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Introduction: This study utilizes 2,786 NBA player—season samples from 2019
to 2024 to develop a nonlinear modeling approach based on Kolmogorov—
Arnold Networks (KAN), applied to modeling the relationship between player
age and basketball performance. A novel modeling framework is proposed,
integrating interpretable machine learning with age-group-specific feature
analysis, aiming to systematically reveal the nonlinear dynamics and
transitional mechanisms of performance evolution across age.

Methods: Fantasy Points is used as the unified performance metric, and players
are categorized into three age groups: Youth (19-23 years), Prime (24-30
years), and Veteran (31-40 years). The KAN model is tuned via Bayesian
optimization and evaluated using five-fold cross-validation. Its performance is
systematically compared against mainstream models, including Multilayer
Perceptron (MLP), XGBoost, Random Forest, and Linear Regression.

Results: Results show that KAN achieves the lowest MAE and RMSE across all
age groups, with the best or near-best R? values. In the youth group, the
model achieves MAE =0.089, RMSE =0.115, and R?=0.986, significantly
outperforming all baseline models. Further response function analysis reveals
nonlinear structural features in the age—performance relationship. Attribution
results indicate that youth performance is driven by multiple interacting
variables with strong and volatile marginal effects; in Prime, performance
stabilizes and is dominated by key metrics such as points (PTS), assists (AST),
and rebounds (REB); in Veteran, performance converges on a few core
variables, with a “ceiling effect” and diminishing marginal returns.
Discussion/Conclusion: Using a KAN-based nonlinear framework, we reveal
the age-group-specific evolution of basketball performance with age,
offering new methodological insights for career management, training
optimization, and intelligent decision-making in professional sports.

KEYWORDS

Kolmogorov—Arnold Networks, basketball performance prediction, machine learning,
nonlinear modeling, age-related performance

1 Introduction

Long-term athlete development pathways are a key topic in sports science and
training management. The “Long-Term Athlete Development” (LTAD) framework
indicates that athletes must undergo systematic training and skill accumulation starting
from adolescence, gradually reaching their competitive peak, followed by a decline in
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abilities with advancing age, forming a multi-stage, nonlinear
(1-4). In
performance age typically falls between 20 and 30 years old

developmental  trajectory most  sports, peak
(5-7). Taking basketball as an example, players usually reach
their competitive peak in their late 20s (around 27 years old),
with performance beginning to decline after 30 (8). However,
the relationship between peak performance and decline is not
simply linear. Athletes’ performance at different age stages is
influenced by multiple factors such as physiology, technique,
and experience, exhibiting complex nonlinear changes. As age
increases, physical attributes like explosiveness and speed
gradually decline, but technical skills, tactical understanding,
and experience may improve, allowing some players to maintain
high efficiency beyond 30 (8, 9). Nonlinear modeling results also
show that athletes’ physical and technical changes across age
groups follow multidimensional, asynchronous trajectories,
which single linear models struggle to explain (3, 10). Therefore,
understanding the multi-stage, nonlinear characteristics of
athlete performance with age is crucial for scientifically planning
training and optimizing career management.

The relationship between age effects and athletic performance
is complex and variable, difficult to describe with simple linear
relationships. It is both a dynamic multi-stage process and the
result of multifactorial interactions, influenced by physiological,
technical, psychological, and experiential factors (6). Due to this
complexity, previous research has often approached the topic
from the perspective of the Relative Age Effect (RAE), exploring
the heterogeneity and mechanisms between age and athletic
outcomes. For instance, Musch et al. systematically reviewed the
prevalence and mechanisms of RAE across various sports,
noting that minor differences in birth months can significantly
impact selection, development opportunities, and competitive
levels (11). Wattie et al. proposed a developmental systems
model, further revealing the multifaceted factors behind RAE
(12). Specific to basketball, Ibanez et al. found that RAE
differentially affects performance based on playing positions in
U18 athletes (13). However, traditional RAE analyses rely
primarily on manual statistics and grouping methods, limiting
evaluation efficiency. Thus, there is a need for data-driven,
automated dynamic analysis tools based on big data to enhance
of athlete

performance data and technical features have already enabled

assessment accuracy and efficiency. Analyses
effective identification of different developmental stages and
competitive levels (14, 15). Therefore, employing machine
learning methods for dynamic modeling and prediction of these
features offers new pathways for continuous monitoring and
management of athletic performance.

