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Background: Core strength and its control in movement, also called core 

stability, are crucial for athletic performance. However, there is no consensus 

in the scientific literature regarding the extent of the relation between core 

strength, core stability, and athletic performance. According to the functional 

anatomy of the core, it seems that core stability indirectly influences the 

relation between core strength and athletic performance.

Objectives: This study aimed to examine the relation between core strength, 

core stability, and athletic performance.

Methods: Forty-one adult sport students were included in a laboratory study. 

The subjects participated in two testing sessions. Each testing session started 

with the Unilateral Landing Error Scoring System (ULESS) test. Single-leg drop 

jumps were performed on force plates to assess jump height as parameter 

for athletic performance. Drop jumps were recorded from frontal perspective 

to analyze kinematic data, i.e., lateral pelvic tilt, lateral trunk lean, and frontal 

knee angles, to evaluate core stability. A testing session involved either 

isometric core muscle endurance or maximal core strength and core power 

measurement in four exercises: flexion, extension, lateral flexion right, and 

lateral flexion left.

Results: A mediation analysis with multiple predictors and multiple mediators 

was conducted using standardized z-scores of core strength components as 

predictors, kinematic parameters of core stability as mediators, and jumping 

performance as the criterion variable. The mediation analysis revealed no 

statistically significant indirect effects of the mediators on the relation 

between core strength and jumping performance. Only a small direct effect 

[β = 0.19, 95% BCa CI (0.10, 0.27), p < .001] on the relation between maximal 

core strength and jumping performance was observed.

Conclusions: The results indicate that, at least in our experimental setup, core 

stability does not appear to mediate the relation between core strength and 

jumping performance, but maximal core strength shows a relation to jumping 

performance. Insufficient force transfer of the hip musculature through the 

kinetic chain of the drop jump may cause the missing mediating effect of 

core stability. Consequently, hip strength measurement should be included as 

an additional predictor or mediator alongside core strength or core stability in 

the mediation model.
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1 Introduction

1.1 Core strength and core stability

Core strength or core stability has become important in 

enhancing sports performance (1–9) and skill acquisition (10, 

11), improving physical fitness, balance or postural control (1, 

12), and reducing the risk of injury to the upper and lower 

extremities (13–18) and in daily activities (19, 20). Given that 

the constructs of core strength and core stability have been 

widely accepted, it is surprising that no clear distinction is made 

between these constructs (21). In fact, the terms “core strength” 

and “core stability” are frequently used synonymously, although 

they originate from different approaches, bear different 

definitions, and accomplish different functions from an 

anatomical point of view (21, 22).

In general, the core is anatomically described as a box with the 

abdominals in the front, the paraspinal and gluteal muscles in the 

back, the diaphragm as the roof, and the pelvic ,oor and hip girdle 

musculature at the bottom (21, 23). The core represents a crucial 

element within numerous kinetic chains of sporting movements 

that enable the transfer of mechanical energy to the upper and 

lower extremities and therefore efficient movement execution 

(24–27). Functionally, the core musculature can be classified 

into local, global, and (axial-appendicular) transfer muscle 

systems (28–30) that generate forces and work synergistically to 

achieve proximal stability for distal mobility in athletic 

movements (26, 31). Thus, core strength can be defined as the 

ability of a core muscle or a core muscle group to generate 

muscular force (32). According to this definition, core strength 

includes different components, such as the maximal core 

strength, core endurance, and core power (33). Various types of 

sports or tasks prioritize the mentioned core strength 

components to different extents (34).

Neuromuscular control of the core muscles is critical for the 

precise and coordinated execution of muscle activation, which 

occurs at the right time, for the correct duration, and with the 

right combination of forces necessary to control the movement 

or position of the body. Thus, the body can respond to internal 

and external as well as expected or unexpected perturbations to 

ensure static and dynamic core stability (13, 26, 31, 35, 36). 

Consequently, core stability can be defined as a dynamic process 

that requires optimized core strength (maximal core strength, 

core endurance, and core power) and neuromuscular control 

(accurate joint and muscle receptors and neural pathways) that 

allows efficient integration of external and internal sensory 

information (13). It seems to be a controlling factor in 

movement that mediates the direct relation between core 

strength and athletic performance.

