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Exercise is widely recognized as a critical determinant of health, yet its effects
can diverge substantially depending on intensity, duration, and individual
characteristics. This review synthesizes current knowledge on the
mechanisms underlying exercise-induced stress responses, outlining a
sequential cascade from biomechanical signal perception, through organelle
and metabolic regulation, to systemic integration via hormonal, myokine, and
immune pathways. We highlight the concept of a bidirectional threshold
theory, which proposes that moderate exercise promotes adaptation and
health benefits, while excessive exercise may trigger maladaptive responses
and pathological outcomes. At the same time, we note that significant inter-
individual variability in exercise responses raises important questions
regarding the generalizability of this framework. By integrating evidence
across molecular, cellular, and systemic levels, this review provides a holistic
perspective on the dual effects of exercise, underscores the need for
improved biomarkers to monitor adaptive vs. maladaptive responses, and
identifies research gaps that must be addressed to translate these
mechanisms into personalized exercise strategies.

KEYWORDS

exercise-induced stress, bidirectional threshold, biological response cascade,
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1 Introduction

Exercise is an essential component of human health, and its physiological impact has
long been a central focus of biomedical research. With advancements in exercise biology,
researchers have increasingly elucidated the profound effects of exercise on cellular stress
responses, tissue remodeling, and systemic regulation (1-4). Beyond its well-documented
role in enhancing physical performance, exercise also exerts significant influence on
mental well-being, serving as a non-pharmacological strategy to alleviate psychological
stress and reduce the incidence of anxiety and depression (5, 6). Understanding the
biological response mechanisms associated with exercise-induced stress is therefore
crucial for the rational application of exercise in health promotion and
disease prevention.

The stress response elicited by exercise is a complex process involving cardiovascular
adaptation, endocrine modulation, immune activation, and intracellular signaling
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cascades (7). These responses exhibit clear dose-dependent effects.
In this context, the bidirectional threshold theory has emerged as a
valuable framework: moderate exercise elicits beneficial
adaptations, whereas excessive exercise can lead to pathological
damage depending on the intensity and duration of the stimulus
(8). For example, the production of reactive oxygen species
(ROS) during moderate exercise activates adaptive signaling
pathways (e.g., JNK, NF-«B), thereby enhancing antioxidant
defenses and repair mechanisms (9, 10). Conversely, chronic
ROS overload may trigger apoptosis, mitochondrial dysfunction,
and pro-inflammatory signaling, ultimately accelerating tissue
damage (10). Similarly, while mechanical loading stimulates
integrin-FAK-Akt

differentiation, sustained or excessive activation may predispose

signaling to promote cell survival and
tissues to fibrosis and maladaptive remodeling (11-14). Despite
these advances, current literature is often fragmented, with a
stronger emphasis on adaptive outcomes while insufficiently
addressing  maladaptive  or
This
understanding of the “duality” of exercise. Moreover, many

pathological ~ responses  to

overtraining. imbalance hinders a comprehensive
studies rely on cross-sectional or animal models, leaving gaps in
longitudinal human data that could validate molecular findings
in real-world training scenarios (15). Individual differences—
including sex, age, genetic background, and comorbidities—
further complicate the interpretation of exercise responses, yet
remain underexplored (16). These limitations highlight the need
for a more critical and integrative perspective that connects
molecular mechanisms with clinical translation (17, 18).

To address these gaps, this review synthesizes recent findings
into a unified conceptual framework of the biological response
cascade to exercise-induced stress. Specifically, it progresses
through three interconnected layers: (i) primary responses,
including mechanical signal transduction and organelle stress;
(ii) secondary regulation, emphasizing metabolic reprogramming
and energy sensing; and (iii) systemic integration, involving
endocrine, immune, and neuro-metabolic networks.

