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Exercise is widely recognized as a critical determinant of health, yet its effects 

can diverge substantially depending on intensity, duration, and individual 

characteristics. This review synthesizes current knowledge on the 

mechanisms underlying exercise-induced stress responses, outlining a 

sequential cascade from biomechanical signal perception, through organelle 

and metabolic regulation, to systemic integration via hormonal, myokine, and 

immune pathways. We highlight the concept of a bidirectional threshold 

theory, which proposes that moderate exercise promotes adaptation and 

health benefits, while excessive exercise may trigger maladaptive responses 

and pathological outcomes. At the same time, we note that significant inter- 

individual variability in exercise responses raises important questions 

regarding the generalizability of this framework. By integrating evidence 

across molecular, cellular, and systemic levels, this review provides a holistic 

perspective on the dual effects of exercise, underscores the need for 

improved biomarkers to monitor adaptive vs. maladaptive responses, and 

identifies research gaps that must be addressed to translate these 

mechanisms into personalized exercise strategies.
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1 Introduction

Exercise is an essential component of human health, and its physiological impact has 

long been a central focus of biomedical research. With advancements in exercise biology, 

researchers have increasingly elucidated the profound effects of exercise on cellular stress 

responses, tissue remodeling, and systemic regulation (1–4). Beyond its well-documented 

role in enhancing physical performance, exercise also exerts significant in$uence on 

mental well-being, serving as a non-pharmacological strategy to alleviate psychological 

stress and reduce the incidence of anxiety and depression (5, 6). Understanding the 

biological response mechanisms associated with exercise-induced stress is therefore 

crucial for the rational application of exercise in health promotion and 

disease prevention.

The stress response elicited by exercise is a complex process involving cardiovascular 

adaptation, endocrine modulation, immune activation, and intracellular signaling 
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cascades (7). These responses exhibit clear dose-dependent effects. 

In this context, the bidirectional threshold theory has emerged as a 

valuable framework: moderate exercise elicits beneficial 

adaptations, whereas excessive exercise can lead to pathological 

damage depending on the intensity and duration of the stimulus 

(8). For example, the production of reactive oxygen species 

(ROS) during moderate exercise activates adaptive signaling 

pathways (e.g., JNK, NF-κB), thereby enhancing antioxidant 

defenses and repair mechanisms (9, 10). Conversely, chronic 

ROS overload may trigger apoptosis, mitochondrial dysfunction, 

and pro-in$ammatory signaling, ultimately accelerating tissue 

damage (10). Similarly, while mechanical loading stimulates 

integrin-FAK-Akt signaling to promote cell survival and 

differentiation, sustained or excessive activation may predispose 

tissues to fibrosis and maladaptive remodeling (11–14). Despite 

these advances, current literature is often fragmented, with a 

stronger emphasis on adaptive outcomes while insufficiently 

addressing maladaptive or pathological responses to 

overtraining. This imbalance hinders a comprehensive 

understanding of the “duality” of exercise. Moreover, many 

studies rely on cross-sectional or animal models, leaving gaps in 

longitudinal human data that could validate molecular findings 

in real-world training scenarios (15). Individual differences— 

including sex, age, genetic background, and comorbidities— 

further complicate the interpretation of exercise responses, yet 

remain underexplored (16). These limitations highlight the need 

for a more critical and integrative perspective that connects 

molecular mechanisms with clinical translation (17, 18).

To address these gaps, this review synthesizes recent findings 

into a unified conceptual framework of the biological response 

cascade to exercise-induced stress. Specifically, it progresses 

through three interconnected layers: (i) primary responses, 

including mechanical signal transduction and organelle stress; 

(ii) secondary regulation, emphasizing metabolic reprogramming 

and energy sensing; and (iii) systemic integration, involving 

endocrine, immune, and neuro-metabolic networks.

Within this framework, we highlight both the adaptive and 

maladaptive trajectories of exercise responses, aiming to 

establish a balanced understanding of how exercise can act as 

both a health-promoting stimulus and a potential pathological 

challenge. By critically analyzing existing evidence, identifying 

research limitations, and proposing future directions, this 

review seeks to provide a more comprehensive foundation 

for personalized exercise prescriptions and translational 

exercise medicine.

