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Introduction: This study utilizes 2,786 NBA player–season samples from 2019 
to 2024 to develop a nonlinear modeling approach based on Kolmogorov– 
Arnold Networks (KAN), applied to modeling the relationship between player 
age and basketball performance. A novel modeling framework is proposed, 
integrating interpretable machine learning with age-group-specific feature 
analysis, aiming to systematically reveal the nonlinear dynamics and 
transitional mechanisms of performance evolution across age.
Methods: Fantasy Points is used as the unified performance metric, and players 
are categorized into three age groups: Youth (19–23 years), Prime (24–30 
years), and Veteran (31–40 years). The KAN model is tuned via Bayesian 
optimization and evaluated using five-fold cross-validation. Its performance is 
systematically compared against mainstream models, including Multilayer 
Perceptron (MLP), XGBoost, Random Forest, and Linear Regression.
Results: Results show that KAN achieves the lowest MAE and RMSE across all 
age groups, with the best or near-best R² values. In the youth group, the 
model achieves MAE = 0.089, RMSE = 0.115, and R² = 0.986, significantly 
outperforming all baseline models. Further response function analysis reveals 
nonlinear structural features in the age–performance relationship. Attribution 
results indicate that youth performance is driven by multiple interacting 
variables with strong and volatile marginal effects; in Prime, performance 
stabilizes and is dominated by key metrics such as points (PTS), assists (AST), 
and rebounds (REB); in Veteran, performance converges on a few core 
variables, with a “ceiling effect” and diminishing marginal returns.
Discussion/Conclusion: Using a KAN-based nonlinear framework, we reveal 
the age-group-specific evolution of basketball performance with age, 
offering new methodological insights for career management, training 
optimization, and intelligent decision-making in professional sports.
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1 Introduction

Long-term athlete development pathways are a key topic in sports science and 

training management. The “Long-Term Athlete Development” (LTAD) framework 

indicates that athletes must undergo systematic training and skill accumulation starting 

from adolescence, gradually reaching their competitive peak, followed by a decline in 
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abilities with advancing age, forming a multi-stage, nonlinear 

developmental trajectory (1–4). In most sports, peak 

performance age typically falls between 20 and 30 years old 

(5–7). Taking basketball as an example, players usually reach 

their competitive peak in their late 20s (around 27 years old), 

with performance beginning to decline after 30 (8). However, 

the relationship between peak performance and decline is not 

simply linear. Athletes’ performance at different age stages is 

in1uenced by multiple factors such as physiology, technique, 

and experience, exhibiting complex nonlinear changes. As age 

increases, physical attributes like explosiveness and speed 

gradually decline, but technical skills, tactical understanding, 

and experience may improve, allowing some players to maintain 

high efficiency beyond 30 (8, 9). Nonlinear modeling results also 

show that athletes’ physical and technical changes across age 

groups follow multidimensional, asynchronous trajectories, 

which single linear models struggle to explain (3, 10). Therefore, 

understanding the multi-stage, nonlinear characteristics of 

athlete performance with age is crucial for scientifically planning 

training and optimizing career management.

The relationship between age effects and athletic performance 

is complex and variable, difficult to describe with simple linear 

relationships. It is both a dynamic multi-stage process and the 

result of multifactorial interactions, in1uenced by physiological, 

technical, psychological, and experiential factors (6). Due to this 

complexity, previous research has often approached the topic 

from the perspective of the Relative Age Effect (RAE), exploring 

the heterogeneity and mechanisms between age and athletic 

outcomes. For instance, Musch et al. systematically reviewed the 

prevalence and mechanisms of RAE across various sports, 

noting that minor differences in birth months can significantly 

impact selection, development opportunities, and competitive 

levels (11). Wattie et al. proposed a developmental systems 

model, further revealing the multifaceted factors behind RAE 

(12). Specific to basketball, Ibáñez et al. found that RAE 

differentially affects performance based on playing positions in 

U18 athletes (13). However, traditional RAE analyses rely 

primarily on manual statistics and grouping methods, limiting 

evaluation efficiency. Thus, there is a need for data-driven, 

automated dynamic analysis tools based on big data to enhance 

assessment accuracy and efficiency. Analyses of athlete 

performance data and technical features have already enabled 

effective identification of different developmental stages and 

competitive levels (14, 15). Therefore, employing machine 

learning methods for dynamic modeling and prediction of these 

features offers new pathways for continuous monitoring and 

management of athletic performance.

