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Introduction: Adolescent obesity has emerged as a critical global public health 

challenge, necessitating effective tools for early identification and intervention. 

This study aimed to identify significant contributing factors and develop a 

predictive model for adolescent obesity using machine learning algorithms.

Methods: An anonymised dataset of 2,338 adolescents was utilised, 

incorporating variables related to family factors, lifestyle behaviours, and 

physical fitness scores. Variable selection was performed using LASSO 

regression with k-fold cross-validation, followed by parameter estimation via 

logistic regression. The optimal classification threshold was determined using 

the Youden Index.

Results: The final predictors included gender, mother’s educational level, 

parental BMI, weight at age 12, parenting style, weekly sweets consumption 

frequency, meal duration, sleep duration, and physical fitness score. The 

model demonstrated robust performance, with an AUC of 0.91, accuracy of 

0.86, and sensitivity of 0.84. Subgroup analysis indicated consistent 

performance across genders, with slightly superior predictive efficacy in 

males (AUC = 0.912) compared to females (AUC = 0.898).

Discussion: The proposed interpretable framework combines high predictive 

accuracy and sensitivity, offering a valuable tool for timely identification and 

intervention in high-risk adolescents. These findings underscore the potential 

of data-driven approaches in addressing adolescent obesity.
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1 Introduction

Obesity is a disease that also causes other noncommunicable diseases (1). However, 

the World Obesity Federation predicts that, based on body mass index (BMI) 

measurements, more than 750 million children and adolescents aged 5 to 19 

worldwide will be overweight or obese by 2035. This equates to two out of every five 

children globally facing this problem (2).

National Health Commission of the People’s Republic of China has released “The 

Guidelines for Weight Management (2024 Edition)”, emphasizing the significance of 

lifestyle behaviour assessment in weight management, including dietary habits, levels 

of physical activity, quality of sleep, mental health status, and smoking and drinking 

habits (3). This method enables the early screening of obesity risk in large populations 
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and has the advantages of being convenient and low-cost in 

comparison to physiological indicator testing.

A Chinese research team developed an obesity prediction model 

by using baseline and 5-year follow-up data on gender, age, urban/ 

rural residence, and BMI from 88,980 elementary and secondary 

school students in Yantai City. However, the model achieved 

modest accuracy (70%), and it only included demographic 

indicators (4). Meanwhile, a longitudinal data tracking study 

conducted in Australia examined changes in children’s lifestyle 

behaviours (dietary, physical activity, and screen time) from ages 2 

to 5 years old. Nevertheless, the study’s findings are not applicable 

to children above the age of 5 years old (5). Despite the prevalence 

of BMI screening in most states of the United States, the 

implementation of interventions to enhance it remains limited. Zare 

et al. examined the predictive ability of BMI in kindergarten 

children for obesity in those same children in the fourth grade, 

confirmed the significant role of this indicator, and provided 

insights for research in Asia (6). While previous studies have 

explored obesity prediction, their applicability to China’s large 

population remains limited. Furthermore, the performance of the 

model, as indicated by factors such as prediction accuracy, can 

be improved.

From the perspective of lifestyle-related indicators, a meta- 

analysis demonstrated that higher intake of sugary drinks, fast 

food, refined grains, and meat was positively associated with 

obesity, while a higher intake of whole grains and sweet bread was 

negatively associated with obesity. However, the research 

conclusions are controversial, with debate surrounding the impact 

of sweet bread intake on obesity (7). Shorter sleep cycles have been 

demonstrated to be positively correlated with obesity in preschool 

and school-age children (8). For children aged 4–12, a sleep 

duration of less than 10 h is considered to be short; for children 

aged 13–18, a sleep duration of less than 8 h is short (9). 

Additionally, a cross-sectional study involving 634 school-aged 

children aged 6–12 years abroad showed that, after adjusting for 

confounding factors, family income, moderate physical activity, 

fast food consumption, and fruit and vegetable intake had a certain 

impact on the incidence of obesity (10). Wang et al. conducted a 

cross-sectional investigation to identify potential factors associated 

with obesity in 9,501 preschool children. Their study found that 

factors such as eating speed, sleep duration, birthweight, and 

paternal BMI were associated with overweight and obesity. But the 

model was found to lack indicators related to physical activity and 

was not found to be applicable to children or adolescents of other 

age groups (11). Similarly, a data analysis of school-age children in 

Jiangsu, China, indicated that daily consumption of sugary drinks 

and low levels of moderate to vigorous physical activity are 

positively correlated with obesity (12). Therefore, our study 

considered multiple indicators, including the frequency of sweet 

food intake, beverage intake, eating speed and duration, sleep 

duration, and physical fitness score.