2 Primary responses to exercise- 
induced stress signals

Exercise triggers a diverse array of primary stress signals at the 

cellular level, which are first sensed through mechanical 

transduction and organelle responses (19, 20). These 

mechanisms represent the foundation of the adaptive cascade 

but also constitute the initial nodes where maladaptation 

may arise under conditions of excessive or prolonged 

stimulation (21, 22) (Figure 1).

2.1 Mechanical signal transduction

Cells perceive external mechanical forces primarily through 

integrins, focal adhesion kinase (FAK), and mechanosensitive 

ion channels such as Piezo1. Under moderate loading, integrins 

activate FAK and downstream PI3K/Akt signaling, which 

promote survival, proliferation, and differentiation—key 

processes for tissue adaptation and repair (11, 14, 23). Similarly, 

Piezo1-mediated Ca2+ in$ux enhances osteoblast differentiation 

and vascular remodeling, supporting musculoskeletal and 

cardiovascular health (24–26).

However, the same pathways can contribute to pathological 

remodeling when excessively or persistently activated. 

Continuous Piezo1 activation may induce pathological Ca2+ 

overload, leading to mitochondrial dysfunction, in$ammasome 

activation, and maladaptive fibrosis (27–29). Similarly, sustained 

FAK overexpression has been implicated in fibrosis and tumor 

progression, suggesting that while transient activation supports 

regeneration, chronic overstimulation may shift toward disease 

phenotypes (30, 31). These dual effects exemplify the 

bidirectional threshold theory, emphasizing that the biological 

outcome depends not only on whether these pathways are 

activated but also on the intensity, duration, and recovery 

dynamics of the stimulus (32).

The threshold for activation also differs by exercise mode. For 

example, endurance training typically induces moderate, repetitive 

integrin-FAK-Akt activation that supports angiogenesis and 

mitochondrial biogenesis (33), whereas resistance training 

imposes acute high-intensity loads that more strongly activate 

mTORC1-mediated anabolic pathways (34–36). Yet, excessive 

resistance training may surpass the adaptive threshold, leading 

to in$ammatory microdamage and impaired recovery (37). 

Future research should quantify these thresholds across exercise 

types to define the molecular boundaries between adaptation 

and overtraining injury (38).

Quantitatively, in many human studies IL-6 levels have been 

observed to increase several-fold (e.g., ∼5-fold) within 1–3 h 

after a bout of endurance exercise (39). Similarly, serum BDNF 

concentrations are commonly reported to rise substantially (e.g., 

tens of percent) in the first hour following moderate exercise 

(40, 41). More precise quantification across various exercise 

modalities and populations remains a priority for future work.

2.2 Interactions between organelles

Mitochondria and the endoplasmic reticulum (ER) serve as 

critical hubs of cellular stress responses (42, 43). Moderate 

exercise enhances mitochondrial oxidative capacity and 

transiently activates the unfolded protein response (UPR), 

supporting proteostasis and energy supply (44). However, under 

excessive exercise, pathological events emerge: persistent 
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opening of the mitochondrial permeability transition pore 

(MPTP) can trigger ATP depletion and apoptosis, while 

unresolved ER stress can shift from adaptive UPR to 

pro-apoptotic signaling (via CHOP and JNK), culminating in 

cell death (45, 46).

Importantly, mitochondria and the ER are not isolated. They 

communicate through specialized structures known as 

mitochondria-associated membranes (MAMs), which mediate Ca2 

+ $ux, ROS signaling, and lipid transfer (47). Exercise modulates 

these interactions in a bidirectional manner (43). Moderate 

exercise promotes Ca2+-dependent mitochondrial activation and 

metabolic efficiency, whereas excessive Ca2+ transfer via MAMs 

may lead to mitochondrial Ca2+ overload, ROS accumulation, and 

apoptotic signaling (48). In addition, lysosomes also participate in 

this crosstalk by regulating autophagy and mitophagy, processes 

essential for clearing damaged organelles and maintaining cellular 

homeostasis (49, 50). Dysregulation of these networks under 

chronic overtraining may therefore contribute to systemic fatigue 

and impaired recovery (50, 51).