Kolmogorov–Arnold Networks (KAN), as an emerging neural 

network model based on the Kolmogorov–Arnold representation 

theorem, was proposed by Liu et al. (16). Unlike traditional 

Multi-Layer Perceptrons (MLPs), KAN incorporates learnable 

edge activation functions (such as B-splines) in its network 

structure, providing stronger nonlinear approximation 

capabilities and higher interpretability. Studies show that KAN 

outperforms MLPs and ensemble tree models (e.g., XGBoost) in 

tasks like function regression, solving differential equations, and 

physical field modeling, offering structural explanations of the 

prediction process (17). Similarly, KAN has been successfully 

applied in function regression and physical field modeling in 

complex nonlinear systems, demonstrating its broad potential in 

multivariable dynamic prediction problems (18, 19). However, 

KAN has not yet been applied in sports, particularly in 

basketball performance modeling and analysis. Given KAN’s 

excellence in nonlinear modeling of complex systems, 

introducing it to dynamic analysis of athlete performance data 

could achieve high-precision prediction and interpretable 

modeling of performance trajectories, providing new theoretical 

and technical support for basketball athlete training 

and development.

Despite prior explorations of the relationship between age and 

athletic performance, most studies are limited to linear regression, 

manual segmentation, or traditional statistical analysis, falling 

short in revealing the nonlinear and multi-stage features of 

performance evolution. In team sports like basketball, research 

often focuses on adolescents, lacking systematic examination of 

performance change patterns and in1uencing factors across all 

age stages, resulting in limited understanding of athletes’ full 

lifecycle development. This highlights the need for a method 

that dynamically captures nonlinear changes and systematically 

analyzes performance patterns and key factors at different ages, 

to more comprehensively understand athletes’ lifelong 

development processes.

This study’s innovation lies in being the first to introduce 

Kolmogorov–Arnold Networks (KAN) to dynamic modeling of 

basketball athlete performance. Leveraging KAN’s powerful 

nonlinear fitting and high interpretability, we systematically 

analyze the trajectory of age’s impact on performance. Unlike 

previous reliance on linear or traditional statistical models, this 

paper uses NBA Fantasy Points as a unified and comprehensive 

performance metric, based on large-scale real data, comparing 

KAN with mainstream machine learning models (e.g., MLP, 

XGBoost). By doing so, we aim to more accurately capture the 

nonlinear features and multi-stage trajectories of athlete 

performance with age, revealing patterns and key in1uencing 

factors at different stages, thereby providing scientific evidence 

and methodological innovation for athlete lifecycle management 

and personalized training program development. The 

importance of this study is multifaceted: theoretically, it 

advances the LTAD framework by quantifying nonlinear 

performance mechanisms; practically, it offers data-driven 

insights for coaches in age-specific training, career planning, and 

management; methodologically, it validates KAN’s prospects in 

sports big data, potentially extending to injury prediction or 

team strategy optimization. According to existing literature and 

tool search results (such as arXiv), KAN’s application in sports 

performance analysis remains in an emerging stage (20, 21), and 

this paper may be the first systematic empirical study applying 

KAN in basketball, further highlighting its innovation 

and significance.

To enable comprehensive quantification and cross- 

comparison of basketball athletes’ competitive performance, this 

paper selects NBA official Fantasy Points as a unified 
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performance indicator. This metric weights and integrates key 

data such as points, rebounds, assists, steals, and blocks into a 

single value, objectively and holistically re1ecting players’ overall 

contributions to games. Compared to methods evaluating 

players based on single stats (e.g., points, efficiency), Fantasy 

Points provide a more comprehensive, fair assessment of players 

across positions and types, avoiding bias and enhancing data 

comparability (22, 23).

This paper proposes a KAN-based dynamic modeling method 

for basketball athlete performance, aiming to systematically reveal 

the nonlinear in1uence patterns of age on athletic performance. 

The main contributions of this study include: 1. Proposing a 

KAN-based dynamic modeling method for basketball athlete 

performance: Introducing Kolmogorov–Arnold Networks (KAN) 

to the basketball domain for the first time to systematically 

model and analyze nonlinear patterns of performance with age, 

enhancing modeling capabilities and interpretability for complex 

dynamic processes. 2. Innovative application of a comprehensive 

performance metric: Using NBA Fantasy Points as a unified 

indicator enables cross-comparable, multidimensional evaluation 

of players across positions and types, providing new 

measurement tools for athlete performance research. 3. age- 

group-specific analysis and multi-model comparison: Based on 

theoretical and empirical foundations, grouping players by age 

groups reveals heterogeneity in performance changes; 

comparisons with MLP, XGBoost, etc., validate KAN’s 

advantages in dynamic modeling and key feature identification. 