Kolmogorov-Arnold Networks (KAN), as an emerging neural
network model based on the Kolmogorov-Arnold representation
theorem, was proposed by Liu et al. (16). Unlike traditional
Multi-Layer Perceptrons (MLPs), KAN incorporates learnable
edge activation functions (such as B-splines) in its network
structure, providing stronger nonlinear  approximation
capabilities and higher interpretability. Studies show that KAN
outperforms MLPs and ensemble tree models (e.g., XGBoost) in

tasks like function regression, solving differential equations, and
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physical field modeling, offering structural explanations of the
prediction process (17). Similarly, KAN has been successfully
applied in function regression and physical field modeling in
complex nonlinear systems, demonstrating its broad potential in
multivariable dynamic prediction problems (18, 19). However,
KAN has not yet been applied in sports, particularly in
basketball performance modeling and analysis. Given KAN’s
excellence in nonlinear modeling of complex systems,
introducing it to dynamic analysis of athlete performance data
could achieve high-precision prediction and interpretable
modeling of performance trajectories, providing new theoretical
and technical support for basketball athlete training
and development.

Despite prior explorations of the relationship between age and
athletic performance, most studies are limited to linear regression,
manual segmentation, or traditional statistical analysis, falling
short in revealing the nonlinear and multi-stage features of
performance evolution. In team sports like basketball, research
often focuses on adolescents, lacking systematic examination of
performance change patterns and influencing factors across all
age stages, resulting in limited understanding of athletes’ full
lifecycle development. This highlights the need for a method
that dynamically captures nonlinear changes and systematically
analyzes performance patterns and key factors at different ages,
to more comprehensively understand athletes’ lifelong
development processes.

This study’s innovation lies in being the first to introduce
Kolmogorov-Arnold Networks (KAN) to dynamic modeling of
basketball athlete performance. Leveraging KAN’s powerful
nonlinear fitting and high interpretability, we systematically
analyze the trajectory of age’s impact on performance. Unlike
previous reliance on linear or traditional statistical models, this
paper uses NBA Fantasy Points as a unified and comprehensive
performance metric, based on large-scale real data, comparing
KAN with mainstream machine learning models (e.g., MLP,
XGBoost). By doing so, we aim to more accurately capture the
of athlete

performance with age, revealing patterns and key influencing

nonlinear features and multi-stage trajectories
factors at different stages, thereby providing scientific evidence
and methodological innovation for athlete lifecycle management
The

importance of this study is multifaceted: theoretically, it

and personalized training program development.
advances the LTAD framework by quantifying nonlinear

performance mechanisms; practically, it offers data-driven
insights for coaches in age-specific training, career planning, and
management; methodologically, it validates KAN’s prospects in
sports big data, potentially extending to injury prediction or
team strategy optimization. According to existing literature and
tool search results (such as arXiv), KAN’s application in sports
performance analysis remains in an emerging stage (20, 21), and

this paper may be the first systematic empirical study applying

KAN in basketball, further highlighting its innovation
and significance.
To enable comprehensive quantification and cross-

comparison of basketball athletes’ competitive performance, this

paper selects NBA official Fantasy Points as a unified
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performance indicator. This metric weights and integrates key
data such as points, rebounds, assists, steals, and blocks into a
single value, objectively and holistically reflecting players’ overall
contributions to games. Compared to methods evaluating
players based on single stats (e.g., points, efficiency), Fantasy
Points provide a more comprehensive, fair assessment of players
across positions and types, avoiding bias and enhancing data
comparability (22, 23).

This paper proposes a KAN-based dynamic modeling method
for basketball athlete performance, aiming to systematically reveal
the nonlinear influence patterns of age on athletic performance.
The main contributions of this study include: 1. Proposing a
KAN-based dynamic modeling method for basketball athlete
performance: Introducing Kolmogorov-Arnold Networks (KAN)
to the basketball domain for the first time to systematically
model and analyze nonlinear patterns of performance with age,
enhancing modeling capabilities and interpretability for complex
dynamic processes. 2. Innovative application of a comprehensive
performance metric: Using NBA Fantasy Points as a unified
indicator enables cross-comparable, multidimensional evaluation
types,
measurement tools for athlete performance research. 3. age-

of players across positions and providing new
group-specific analysis and multi-model comparison: Based on
theoretical and empirical foundations, grouping players by age
groups reveals heterogeneity in performance changes;
with MLP, XGBoost, etc., KAN’s

advantages in dynamic modeling and key feature identification.

comparisons validate
The remainder of this paper is organized as follows: Section 2
describes data sources, performance indicators, and sample
grouping methods; Section 3 details the KAN and comparative
models’ building processes and experimental design; Section 4
reports empirical results and analysis; Section 5 summarizes
contributions, limitations, and future research prospects.