Machine learning presents a promising avenue for advancing 

obesity risk assessment. Contemporary studies have demonstrated 

that machine learning algorithms outperform traditional 

regression models in stratifying obesity risk by integrating 

multifactorial determinants such as dietary patterns, physical 

activity levels, and familial inHuences (13–15). However, many 

existing approaches face critical limitations. Black-box algorithms 

prioritize predictive accuracy at the expense of interpretability 

(13), while biomarker-dependent models remain impractical for 

large-scale implementation due to cost constraints and contextual 

adaptability issues (16, 17). Furthermore, few current models 

account for the distinct metabolic and behavioral phenotypes 

observed across genders or address the challenges of optimal 

classification thresholds in imbalanced datasets (18). Thus, the 

purpose of our study is to propose an obesity risk prediction 

model for adolescents students from the perspective of lifestyle 

behaviour assessment, and we hope that this will support schools 

in implementing relevant health education interventions.

We propose an interpretable prediction framework that 

combines three methodological innovations to overcome these 

limitations. First, we use LASSO regression for feature selection 

to identify the lifestyle behaviors relevant to obesity, including 

students’ anthropometrics and dietary habits, sleep duration, 

physical fitness score, and parents’ anthropometrics. Second, 

Logistic Regression provides a transparent probabilistic 

classification system with high diagnostic accuracy. Third, we 

optimize classification thresholds using the Youden index to 

maximize sensitivity for early risk detection, establishing a 

dynamic threshold of 0.042. The model demonstrates effective 

predictive ability for the overall student population, as well as 

for male and female groups when applied separately. This makes 

it a useful tool for large-scale school obesity screening.

2 Methods

2.1 Data description and sources

The research data comes from two parts. The first part consists 

of questionnaire data collected through on-site surveys during the 

2025 Sichuan Province Physical Health Spot-Check and Re- 

verification Work. The questionnaire data includes demographic 

characteristics of students aged 12–24 and their parents, such as 

gender, height, weight, BMI, mother’s education level, and 

whether the father smokes. The data also includes lifestyle 

behaviors of students, focusing on diet, sleep, and feeding methods.

The second part of the data consists of physical fitness test scores. 

This data is sourced from the Sichuan Province Student Physical 

Health Big Data Center, which is an official, non-public data 

source. The credibility of the data and research is validated by 

authoritative entities. The center has anonymized all personal 

information prior to providing the data, ensuring no information 

that could directly or indirectly identify individual students is 

included (including but not limited to names, ethnicity, detailed 

addresses, or school names). A total of 2,394 items of data, 

however, 56 items of data were excluded due to inadequate internal 

consistency or data anomalies, resulting in 2,338 items of data 

being finally included in this study. This study adopted obesity 

threshold criteria based on the National Student Physical Health 

Standard (2014 Revision) (19). Additionally, we analyzed the 

consistency between these Chinese national standards and the 
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WHO’s growth standards for global adolescent populations (20). The 

Kappa coefficient was calculated as 0.802, indicating almost perfect 

agreement between the two classification systems. This 

demonstrates that the obesity classification criteria adopted in this 

study are valid and reliable. The dataset was randomly split into 

two subsets: 70% of the data was used for training, and 30% was 

reserved for testing. Both training and test sets satisfied the 

minimum sample size requirements for statistical analysis. To 

ensure model robustness and mitigate the inHuence of randomness 

from a single data partition, we employed k-fold cross-validation 

(k ¼ 10) within the training set during model training.

All statistical analyses and modeling were performed using the 

R programming language (version 4.2.1). The analysis utilized the 

following key R packages: glmnet (version 4.1.8) for regularized 

regression model fitting, and pROC (version 1.18.5), ROCR 

(version 1.0.11), and reportROC (version 3.6) for model 

evaluation, ROC curve analysis, and reporting of diagnostic metrics.