In summary, primary stress responses to exercise involve finely 

tuned signaling through mechanical sensors and organelle 

networks. While these pathways underpin the health benefits of 

physical activity, their chronic or excessive activation can drive 

maladaptive remodeling and disease. This duality underscores 

the importance of exercise “dose” and sets the stage for 

secondary metabolic reprogramming, discussed in the 

following section.

3 Secondary regulation of exercise- 
induced metabolism

This cascade can be temporally framed: mechanical signals 

emerge within seconds to minutes, metabolic and organelle 

adaptations occur over hours, while systemic endocrine and 

immune effects manifest across days to weeks (52). Beyond the 

primary mechanical and organelle-level responses, exercise 

triggers profound changes in cellular metabolism (53). These 

secondary regulatory mechanisms revolve around the cell’s 

capacity to sense and respond to energy $uctuations, reprogram 

metabolic networks, and establish long-term adaptations 

through epigenetic regulation (Figure 2).

3.1 Energy sensing: AMPK, mTORC1, 
and NAD+

Energy sensing is primarily mediated by AMP-activated 

protein kinase (AMPK), mechanistic target of rapamycin 

complex 1 (mTORC1), and the NAD+-dependent sirtuin family 

FIGURE 1 

The primary pathways through which cells sense mechanical stress derived from exercise-induced stress are illustrated. In the figure, we present the 

key receptors, pathways, and cellular responses involved in the sensing and transduction of mechanical stress. For detailed descriptions, refer to the 

corresponding sections in the text. This figure was created using Biorender. MPTP, mitochondrial permeability transition pore; Ca, calcium; FAK, focal 

adhesion kinase; PI3K, phosphoinositide 3-kinase; Akt, also known as protein kinase B (PKB); Piezo1, piezo-type mechanosensitive ion channel 

component 1.
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(54, 55). During energy deprivation, elevated AMP/ATP ratios 

activate AMPK, which in turn suppresses mTORC1 by 

phosphorylating TSC2 and Raptor, thereby inhibiting protein 

synthesis and promoting autophagy (56). This ensures cellular 

survival under energy stress while conserving resources for 

essential processes.

NAD+ plays a pivotal role in dynamically regulating this 

process. Increased NAD+ levels activate SIRT1, which 

deacetylates and activates PGC-1α, thereby enhancing 

mitochondrial biogenesis and oxidative metabolism (57, 58). 

Conversely, NAD+ depletion compromises sirtuin activity, 

attenuating the adaptive response. Importantly, AMPK and 

NAD+ signaling are tightly coupled: AMPK enhances NAD+ 

biosynthesis through upregulation of nicotinamide 

phosphoribosyl transferase (NAMPT), creating a feed-forward 

loop that integrates energy sensing with mitochondrial 

function (59, 60).

This dynamic interplay exemplifies how exercise fine-tunes 

metabolic pathways according to energetic demands. Yet, 

excessive exercise may overwhelm these networks: chronic 

AMPK overactivation has been associated with impaired 

anabolic signaling and fatigue, while sustained mTORC1 

inhibition can lead to muscle atrophy (61, 62). Thus, the 

balance between AMPK and mTORC1 is essential in defining 

the adaptive vs. maladaptive trajectory of exercise responses.

3.2 Metabolic network reprogramming and 
epigenetic regulation

Exercise induces systemic metabolic reprogramming, 

involving glucose utilization, lipid oxidation, and ketone body 

metabolism (63–66). For instance, β-hydroxybutyrate (BHB), a 

major ketone body elevated during prolonged exercise or 

fasting, not only serves as an alternative fuel but also functions 

as a signaling molecule (67, 68). BHB directly inhibits the 

NLRP3 in$ammasome by blocking potassium ef$ux and 

preventing ASC oligomerization, thereby exerting anti- 

in$ammatory effects (68, 69). This mechanism highlights how 

metabolic intermediates act as regulators of immune- 

in$ammatory responses during exercise.