This study, by introducing the Kolmogorov-Arnold Networks
(KAN) model, advances the optimization of nonlinear modeling
and analysis of basketball athlete competitive performance. This
method holds athlete
development assessment, personalized training optimization, and

potential application prospects in

intelligent performance analysis in sports.

2 Data sources and acquisition

In this study, player performance data from the 2019-2020 to
2023-2024 NBA regular seasons were collected using automated
Python scripts built with the nba_api library (https://github.
com/swar/nba_api), which interfaces with the official NBA data
source. All available player statistics across five complete seasons
were retrieved. To ensure data reliability and reproducibility, the
script was programmed to iteratively request data for each
season with appropriate time delays to prevent data loss due to
excessive request frequency. Each entry was also automatically
labeled with the corresponding season identifier.
initial dataset underwent

Following acquisition, the

standardized cleaning procedures. Invalid players, extreme

outliers, and records with missing or incomplete information
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were removed. The final structured dataset includes 2,786
player-season samples, comprising basic personal information,
season-level technical statistics, and composite
performance metrics.

This dataset does not involve any human or animal subjects,
nor does it contain any personally identifiable or sensitive
institutional

information. Therefore, no ethical review or

approval was required.

2.1 Age grouping and variable definitions

Based on established theories and empirical research in sports
science, NBA players in this study were categorized into three age
groups:(1) Youth (19-23 years), (2) Prime (24-30 years), and (3)
Veteran (31-40 years).

This Long-Term Athlete
Development (LTAD) model proposed by Balyi and Way, as

classification draws on the

well as the systematic review of peak athletic performance age
conducted by Allen et al, both of which suggest that most
athletes reach peak performance between the ages of 20 and 30,
thereafter (1, 6). This
segmentation approach has been widely validated in the existing

followed by a gradual decline
sports science literature and is applicable to basketball as well as
many other sports (3, 24).

The prediction task focuses on modeling NBA players’ multi-
season composite performance, operationalized using NBA
Fantasy Points, which constitutes a continuous regression
problem. All input and output variables were constructed based
on a thorough understanding of basketball performance
dynamics and athlete evaluation characteristics, while also
accounting for data structure and the practical significance of
statistical indicators.

Specifically, the output variable is NBA_FANTASY_PTS,
representing a player’s season-level composite performance. This
metric integrates multiple key performance statistics—such as
points, rebounds, assists, steals, blocks, and turnovers—into a
single score, calculated according to standard fantasy scoring
systems. It offers an effective measure of a player’s overall
calculation formula is

contribution. The presented in

Equation (1).

NBA Fantasy Points = PTS + 1.2 X REB + 1.5 x AST + 3
x STL4+3 x BLK — 1 x TOV (1)

We use a publicly available Fantasy scoring scheme as the target
metric, composed of weighted countable events with positive
weights for key offensive and defensive actions and a negative
weight for turnovers; it provides a convenient unified summary
of performance but is not position-neutral and only partially
covers off-ball and coordination contributions. Accordingly, the
age-related nonlinear patterns discussed below should be
interpreted as relative effects under this weighting lens rather
than as a complete characterization of overall player value.

frontiersin.org
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The input variables primarily include players’ season-level
fundamental technical statistics, such as:points per game (PTS),
field goal percentage (FG_PCT), three-point field goals made
(FG3M), assists (AST), rebounds (REB), steals (STL), blocks
(BLK), and turnovers (TOV).

Considering potential differences in scale and distribution
among these variables, all input features were standardized prior
to model training to improve stability and enhance the
generalization performance of the models.The definitions of
these variables are provided in Supplementary Table S1.