2.2 Factors in predictive models

This study used the following factor data: demographic 

information (gender, height, weight, age), lifestyle (parenting style, 

sleep duration, sweetened drinks frequency per week, fried food 

frequency per week, sweets frequency per week,physical fitness 

score, etc), and parents’ demographics data (parents’ height and 

weight, mother’s educational level, and father’s smoking status). 

Table 1 lists the variables that are associated with the obesity 

development. We also use these to develop an obesity prediction 

model. In this study, we applied the LASSO (Least Absolute 

Shrinkage and Selection Operator) regression method to identify 

variables significantly associated with obesity. We will next 

introduce the LASSO regression method.

2.3 LASSO model

LASSO Regression (Least Absolute Shrinkage and Selection 

Operator) (21), originally proposed by Robert Tibshirani in 

1996, represents a regularization technique for linear regression 

models that has gained widespread application in statistical 

analysis. The method’s core mechanism involves imposing an 

L1-norm penalty on the regression coefficients, simultaneously 

achieving coefficient shrinkage and feature selection. This dual 

functionality enables LASSO to effectively address challenges 

inherent in high-dimensional datasets (characterized by 

excessive variables) and data exhibiting multicolsleep 

hourlinearity. Traditional ordinary least squares regression often 

encounters significant limitations in such contexts, including 

multicollinearity effects, difficulties in identifying relevant 

predictors, and heightened risk of model overfitting. Through its 

unique regularization approach, LASSO systematically identifies 

statistically significant features while driving redundant predictor 

coefficients toward exact zero values, thereby reducing model 

complexity. This process not only enhances predictive accuracy 

but also improves model interpretability by producing sparse 

solutions that explicitly identify key contributing variables.

The objective function of LASSO regression can be formulated 

as the following optimization problem:

min
b

1

2n

X

n

i¼1

(yi � Xib)2 þ l
X

p

j¼1

jbjj

 !

: (1) 

In the above Equation 1, yi denotes the dependent variable 

(response) of the ith sample, and Xi represents the corresponding 

vector of independent variables. The parameter 

b ¼ (b1, b2, . . ., bp)T is the vector of regression coefficients to be 

estimated. The regularization parameter l � 0 controls the 

strength of the L1 penalty term. Here, n is the total number of 

samples, and p refers to the dimensionality of the feature space, 

i.e., the number of independent variables. The objective function 

of the LASSO regression model comprises two key components: 

the squared loss function and the L1 regularization term. The 

squared loss function quantifies the discrepancy between the 

model’s predicted values and the observed response values, 

serving as a measure of model accuracy. The L1 regularization 

term, on the other hand, introduces a penalty proportional to the 

sum of the absolute values of the regression coefficients. 

This penalty encourages sparsity in the estimated coefficient 

vector by shrinking some coefficients exactly to zero, effectively 

performing variable selection and yielding a simpler, more 

interpretable model.

2.4 Logistic regression model

Logistic regression is a widely used statistical method for 

binary classification tasks. Despite its name, it is not a linear 

regression model but a probabilistic classification algorithm that 

estimates the probability of an instance belonging to a specific 

class. The model maps input features to a probability value 

between 0 and 1 using a logistic (Sigmoid) function, enabling 

the prediction of discrete outcomes.

The core idea of logistic regression is to model the relationship 

between input features X ¼ [x1, x2, . . ., xn] (where n is the 

number of features) and the target variable y [ {0, 1}. The model 

computes a linear combination of the input features and applies 

the Sigmoid function to transform the result into a probability. 

TABLE 1 Variables that may be used in the predictive model.

Category Variable

Child Demographics Gender, height, weight, age

Lifestyle 

behaviors

Parenting style, sleep duration, sweetened drinks/ 

week, fried food/week, sweets/week, eating speed, 

meal duration, and eating with distractions, physical 

fitness score

Parents Demographics Height, weight, mother’s educational level, smoking 

status
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The model is defined as follows, as shown in Equations 2, 3:

z ¼ b0 þ b1x1 þ b2x2 þ . . .þ bnxn ¼ bT
X, (2) 

P(y ¼ 1 j X; b) ¼ s(z) ¼
1

1 þ e�z
: (3) 

Here, b ¼ [b0, b1, . . ., bn] represents the model parameters 

(including the intercept b0), and s(�) is the Sigmoid function. 

The output s(z) represents the probability that the input X 

belongs to class 1. A threshold (typically 0.5) is applied to 

classify the instance: if s(z) � 0:5, the prediction is class 1; 

otherwise, it is class 0.