Within this framework, we highlight both the adaptive and
maladaptive trajectories of exercise responses, aiming to
establish a balanced understanding of how exercise can act as
both a health-promoting stimulus and a potential pathological
challenge. By critically analyzing existing evidence, identifying
research limitations, and proposing future directions, this
review seeks to provide a more comprehensive foundation
exercise translational

for personalized prescriptions and

exercise medicine.

2 Primary responses to exercise-
induced stress signals

Exercise triggers a diverse array of primary stress signals at the
cellular level, which are first sensed through mechanical
20). These
mechanisms represent the foundation of the adaptive cascade

transduction and organelle responses (19,

but also constitute the initial nodes where maladaptation
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may arise under conditions of excessive or

stimulation (21, 22) (Figure 1).

prolonged

2.1 Mechanical signal transduction

Cells perceive external mechanical forces primarily through
integrins, focal adhesion kinase (FAK), and mechanosensitive
ion channels such as Piezol. Under moderate loading, integrins
activate  FAK and downstream PI3K/Akt signaling, which
promote survival, proliferation, and differentiation—key
processes for tissue adaptation and repair (11, 14, 23). Similarly,
Piezol-mediated Ca>* influx enhances osteoblast differentiation
and vascular remodeling,
cardiovascular health (24-26).

However, the same pathways can contribute to pathological

supporting musculoskeletal and

remodeling when excessively or persistently activated.
Continuous Piezol activation may induce pathological Ca®"
overload, leading to mitochondrial dysfunction, inflammasome
activation, and maladaptive fibrosis (27-29). Similarly, sustained
FAK overexpression has been implicated in fibrosis and tumor
progression, suggesting that while transient activation supports
regeneration, chronic overstimulation may shift toward disease
These dual effects

bidirectional threshold theory, emphasizing that the biological

phenotypes (30, 31). exemplify the
outcome depends not only on whether these pathways are
activated but also on the intensity, duration, and recovery
dynamics of the stimulus (32).

The threshold for activation also differs by exercise mode. For
example, endurance training typically induces moderate, repetitive
integrin-FAK-Akt activation that supports angiogenesis and
(33),
imposes acute high-intensity loads that more strongly activate
mTORCI-mediated anabolic pathways (34-36). Yet, excessive
resistance training may surpass the adaptive threshold, leading

mitochondrial biogenesis whereas resistance training

to inflammatory microdamage and impaired recovery (37).
Future research should quantify these thresholds across exercise
types to define the molecular boundaries between adaptation
and overtraining injury (38).

Quantitatively, in many human studies IL-6 levels have been
observed to increase several-fold (e.g., ~5-fold) within 1-3h
after a bout of endurance exercise (39). Similarly, serum BDNF
concentrations are commonly reported to rise substantially (e.g.,
tens of percent) in the first hour following moderate exercise
(40, 41). More precise quantification across various exercise
modalities and populations remains a priority for future work.

2.2 Interactions between organelles

Mitochondria and the endoplasmic reticulum (ER) serve as
critical hubs of cellular stress responses (42, 43). Moderate

exercise enhances mitochondrial oxidative capacity and

transiently activates the unfolded protein response (UPR),
supporting proteostasis and energy supply (44). However, under

excessive exercise, pathological events emerge: persistent
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FIGURE 1
The primary pathways through which cells sense mechanical stress derived from exercise-induced stress are illustrated. In the figure, we present the
key receptors, pathways, and cellular responses involved in the sensing and transduction of mechanical stress. For detailed descriptions, refer to the
corresponding sections in the text. This figure was created using Biorender. MPTP, mitochondrial permeability transition pore; Ca, calcium; FAK, focal
adhesion kinase; PI3K, phosphoinositide 3-kinase; Akt, also known as protein kinase B (PKB); Piezol, piezo-type mechanosensitive ion channel
component 1.

opening of the mitochondrial permeability transition pore
(MPTP) can trigger ATP depletion and apoptosis, while
UPR to
pro-apoptotic signaling (via CHOP and JNK), culminating in
cell death (45, 46).