2.2 Model construction and analytical
procedure

2.1.1 Data preprocessing

To enhance model generalization and interpretability, this
study conducted systematic data preprocessing prior to model
training. First, all raw feature variables were examined for
missing values and outliers, which were appropriately handled
to ensure data integrity. Subsequently, to eliminate extreme or
unrepresentative samples, we excluded player-season records in
which the player averaged fewer than 10 min or fewer than 10
points per game, thereby improving the robustness and
representativeness of the dataset.

This exclusion criterion was intended to reduce the influence
of fringe players, those recovering from injuries, or short-term
signees—players whose playing time is often inconsistent and
whose performance tends to fluctuate considerably. Such records
typically exhibit high statistical
introduce noise and hinder the convergence and generalization

randomness, which may
of predictive models. Similar sample filtering strategies have
been employed in previous studies. For instance, research using
data mining techniques to analyze NBA player performance
excluded players with limited minutes to avoid overfitting to
outlier behaviors (24). Other studies using Bayesian modeling to
investigate age-related performance trajectories also emphasized
the need to exclude statistically unstable individual samples in
order to improve the accuracy of nonlinear curve estimation (25).

To better understand the relationships among technical
indicators and to optimize input feature selection, we performed
an exploratory correlation analysis of all relevant variables.
Pearson correlation coefficients were calculated to assess
pairwise linear relationships, and results were visualized using a
correlation heatmap. In the heatmap, color intensity reflects the
strength of correlation: darker shades indicate stronger positive
correlations, while lighter shades represent stronger negative
correlations. Each cell is labeled with the corresponding
correlation coefficient between two features. An example
heatmap based on full-game technical statistics is shown in
Supplementary Figure SI.

The analysis revealed high correlations among several feature
pairs (e.g., FGM and PTS: r=0.99, FG3M and FG3A: r=0.98,
MIN and PTS: r=0.88, AST and TOV: r=0.84). To mitigate
feature redundancy

and multicollinearity, we applied a

correlation threshold of |r| >0.8. For each highly correlated
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feature pair, we retained the more representative variable—one
that independently reflects player ability—such as FGM, FG3M,
and FTM. Highly correlated features such as PTS, FGA, and
FG3A were removed accordingly (see Supplementary Table S2
for details).

However, given the strategic and statistical importance of
scoring, offensive rebounds, and defensive rebounds in
determining both individual and team performance—and their
well-established association with game outcomes and athletic
effectiveness (26, 27)—we chose to retain all 15 core technical
indicators in the final model, including both offensive and

defensive rebounds.

2.2.2 Construction of the KAN model
Networks KAN
multivariate relationships by learning one-dimensional smooth

Kolmogorov-Arnold approximate
functions on edges and additively composing them to form the
output. Unlike MLPs that stack fixed activations at nodes, KAN
places edges,
nonlinearity with shallow depth, and produces interpretable

learnable activations on achieves  strong
univariate response curves for each predictor that reveal
thresholds, plateaus, and diminishing returns. Within a five-fold
cross-validation framework, we used Bayesian optimization to
search hyperparameters including depth, width, learning rate,
and weight decay, and we applied early stopping that terminates
training when the validation set shows no improvement for
several consecutive epochs.

To examine the nonlinear influence of age on basketball player
performance, we adopt KAN for predictive modeling and analysis.
Supplementary Figure S2 presents the model architecture. To
maximize predictive performance, we tuned KAN and several
mainstream baseline models—Multilayer Perceptron MLP,
XGBoost, Random Forest RF, and Support Vector Machine
SVM—using Bayesian optimization and grid search. Under a
five-fold cross-validation framework, models were compared
using Mean Absolute Error MAE, Root Mean Square Error
RMSE, and Coefficient of Determination R%. Results show that
KAN outperformed the
nonlinear relationships while providing superior interpretability.

baselines in capturing complex

The structure of KAN is grounded in the Kolmogorov-Arnold
representation theorem, which states that any continuous
multivariate function can be expressed as a finite sum of
KAN

parameterizes learnable univariate activation functions on edges

continuous  univariate  functions.  Accordingly,

and forms the overall output through additive mixing. The
matrix form used in this study is given in Equation 2.

f(-x) = q)out o q)in oX (2)

Here, @i, and P,y represent the function matrices of the input
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and output layers, respectively, as shown in Equation (3).

b1.() b1, ()

q)in

> (Dout

Gt () D)

=(®1() -+ Py, (1)) 3)

In the practical implementation of KAN, the numbers of input
and output nodes are typically set as ny, =n, noy =2n+1,
respectively. After multiple nested layers, the overall mapping
function of a KAN network with LLL layers can be expressed as
shown in Equation (4).