To train the logistic regression model, we minimize a loss 

function that quantifies the discrepancy between predicted 

probabilities and true labels. The logarithmic loss (or cross- 

entropy loss) is commonly used:

L(b) ¼ �
1

m

X

m

i¼1

y(i) log (ŷ(i)) þ (1 � y(i)) log (1 � ŷ(i))
� �

: (4) 

In the Equation 4, m is the number of training samples, y(i) is the 

true label for the ith sample, and ŷ(i) ¼ s(bT
X

(i)) is the 

predicted probability.

The model parameters b are optimized using gradient descent 

or its variants (e.g., stochastic gradient descent, Adam). The 

gradient of the loss function with respect to bj is computed as:

@L

@bj

¼
1

m

X

m

i¼1

(ŷ(i) � y(i))x(i)
j :

This gradient is iteratively updated to minimize the loss 

until convergence.

Logistic regression is particularly suitable for problems where 

interpretability is critical. For example, in medical diagnosis, the 

model can quantify the impact of risk factors (e.g., age, blood 

pressure) on disease probability. This interpretability makes 

logistic regression a popular choice in domains like healthcare, 

finance, and social sciences.

2.5 Youden index

The Youden Index (Youden’s J statistic) is a widely used 

metric for evaluating the performance of binary classification 

models, particularly in scenarios where class imbalance exists or 

when balancing sensitivity and specificity is critical. It quantifies 

the ability of a model to correctly distinguish between positive 

and negative classes by combining sensitivity (true positive rate) 

and specificity (true negative rate) into a single metric. The 

Youden Index is defined as:

J ¼ Sensitivity þ Specificity � 1: (5) 

The Equation 5 integrates two critical aspects of diagnostic 

accuracy into a single scalar value, enabling direct comparison 

across models or thresholds.

The sensitivity (also known as the true positive rate, TPR) 

quantifies the model’s ability to correctly identify positive instances:

Sensitivity ¼
TP

TP þ FN
:

The specificity (true negative rate, TNR) measures the model’s 

capacity to correctly reject negative instances:

Specificity ¼
TN

TN þ FP
:

Here, TP (true positives), TN (true negatives), FP (false positives), 

and FN (false negatives) are components of the confusion matrix 

derived from the classification results.

The Youden Index J, ranging from �1 to 1, quantifies the 

discriminative ability of a binary classification model. A value of 

J ¼ 1 indicates perfect classification, where all samples are 

correctly predicted (i.e., no false positives or false negatives). 

Conversely, J ¼ 0 corresponds to no discriminative power, 

equivalent to random guessing, while J , 0 suggests 

performance worse than random, though this is rare in practical 

applications. This metric is particularly valuable in domains 

such as medical diagnostics and anomaly detection, where 

minimizing both false positives (FP) and false negatives (FN) is 

critical. By explicitly balancing sensitivity and specificity, the 

Youden Index avoids the pitfalls of accuracy-based metrics, 

which can be misleading in imbalanced datasets. Its design 

ensures a robust trade-off between correctly identifying positive 

cases and avoiding incorrect rejections of negative cases, making 

it a reliable tool for threshold selection and performance 

evaluation in real-world scenarios.

Combining logistic regression with the Youden Index 

primarily aims to optimize the model’s decision threshold, 

thereby enhancing classification performance. While logistic 

regression defaults to a threshold of 0.5, this value may not be 

optimal in practical applications. By integrating the Youden 

Index, a threshold that maximizes the sum of sensitivity and 

specificity can be identified, thus improving the model’s 

classification effectiveness.

The implementation steps are as follows: 

• Train the logistic regression model: First, use the training 

dataset to train the logistic regression model.

• Obtain prediction probabilities: Use the trained model to 

predict the validation set or test set, and obtain the 

probability of each sample belonging to the positive class.

• Calculate sensitivity and specificity at different thresholds: 

Iterate through a series of possible thresholds. For each 

threshold, classify samples into positive or negative classes 

based on the predicted probability, and calculate the 

corresponding sensitivity and specificity.

• Determine the optimal threshold: Using the calculated 

sensitivity and specificity, identify the threshold that 
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maximizes the Youden Index as the optimal threshold for 

the model.

• Apply the optimal threshold: Replace the default 0.5 threshold 

with the optimal threshold found and classify new data.

