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Mathematics has established itself as a core analytical tool in sprint
performance research within sports science, offering quantitative insights that
inform coaching strategies, training methodologies, and athlete development.
This mini-review examines eight highly-cited publications by Peter Wey and
and colleagues, whose work has significantly advanced understanding of
sprint biomechanics through the integration of mathematical and
biomechanical modeling approaches. This review analyzes diverse
methodological applications, ranging from regression models for predicting
athletic potential to differential equations for kinetic and kinematic analysis of
sprint mechanics. Critical evaluation of these seminal studies demonstrates
how mathematical approaches provide objective frameworks for performance
analysis, enhance predictive capabilities, and offer mechanistic insight into
sprint performance determinants. Then findings underscore the fundamental
role of mathematical methods in advancing spring performance research and
highlight opportunities for further methodological development in sports
science applications.
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1 Introduction

Sport science is undergoing a fundamental transformation driven by the convergence
of biomechanics, physiology, and advanced analytics, with mathematics serving as a
linking mechanism across disciplines—offering a rigorous quantitative framework for
analyzing, predicting, and optimizing athletic performance. By integrating
mathematical models and analytical techniques, researchers can identify underlying
patterns, assess physiological data, and refine training methodologies. These models
are instrumental in examining movement mechanics, force generation, and energy
expenditure in various sports, ultimately providing a scientific basis for performance
optimization (1-4). As disciplines become increasingly mathematical in nature, their
scientific value and credibility tend to grow correspondingly (5). In the contemporary
era characterized by advancements in artificial intelligence (AI) and machine learning
(ML), mathematics has assumed an unprecedented significance in sport science (6).
This is particularly evident in areas such as injury prediction accuracy, performance
analysis precision, training program customization, and the overall improvement in
athletic performance (7).

Mathematics encompasses several core branches, including number theory, algebra,
geometry, analysis, and set theory, etc. (8). Within this broad field, sport statistics
represents a specialized application of mathematical principles. In sport science,
statistical analysis is essential for evaluating athletic performance, informing training
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strategies, optimizing tactics, guiding player recruitment, and

supporting effective sports management (9). Given its
significance, sport statistics is a fundamental component of
higher education curricula, serving as a required course for
students pursuing degrees in physical education and sports
training (10).

Statistics indeed enables us to identify patterns and trends
within data by systematically analyzing and interpreting it.
However, its reliability is often overestimated by many
scientists (11). Moreover, the binary interpretation of p-values
(significant vs. not significant) does not account for the
magnitude of effect size or the true significance of results (12).
The highlights

manipulated or misinterpreted, particularly in evidence-based

“p-value fallacy” how p-values can be
medicine (13, 14). This is not necessarily an act of forgery but
rather a methodological choice, which justifies its widespread
application. Therefore, p-values should not be relied upon in
isolation as definitive evidence for supporting a model or
hypothesis in sport science.

Mathematical approaches in sports science encompass a
diverse range of quantitative methods designed to analyze,
model, and optimize human athletic performance through
data

Biomechanical modeling involves the application of physics and

systematic analysis and computational techniques.

engineering principles to understand human movement
patterns, joint forces, and energy expenditure during athletic
activities, providing insights into technique optimization and
injury prevention mechanisms (15). Statistical analysis serves as
the foundation for performance evaluation, utilizing descriptive

statistics, correlation analysis, and regression modeling to

identify  relationships between training variables and
performance outcomes, enabling evidence-based decision-
making in athletic preparation (16). Machine learning

algorithms, including supervised learning methods such as
decision trees, random forests, and neural networks, analyze
classify
movement patterns, and personalize training interventions based

complex datasets to predict performance trends,
on individual athlete characteristics (17). Time-series analysis
examines performance data collected over extended periods to
identify trends, seasonal variations, and training adaptations,
helping coaches understand long-term athletic development and
optimize periodization strategies (18). Optimization techniques
employ mathematical algorithms to determine optimal training
loads, recovery periods, and competition strategies by
maximizing performance outcomes while minimizing injury risk
that

physiological constraints with performance objectives (19).