Importantly, mitochondria and the ER are not isolated. They

unresolved ER stress can shift from adaptive

communicate through specialized structures known as
mitochondria-associated membranes (MAMs), which mediate Ca®
* flux, ROS signaling, and lipid transfer (47). Exercise modulates
these interactions in a bidirectional manner (43). Moderate
exercise promotes Ca*'-dependent mitochondrial activation and
metabolic efficiency, whereas excessive Ca?* transfer via MAMs
may lead to mitochondrial Ca?* overload, ROS accumulation, and
apoptotic signaling (48). In addition, lysosomes also participate in
this crosstalk by regulating autophagy and mitophagy, processes
essential for clearing damaged organelles and maintaining cellular
homeostasis (49, 50). Dysregulation of these networks under
chronic overtraining may therefore contribute to systemic fatigue
and impaired recovery (50, 51).

In summary, primary stress responses to exercise involve finely
tuned signaling through mechanical sensors and organelle
networks. While these pathways underpin the health benefits of
physical activity, their chronic or excessive activation can drive
maladaptive remodeling and disease. This duality underscores

the importance of exercise “dose” and sets the stage for
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secondary metabolic reprogramming, discussed in the

following section.

3 Secondary regulation of exercise-
induced metabolism

This cascade can be temporally framed: mechanical signals
emerge within seconds to minutes, metabolic and organelle
adaptations occur over hours, while systemic endocrine and
immune effects manifest across days to weeks (52). Beyond the
primary mechanical and organelle-level responses, exercise
triggers profound changes in cellular metabolism (53). These
secondary regulatory mechanisms revolve around the cell’s
capacity to sense and respond to energy fluctuations, reprogram
establish
through epigenetic regulation (Figure 2).

metabolic networks, and long-term  adaptations

3.1 Energy sensing: AMPK, mTORC1],
and NAD

Energy sensing is primarily mediated by AMP-activated
protein kinase (AMPK), mechanistic target of rapamycin
complex 1 (mTORC1), and the NAD"-dependent sirtuin family
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Secondary Regulation of Exercise-Induced Metabolism
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FIGURE 2

The metabolic responses and changes resulting from the mechanical stress signal transduction cascade are illustrated. We depict the metabolic
reactions that expand from the molecular level to the cellular level and beyond, encompassing the macro processes of metabolic remodeling
and adaptation. For detailed descriptions, refer to the corresponding sections in the text. This figure was created using Biorender. AMPK, AMP-
activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; NAD*, nicotinamide adenine dinucleotide; PGClo, peroxisome
proliferator-activated receptor gamma coactivator 1-alpha; SIRTL, sirtuin 1

(54, 55). During energy deprivation, elevated AMP/ATP ratios 3.2 Metabolic network reprogramming and
activate  AMPK, which in turn suppressess mTORC1 by epigenetic regulation
phosphorylating TSC2 and Raptor, thereby inhibiting protein

synthesis and promoting autophagy (56). This ensures cellular Exercise induces systemic metabolic reprogramming,
survival under energy stress while conserving resources for involving glucose utilization, lipid oxidation, and ketone body
essential processes. metabolism (63-66). For instance, B-hydroxybutyrate (BHB), a

NAD" plays a pivotal role in dynamically regulating this = major ketone body elevated during prolonged exercise or
process. Increased NAD™ levels activate SIRT1, which fasting, not only serves as an alternative fuel but also functions
deacetylates and activates PGC-la, thereby enhancing as a signaling molecule (67, 68). BHB directly inhibits the
mitochondrial biogenesis and oxidative metabolism (57, 58). NLRP3 inflaimmasome by blocking potassium efflux and
Conversely, NAD" depletion compromises sirtuin activity, preventing ASC oligomerization, thereby exerting anti-
attenuating the adaptive response. Importantly, AMPK and inflammatory effects (68, 69). This mechanism highlights how
NAD" signaling are tightly coupled: AMPK enhances NAD®  metabolic intermediates act as regulators of immune-
biosynthesis ~ through  upregulation = of  nicotinamide inflammatory responses during exercise.