Nevertheless, the distinction between core strength and core 

stability appears to be ambiguous in the current literature. 

Accordingly, core muscle endurance tests are predominantly 

used to represent the construct of core stability or core strength, 

regardless of their different definitions (21, 34). Few studies have 

been conducted on the dominant coordinative aspect of core 

stability in relation to core strength. Small correlations between 

maximal core strength (e.g., isokinetic) or core muscle 

endurance (e.g., Biering-Sørensen test, double leg lowering test) 

and core stability (e.g., sudden loading test, stable and unstable 

sitting test) were observed (37–39). The findings of these studies 

revealed that core strength and core stability appear to be 

distinct components that nevertheless seem to be related to each 

other. Therefore, different clinical tests should be used to assess 

the stability and strength of the core. Additionally, it must be 

considered that specific test performance seems to be associated 

with the neuromuscular control mechanisms involved in each 

test (37, 39, 40).

1.2 Relation between core strength, core 
stability, and athletic performance

Adequate core muscle structure and core muscle control are 

the basis of the kinetic chain for facilitating the transfer of 

generated forces and moments between the lower and upper 

extremities in motor tasks of daily life and various sports (25, 

26). From a theoretical perspective, core stability appears to 

mediate the relation between core strength and athletic 

performance. Thus, the following assumption could be made: 

An athlete has a high level of core stability when (1) the 

coordination and (2) the structure of core muscles are adequate 

so that the produced core strength is sufficient and can be better 

transferred to the lower and upper extremities, resulting in 

increased athletic performance. In contrast, an athlete has slight 

core stability when (1) the coordination and/or (2) the structure 

of core muscles are inadequate so that the produced core 

strength is absorbed or limited by neuromuscular control under 

unstable conditions. Thus, less force is transformed into work of 

the lower and upper extremities, resulting in decreased athletic 

performance (41–45).

However, few studies have examined the associations between 

core strength, core stability, and athletic performance. Prieske 

et al. (2) listed in their systematic review 15 correlation studies 

that revealed small relations between core strength and physical 

performance measures. Bauer et al. (46) reported a small 

correlation between core muscle endurance and throwing velocity 

in male handball players. Okada et al. (47) indicated small 

correlations between core muscle endurance measures and 

backward medicine ball throw performance. Moreover, several 

reviews (1–3, 5–9) in recent years regarding the efficacy of core 

strength or core stability training on athletic performance have 

reported con,icting results. While Reed et al. (3), Prieske et al. 

(2), and Saeterbakken et al. (1) revealed small to large effects of 

core strength or core stability training on physical fitness and 

moderate effects on sport-specific performance, Dong et al. (6) 

reported that core training has a large effect on core muscle 

endurance and general physical fitness parameters of athletes but 

has a small effect on sport-specific performance. Most correlation 

and intervention studies include assessment techniques or 

training programs that focus on the endurance component of the 
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core muscles but do not consider other core strength components, 

such as maximal core strength and core power, or coordination in 

core musculature (1, 2, 5, 6, 46, 47). This may be a possible reason 

why the shared variance between core strength or core stability and 

athletic performance is only small or why core training has only 

small effects on sport-specific performance. Consequently, it 

seems reasonable to consider the core muscular demands 

(maximal strength, power, and endurance) of a specific sport or 

task in core strength and core stability assessment and training to 

improve athletic performance rather than incorporating stimuli 

that target only the endurance component of the core muscles (6, 

34, 38, 48, 49). For example, isometric measurement methods, 

which assess all core strength components in the same exercise 

(33, 50, 51), are advisable due to the high standardization of the 

test conditions. Various studies have suggested that core muscles 

have a stabilizing function in jumping tasks (e.g., 

countermovement jumps, drop jumps) (52–55). Moreover, core 

stability is frequently discussed as a potential risk factor for lower 

and upper extremity injuries. It is regarded as a crucial element 

in ensuring the correct positioning of the lower and/or upper 

extremities (13, 16, 36, 43, 54, 56–59). A comprehensive core 

strength measurement approach, which considers all components 

of core strength (33) and a core stability measurement referring 

to a specific task or sporting movement, is indicated (44).