through data-driven modeling approaches integrate
Signal processing methods filter and analyze physiological data
from wearable sensors, heart rate monitors, and GPS devices to
extract meaningful performance indicators and eliminate noise
from raw measurement data (20, 21). These mathematical
with
quantitative tools to transform raw performance data into

frameworks  collectively — provide sports scientists

actionable insights, though their methodological diversity and

application-specific  nature  often preclude standardized

implementation across different sporting contexts.
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Sprint performance has long fascinated sport scientists, who
strive to unravel the complex interplay between biomechanics,
physiology, and morphology that underpins world-class speed
(22-24). In recent decades, mathematical methods have emerged
as foundational tools in deciphering these elements—not merely
as adjuncts to statistics but as powerful engines for modeling,
Mathematical
applications in sprint performance research encompass diverse

prediction, and theoretical innovation (25).

methodologies and heterogeneous analytical approaches,
precluding quantitative synthesis through meta-analysis (26, 27).
Despite substantial research activity, no comprehensive review
has synthesized how mathematics contributes to understanding
sprint biomechanics and performance optimization (28, 29).
This knowledge gap is particularly significant given the
increasing integration of advanced mathematical tools in
sports science practice (30, 31). Due to the methodological
diversity across mathematical modeling studies (32, 33) and
the limited number of directly comparable investigations (34,
35), a pilot study of narrative mini review focusing on
conceptual synthesis rather than statistical pooling will
provide researchers, coaches and practitioners with accessible
guidance on applying mathematical insights to sprint
performance enhancement (36, 37).

Among prominent researchers in sprint biomechanics, Peter
Weyand’s contributions are particularly noteworthy for
establishing foundational mathematical frameworks, including
force-velocity relationships and metabolic power models that
continue to influence contemporary research. The wide
application and high citation impact of Weyand’s mathematical
approaches provide an ideal foundation for examining the
evolution and practical utility of quantitative methods in sprint
performance analysis. Drawing from eight highly cited papers
(co-)authored by Peter Weyand and colleagues, this mini review
explores how diverse mathematical strategies—from force-time
curve analysis to computational simulations—propel our
understanding of sprinting to new levels of accuracy and
reliability, revealing both the rigor of the field and a promising

roadmap for future research in human performance.

2 Methods

This mini-review employed a purposive sampling approach to
examine mathematical applications in sprint performance research
through the lens of influential biomechanical investigations.
A three-stage selection protocol was implemented to ensure
methodological rigor and thematic coherence.

2.1 Selection criteria

2.1.1 Primary author criterion

Studies were required to include Peter Weyand as an author
(first, corresponding, or co-author), based on his established
expertise in locomotion biomechanics and physiology. Weyand’s
(>6,000 citations, h-index of 32) and

scholarly impact
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specialized focus on human and animal locomotion provided a
coherent theoretical framework for examining mathematical
approaches in sprint research.

2.1.2 Content inclusion criteria

Papers must explicitly address one or more core
biomechanical parameters of human sprinting: (a) ground
reaction forces and contact mechanics, (b) metabolic energy
expenditure and efficiency, and (c) velocity-related kinematic
variables. Studies examining these parameters in relation to

sprint performance optimization were prioritized.

2.1.3 Methodological requirements

Selected studies must demonstrate explicit application of
mathematical or computational methods, including but not
limited to: biomechanical modeling, statistical regression
analysis, kinematic simulations, force-velocity profiling, or

energy cost calculations.

2.2 Search and selection process

From Weyand’s complete publication corpus, identified
through Google Scholar (n>100) and Web of Science All
Databases (Au=Weyand P*; n>50),
screened by title and abstract (n=20) for relevance to sprint

studies were initially
biomechanics. Full-text review was then conducted to assess

mathematical ~ methodology  application  and  sprint-

specific content.

2.3 Final sample

Eight studies meeting all inclusion criteria were purposively
selected for comprehensive analysis, representing a focused
examination of mathematical approaches across key
biomechanical domains in sprint performance research. Table 1

provides a detailed overview of these selected studies.