KAN(x) =®;_j0---0oP;odyox (4)

The training objective of the KAN model is to minimize the error
between the predicted and actual values, while incorporating a
regularization term to control model complexity and prevent
overfitting. The loss function is defined as follows:

1 5
z:_ﬁl;y,»fy,. +AYUD)

Where y; is i the true label of the ith sample, ; is the predicted
output of the KAN model, N is the total number of samples, A is
the regularization coefficient, and ((®) is the penalty term for
the smoothness of univariate functions in the network (such as
B-splines) (e.g., the square of the second derivative).

To ensure model reproducibility and avoid potential data
leakage, this study implemented the KAN model using the
pykan library. The specific architecture settings are as follows:
width = [15, hidden_size, 1] (input layer with 15 features, hidden
layer with hidden_size nodes, output layer with 1; hidden_size
ranges from 8 to 32, obtained from optimization), depth
(ranging from 2 to 6, obtained from optimization), grid size
grid =5 (default), spline order k=3 (default), random seed
seed=0 (for
coefficient weight_decay (ranging from le-6 to le-2, log-
The
optimizer is Adam, with learning rate Ir (ranging from le-4 to

optimization random state), regularization

uniform distribution, obtained from optimization).
le-2, log-uniform distribution, obtained from optimization).
Training for up to 200 epochs, using an early stopping
mechanism (patience = 15, minimum improvement threshold for
le-5). The MSELoss.

optimization scikit-optimize’s
with n_calls=15,
Under each hyperparameter combination, 5-fold CV evaluates
the average MAE as the objective function. Within each fold,
randomly split 90% sub-training set and 10% validation set from
the training set (no fixed seed, but overall KFold has
random_state = 42) for early stopping.

validation loss loss function is

Hyperparameter uses

gp_minimize function, random_state = 0.

In the five-fold cross-validation, data splitting is performed
using sklearn.model_selection.KFold(n_splits =5, shuffle = True,
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random_state = 42) to ensure randomness and reproducibility.
Feature standardization is performed independently in each fold
(using sklearn.StandardScaler, fit only on training data, then
transform validation/test data) to prevent information leakage
from the training set to the validation/test set. At the same time,
hyperparameter tuning is performed only within the training
folds the
hyperparameters are used for the complete 5-fold CV evaluation.

to avoid cross-fold leakage. Finally, optimal

3 Results
3.1 Model performance comparison

To comprehensively evaluate the effectiveness of the KAN
model in predicting season-level performance of basketball
players, we conducted a systematic comparative analysis with
several mainstream machine
Multilayer Perceptron (MLP), Extreme Gradient Boosting
(XGBoost), Random Forest (RF), and Support Vector Machine

(SVM) as baseline models. To ensure fairness in comparison, all

learning models, including

experiments were performed using the same dataset, identical
feature selection, and standardized preprocessing procedures.
Bayesian  optimization for  automated

was  applied

hyperparameter tuning, and five-fold cross-validation was
uniformly employed across all models to ensure the robustness
and comparability of results.

During the five-fold cross-validation, we used three key
regression metrics to assess model performance: Mean Absolute
(MAE), Root Mean Squared Error (RMSE),
Coefficient of Determination (R?).MAE reflects the average

absolute deviation between the predicted and actual values.

Error and

A smaller MAE indicates more accurate overall predictions.
RMSE measures the square root of the mean of squared
prediction errors and is more sensitive to large deviations; a
lower RMSE indicates better model fit.R* evaluates how well the
model explains the variance in the target variable. An R* value
closer to 1 implies greater explanatory power and better
goodness of fit.

1 & X
MAE:ﬁZ lyi = 3l
i=1

1 .
MSE = /= —
RMS ‘/N; 0i =)

R=1-
S =y

Where y; denotes the ground truth value, y; is the predicted value
by the model, y is the mean of the ground truth values, and N is
the total number of samples.
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3.1.1 Five-fold cross-validation comparative
experiment

After
optimization, the predictive performance of KAN, MLP, XGBoost,

systematic hyperparameter tuning using Bayesian

Random Forest, and Linear Regression models across different age
groups is presented in Supplementary Table S3-S5 and visualized
in Supplementary Figure S5. The results show that across all age
categories, the KAN model consistently achieved the lowest values
in both Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), while also reaching or closely approaching the best
performance in Coefficient of Determination (R*)—demonstrating
a clear and consistent advantage.