phosphoribosyl transferase (NAMPT), creating a feed-forward Epigenetic regulation further extends these adaptive changes.
loop that integrates energy sensing with mitochondrial — Exercise alters DNA methylation, histone modifications, and non-
function (59, 60). coding RNA expression, reshaping transcriptional programs in

This dynamic interplay exemplifies how exercise fine-tunes  muscle, adipose tissue, and immune cells (69-71). For example,
metabolic pathways according to energetic demands. Yet, exercise-induced histone acetylation at metabolic gene promoters
excessive exercise may overwhelm these networks: chronic  enhances oxidative capacity (71, 72), while microRNAs (miRNAs)
AMPK overactivation has been associated with impaired fine-tune pathways related to angiogenesis, mitochondrial
anabolic signaling and fatigue, while sustained mTORCl function, and inflammation (73, 74). Notably, miR-1 and miR-
inhibition can lead to muscle atrophy (61, 62). Thus, the 133a have been implicated in regulating muscle hypertrophy,
balance between AMPK and mTORCI is essential in defining  while miR-21 modulates fibrosis-related signaling (75, 76). These
the adaptive vs. maladaptive trajectory of exercise responses. small RNA-mediated effects, previously discussed as independent
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FIGURE 3

Integration of Exercise-Induced Stress Signal Systems

Exercise
stress
signals

The integration of intercellular, intertissue, and intersystem communications in response to exercise stress signals is illustrated in the figure. We
showcase the interactions between the nervous system, immune system, and metabolic system in response to exercise-induced stress. This
includes the communication processes among immune cells, muscle cells, neurons, and how hormones and the endocrine system tie together
this integrative communication process. For detailed descriptions, refer to the corresponding sections in the text. This figure was created using
Biorender. BDNF, brain-derived neurotrophic factor; IL-6, interleukin-6; Th17, T helper 17; Treg, regulatory T cells.

3

regulatory factors, are best understood within the broader context of
epigenetic reprogramming, where they contribute to the persistence
of exercise-induced phenotypes (77).

Taken together, metabolic network reprogramming integrates
immediate energy sensing with long-term epigenetic adaptations
(78). This dual regulation enables the body to flexibly respond
to diverse exercise intensities. However, unresolved or
maladaptive reprogramming—such as sustained inflammatory
signaling or fibrosis-related gene activation—may underlie the
transition from adaptive responses to pathological remodeling

under conditions of excessive exercise (79, 80).

4 Systemic integration of exercise-
induced stress responses

The primary and secondary stress responses triggered by
exercise ultimately converge at the systemic level, where

Frontiers in Sports and Active Living

hormones, myokines, neurotrophic factors, and immune
mediators coordinate cross-tissue communication (81, 82). This
integration ensures that local cellular adaptations translate into
organism-wide benefits, yet it also represents the level at which
excessive stress can propagate maladaptive outcomes such as
chronic inflammation, neuroendocrine imbalance, or metabolic

dysfunction (83, 84) (Figure 3).

4.1 Endocrine and myokine signaling

Exercise induces profound endocrine adjustments, including
elevated catecholamines, cortisol, and growth hormone, which
transiently mobilize energy reserves and promote tissue repair
(85, 86). Beyond classical hormones, skeletal muscle acts as an
endocrine organ by releasing myokines such as irisin,
interleukin-6 (IL-6), and myostatin (81, 87). These factors exert
diverse systemic effects, ranging from enhancing thermogenesis
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and lipid metabolism (irisin) to modulating immune cell
activation (IL-6).

While moderate exercise-induced myokine release supports
metabolic homeostasis and immune surveillance, excessive or
chronic activation may shift this balance (5, 88). For example,
persistently elevated IL-6 levels are associated with systemic
inflammation and insulin resistance, whereas prolonged
cortisol elevation can impair immunity and muscle protein
synthesis (89). Thus, endocrine and myokine responses
nature of exercise-induced

exemplify the bidirectional

systemic signaling.