Epigenetic regulation further extends these adaptive changes. 

Exercise alters DNA methylation, histone modifications, and non- 

coding RNA expression, reshaping transcriptional programs in 

muscle, adipose tissue, and immune cells (69–71). For example, 

exercise-induced histone acetylation at metabolic gene promoters 

enhances oxidative capacity (71, 72), while microRNAs (miRNAs) 

fine-tune pathways related to angiogenesis, mitochondrial 

function, and in$ammation (73, 74). Notably, miR-1 and miR- 

133a have been implicated in regulating muscle hypertrophy, 

while miR-21 modulates fibrosis-related signaling (75, 76). These 

small RNA-mediated effects, previously discussed as independent 

FIGURE 2 

The metabolic responses and changes resulting from the mechanical stress signal transduction cascade are illustrated. We depict the metabolic 

reactions that expand from the molecular level to the cellular level and beyond, encompassing the macro processes of metabolic remodeling 

and adaptation. For detailed descriptions, refer to the corresponding sections in the text. This figure was created using Biorender. AMPK, AMP- 

activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; NAD+, nicotinamide adenine dinucleotide; PGC1α, peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha; SIRT1, sirtuin 1.

Xu et al.                                                                                                                                                                  10.3389/fspor.2025.1691779 

Frontiers in Sports and Active Living 04 frontiersin.org



regulatory factors, are best understood within the broader context of 

epigenetic reprogramming, where they contribute to the persistence 

of exercise-induced phenotypes (77).

Taken together, metabolic network reprogramming integrates 

immediate energy sensing with long-term epigenetic adaptations 

(78). This dual regulation enables the body to $exibly respond 

to diverse exercise intensities. However, unresolved or 

maladaptive reprogramming—such as sustained in$ammatory 

signaling or fibrosis-related gene activation—may underlie the 

transition from adaptive responses to pathological remodeling 

under conditions of excessive exercise (79, 80).

4 Systemic integration of exercise- 
induced stress responses

The primary and secondary stress responses triggered by 

exercise ultimately converge at the systemic level, where 

hormones, myokines, neurotrophic factors, and immune 

mediators coordinate cross-tissue communication (81, 82). This 

integration ensures that local cellular adaptations translate into 

organism-wide benefits, yet it also represents the level at which 

excessive stress can propagate maladaptive outcomes such as 

chronic in$ammation, neuroendocrine imbalance, or metabolic 

dysfunction (83, 84) (Figure 3).

4.1 Endocrine and myokine signaling

Exercise induces profound endocrine adjustments, including 

elevated catecholamines, cortisol, and growth hormone, which 

transiently mobilize energy reserves and promote tissue repair 

(85, 86). Beyond classical hormones, skeletal muscle acts as an 

endocrine organ by releasing myokines such as irisin, 

interleukin-6 (IL-6), and myostatin (81, 87). These factors exert 

diverse systemic effects, ranging from enhancing thermogenesis 

FIGURE 3 

The integration of intercellular, intertissue, and intersystem communications in response to exercise stress signals is illustrated in the figure. We 

showcase the interactions between the nervous system, immune system, and metabolic system in response to exercise-induced stress. This 

includes the communication processes among immune cells, muscle cells, neurons, and how hormones and the endocrine system tie together 

this integrative communication process. For detailed descriptions, refer to the corresponding sections in the text. This figure was created using 

Biorender. BDNF, brain-derived neurotrophic factor; IL-6, interleukin-6; Th17, T helper 17; Treg, regulatory T cells.
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and lipid metabolism (irisin) to modulating immune cell 

activation (IL-6).

While moderate exercise-induced myokine release supports 

metabolic homeostasis and immune surveillance, excessive or 

chronic activation may shift this balance (5, 88). For example, 

persistently elevated IL-6 levels are associated with systemic 

in$ammation and insulin resistance, whereas prolonged 

cortisol elevation can impair immunity and muscle protein 

synthesis (89). Thus, endocrine and myokine responses 

exemplify the bidirectional nature of exercise-induced 

systemic signaling.