The remainder of this paper is organized as follows: Section 2

describes data sources, performance indicators, and sample 

grouping methods; Section 3 details the KAN and comparative 

models’ building processes and experimental design; Section 4 

reports empirical results and analysis; Section 5 summarizes 

contributions, limitations, and future research prospects.

This study, by introducing the Kolmogorov–Arnold Networks 

(KAN) model, advances the optimization of nonlinear modeling 

and analysis of basketball athlete competitive performance. This 

method holds potential application prospects in athlete 

development assessment, personalized training optimization, and 

intelligent performance analysis in sports.

2 Data sources and acquisition

In this study, player performance data from the 2019–2020 to 

2023–2024 NBA regular seasons were collected using automated 

Python scripts built with the nba_api library (https://github. 

com/swar/nba_api), which interfaces with the official NBA data 

source. All available player statistics across five complete seasons 

were retrieved. To ensure data reliability and reproducibility, the 

script was programmed to iteratively request data for each 

season with appropriate time delays to prevent data loss due to 

excessive request frequency. Each entry was also automatically 

labeled with the corresponding season identifier.

Following initial acquisition, the dataset underwent 

standardized cleaning procedures. Invalid players, extreme 

outliers, and records with missing or incomplete information 

were removed. The final structured dataset includes 2,786 

player-season samples, comprising basic personal information, 

season-level technical statistics, and composite 

performance metrics.

This dataset does not involve any human or animal subjects, 

nor does it contain any personally identifiable or sensitive 

information. Therefore, no ethical review or institutional 

approval was required.

2.1 Age grouping and variable definitions

Based on established theories and empirical research in sports 

science, NBA players in this study were categorized into three age 

groups:(1) Youth (19–23 years), (2) Prime (24–30 years), and (3) 

Veteran (31–40 years).

This classification draws on the Long-Term Athlete 

Development (LTAD) model proposed by Balyi and Way, as 

well as the systematic review of peak athletic performance age 

conducted by Allen et al., both of which suggest that most 

athletes reach peak performance between the ages of 20 and 30, 

followed by a gradual decline thereafter (1, 6). This 

segmentation approach has been widely validated in the existing 

sports science literature and is applicable to basketball as well as 

many other sports (3, 24).

The prediction task focuses on modeling NBA players’ multi- 

season composite performance, operationalized using NBA 

Fantasy Points, which constitutes a continuous regression 

problem. All input and output variables were constructed based 

on a thorough understanding of basketball performance 

dynamics and athlete evaluation characteristics, while also 

accounting for data structure and the practical significance of 

statistical indicators.

Specifically, the output variable is NBA_FANTASY_PTS, 

representing a player’s season-level composite performance. This 

metric integrates multiple key performance statistics—such as 

points, rebounds, assists, steals, blocks, and turnovers—into a 

single score, calculated according to standard fantasy scoring 

systems. It offers an effective measure of a player’s overall 

contribution. The calculation formula is presented in 

Equation (1).

NBA Fantasy Points ¼ PTS þ 1:2 � REB þ 1:5 � AST þ 3

� STL þ 3 � BLK � 1 � TOV (1) 

We use a publicly available Fantasy scoring scheme as the target 

metric, composed of weighted countable events with positive 

weights for key offensive and defensive actions and a negative 

weight for turnovers; it provides a convenient unified summary 

of performance but is not position-neutral and only partially 

covers off-ball and coordination contributions. Accordingly, the 

age-related nonlinear patterns discussed below should be 

interpreted as relative effects under this weighting lens rather 

than as a complete characterization of overall player value.
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The input variables primarily include players’ season-level 

fundamental technical statistics, such as:points per game (PTS), 

field goal percentage (FG_PCT), three-point field goals made 

(FG3M), assists (AST), rebounds (REB), steals (STL), blocks 

(BLK), and turnovers (TOV).

Considering potential differences in scale and distribution 

among these variables, all input features were standardized prior 

to model training to improve stability and enhance the 

generalization performance of the models.The definitions of 

these variables are provided in Supplementary Table S1.

2.2 Model construction and analytical 
procedure

2.1.1 Data preprocessing

To enhance model generalization and interpretability, this 

study conducted systematic data preprocessing prior to model 

training. First, all raw feature variables were examined for 

missing values and outliers, which were appropriately handled 

to ensure data integrity. Subsequently, to eliminate extreme or 

unrepresentative samples, we excluded player-season records in 

which the player averaged fewer than 10 min or fewer than 10 

points per game, thereby improving the robustness and 

representativeness of the dataset.