4.2 Neuro-immuno-metabolic interactions:
the role of BDNF

Brain-derived neurotrophic factor (BDNF) represents a
critical node linking exercise-induced stress with neural
plasticity and cognitive resilience. Exercise robustly enhances
BDNF expression in both the hippocampus and peripheral
circulation, primarily through activation of Ca*'-dependent
CREB signaling and downstream PI3K/Akt and MAPK/ERK
pathways (90, 91). BDNF binds to its TrkB,
promoting neuronal survival, dendritic growth, and synaptic
plasticity (92, 93).

Importantly, BDNF also mediates cross-talk between the

receptor

nervous, immune, and metabolic systems (94). By enhancing
neuronal stress resistance, BDNF contributes to the attenuation
of hypothalamic-pituitary-adrenal (HPA) axis hyperactivation,
thereby reducing systemic stress hormone exposure (95, 96).
Furthermore, exercise-induced BDNF upregulation has been
linked to
mitochondrial function in peripheral tissues, suggesting that

improved glucose metabolism and increased
BDNF acts as a systemic coordinator of neuro-immuno-
metabolic interactions (97).

Conversely, inadequate recovery or chronic overtraining may
blunt BDNF

exacerbate neuroinflammation. Such alterations may contribute

responses, impair synaptic resilience, and

to fatigue, mood disturbances, and impaired cognitive

performance commonly observed in overtrained athletes (98, 99).

4.3 Immune adaptation and dysregulation

Exercise exerts a dual influence on the immune system.
Moderate physical activity enhances natural killer (NK) cell

activity, boosts antigen presentation, and promotes

anti-inflammatory cytokine profiles, thereby strengthening

immune defense and surveillance against tumors and
infections (100). In contrast, prolonged exhaustive exercise can
NK cell
cytokines (e.g., TNF-a, IL-1B), and increase susceptibility to
infections (101-104).

At the molecular level, immune responses are tightly coupled

suppress cytotoxicity, elevate pro-inflammatory

to metabolic reprogramming. AMPK activation in T cells supports
memory formation and stress tolerance, whereas excessive
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glycolytic reprogramming under chronic stress drives T-cell
exhaustion (105, 106). This highlights the systemic feedback
loop whereby metabolic and

immune adaptations are

intertwined in defining exercise outcomes.

5 Biomarkers and multimodal analyses
of exercise-induced stress

Identifying reliable biomarkers and applying multimodal
analytical approaches are critical for evaluating exercise-induced
stress responses. Biomarkers provide measurable indicators of
adaptive vs. maladaptive trajectories, while advanced analytical
technologies allow for a

systems-level understanding of

complex responses.

5.1 Molecular and cellular biomarkers

Biomarkers of exercise stress span multiple categories,

including  mitochondrial ~ dynamics,  oxidative  stress,
inflammation, and cell death pathways (107). Mitochondrial
fusion protein MFN2 and pyroptosis-related GSDMD have been
implicated as regulators of muscular and systemic adaptation
(108-111). Decreased MFN2 expression has been associated
with impaired mitochondrial quality control and reduced
endurance capacity (112, 113). However, current evidence is
largely derived from animal and cross-sectional studies;
longitudinal human cohort data are limited, and causal links to

athletic performance remain speculative. Therefore, conclusions

regarding MFN2 and exercise performance should be
interpreted cautiously.
Oxidative stress-related biomarkers provide additional

insights. Superoxide dismutase 2 (SOD2), glutathione peroxidase
(GPx), and
upregulated during moderate

catalase represent key antioxidant defenses
(112, 114, 115).

Conversely, excessive or exhaustive exercise often leads to their

exercise

depletion alongside increased lipid peroxidation (MDA) and
elevated pro-inflammatory cytokines such as TNF-o and IL-6
(116). These markers not only indicate cellular redox balance
but also reflect systemic inflammation, making them valuable
for assessing the transition from physiological adaptation to
pathological stress.