4.2 Neuro-immuno-metabolic interactions: 
the role of BDNF

Brain-derived neurotrophic factor (BDNF) represents a 

critical node linking exercise-induced stress with neural 

plasticity and cognitive resilience. Exercise robustly enhances 

BDNF expression in both the hippocampus and peripheral 

circulation, primarily through activation of Ca2+-dependent 

CREB signaling and downstream PI3K/Akt and MAPK/ERK 

pathways (90, 91). BDNF binds to its receptor TrkB, 

promoting neuronal survival, dendritic growth, and synaptic 

plasticity (92, 93).

Importantly, BDNF also mediates cross-talk between the 

nervous, immune, and metabolic systems (94). By enhancing 

neuronal stress resistance, BDNF contributes to the attenuation 

of hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, 

thereby reducing systemic stress hormone exposure (95, 96). 

Furthermore, exercise-induced BDNF upregulation has been 

linked to improved glucose metabolism and increased 

mitochondrial function in peripheral tissues, suggesting that 

BDNF acts as a systemic coordinator of neuro-immuno- 

metabolic interactions (97).

Conversely, inadequate recovery or chronic overtraining may 

blunt BDNF responses, impair synaptic resilience, and 

exacerbate neuroin$ammation. Such alterations may contribute 

to fatigue, mood disturbances, and impaired cognitive 

performance commonly observed in overtrained athletes (98, 99).

4.3 Immune adaptation and dysregulation

Exercise exerts a dual in$uence on the immune system. 

Moderate physical activity enhances natural killer (NK) cell 

activity, boosts antigen presentation, and promotes 

anti-in$ammatory cytokine profiles, thereby strengthening 

immune defense and surveillance against tumors and 

infections (100). In contrast, prolonged exhaustive exercise can 

suppress NK cell cytotoxicity, elevate pro-in$ammatory 

cytokines (e.g., TNF-α, IL-1β), and increase susceptibility to 

infections (101–104).

At the molecular level, immune responses are tightly coupled 

to metabolic reprogramming. AMPK activation in T cells supports 

memory formation and stress tolerance, whereas excessive 

glycolytic reprogramming under chronic stress drives T-cell 

exhaustion (105, 106). This highlights the systemic feedback 

loop whereby metabolic and immune adaptations are 

intertwined in defining exercise outcomes.

5 Biomarkers and multimodal analyses 
of exercise-induced stress

Identifying reliable biomarkers and applying multimodal 

analytical approaches are critical for evaluating exercise-induced 

stress responses. Biomarkers provide measurable indicators of 

adaptive vs. maladaptive trajectories, while advanced analytical 

technologies allow for a systems-level understanding of 

complex responses.

5.1 Molecular and cellular biomarkers

Biomarkers of exercise stress span multiple categories, 

including mitochondrial dynamics, oxidative stress, 

in$ammation, and cell death pathways (107). Mitochondrial 

fusion protein MFN2 and pyroptosis-related GSDMD have been 

implicated as regulators of muscular and systemic adaptation 

(108–111). Decreased MFN2 expression has been associated 

with impaired mitochondrial quality control and reduced 

endurance capacity (112, 113). However, current evidence is 

largely derived from animal and cross-sectional studies; 

longitudinal human cohort data are limited, and causal links to 

athletic performance remain speculative. Therefore, conclusions 

regarding MFN2 and exercise performance should be 

interpreted cautiously.

Oxidative stress-related biomarkers provide additional 

insights. Superoxide dismutase 2 (SOD2), glutathione peroxidase 

(GPx), and catalase represent key antioxidant defenses 

upregulated during moderate exercise (112, 114, 115). 

Conversely, excessive or exhaustive exercise often leads to their 

depletion alongside increased lipid peroxidation (MDA) and 

elevated pro-in$ammatory cytokines such as TNF-α and IL-6 

(116). These markers not only indicate cellular redox balance 

but also re$ect systemic in$ammation, making them valuable 

for assessing the transition from physiological adaptation to 

pathological stress.