This exclusion criterion was intended to reduce the in1uence 

of fringe players, those recovering from injuries, or short-term 

signees—players whose playing time is often inconsistent and 

whose performance tends to 1uctuate considerably. Such records 

typically exhibit high statistical randomness, which may 

introduce noise and hinder the convergence and generalization 

of predictive models. Similar sample filtering strategies have 

been employed in previous studies. For instance, research using 

data mining techniques to analyze NBA player performance 

excluded players with limited minutes to avoid overfitting to 

outlier behaviors (24). Other studies using Bayesian modeling to 

investigate age-related performance trajectories also emphasized 

the need to exclude statistically unstable individual samples in 

order to improve the accuracy of nonlinear curve estimation (25).

To better understand the relationships among technical 

indicators and to optimize input feature selection, we performed 

an exploratory correlation analysis of all relevant variables. 

Pearson correlation coefficients were calculated to assess 

pairwise linear relationships, and results were visualized using a 

correlation heatmap. In the heatmap, color intensity re1ects the 

strength of correlation: darker shades indicate stronger positive 

correlations, while lighter shades represent stronger negative 

correlations. Each cell is labeled with the corresponding 

correlation coefficient between two features. An example 

heatmap based on full-game technical statistics is shown in 

Supplementary Figure S1.

The analysis revealed high correlations among several feature 

pairs (e.g., FGM and PTS: r = 0.99, FG3M and FG3A: r = 0.98, 

MIN and PTS: r = 0.88, AST and TOV: r = 0.84). To mitigate 

feature redundancy and multicollinearity, we applied a 

correlation threshold of |r| ≥ 0.8. For each highly correlated 

feature pair, we retained the more representative variable—one 

that independently re1ects player ability—such as FGM, FG3M, 

and FTM. Highly correlated features such as PTS, FGA, and 

FG3A were removed accordingly (see Supplementary Table S2

for details).

However, given the strategic and statistical importance of 

scoring, offensive rebounds, and defensive rebounds in 

determining both individual and team performance—and their 

well-established association with game outcomes and athletic 

effectiveness (26, 27)—we chose to retain all 15 core technical 

indicators in the final model, including both offensive and 

defensive rebounds.

2.2.2 Construction of the KAN model

Kolmogorov–Arnold Networks KAN approximate 

multivariate relationships by learning one-dimensional smooth 

functions on edges and additively composing them to form the 

output. Unlike MLPs that stack fixed activations at nodes, KAN 

places learnable activations on edges, achieves strong 

nonlinearity with shallow depth, and produces interpretable 

univariate response curves for each predictor that reveal 

thresholds, plateaus, and diminishing returns. Within a five-fold 

cross-validation framework, we used Bayesian optimization to 

search hyperparameters including depth, width, learning rate, 

and weight decay, and we applied early stopping that terminates 

training when the validation set shows no improvement for 

several consecutive epochs.

To examine the nonlinear in1uence of age on basketball player 

performance, we adopt KAN for predictive modeling and analysis. 

Supplementary Figure S2 presents the model architecture. To 

maximize predictive performance, we tuned KAN and several 

mainstream baseline models—Multilayer Perceptron MLP, 

XGBoost, Random Forest RF, and Support Vector Machine 

SVM—using Bayesian optimization and grid search. Under a 

five-fold cross-validation framework, models were compared 

using Mean Absolute Error MAE, Root Mean Square Error 

RMSE, and Coefficient of Determination R2. Results show that 

KAN outperformed the baselines in capturing complex 

nonlinear relationships while providing superior interpretability.

The structure of KAN is grounded in the Kolmogorov–Arnold 

representation theorem, which states that any continuous 

multivariate function can be expressed as a finite sum of 

continuous univariate functions. Accordingly, KAN 

parameterizes learnable univariate activation functions on edges 

and forms the overall output through additive mixing. The 

matrix form used in this study is given in Equation 2.

f (x) ¼ Fout �Fin � x (2) 

Here, Fin and Fout represent the function matrices of the input 
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and output layers, respectively, as shown in Equation (3).

Fin ¼

f1,1(�) � � � f1,nin
(�)

.

.

.
.
.

.
.
.
.

fnout ,1(�) � � � fnout ,nin
(�)

0

B

@

1

C

A
, Fout

¼ (F1(�) � � �Fnout (�)) (3) 

In the practical implementation of KAN, the numbers of input 

and output nodes are typically set as nin ¼ n, nout ¼ 2n þ 1, 

respectively. After multiple nested layers, the overall mapping 

function of a KAN network with LLL layers can be expressed as 

shown in Equation (4).