For example, in the 19-23 age group, the KAN model achieved
MAE =0.0890, RMSE =0.1152, and RZ=0.9855, significantly
outperforming all other baseline algorithms.

Notably, in the Veteran (31-40 years) group—where sample
size is smaller and performance variation is higher—the KAN
model still maintained stable predictive superiority, indicating
strong generalization capability. Overall, KAN effectively models
the complex nonlinear relationships between players’ technical
statistics and overall performance, and outperforms traditional
neural networks and ensemble tree models in comprehensive
five-fold cross-validation assessments.

3.2 Analysis of key performance drivers
across age groups

To further investigate the age-related heterogeneity in
basketball player performance, we applied feature attribution
techniques based on the KAN model to identify the most
influential technical statistics for each age group. The results are
presented in Supplementary Figure S4.

Supplementary Figures S4d-f display the feature attribution
distributions derived from the KAN model for players in the
19-23, 24-30, and 31-40 age groups, respectively. Overall, the
results reveal a dynamic evolution of key performance drivers as
players age.

In the 19-23 age group (Supplementary Figure S4d), offensive
metrics such as assists (AST), points scored (PTS), and field goal
(FGA)
indicating that younger players rely more heavily on offensive

attempts received the highest attribution weights,
production to drive overall performance.In the 24-30 age group
(Supplementary Figure S4e), the attribution weight of PTS
increased significantly, making it the most critical factor
influencing season-level performance. AST and rebounds (REB)
followed closely, suggesting that players in this age group
contribute both as primary scorers and all-around performers.In
the 31-40 age group (Supplementary Figure S4f), PTS, AST, and
REB remained the top contributors, but the overall attribution
became more evenly distributed. Interestingly, the relative
importance of defensive indicators such as blocks (BLK) and
steals (STL) increased slightly—indicating that Veteran players,
beyond relying on scoring, tend to maintain their impact
through experience-based defensive contributions.
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3.2.1 Visualization of nonlinear attribution
structures across age groups

To further characterize the nonlinear mechanisms underlying
player performance across different age groups, we visualized both
the pruned structures of the KAN networks and the univariate
response functions of dominant input features for players in the
19-23, 24-30, and 31-40 age groups.

From the pruned KAN structures, we observed that the
network for players aged 19-23 retained a relatively large
number of active branches even after pruning. This indicates
that player performance at this stage is driven by a diverse set of
technical abilities, with a non-converged skill structure—
reflecting high developmental potential and flexibility. In
contrast, the 24-30 age group exhibited a more simplified KAN
structure with fewer dominant features, suggesting that technical
abilities become more stabilized and performance is increasingly
shaped by a smaller set of key variables. For the 31-40 age
group, the structure further converged toward a minimal
number of dominant features.

In the corresponding univariate response function plots
(shown in the smaller panels to the right), we found:19-23 Age
Group (Supplementary Figure S5): Dominant features such as
PTS, AST, FGA, REB, FG_PCT, and STL exhibit strong
nonlinear relationships. For example, the response function for
PTS shows an increasing marginal effect, indicating that gains
in scoring have a disproportionately large positive impact on
overall performance. Functions for AST and REB display
inflection points or fluctuations, suggesting threshold effects or
synergy-based dynamics. Overall, younger players show high
sensitivity to multidimensional skill development, with
substantial room for growth.

24-30 Age Group (Supplementary Figure S6): The response
functions for key variables—such as PTS, AST, and FG_PCT—tend
to become linear or near-linear, with smaller slopes. This implies
diminishing marginal returns: further improvements in these core
skills yield smaller gains in overall performance. Player output during
this stage stabilizes, relying more on solidified skillsets and
accumulated  experience, with less interaction  among
technical variables.

31-40 Age Group (Supplementary Figure S7): Dominant features
further converge to a very small set (e.g., PTS, FG_PCT, AST), whose
response functions mostly exhibit plateaus or slight declines. In many
cases, marginal effects vanish entirely. This indicates a clear “ceiling
effect”, where most players have reached their limits in key
abilities, and improvements in overall performance depend almost
exclusively on a few stable technical attributes.