5.2 Epigenetic and non-coding RNA 
biomarkers

Exercise alters the expression of various non-coding RNAs, 

which can serve as potential biomarkers of adaptive remodeling 

or pathological stress. For example, miR-1, miR-133a, and miR- 

206 are strongly linked to muscle hypertrophy and regeneration 

(117–119). In addition, miR-29b has been reported to inhibit 

fibrosis in certain experimental settings (120, 121). However, 

some studies—such as the use of nanoparticle-delivered miR- 

29b to inhibit fibrosis—were conducted in vitro under 
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osteogenic conditions rather than in the context of exercise- 

induced cardiac fibrosis (122, 123). This discrepancy highlights 

the importance of contextual validation before extrapolating 

findings to exercise physiology.

5.3 Multimodal analytical approaches

Advances in high-throughput and single-cell technologies 

enable a multimodal perspective on exercise-induced stress 

(124). Single-cell transcriptomics, proteomics, and metabolomics 

provide unprecedented resolution in capturing cell-type specific 

responses (125). For example, single-cell sequencing has revealed 

exercise-induced heterogeneity in immune cell metabolic 

reprogramming (126). Moreover, extracellular vesicles (EVs), 

including exosomes, have gained attention as carriers of 

exercise-induced signals (127, 128). Reports suggest that EVs can 

transport transcriptional regulators such as PGC-1α mRNA, 

thereby in$uencing mitochondrial biogenesis (129, 130). 

However, most current evidence stems from neural stem cell- 

derived exosome studies rather than direct exercise experiments, 

and the causal relationship between exercise, exosomal cargo, and 

enhanced endurance capacity remains to be clarified (129, 131).

Therefore, while exosomes and other multimodal biomarkers 

hold great promise, more rigorous exercise-specific experimental 

validation is needed to confirm their functional relevance.

5.4 Integrative framework and limitations

Multimodal biomarker approaches must account for inter- 

individual variability, including sex, age, genetic background, 

and training status (132). These factors can significantly 

modulate biomarker responses, complicating the definition of 

universal thresholds. For example, older individuals may exhibit 

blunted antioxidant responses (133), while genetic 

polymorphisms in mitochondrial genes could in$uence stress 

resilience. Integrating multimodal datasets with clinical 

phenotypes is thus essential to establish robust biomarkers for 

guiding personalized exercise prescriptions.

6 Discussion and future directions

This review has summarized how exercise-induced stress 

responses progress from primary mechanical and organelle 

signals to secondary metabolic regulation and ultimately to 

systemic integration across endocrine, immune, and neural 

networks. By organizing these responses into a layered cascade 

—primary responses, secondary regulation, and systemic 

integration—we have highlighted the dual nature of exercise as 

both a health-promoting and potentially pathological stimulus. 

A central theme emphasized throughout this review is the 

bidirectional threshold theory, which provides a conceptual 

framework for understanding how exercise intensity and 

duration determine biological outcomes. While moderate 

exercise promotes beneficial adaptations such as mitochondrial 

biogenesis, enhanced antioxidant defense, and improved 

neuroplasticity, excessive or prolonged exercise can lead to 

maladaptive processes including calcium overload, 

mitochondrial permeability transition pore (MPTP) opening, 

maladaptive ER stress, chronic in$ammation, and fibrosis (134, 

135). However, a key limitation of the current literature is the 

imbalance in mechanistic evidence: adaptive responses are well 

characterized, but the molecular underpinnings of maladaptive 

trajectories remain less systematically explored. For example, 

while Piezo1 activation is known to facilitate vascular 

remodeling, its potential contribution to pathological calcium 

in$ux and tissue fibrosis under sustained activation has not been 

rigorously studied (136, 137). Similarly, the transition from 

adaptive unfolded protein response (UPR) to pro-apoptotic ER 

stress during exhaustive exercise requires more in vivo validation.

Another limitation lies in the translation of experimental 

findings to human physiology. Much of the mechanistic data 

derives from animal models or in vitro systems, which may not 

fully capture the complexity of human exercise responses. 