KAN(x) ¼ FL�1 � � � � �F1 �F0 � x (4) 

The training objective of the KAN model is to minimize the error 

between the predicted and actual values, while incorporating a 

regularization term to control model complexity and prevent 

overfitting. The loss function is defined as follows:

L ¼
1

N

X

N

i¼1

yi � ŷ2
i þ lV(F) 

Where yi is i the true label of the ith sample, ŷi is the predicted 

output of the KAN model, N is the total number of samples, l is 

the regularization coefficient, and V(F) is the penalty term for 

the smoothness of univariate functions in the network (such as 

B-splines) (e.g., the square of the second derivative).

To ensure model reproducibility and avoid potential data 

leakage, this study implemented the KAN model using the 

pykan library. The specific architecture settings are as follows: 

width = [15, hidden_size, 1] (input layer with 15 features, hidden 

layer with hidden_size nodes, output layer with 1; hidden_size 

ranges from 8 to 32, obtained from optimization), depth 

(ranging from 2 to 6, obtained from optimization), grid size 

grid = 5 (default), spline order k = 3 (default), random seed 

seed = 0 (for optimization random state), regularization 

coefficient weight_decay (ranging from 1e-6 to 1e-2, log- 

uniform distribution, obtained from optimization). The 

optimizer is Adam, with learning rate lr (ranging from 1e-4 to 

1e-2, log-uniform distribution, obtained from optimization). 

Training for up to 200 epochs, using an early stopping 

mechanism (patience = 15, minimum improvement threshold for 

validation loss 1e-5). The loss function is MSELoss. 

Hyperparameter optimization uses scikit-optimize’s 

gp_minimize function, with n_calls = 15, random_state = 0. 

Under each hyperparameter combination, 5-fold CV evaluates 

the average MAE as the objective function. Within each fold, 

randomly split 90% sub-training set and 10% validation set from 

the training set (no fixed seed, but overall KFold has 

random_state = 42) for early stopping.

In the five-fold cross-validation, data splitting is performed 

using sklearn.model_selection.KFold(n_splits = 5, shuf1e = True, 

random_state = 42) to ensure randomness and reproducibility. 

Feature standardization is performed independently in each fold 

(using sklearn.StandardScaler, fit only on training data, then 

transform validation/test data) to prevent information leakage 

from the training set to the validation/test set. At the same time, 

hyperparameter tuning is performed only within the training 

folds to avoid cross-fold leakage. Finally, the optimal 

hyperparameters are used for the complete 5-fold CV evaluation.

3 Results

3.1 Model performance comparison

To comprehensively evaluate the effectiveness of the KAN 

model in predicting season-level performance of basketball 

players, we conducted a systematic comparative analysis with 

several mainstream machine learning models, including 

Multilayer Perceptron (MLP), Extreme Gradient Boosting 

(XGBoost), Random Forest (RF), and Support Vector Machine 

(SVM) as baseline models. To ensure fairness in comparison, all 

experiments were performed using the same dataset, identical 

feature selection, and standardized preprocessing procedures. 

Bayesian optimization was applied for automated 

hyperparameter tuning, and five-fold cross-validation was 

uniformly employed across all models to ensure the robustness 

and comparability of results.

During the five-fold cross-validation, we used three key 

regression metrics to assess model performance: Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and 

Coefficient of Determination (R2).MAE re1ects the average 

absolute deviation between the predicted and actual values. 

A smaller MAE indicates more accurate overall predictions. 

RMSE measures the square root of the mean of squared 

prediction errors and is more sensitive to large deviations; a 

lower RMSE indicates better model fit.R2 evaluates how well the 

model explains the variance in the target variable. An R2 value 

closer to 1 implies greater explanatory power and better 

goodness of fit.

MAE ¼
1

N

X

N

i¼1

jyi � ŷij

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

(yi � ŷi)
2

s

R2 ¼ 1 �

PN
i¼1 (yi � ŷi)

2

PN
i¼1 (yi � �y)2 

Where yi denotes the ground truth value, ŷi is the predicted value 

by the model, �y is the mean of the ground truth values, and N is 

the total number of samples.
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3.1.1 Five-fold cross-validation comparative 

experiment
After systematic hyperparameter tuning using Bayesian 

optimization, the predictive performance of KAN, MLP, XGBoost, 

Random Forest, and Linear Regression models across different age 

groups is presented in Supplementary Table S3–S5 and visualized 

in Supplementary Figure S5. The results show that across all age 

categories, the KAN model consistently achieved the lowest values 

in both Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE), while also reaching or closely approaching the best 

performance in Coefficient of Determination (R2)—demonstrating 

a clear and consistent advantage.