The advantage of this method is that it considers the balance 

between positive and negative classes, making it particularly 

suitable for imbalanced data problems. It can help improve the 

overall performance and practicality of the model.

3 Results

3.1 Basic data analysis of variables for 
predictive models

The variables potentially applicable for developing an obesity 

prediction model are summarized in Table 1. After data 

preprocessing, a total of 2,338 samples were retained, with 1,631 

(70%) assigned to the training set and 707 (30%) used for 

internal validation. The descriptive statistics of categorical 

variables are presented in Table 3, while those of numerical 

variables are shown in Table 2. Based on the training set, 

48.31% of the participants were male and 51.69% were female, 

an average sleep duration of 533.69 (215.81) min, and a mean 

physical fitness score of 76.12 (SD 14.36). The variable design of 

the study includes more lifestyle-related indicators for adolescent 

students than previous studies. The dataset was partitioned 

appropriately, and the training and test sets demonstrated good 

consistency, providing a solid foundation for the development of 

obesity prediction models.

3.2 Variable selection

The LASSO model included ten variables to screen for those 

significantly associated with obesity. These variables covered 

students’ demographic information, dietary habits, sleep 

conditions, physical conditions, and their parents’ demographics, 

mothers’ education levels, and fathers’ smoking statuses. 

Categorical variables were handled using dummy variable 

encoding. Figure 1 illustrates the variable shrinkage process in 

the LASSO model, and Figure 2 shows the corresponding 

regularization path. The estimated value of l is 4:58 � 10�3, and 

the variable selection results are shown in Table 4. The results 

indicate that students’ gender, weight at age 12, parenting style, 

sleep duration, frequency of sweets per week, meal duration, and 

physical fitness score, as well as parents’ BMI and mothers’ 

educational attainment, are significantly associated with 

students’ obesity. This highlights the importance of cultivating 

healthy lifestyle behaviors, including proper diet, exercise, 

physical activity and sleep. The predictive model in this study 

will be constructed based on these indicators.

3.3 Prediction model results

For the variables selected using the LASSO regression 

method, we established a binary classification model using 

logistic regression combined with the Youden Index. The 

classification threshold calculated by the Youden Index was 

0.042. The model achieved an accuracy of 0.86, a sensitivity of 

0.84, and a specificity of 0.86. The ROC curve of the prediction 

model is shown in Figure 3, and the AUC value was 0.91, 

illustrating the strong discriminative ability. Table 5 shows the 

threshold selection process for the obesity prediction model. 

Table 6 shows the parameters of the obesity prediction model 

after training on the training set, from which it can be seen 

that the higher the physical fitness score and the lower the 

parents’ BMI, the lower the likelihood of adolescent obesity. 

Longer sleep duration is associated with a higher probability of 

obesity, which can be attributed to the fact that the sleep 

duration range observed in this study primarily falls within 7– 

11 h. Table 2 also indicates that the average sleep duration 

among adolescents is approximately 9 h. This finding is 

consistent with the U-shaped relationship between sleep 

duration and obesity reported in the Ref. (22), as the observed 

positive correlation corresponds to the right segment of this 

U-shaped curve.

To evaluate potential gender-based performance variations, we 

conducted stratified analyses. In the female subgroup (N ¼ 374), 

TABLE 2 Numerical variables that can be used in predictive modeling.

Category Variable Training set 
(N ¼ 1,631)

Test set 
(N ¼ 707)

Mean (SD) Mean (SD)

Child Weight at age 12 45.08 (9.56) 44.80 (9.38)

Sleep duration 533.69 (215.81) 528.09 (206.01)

Physical fitness 

score

76.12 (14.36) 76.69 (13.88)

Parents Father’s BMI 24.80 (9.77) 24.02 (6.19)

Mother’s BMI 22.73 (4.98) 22.49 (4.09)

FIGURE 1 

Variable selection process for the obesity prediction model.
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the model maintained high predictive accuracy (Accuracy ¼ 0.896, 

AUC ¼ 0.898), with sensitivity of 0.786 and specificity of 0.900. 

The male subgroup (N ¼ 333) showed comparable performance 

(Accuracy ¼ 0.826, AUC ¼ 0.912), with sensitivity of 0.889 and 

specificity of 0.822. The detailed performance results of the 

obesity prediction model for sex-stratified and overall data are 

presented in Table 7.