5.2 Epigenetic and non-coding RNA
biomarkers

Exercise alters the expression of various non-coding RNAs,
which can serve as potential biomarkers of adaptive remodeling
or pathological stress. For example, miR-1, miR-133a, and miR-
206 are strongly linked to muscle hypertrophy and regeneration
(117-119). In addition, miR-29b has been reported to inhibit
fibrosis in certain experimental settings (120, 121). However,
some studies—such as the use of nanoparticle-delivered miR-
29b to inhibit in  vitro under

fibrosis—were conducted
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osteogenic conditions rather than in the context of exercise-
induced cardiac fibrosis (122, 123). This discrepancy highlights
the importance of contextual validation before extrapolating
findings to exercise physiology.

5.3 Multimodal analytical approaches

Advances in high-throughput and single-cell technologies
enable a multimodal perspective on exercise-induced stress
(124). Single-cell transcriptomics, proteomics, and metabolomics
provide unprecedented resolution in capturing cell-type specific
responses (125). For example, single-cell sequencing has revealed
exercise-induced heterogeneity in immune cell metabolic
reprogramming (126). Moreover, extracellular vesicles (EVs),
including exosomes, have gained attention as carriers of
exercise-induced signals (127, 128). Reports suggest that EVs can
transport transcriptional regulators such as PGC-la mRNA,
thereby (129, 130).

However, most current evidence stems from neural stem cell-

influencing mitochondrial ~biogenesis
derived exosome studies rather than direct exercise experiments,
and the causal relationship between exercise, exosomal cargo, and
enhanced endurance capacity remains to be clarified (129, 131).
Therefore, while exosomes and other multimodal biomarkers
hold great promise, more rigorous exercise-specific experimental
validation is needed to confirm their functional relevance.

5.4 Integrative framework and limitations

Multimodal biomarker approaches must account for inter-
individual variability, including sex, age, genetic background,
and training status (132). These factors can significantly
modulate biomarker responses, complicating the definition of
universal thresholds. For example, older individuals may exhibit
blunted (133),
polymorphisms in mitochondrial genes could influence stress
with
phenotypes is thus essential to establish robust biomarkers for

antioxidant  responses while  genetic

resilience. Integrating multimodal datasets clinical

guiding personalized exercise prescriptions.

6 Discussion and future directions

This review has summarized how exercise-induced stress
responses progress from primary mechanical and organelle
signals to secondary metabolic regulation and ultimately to
systemic integration across endocrine, immune, and neural
networks. By organizing these responses into a layered cascade
—primary
integration—we have highlighted the dual nature of exercise as

responses, secondary regulation, and systemic
both a health-promoting and potentially pathological stimulus.
A central theme emphasized throughout this review is the
bidirectional threshold theory, which provides a conceptual
framework for understanding how exercise intensity and
While

duration determine Dbiological outcomes. moderate
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exercise promotes beneficial adaptations such as mitochondrial

biogenesis, enhanced antioxidant defense, and improved
neuroplasticity, excessive or prolonged exercise can lead to
maladaptive ~ processes  including  calcium  overload,
mitochondrial permeability transition pore (MPTP) opening,
maladaptive ER stress, chronic inflammation, and fibrosis (134,
135). However, a key limitation of the current literature is the
imbalance in mechanistic evidence: adaptive responses are well
characterized, but the molecular underpinnings of maladaptive
trajectories remain less systematically explored. For example,
while Piezol activation is known to facilitate vascular
remodeling, its potential contribution to pathological calcium
influx and tissue fibrosis under sustained activation has not been
rigorously studied (136, 137). Similarly, the transition from
adaptive unfolded protein response (UPR) to pro-apoptotic ER
stress during exhaustive exercise requires more in vivo validation.