For example, in the 19–23 age group, the KAN model achieved 

MAE = 0.0890, RMSE = 0.1152, and R2 = 0.9855, significantly 

outperforming all other baseline algorithms.

Notably, in the Veteran (31–40 years) group—where sample 

size is smaller and performance variation is higher—the KAN 

model still maintained stable predictive superiority, indicating 

strong generalization capability. Overall, KAN effectively models 

the complex nonlinear relationships between players’ technical 

statistics and overall performance, and outperforms traditional 

neural networks and ensemble tree models in comprehensive 

five-fold cross-validation assessments.

3.2 Analysis of key performance drivers 
across age groups

To further investigate the age-related heterogeneity in 

basketball player performance, we applied feature attribution 

techniques based on the KAN model to identify the most 

in1uential technical statistics for each age group. The results are 

presented in Supplementary Figure S4.

Supplementary Figures S4d–f display the feature attribution 

distributions derived from the KAN model for players in the 

19–23, 24–30, and 31–40 age groups, respectively. Overall, the 

results reveal a dynamic evolution of key performance drivers as 

players age.

In the 19–23 age group (Supplementary Figure S4d), offensive 

metrics such as assists (AST), points scored (PTS), and field goal 

attempts (FGA) received the highest attribution weights, 

indicating that younger players rely more heavily on offensive 

production to drive overall performance.In the 24–30 age group 

(Supplementary Figure S4e), the attribution weight of PTS 

increased significantly, making it the most critical factor 

in1uencing season-level performance. AST and rebounds (REB) 

followed closely, suggesting that players in this age group 

contribute both as primary scorers and all-around performers.In 

the 31–40 age group (Supplementary Figure S4f), PTS, AST, and 

REB remained the top contributors, but the overall attribution 

became more evenly distributed. Interestingly, the relative 

importance of defensive indicators such as blocks (BLK) and 

steals (STL) increased slightly—indicating that Veteran players, 

beyond relying on scoring, tend to maintain their impact 

through experience-based defensive contributions.

3.2.1 Visualization of nonlinear attribution 

structures across age groups
To further characterize the nonlinear mechanisms underlying 

player performance across different age groups, we visualized both 

the pruned structures of the KAN networks and the univariate 

response functions of dominant input features for players in the 

19–23, 24–30, and 31–40 age groups.

From the pruned KAN structures, we observed that the 

network for players aged 19–23 retained a relatively large 

number of active branches even after pruning. This indicates 

that player performance at this stage is driven by a diverse set of 

technical abilities, with a non-converged skill structure— 

re1ecting high developmental potential and 1exibility. In 

contrast, the 24–30 age group exhibited a more simplified KAN 

structure with fewer dominant features, suggesting that technical 

abilities become more stabilized and performance is increasingly 

shaped by a smaller set of key variables. For the 31–40 age 

group, the structure further converged toward a minimal 

number of dominant features.

In the corresponding univariate response function plots 

(shown in the smaller panels to the right), we found:19–23 Age 

Group (Supplementary Figure S5): Dominant features such as 

PTS, AST, FGA, REB, FG_PCT, and STL exhibit strong 

nonlinear relationships. For example, the response function for 

PTS shows an increasing marginal effect, indicating that gains 

in scoring have a disproportionately large positive impact on 

overall performance. Functions for AST and REB display 

in1ection points or 1uctuations, suggesting threshold effects or 

synergy-based dynamics. Overall, younger players show high 

sensitivity to multidimensional skill development, with 

substantial room for growth.

24–30 Age Group (Supplementary Figure S6): The response 

functions for key variables—such as PTS, AST, and FG_PCT—tend 

to become linear or near-linear, with smaller slopes. This implies 

diminishing marginal returns: further improvements in these core 

skills yield smaller gains in overall performance. Player output during 

this stage stabilizes, relying more on solidified skillsets and 

accumulated experience, with less interaction among 

technical variables.

31–40 Age Group (Supplementary Figure S7): Dominant features 

further converge to a very small set (e.g., PTS, FG_PCT, AST), whose 

response functions mostly exhibit plateaus or slight declines. In many 

cases, marginal effects vanish entirely. This indicates a clear “ceiling 

effect”, where most players have reached their limits in key 

abilities, and improvements in overall performance depend almost 

exclusively on a few stable technical attributes.