The ROC curves illustrating the sex-specific predictive 

performance of the obesity prediction model in males and 

females are presented in Figures 4 and 5, respectively. Notably, 

the model demonstrated consistent predictive power across 

genders, as evidenced by the ROC curves and the stable 

performance metrics in Table 7. The highest AUC value (0.912) 

was observed in the male group, with a female AUC of 0.898. 

These stratified results confirm the model’s reliability across 

demographic subgroups. Figure 6 presents a multifaceted 

comparison of performance metrics, visually synthesizing these 

findings. The visualization highlights the model’s consistent 

accuracy across diverse demographic groups, demonstrating 

stable discriminative capability irrespective of gender.

These comprehensive analyses collectively indicate that the 

obesity prediction model delivers reliable performance for both 

male and female adolescents. The observed gender-based 

variations in specific metrics may reHect biological differences in 

obesity manifestation rather than model limitations, a 

hypothesis that warrants investigation in future physiological 

studies. The consistent AUC values above 0.85 across all 

groups satisfy conventional criteria for ’good’ to ’excellent’ 

discriminatory power (23).

4 Discussion

This study presents an obesity prediction model containing 

more lifestyle behavior indicators for Chinese adolescent students 

through an LASSO-logistic regression framework optimized by 

the Youden Index. The model shows predictive ability (AUC ¼

0.911), with gender-specific performance difference (females: 

AUC ¼ 0.898; males: AUC ¼ 0.912). The optimized classification 

threshold (0.042) prioritizes sensitivity (0.844), emphasizing early 

detection ability for high-risk individuals. The model’s superior 

AUC outperforms traditional BMI-based approaches (24, 25) and 

rivals advanced machine learning frameworks (26, 27). This 

balance of accuracy and interpretability addresses a key limitation 

TABLE 3 Categorical variables that can be used in predictive modeling.

Category Variable Characteristics Training set (N ¼ 1,631) Test set (N ¼ 707)

N (%) N (%)

Child Gender Male 788 (48.31) 333 (47.10)

Female 843 (51.69) 374 (52.90)

Parenting style Parents 1,130 (69.28) 487 (68.88)

Grandparents 489 (29.98) 217 (30.69)

Childcare 12 (0.74) 3 (0.43)

Sweetened Drinks/Week Never drink 321 (19.68) 131 (18.53)

Less than once a day 1,195 (73.27) 524 (74.12)

More than once a day 115 (7.05) 52 (7.35)

Fried Food/Week Never drink 391 (23.97) 144 (20.37)

Less than once a day 1,165 (71.43) 523 (73.97)

More than once a day 75 (4.60) 40 (5.66)

Sweets/Week Never drink 250 (15.33) 92 (13.02)

Less than once a day 1,025 (62.84) 449 (63.51)

Once a day 284 (17.41) 142 (20.08)

More than once a day 72 (4.41) 24 (3.39)

Eating speed Very slow 31 (1.90) 11 (1.56)

Slow 136 (8.34) 56 (7.92)

Moderate 1,003 (61.50) 444 (62.80)

Fast 390 (23.91) 169 (23.90)

Very fast 71 (4.35) 27 (3.82)

Meal duration Less than 10 min 310 (19.01) 130 (18.39)

10–20 min 1,034 (63.40) 462 (65.34)

20–30 min 263 (16.13) 109 (15.42)

More than 30 min 24 (1.47) 6 (0.85)

Eating with Distractions Yes 878 (53.83) 371 (52.48)

No 753 (46.17) 336 (47.52)

Parents Mother’s education Junior high school or below 888 (54.45) 357 (50.50)

High school 526 (32.25) 264 (37.34)

Junior college 115 (7.05) 57 (8.06)

University and above 102 (6.25) 29 (4.10)

Smoking status Yes 1,018 (62.42) 434 (61.39)

No 613 (37.58) 273 (38.61)
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in complex models, which often sacrifice applicability to adolescent 

student populations for predictive gains. The low classification 

threshold prioritizes sensitivity, ensuring early identification of at- 

risk adolescents during critical developmental windows. 

Meanwhile, the standard errors of the predictive model are 

comparatively small, indicating relatively high stability. However, 

the confidence intervals of some variables may still include zero. 

This may reHect more complex relationships between these 

variables and the outcome variable in the dataset, or could be due 

to imbalanced distribution of variable values (e.g., some values 

being relatively rare) or subjectivity in questionnaire responses. 