3 Results

In sprint research by Weyand and colleagues, mathematics
transcends descriptive statistics, enabling modeling, prediction,
optimization, and engineering design. For example, force-time
curve analyses have anchored biomechanical inquiry, allowing
both students and scientists to directly engage with calculus,
systems modeling, and real kinetic data (38). Comparative
computational approaches—such as examining prosthetic vs.
biological limb mechanics—bridge engineering, physics, human
biology, and even ethics (39). See Table 2 for how these eight
highly  cited
mathematically intensive approach to sport science.

studies  exemplify  this interdisciplinary,
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TABLE 1 Basic
performance

Papers Cltatlons Paper title
selected
(38)

821/1,395 Faster top running speeds are

information of eight selected studies on sprint

achieved with greater ground forces
not more rapid leg movements
2 (45) 244/423 The biological limits to running
speed are imposed from the ground
up
3 (39) 135/227 The fastest runner on artificial legs:
different limbs, similar function?
4 (40) 135/222 Are running speeds maximized with
simple-spring stance mechanics?
5 (43) 97/160 High-speed running performance: a
new approach to assessment and
prediction
6 (41) 91/146 A general relationship links gait
mechanics and running ground
reaction forces
82/144

7 (44) Running performance has a

structural basis
8 (42) 77/117 High-speed running performance is
largely unaffected by hypoxic

reductions in aerobic power

*The citation number is retrieved on October 1, 2025 from Web of Science All Databases.
"The citation number is retrieved on August 27, 2025 from (https://scholar.google.com/
scholar?hl=en&as_sdt=0%2C5&q=peter+weyand).

4 Discussion

The collective work of Weyand and colleagues presents a
compelling case for the indispensable role of mathematical
modeling in advancing our understanding of human
locomotion. The research program moves beyond qualitative
description, employing a suite of quantitative techniques to
dissect  the

performance.

fundamental
This
formulation of general, predictive theories rather than merely

principles  governing running

integrative approach allows for the
documenting observed phenomena.

The foundational layer of this work is built upon statistical
modeling, which provides the critical link between theory and
experiment. The consistent use of linear regression and ANOVA
across studies (38, 39) rigorously establishes the relationships
between key biomechanical variables, such as contact time and
ground reaction force. More importantly, metrics like the
coefficient of determination (R?) and root mean square error
(RMSE) (40, 41) serve as objective, quantitative benchmarks for
validity. This
conceptual frameworks into tools with tested predictive power.

model transforms theoretical models from

At the core of the mechanistic explanations are dynamical
through  differential The
simple more

systems formulated equations.

progression  from spring-mass models to
sophisticated two-mass representations (29, 41) exemplifies the
iterative process of scientific modeling. Each model embodies a
specific hypothesis about how the body generates force, and its
failure or success in predicting experimental GRF waveforms (as
quantified by R?) directly informs physiological understanding.

These models successfully isolate the primary mechanical
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TABLE 2 Mathematical categorization of Weyand et al. research.

10.3389/fspor.2025.1696505

‘ Mathematical area Key techniques & models Primary applications in the research

Statistical modeling & Linear Regression, ANOVA, R*, RMSE

analysis

Dynamical systems & Spring-Mass Models, Two-Mass Models, Motion

differential equations Equations
Functions of the form
Spd = Spdaer + (Spdan — Spdaer) - €

Exponential decay models

Algebraic & geometric
relationships

Dimensional Analysis, Scaling Laws (e.g.,
M, = Fy x H* x D)

Kinetic & kinematic
equations Stance-Averaged Force Equations

Coefficient of Determination (R?), Root Mean Square

Error (RMSE)

Model validation metrics

determinants of performance—body mass, leg acceleration, and

contact time—and describe their interactions through
mathematical laws.

For modeling performance over time, exponential decrements
functions have proven highly effective. The repeated successful
application of the form Spd = Spdue + (Spdan — Spdaer) - € to
model the decline in speed and anaerobic energy (42, 43)
suggests that a fundamental, first-order process governs high-
intensity energy utilization. The decay constant k provides a
quantitative measure of fatigue resistance, offering a powerful
metric to assess the impact of interventions like hypoxia or to
compare different athlete populations.

Perhaps the most elegant finding is the derivation of a simple
algebraic scaling law (44). The relationship M, = F, x H?>x D
that

sometimes be distilled into a concise mathematical principle.

demonstrates complex performance outcomes can
This equation effectively reconciles how runners of vastly
different sizes can achieve similar performance levels by
revealing the underlying structural proportionality between
stature, mass, and force production.

Finally, the work leverages kinetic equations to establish the
limits of performance. By applying Newtonian mechanics to
Weyand et al. (45)

biomechanical observation—that faster speeds are achieved with

stance-phase dynamics, translated a
greater ground forces, not more rapid leg cycling—into a
quantifiable mechanical limit.