Another limitation lies in the translation of experimental
findings to human physiology. Much of the mechanistic data
derives from animal models or in vitro systems, which may not
fully capture the complexity of human exercise responses.
Longitudinal human cohort studies are scarce, making it
difficult to establish causal links between molecular markers
(e.g., MEN2, SOD2, exosomal cargo) and real-world exercise
outcomes such as performance, recovery, and disease risk.
Moreover, individual differences—including sex, age, training
history, and genetic background—are seldom addressed in
mechanistic studies, yet they critically shape exercise-induced
stress responses.

While exercise is broadly beneficial, the potential for
maladaptation or pathological damage cannot be overlooked,
particularly in high-intensity or prolonged regimens. A balanced
perspective requires integrating monitoring tools that can detect
shifts

approaches include setting training intensity using relative

when beneficial adaptation toward risk. Practical
measures such as %VO,max or %heart rate reserve (HRR)
(138), tracking recovery via heart rate variability (HRV) and
lactate clearance, and assessing biochemical markers such as
creatine kinase (CK), interleukin-6 (IL-6), and oxidative stress
indices (139-141). In addition, validated psychometric tools
(e.g., RESTQ-Sport, Profile of Mood States) can identify early
warning signs of overreaching or overtraining (142). These
approaches should be viewed as pragmatic starting points rather
than definitive guidelines. Further longitudinal clinical studies
are required to validate and standardize risk-stratification
strategies for different populations.

An important limitation of the bidirectional threshold
framework is its sensitivity to individual-specific factors. Ageing
is associated with reduced mitochondrial adaptability and a
blunted antioxidant response, lowering the threshold at which
maladaptive effects emerge (143, 144). Sex and hormonal status,
particularly estrogen levels, modulate inflammatory and
oxidative stress pathways, contributing to sex-based differences
(145). Genetic background (e.g.,
in ACTN3, PGC-la) further influences

cardiorespiratory fitness and muscle adaptation (146). Training

in training outcomes

polymorphisms

history also determines baseline resilience: well-trained
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exhibit attenuated biomarker

compared with untrained individuals under the same workload.

individuals often responses
Finally, comorbid conditions such as diabetes, obesity, or
cardiovascular disease substantially modify exercise-induced
stress responses, often lowering tolerance and increasing risk for
maladaptation. Collectively, these factors underscore that the
“bidirectional threshold” must be interpreted flexibly rather than
as a universal cut-off, highlighting the need for personalized
approaches in both research and clinical translation.

From a methodological perspective, the integration of
multimodal omics technologies (e.g., single-cell transcriptomics,
proteomics, metabolomics) with clinical phenotyping offers a
promising avenue to bridge mechanistic insights with human
variability. However, technical challenges remain, such as
harmonizing data across platforms, capturing transient exercise
responses in real time, and distinguishing adaptive vs.
maladaptive signatures within heterogeneous cell populations.

Looking forward, several areas warrant particular attention:

1. Defining molecular thresholds of adaptation vs. maladaptation

across exercise intensities and modes (endurance vs.
resistance), with quantitative markers to guide individualized
exercise prescriptions.

2. Mechanistic

Piezol-mediated calcium overload, chronic FAK signaling,

studies  of  maladaptation,  including
MPTP dysregulation, and maladaptive ER stress.

3. Validation of biomarkers in human cohorts, with longitudinal
tracking to establish predictive value for performance,
recovery, and disease outcomes.

4. Integration of multimodal datasets to capture the systemic
nature of exercise responses, with a focus on linking
molecular pathways to functional outcomes.

5. Personalized exercise medicine, leveraging genetic, epigenetic,
and metabolic profiling to design tailored interventions that
maximize benefits while minimizing risks.

In conclusion, the biological responses to exercise stress are not
unidirectional but exist along a continuum shaped by intensity,
duration, and individual context. By advancing our
understanding of both adaptive and maladaptive pathways,
future research can refine exercise as a precise therapeutic
modality—balancing health promotion with the prevention of

overtraining-related pathology.
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