impact of interventions like hypoxia or to 

compare different athlete populations.

Perhaps the most elegant finding is the derivation of a simple 

algebraic scaling law (44). The relationship Mb ¼ Fg � H2
� D 

demonstrates that complex performance outcomes can 

sometimes be distilled into a concise mathematical principle. 

This equation effectively reconciles how runners of vastly 

different sizes can achieve similar performance levels by 

revealing the underlying structural proportionality between 

stature, mass, and force production.

Finally, the work leverages kinetic equations to establish the 

limits of performance. By applying Newtonian mechanics to 

stance-phase dynamics, Weyand et al. (45) translated a 

biomechanical observation—that faster speeds are achieved with 

greater ground forces, not more rapid leg cycling—into a 

quantifiable mechanical limit.

While the models presented are powerful, they inevitably 

involve simplification. The two-mass model, for instance, 

simplifies the complex, multi-segmented human body into two- 

point masses (41). Future research could explore more complex 

musculoskeletal models to capture finer details of the force-time 

waveform. Furthermore, the parameters within the exponential 

decay models (e.g., k) are phenomenological; their precise 

physiological correlates—whether related to metabolite 

accumulation, neuromuscular fatigue, or other factors—remain a 

rich area for investigation.

In addition, AI has transformed sports science from basic 

performance analytics to sophisticated, data-driven decision- 

making systems that revolutionize athletic training and 

performance optimization (Mateus et al., 2024). AI applications 

in sprint research include predictive modeling, real-time 

analytics, computer vision tracking systems, and hybrid models 

like Convolutional Neural Network—Long Short-Term Memory 

(CNN-LSTM) for analyzing movement patterns and predicting 

sprint success [(46); Mateus et al., 2024; (47, 48)]. These AI 

tools, including ML models such as random forests and gradient 

boosting algorithms, enable precise athlete profiling, automated 

movement analysis, and personalized training programs that 

optimize performance while reducing injury risk (17, 48, 49). 

However, the diverse range of AI methods creates challenges for 

standardization and evaluation, while the complexity of human 

physiological responses makes traditional meta-analytical 

approaches difficult, requiring collaboration between sports 

scientists, data scientists, and AI engineers [(50); Mateus et al., 

2024]. Future developments in AI-driven sprint analysis will 

enhance personalized coaching, injury prevention, and real-time 

feedback, but require rigorous validation studies and 

standardized frameworks to fully realize their potential in 

evidence-based athletic optimization (48, 51).

This pilot review adopted a focused methodological 

framework that prioritized conceptual clarity and accessibility 

over comprehensive design diversity. While mathematical 

approaches in sprint performance served as illustrative examples 

to demonstrate foundational principles, the scope was 

intentionally constrained to facilitate understanding of 

mathematical literacy applications. By employing AI and ML 

technologies, future systematic reviews should incorporate a 

broader methodological spectrum, including longitudinal cohort 

studies, randomized controlled trials, cross-sectional analyses, 

case-control studies, and mixed-methods approaches. 

Additionally, expanding beyond sprint performance to 

encompass diverse athletic disciplines would strengthen the 

generalizability of mathematical applications in sports science. 

Such methodological expansion would provide a more 

comprehensive evidence base and enhance the robustness of 

findings across varied research contexts.

TABLE 2 Mathematical categorization of Weyand et al. research.

Mathematical area Key techniques & models Primary applications in the research

Statistical modeling & 
analysis

Linear Regression, ANOVA, R2, RMSE Testing hypotheses and analyzing relationships between ground forces, stride 
parameters, and speed (38). Validating spring-mass model predictions against 

measured force data (40). Comparing performance metrics between prosthetic 
and biological limbs (39).

Dynamical systems & 

differential equations

Spring-Mass Models, Two-Mass Models, Motion 

Equations

Developing a two-mass mechanical model to predict vertical ground reaction 

forces (GRFs) based on body mass and kinematics (41). Critiquing the 
predictive capacity of single and multi-mass models for GRF waveforms (29).

Exponential decay models Functions of the form 

Spd ¼ Spdaer þ (Spdan � Spdaer) � e�kt

Modeling the decline in sprint running speed over durations from 3 to 240 s 

(43). Quantifying the effects of hypoxia on anaerobic energy release and sprint 
performance (42).

Algebraic & geometric 

relationships

Dimensional Analysis, Scaling Laws (e.g., 

Mb ¼ Fg � H2
� D)

Deriving a fundamental scaling law that explains how stature and body mass 

determine mass-specific force production capacity in runners (44).

Kinetic & kinematic 
equations

Force-Velocity Relationships, Critical Power Framework, 
Stance-Averaged Force Equations

Applying stance-averaged force calculations to determine the mechanical limits 
to running speed (45).

Model validation metrics Coefficient of Determination (R2), Root Mean Square 

Error (RMSE)

Quantifying the accuracy of the two-mass model’s force predictions against 

experimental data (e.g., R2 = 0.95 in (41)
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In conclusion, this mini-review demonstrates that 

mathematical approaches are fundamental to advancing sprint 

performance research and applied practice. Through systematic 

analysis of eight highly-cited publications by Weyand and 

colleagues, it has been illustrated how diverse mathematical 

methods, including regression analysis, biomechanical modeling, 

force-velocity profiling, and kinematic analysis, etc., provide 

objective, quantifiable frameworks for understanding the 

determinants of sprint performance. The precision and 

predictive capacity of these mathematical models have direct 

implications for elite sports, informing evidence-based training 

interventions, enabling individualized performance assessments, 

and guiding the development of performance enhancement 

strategies. Future research should build upon these foundational 

approaches by integrating emerging computational 

methodologies and expanding mathematical modeling to address 

evolving questions in sprint biomechanics, ultimately bridging 

the gap between theoretical understanding and practical 

performance optimization in elite athletics. As the field 

advances, researchers and practitioners should proactively 

prepare for the integration of AI technologies, which will play 

an increasingly indispensable role in sprint performance 

optimization specifically and in transforming the landscape of 

sports science more broadly.
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