Therefore, this issue cannot be solely attributed to the 

modeling algorithm.

The model established in this study demonstrated robust 

predictive performance within the Chinese adolescent population. 

However, its generalizability to other populations requires further 

consideration. Compared with Western populations, Chinese 

adolescents exhibit differences in obesity prevalence, genetic 

background, and lifestyle. Studies (13, 14) that presented obesity 

prediction models and related inHuencing factors in Mexican 

populations revealed that certain risk factors demonstrate cross 

cultural consistency, such as high calorie diets and low levels of 

physical activity. This indicates that the core mechanism of 

obesity-an imbalance between energy intake and expenditure-is 

universal. This model also accounted for parental obesity, which 

may be related to genetic factors. Nevertheless, population specific 

factors were also identified. We incorporated factors such as sleep 

duration and maternal education level, reHecting that adolescents 

may be more susceptible to inHuences from rapid economic 

TABLE 4 Variables significantly associated with obesity selected by the 
LASSO method.

Category Variable

Child Demographics Gender, weight at age 12

Lifestyle 

behaviors

Parenting style, sleep duration, sweets/week, meal 

duration, physical fitness score

Parents Demographics BMI, mother’s education level

FIGURE 3 

ROC curve of the obesity prediction model performance.

FIGURE 2 

Regularization path of parameters in the obesity prediction model.
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development and cultural habits. In contrast, Dirik’s model (14) 

incorporated behavioral factors such as alcohol consumption and 

daily electronic device usage. These discrepancies may stem from 

differences in the age of the study populations, cultural habits, 

and social environments. Overall, the core lifestyle factors 

included in our model demonstrate sound rationale. However, 

calibration and adjustment, such as incorporating population 

specific social environmental and behavioral variables, are 

necessary when applying the model across different cultures or 

regions. Future research should validate this model framework in 

broader international cohorts and develop dynamic prediction 

tools adaptable to diverse population characteristics.

The importance of weight at age 12 as a predictor is supported 

by longitudinal evidence showing that adolescents obesity 

trajectories strongly correlate with adult obesity risk (25, 28). 

This highlights the importance of monitoring health in early 

life. The inHuence of maternal weight is consistent with the 

well-documented familial obesity transmission mechanisms (29, 

30), in which shared dietary patterns, physical activity habits, 

and genetic predispositions play pivotal roles. Conversely, the 

protective effect of maternal education level reHects 

socioeconomic buffers against obesity-promoting environments 

(31), as higher education is associated with greater health 

literacy and resource allocation. Behavioral factors, such as fast 

eating speed and low physical fitness, are supported by 

mechanistic studies that link these behaviors to energy 

imbalance and metabolic dysregulation (32, 33). Fast eating may 

interrupt satiety signaling, and insufficient physical activity 

contributes to energy imbalance, both of which are crucial 

drivers of adiposity.

To further evaluate the predictive ability and generalizability 

of the obesity prediction model, this study assessed the model’s 

independent performance in male and female populations. 

As shown in Figure 6, the model’s predictive accuracy was 

slightly better in the female population than in the male 

population (Accuracy ¼ 0.896 versus 0.826). These differences 

align with biological susceptibility to obesity (34, 35) and 

behavioral heterogeneity (36), such as higher exercise intensity 

and greater energy expenditure variability in males, whereas 

females typically exhibit more consistent dietary restraint 

and sleep-related metabolic stability, which may make the 

model more generalizable in the female population. 

Additionally, biological heterogeneity in fat distribution may 

also impact model accuracy. These findings suggest that 

gender-specific characteristics may play a role in developing 

intervention strategies.

TABLE 5 Performance of the obesity prediction model at different thresholds.

Threshold 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

Accuracy 0.528 0.813 0.874 0.907 0.934 0.943 0.941 0.941 0.946 0.948

Sensitivity 0.969 0.875 0.812 0.719 0.656 0.656 0.500 0.406 0.406 0.344

Specificity 0.507 0.810 0.877 0.916 0.947 0.957 0.961 0.966 0.972 0.976

PPV* 0.085 0.179 0.239 0.287 0.368 0.420 0.381 0.361 0.406 0.407

NPV* 0.997 0.993 0.990 0.986 0.983 0.983 0.976 0.972 0.972 0.969

*PPV, positive predictive value; NPV, negative predictive value.