These KAN visualizations reveal the age-specific nonlinear 

response patterns between technical features and overall 

player performance: Youth (19–23 years) display 

multidimensional, highly sensitive performance responses 

with significant development potential; Prime (24–30 years) 

show performance stabilization with reliance on core skill 

maintenance; Veteran players exhibit high dependence on a 

limited number of stable technical attributes, with evident 

convergence in performance-driving features.
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4 Discussion

This study employs Kolmogorov–Arnold Networks, KAN, to 

explore the nonlinear characteristics and key performance 

drivers of NBA players across three age groups: youth 19–23, 

prime 24–30, and veteran 31–40. The results show that KAN 

significantly outperforms traditional machine learning models 

such as MLP, XGBoost, Random Forest, and Linear Regression, 

in both predictive accuracy and interpretability. This finding is 

consistent with recent work by Liu and Vaca-Rubio et al., who 

highlight KAN’s strengths in modeling complex nonlinear 

systems (16, 17). More importantly, beyond prediction, we 

convert KAN outputs into guidance that coaches and players 

can execute directly: treat attribution weights as each player’s 

“primary feature list,” and use the slope, in1ection point, and 

plateau of the univariate response functions as signals for 

training and deployment decisions. In practice, the coaching 

staff can act on the KAN curves as follows: when a primary 

feature such as PTS, AST, REB, or FG_PCT exhibits a steep 

positive local slope, moderately increase training and in-game 

usage related to that feature; when the current level approaches 

an in1ection region, adopt short, threshold-oriented training 

blocks, such as pairing high-intensity shooting with decision- 

making simulations, to help cross typical thresholds or 

bottlenecks, such as AST 3–5 and REB 4–6; when the curve 

enters a plateau or marginal effects weaken, shift to efficiency 

maintenance and load management, such as shooting-percentage 

maintenance and defensive positioning, to avoid 

inefficient expansion.

Our analysis reveals three age groups: Youth (19–23 years): 

Performance in this stage is strongly in1uenced by multiple key 

technical indicators—including PTS, AST, REB, and STL—with 

pronounced nonlinear marginal effects. This aligns with prior 

research showing that Youth (19–23 years)’ technical and 

physical development is multidimensional, dynamic, and 

nonlinear (28, 29). For example, Höhn et al. (2022) used big 

data and Bayesian analysis to show that young NBA players’ 

growth is driven by the synergy of multiple technical abilities 

and exhibits clear nonlinear trajectories (30). For coaches: when 

a youth player’s PTS/AST/REB response curves show a clear 

positive slope at the current level, increase training and usage 

tied to those features to amplify marginal gains; when AST or 

REB approaches the indicated threshold ranges (about 3–5 

assists or 4–6 rebounds per game), implement short training 

cycles and evaluate against whether the threshold is reached, 

observing whether an accelerated segment emerges.

Prime (24–30 years): Technical attributes become markedly 

more stable and linear. Response functions for primary features 

(e.g., PTS, AST, REB, FG_PCT) are closer to linear, and 

marginal contributions tend to stabilize. This re1ects the 

establishment of efficient skill systems in which overall 

performance relies more on coordinated and consistent output 

of core skills. Studies by Kalén et al. confirm that performance 

in this stage is more predictable and enters a “technical stability 

plateau,” with reduced volatility (8, 25, 29). Accordingly, when 

the KAN curves are near-linear with small slopes above a high 

baseline (e.g., >15 points or >5 assists per game), training and 

deployment should shift from expansion to efficiency 

maintenance and coordinated optimization: use FG_PCT and 

AST/TO as efficiency anchors, maintain coordinated output in 

PTS/AST/REB, and avoid additional investment in single items 

with diminishing returns.

Veteran (31–40 years): Players exhibit a clear “ceiling effect,” 

and the KAN network structure becomes highly simplified, 

driven mainly by a few core technical metrics (such as scoring 

and shooting percentage). Prior research notes that athletes at 

this stage rely more on accumulated technical consistency and 

experience, while age-related physical decline and injury risk 

make strategic intelligence increasingly important for career 

longevity (8, 31–33). As a result, both performance potential 

and technical structure show convergence and platform effects. 

In practice, when response functions plateau at higher levels or 

show slight negative slopes (e.g., marginal effects near zero 

beyond >10–12 points or >3–4 assists per game), training and 

management should prioritize maintenance: center on stabilizing 

FG_PCT and defensive positioning, pair with individualized 

recovery and load management, and sustain on-court 

contribution at lower physiological cost.