While the models presented are powerful, they inevitably
involve simplification. The two-mass model, for instance,
simplifies the complex, multi-segmented human body into two-
point masses (41). Future research could explore more complex
musculoskeletal models to capture finer details of the force-time
waveform. Furthermore, the parameters within the exponential
decay models (e.g., k) are phenomenological; their precise
related
accumulation, neuromuscular fatigue, or other factors—remain a

physiological  correlates—whether to  metabolite
rich area for investigation.
In addition, AI has transformed sports science from basic

performance analytics to sophisticated, data-driven decision-
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Force-Velocity Relationships, Critical Power Framework,

04

Testing hypotheses and analyzing relationships between ground forces, stride
parameters, and speed (38). Validating spring-mass model predictions against
measured force data (40). Comparing performance metrics between prosthetic
and biological limbs (39).

Developing a two-mass mechanical model to predict vertical ground reaction
forces (GRFs) based on body mass and kinematics (41). Critiquing the
predictive capacity of single and multi-mass models for GRF waveforms (29).
Modeling the decline in sprint running speed over durations from 3 to 240 s
(43). Quantifying the effects of hypoxia on anaerobic energy release and sprint
performance (42).

Deriving a fundamental scaling law that explains how stature and body mass
determine mass-specific force production capacity in runners (44).

Applying stance-averaged force calculations to determine the mechanical limits
to running speed (45).

Quantifying the accuracy of the two-mass model’s force predictions against
experimental data (e.g., R*=0.95 in (41)

that revolutionize athletic

performance optimization (Mateus et al., 2024). Al applications

making systems training and

in sprint research include predictive modeling, real-time
analytics, computer vision tracking systems, and hybrid models
like Convolutional Neural Network—Long Short-Term Memory
(CNN-LSTM) for analyzing movement patterns and predicting
sprint success [(46); Mateus et al., 2024; (47, 48)]. These Al
tools, including ML models such as random forests and gradient
boosting algorithms, enable precise athlete profiling, automated
movement analysis, and personalized training programs that
optimize performance while reducing injury risk (17, 48, 49).
However, the diverse range of Al methods creates challenges for
standardization and evaluation, while the complexity of human
traditional

physiological makes

approaches difficult, requiring collaboration between sports

responses meta-analytical
scientists, data scientists, and AI engineers [(50); Mateus et al.,
2024]. Future developments in Al-driven sprint analysis will
enhance personalized coaching, injury prevention, and real-time
feedback, but
standardized frameworks to fully realize their potential in

require rigorous validation studies and

evidence-based athletic optimization (48, 51).
This
framework that prioritized conceptual clarity and accessibility

pilot review adopted a focused methodological
over comprehensive design diversity. While mathematical
approaches in sprint performance served as illustrative examples
the scope
understanding

to demonstrate foundational was

of
mathematical literacy applications. By employing AI and ML

principles,

intentionally ~ constrained to facilitate

technologies, future systematic reviews should incorporate a
broader methodological spectrum, including longitudinal cohort
studies, randomized controlled trials, cross-sectional analyses,
case-control  studies, and  mixed-methods
Additionally,

encompass diverse athletic disciplines would strengthen the

approaches.

expanding beyond sprint performance to
generalizability of mathematical applications in sports science.

Such methodological expansion would provide a more
comprehensive evidence base and enhance the robustness of

findings across varied research contexts.
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that
mathematical approaches are fundamental to advancing sprint

In conclusion, this mini-review demonstrates
performance research and applied practice. Through systematic
analysis of eight highly-cited publications by Weyand and
colleagues, it has been illustrated how diverse mathematical
methods, including regression analysis, biomechanical modeling,
force-velocity profiling, and kinematic analysis, etc., provide
objective, quantifiable frameworks for understanding the
The

predictive capacity of these mathematical models have direct

determinants of sprint performance. precision and
implications for elite sports, informing evidence-based training
interventions, enabling individualized performance assessments,
and guiding the development of performance enhancement
strategies. Future research should build upon these foundational
approaches by  integrating  emerging  computational
methodologies and expanding mathematical modeling to address
evolving questions in sprint biomechanics, ultimately bridging
the gap between theoretical understanding and practical
field

should proactively

performance optimization in elite athletics. As the

advances, researchers and practitioners
prepare for the integration of AI technologies, which will play
an increasingly indispensable role in sprint performance
optimization specifically and in transforming the landscape of

sports science more broadly.
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