These KAN visualizations reveal the age-specific nonlinear
response patterns between technical features and overall
player Youth  (19-23

multidimensional, highly sensitive performance responses

performance: years)  display
with significant development potential; Prime (24-30 years)
show performance stabilization with reliance on core skill
maintenance; Veteran players exhibit high dependence on a
limited number of stable technical attributes, with evident

convergence in performance-driving features.

frontiersin.org



Xiao et al.

4 Discussion

This study employs Kolmogorov-Arnold Networks, KAN, to
explore the nonlinear characteristics and key performance
drivers of NBA players across three age groups: youth 19-23,
prime 24-30, and veteran 31-40. The results show that KAN
significantly outperforms traditional machine learning models
such as MLP, XGBoost, Random Forest, and Linear Regression,
in both predictive accuracy and interpretability. This finding is
consistent with recent work by Liu and Vaca-Rubio et al., who
highlight KAN’s strengths in modeling complex nonlinear
systems (16, 17). More importantly, beyond prediction, we
convert KAN outputs into guidance that coaches and players
can execute directly: treat attribution weights as each player’s
“primary feature list,” and use the slope, inflection point, and
plateau of the univariate response functions as signals for
training and deployment decisions. In practice, the coaching
staff can act on the KAN curves as follows: when a primary
feature such as PTS, AST, REB, or FG_PCT exhibits a steep
positive local slope, moderately increase training and in-game
usage related to that feature; when the current level approaches
an inflection region, adopt short, threshold-oriented training
blocks, such as pairing high-intensity shooting with decision-
making simulations, to help cross typical thresholds or
bottlenecks, such as AST 3-5 and REB 4-6; when the curve
enters a plateau or marginal effects weaken, shift to efficiency
maintenance and load management, such as shooting-percentage
maintenance  and  defensive  positioning, to  avoid
inefficient expansion.

Our analysis reveals three age groups: Youth (19-23 years):
Performance in this stage is strongly influenced by multiple key
technical indicators—including PTS, AST, REB, and STL—with
pronounced nonlinear marginal effects. This aligns with prior
research showing that Youth (19-23 years)’ technical and
physical development is multidimensional, dynamic, and
nonlinear (28, 29). For example, Hohn et al. (2022) used big
data and Bayesian analysis to show that young NBA players’
growth is driven by the synergy of multiple technical abilities
and exhibits clear nonlinear trajectories (30). For coaches: when
a youth player’s PTS/AST/REB response curves show a clear
positive slope at the current level, increase training and usage
tied to those features to amplify marginal gains; when AST or
REB approaches the indicated threshold ranges (about 3-5
assists or 4-6 rebounds per game), implement short training
cycles and evaluate against whether the threshold is reached,
observing whether an accelerated segment emerges.

Prime (24-30 years): Technical attributes become markedly
more stable and linear. Response functions for primary features
(e.g., PTS, AST, REB, FG_PCT) are closer to linear, and
marginal contributions tend to stabilize. This reflects the
establishment of efficient skill
performance relies more on coordinated and consistent output

systems in which overall
of core skills. Studies by Kalén et al. confirm that performance
in this stage is more predictable and enters a “technical stability
plateau,” with reduced volatility (8, 25, 29). Accordingly, when
the KAN curves are near-linear with small slopes above a high
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baseline (e.g., >15 points or >5 assists per game), training and
should  shift
maintenance and coordinated optimization: use FG_PCT and

deployment from expansion to efficiency
AST/TO as efficiency anchors, maintain coordinated output in
PTS/AST/REB, and avoid additional investment in single items
with diminishing returns.

Veteran (31-40 years): Players exhibit a clear “ceiling effect,”
and the KAN network structure becomes highly simplified,
driven mainly by a few core technical metrics (such as scoring
and shooting percentage). Prior research notes that athletes at
this stage rely more on accumulated technical consistency and
experience, while age-related physical decline and injury risk
make strategic intelligence increasingly important for career
longevity (8, 31-33). As a result, both performance potential
and technical structure show convergence and platform effects.
In practice, when response functions plateau at higher levels or
show slight negative slopes (e.g., marginal effects near zero
beyond >10-12 points or >3-4 assists per game), training and
management should prioritize maintenance: center on stabilizing
FG_PCT and defensive positioning, pair with individualized
recovery and load management, and sustain on-court
contribution at lower physiological cost.