The strong performance of KAN in this study supports 

theoretical claims that KAN excels at identifying key variables 

and capturing dynamic nonlinear interactions in complex 

systems. Methodologically, the study validates the applicability 

of KAN in sports science and contributes to a quantitative 

understanding of Long-Term Athlete Development (LTAD), 

especially in characterizing nonlinear evolution across age stages. 

These findings also extend and enrich existing frameworks on 

the Relative Age Effect (RAE) and LTAD (2, 34). Crucially, we 

link KAN attribution weights with response-function shapes to 

create a training and deployment decision path: first, use 

attribution to identify each player’s top three primary features 

(e.g., PTS, AST, REB, FG_PCT) and locate the current level on 

the corresponding response curves; next, judge the local region 

by slope, in1ection, and plateau—allocate more training/usage in 

rising segments, organize short threshold-oriented cycles near 

in1ection regions, and shift to efficiency maintenance and load 

management on plateaus; after each training cycle, reassess on 

the same curves.

Despite the theoretical and methodological contributions of 

this study, several limitations remain. First, the inclusion 

criterion that excluded player–seasons with fewer than 10 min 

or 10 points per game may introduce selection bias toward 

higher-performing players, thereby in1ating apparent effect sizes 

and weakening model calibration in low-usage contexts. Second, 

the model has not incorporated training load, injury status, or 

psychological and physiological indicators, which may limit 

predictive accuracy and explanatory depth. The mechanisms are 

twofold: first, load and health status often co-vary with box- 

score statistics such as PTS and FG_PCT, making it easy to 

misattribute state factors as technical factors; second, different 

levels of fatigue or psychological state can alter the marginal 

relationships between these statistics and performance, leading 

to unstable predictions when states change (35, 36). Therefore, 
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future research can proceed along several lines: on the data side, 

introduce multimodal information—such as sports-physiology and 

psychological indicators—to increase information content and 

enhance applicability across contexts; on top of the current KAN 

pipeline, combine structural equation modeling (SEM) to verify 

the pathway from training load to technical execution to game 

performance (37); and, in experimental management, follow 

engineering best practices, including version-controlled code, 

preregistered stopping rules, and fold-locked preprocessing within 

each cross-validation fold (38). In terms of modeling goals, one 

may draw on ANN-based trajectory modeling from men’s 100-m 

sprinting to explore multi-objective formulations that jointly 

capture offensive and defensive outputs (39); and incorporate 

validated, AI-enabled organizational management scales as 

covariates or moderators in age-group-specific models (40, 41).

Moreover, this study is based solely on NBA data and has yet 

to evaluate the generalizability of the proposed method across 

other professional leagues or developmental/amateur systems. 

Future work should extend this approach to diverse temporal, 

cultural, and competitive contexts to assess whether the three- 

phase structure and KAN-derived nonlinear patterns exhibit 

stable and transferable properties across broader settings.

5 Conclusion

This study employed Kolmogorov–Arnold Networks (KAN) 

to conduct systematic nonlinear modeling and attribution of 

NBA players’ seasonal performance across age groups. The 

results reveal distinct age-related phases and their key drivers: 

Youth (19–23 years) show strong potential for nonlinear gains 

driven by the synergy among multiple technical indicators; 

Prime (24–30 years) exhibit near-linear, stable responses and a 

coordinated skill system (a “technical stability plateau”); Veteran 

(31–40 years) rely on a small set of core skills, with overall 

performance bounded by a clear ceiling effect. These findings 

highlight the age-group-specific roles and evolving impact of 

technical indicators across an athlete’s career.

Beyond predictive gains and interpretability, we translate KAN 

outputs into directly executable guidance: use attribution weights 

to identify each player’s primary features, read the local shape of 

the corresponding response functions (slope, in1ection, plateau), 

and choose among three actions—invest in the feature when the 

segment is rising, run short threshold-oriented cycles near 

in1ection regions, or shift to efficiency maintenance and load 

management on plateaus—then re-evaluate on the same curves 

after each micro-cycle. As the target metric is Fantasy Points, 

these age-group-specific patterns should be interpreted as 

relative effects under this weighting lens, rather than a complete 

characterization of overall player value.

Future work may incorporate longitudinal tracking, injury 

histories, team dynamics, and other contextual factors to extend 

the model’s applicability across leagues, genders, and cultural 

contexts—ultimately strengthening the theoretical and practical 

foundations for lifecycle-based athlete management and 

evidence-driven talent selection.
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