Longitudinal human cohort studies are scarce, making it 

difficult to establish causal links between molecular markers 

(e.g., MFN2, SOD2, exosomal cargo) and real-world exercise 

outcomes such as performance, recovery, and disease risk. 

Moreover, individual differences—including sex, age, training 

history, and genetic background—are seldom addressed in 

mechanistic studies, yet they critically shape exercise-induced 

stress responses.

While exercise is broadly beneficial, the potential for 

maladaptation or pathological damage cannot be overlooked, 

particularly in high-intensity or prolonged regimens. A balanced 

perspective requires integrating monitoring tools that can detect 

when beneficial adaptation shifts toward risk. Practical 

approaches include setting training intensity using relative 

measures such as %VO2max or %heart rate reserve (HRR) 

(138), tracking recovery via heart rate variability (HRV) and 

lactate clearance, and assessing biochemical markers such as 

creatine kinase (CK), interleukin-6 (IL-6), and oxidative stress 

indices (139–141). In addition, validated psychometric tools 

(e.g., RESTQ-Sport, Profile of Mood States) can identify early 

warning signs of overreaching or overtraining (142). These 

approaches should be viewed as pragmatic starting points rather 

than definitive guidelines. Further longitudinal clinical studies 

are required to validate and standardize risk-stratification 

strategies for different populations.

An important limitation of the bidirectional threshold 

framework is its sensitivity to individual-specific factors. Ageing 

is associated with reduced mitochondrial adaptability and a 

blunted antioxidant response, lowering the threshold at which 

maladaptive effects emerge (143, 144). Sex and hormonal status, 

particularly estrogen levels, modulate in$ammatory and 

oxidative stress pathways, contributing to sex-based differences 

in training outcomes (145). Genetic background (e.g., 

polymorphisms in ACTN3, PGC-1α) further in$uences 

cardiorespiratory fitness and muscle adaptation (146). Training 

history also determines baseline resilience: well-trained 
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individuals often exhibit attenuated biomarker responses 

compared with untrained individuals under the same workload. 

Finally, comorbid conditions such as diabetes, obesity, or 

cardiovascular disease substantially modify exercise-induced 

stress responses, often lowering tolerance and increasing risk for 

maladaptation. Collectively, these factors underscore that the 

“bidirectional threshold” must be interpreted $exibly rather than 

as a universal cut-off, highlighting the need for personalized 

approaches in both research and clinical translation.

From a methodological perspective, the integration of 

multimodal omics technologies (e.g., single-cell transcriptomics, 

proteomics, metabolomics) with clinical phenotyping offers a 

promising avenue to bridge mechanistic insights with human 

variability. However, technical challenges remain, such as 

harmonizing data across platforms, capturing transient exercise 

responses in real time, and distinguishing adaptive vs. 

maladaptive signatures within heterogeneous cell populations.

Looking forward, several areas warrant particular attention: 

1. Defining molecular thresholds of adaptation vs. maladaptation 

across exercise intensities and modes (endurance vs. 

resistance), with quantitative markers to guide individualized 

exercise prescriptions.

2. Mechanistic studies of maladaptation, including 

Piezo1-mediated calcium overload, chronic FAK signaling, 

MPTP dysregulation, and maladaptive ER stress.

3. Validation of biomarkers in human cohorts, with longitudinal 

tracking to establish predictive value for performance, 

recovery, and disease outcomes.

4. Integration of multimodal datasets to capture the systemic 

nature of exercise responses, with a focus on linking 

molecular pathways to functional outcomes.

5. Personalized exercise medicine, leveraging genetic, epigenetic, 

and metabolic profiling to design tailored interventions that 

maximize benefits while minimizing risks.

In conclusion, the biological responses to exercise stress are not 

unidirectional but exist along a continuum shaped by intensity, 

duration, and individual context. By advancing our 

understanding of both adaptive and maladaptive pathways, 

future research can refine exercise as a precise therapeutic 

modality—balancing health promotion with the prevention of 

overtraining-related pathology.
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