The strong performance of KAN in this study supports
theoretical claims that KAN excels at identifying key variables
and capturing dynamic nonlinear interactions in complex
systems. Methodologically, the study validates the applicability
of KAN in sports science and contributes to a quantitative
understanding of Long-Term Athlete Development (LTAD),
especially in characterizing nonlinear evolution across age stages.
These findings also extend and enrich existing frameworks on
the Relative Age Effect (RAE) and LTAD (2, 34). Crucially, we
link KAN attribution weights with response-function shapes to
create a training and deployment decision path: first, use
attribution to identify each player’s top three primary features
(e.g., PTS, AST, REB, FG_PCT) and locate the current level on
the corresponding response curves; next, judge the local region
by slope, inflection, and plateau—allocate more training/usage in
rising segments, organize short threshold-oriented cycles near
inflection regions, and shift to efficiency maintenance and load
management on plateaus; after each training cycle, reassess on
the same curves.

Despite the theoretical and methodological contributions of
this study, several limitations remain. First, the inclusion
criterion that excluded player-seasons with fewer than 10 min
or 10 points per game may introduce selection bias toward
higher-performing players, thereby inflating apparent effect sizes
and weakening model calibration in low-usage contexts. Second,
the model has not incorporated training load, injury status, or
psychological and physiological indicators, which may limit
predictive accuracy and explanatory depth. The mechanisms are
twofold: first, load and health status often co-vary with box-
score statistics such as PTS and FG_PCT, making it easy to
misattribute state factors as technical factors; second, different
levels of fatigue or psychological state can alter the marginal
relationships between these statistics and performance, leading
to unstable predictions when states change (35, 36). Therefore,
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future research can proceed along several lines: on the data side,
introduce multimodal information—such as sports-physiology and
psychological indicators—to increase information content and
enhance applicability across contexts; on top of the current KAN
pipeline, combine structural equation modeling (SEM) to verify
the pathway from training load to technical execution to game
performance (37); and, in experimental management, follow
engineering best practices, including version-controlled code,
preregistered stopping rules, and fold-locked preprocessing within
each cross-validation fold (38). In terms of modeling goals, one
may draw on ANN-based trajectory modeling from men’s 100-m
sprinting to explore multi-objective formulations that jointly
capture offensive and defensive outputs (39); and incorporate
validated, Al-enabled organizational management scales as
covariates or moderators in age-group-specific models (40, 41).
Moreover, this study is based solely on NBA data and has yet
to evaluate the generalizability of the proposed method across
other professional leagues or developmental/amateur systems.
Future work should extend this approach to diverse temporal,
cultural, and competitive contexts to assess whether the three-
phase structure and KAN-derived nonlinear patterns exhibit

stable and transferable properties across broader settings.

5 Conclusion

This study employed Kolmogorov-Arnold Networks (KAN)
to conduct systematic nonlinear modeling and attribution of
NBA players’ seasonal performance across age groups. The
results reveal distinct age-related phases and their key drivers:
Youth (19-23 years) show strong potential for nonlinear gains
driven by the synergy among multiple technical indicators;
Prime (24-30 years) exhibit near-linear, stable responses and a
coordinated skill system (a “technical stability plateau”); Veteran
(31-40 years) rely on a small set of core skills, with overall
performance bounded by a clear ceiling effect. These findings
highlight the age-group-specific roles and evolving impact of
technical indicators across an athlete’s career.

Beyond predictive gains and interpretability, we translate KAN
outputs into directly executable guidance: use attribution weights
to identify each player’s primary features, read the local shape of
the corresponding response functions (slope, inflection, plateau),
and choose among three actions—invest in the feature when the
segment is rising, run short threshold-oriented cycles near
inflection regions, or shift to efficiency maintenance and load
management on plateaus—then re-evaluate on the same curves
after each micro-cycle. As the target metric is Fantasy Points,
these age-group-specific patterns should be interpreted as
relative effects under this weighting lens, rather than a complete
characterization of overall player value.

Future work may incorporate longitudinal tracking, injury
histories, team dynamics, and other contextual factors to extend
the model’s applicability across leagues, genders, and cultural
contexts—ultimately strengthening the theoretical and practical
foundations  for athlete

lifecycle-based management and

evidence-driven talent selection.
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