TABLE 6 Parameters of the optimal logistic regression model for obesity prediction.

Variable Characteristics Estimates Standard error 95% CI p-value

Gender Male (reference)

Female 0.566 0.262 [0.052, 1.080] 0.031

Mother’s education Junior high school or below (reference)

High school �1.002 0.385 [�1.800, �0.28] 0.009

Junior college �0.141 0.580 [�1.200, 1.103] 0.807

University and above �0.977 0.745 [�2.640, 0.337] 0.189

Parenting style Parents (reference)

Grandparents 0.279 0.327 [�0.376, 0.912] 0.394

Childcare 1.204 0.994 [�1.029, 2.982] 0.225

Weight at age 12 0.133 0.013 [0.110, 0.160] <0.01

Father BMI 0.014 0.013 [�0.024, 0.033] 0.284

Mother BMI 0.061 0.021 [0.020, 0.103] 0.003

Sweets/week Never drink (reference)

Less than once a day �0.137 0.407 [�0.909, 0.697] 0.736

Once a day �0.527 0.578 [�1.708, 0.583] 0.361

More than once a day 1.283 0.627 [0.053, 2.513] 0.041

Meal duration Less than 10 min (reference)

10 to 20 min �0.291 0.364 [�0.990, 0.446] 0.423

20 to 30 min �0.431 0.558 [�1.578, 0.632] 0.440

More than 30 min �0.121 0.141 [�0.398, 0.156] 0.391

Sleep duration 4.08�10�4 6.77�10�4 [�0.0010, 0.0017] 0.547

Physical fitness score �0.047 0.009 [�0.065, �0.029] <0.01
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Although this study has certain advantages, it also has 

limitations. Due to the inHuence of traditional culture, 

lifestyle behaviors in China may exhibit unique patterns. 

Therefore, while the model shows promise for broader 

application within China, its performance may be limited in 

other countries or populations [such as South African 

adolescents (37) or Turkish cohorts (38)]. That said, the 

overall modeling approach is generalizable. Future studies 

may incorporate variables specific to Western populations to 

improve cross-cultural applicability. This paper does not 

discuss in depth the physiological mechanisms behind the 

differences in prediction accuracy between males and 

females, nor does it address age-specific issues. In the future, 

combining this framework with explainable machine learning 

(27) or deep learning (26) could better address nonlinear 

interactions. Additionally, by distinguishing physiological 

characteristics, further refining lifestyle-related indicators 

tailored to different genders and educational levels (middle 

school, high school) could lead to the development of more 

precise predictive models. The accuracy and granularity of 

categorical variables represent a potential limitation. The use 

of predefined categories, although necessary for analysis, may 

reduce statistical power and obscure more complex, non- 

linear relationships between the variables and the outcome. 

Future studies should further refine the design of categorical 

variables to improve the stability and predictive accuracy of 

the model.

Our model incorporates multidimensional lifestyle indicators 

to construct an obesity prediction model, which has the 

advantages of high accuracy and low threshold in all adolescents 

and in different gender groups. This highlights its application 

value in large student populations.

5 Conclusion

In summary, this study has examined the inHuence of key 

factors such as family environment, dietary habits, sleep 

duration, and physical fitness score on adolescent obesity. 

Furthermore, it demonstrates that combining LASSO regression 

for variable selection, logistic regression for probabilistic 

modeling, and the Youden Index for threshold optimization 

yields a highly effective tool for predicting childhood obesity. 

The model demonstrates a strong discriminative ability (AUC ¼

0.911), coupled with balanced sensitivity and specificity. These 

characteristics contribute to its potential as a considerable asset 

for the identification of early risks and appropriate interventions 

in large-scale adolescent student populations.

FIGURE 5 

ROC curve for the obesity prediction model in females.

TABLE 7 Gender-stratified model performance metrics.

Group Size Accuracy Sensitivity Specificity PPV* NPV* AUC*

Overall 707 0.863 0.844 0.864 0.227 0.991 0.911

Male 333 0.826 0.889 0.822 0.221 0.992 0.912

Female 374 0.896 0.786 0.900 0.233 0.991 0.898

*PPV, positive predictive value; NPV, negative predictive value; AUC area under the curve.

FIGURE 4 

ROC curve for the obesity prediction model in males.
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