1.3 Aim and hypothesis

The current scientific literature shows con,icting evidence 

regarding the extent of the relations between core strength, core 

stability, and athletic performance. Consequently, it has been 

suggested that core strength or core stability may play a minor 

role in athletic performance and/or that the assessments used 

for measuring core strength or core stability may not have been 

specifically selected for athletic performance requirements. On 

the basis of the functional anatomy of the core, it is assumed 

that the core muscles generate core strength, which must be 

controlled depending on the sporting movement or task to 

ensure core performance. Consequently, adequate core stability 

is an intermediary component that leads to increased athletic 

performance. Following up, we hypothesize that core stability 

mediates the effect of core strength on athletic performance.

2 Materials and methods

The study was conducted in accordance with the Declaration 

of Helsinki, and the local Ethics Committee of the Carl von 

Ossietzky Universität Oldenburg, Germany, approved to the 

protocol (EK/2020/035-08).

2.1 Participants

An a priori power analysis using the formula by Giraudeau 

and Mary (60) resulted in a sample size of N = 40 participants 

(see supplementary materials, Sample size calculation). In a 

randomized controlled study, forty-four adult sports students 

participated, whereas three subjects were excluded from further 

analysis for technical reasons. A total of forty-one subjects 

(nfemale = 20, nmale = 21, age: 24.0 ± 2.9 years, body height: 

178.9 ± 9.9 cm, body mass: 75.2 ± 12.8 kg, body fat: 18.3 ± 6.7%) 

were included in the final data analysis. The subject had no 

injuries in the trunk area or the upper or lower extremities at 

the time of measurement and in the previous twelve months, 

nor were they receiving treatments. The participants represent a 

diverse range of athletic backgrounds (N = 26 different sports; 

e.g., handball, soccer, gymnastics, volleyball). A limited number 

of subjects (n = 15) engaged in targeted core strength training 

(49.7 min ± 51.1 min) every week. The determination of leg 

dominance (nright = 20, nleft = 21) was based on the question of 

which leg is used for take-off in the long jump (dominant 

leg = jumping leg, nondominant leg = swinging leg).

2.2 Procedures

All subjects participated in two testing sessions (see Figure 1), 

each lasting 90 minutes, in a controlled laboratory environment. 

Before the commencement of the experimental procedure, the 

subjects were duly informed about the methodology and 

provided written consent to participate in the study. In the first 

of the two testing sessions, the subjects completed a 

questionnaire that included personal information, sports 

background, and injury history. The participants were similarly 

recovered at the beginning of both testing sessions. 

Anthropometric measurements (body mass, body height, and 

body fat) were performed via the Inbody270 (Inbody Co., Seoul, 

Korea) and a stadiometer (Seca GmbH & Co. KG, Germany). 

Both testing sessions began with a five-minute warm-up to 

activate the entire musculature of the body, with particular 

attention to the core. The Unilateral Landing Error Scoring 

System test (ULESS test) (61) was subsequently conducted to 

evaluate the core stability and athletic performance data. The 

order of the starting leg (dominant or nondominant) in the 

ULESS test was randomized but consistent across both testing 

sessions. Following the core stability assessment, one of the two 

testing sessions was performed: Testing session A included the 

core muscle endurance measurement, and testing session 

B included the measurement of maximal core strength and core 

power. The order of the testing sessions was randomized. There 

were at least seven days between the two testing sessions.

2.3 Instruments

2.3.1 Core stability and athletic performance 

measurement
The subjects were asked to perform the ULESS test, which is 

regarded as a reliable tool for the qualitative assessment of 

movement kinematics (61, 62). The ULESS test was used to 

assess both core stability and athletic performance in a sport- 
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specific manner. Single-leg jumps are common in various sports. 

On the one hand, they are important for athletic performance, 

and on the other hand, they represent a central injury situation 

that is considered in injury prevention (15). The subjects stood 

on a 20 cm high box with both feet pointing forward, 

approximately at shoulder width. The box was placed at a 

distance of 25% of the individual’s body height from a force 

plate (Kistler AG, type 9260AA6, frequency 400 Hz, Winterthur, 

Switzerland). The experimental set-up of the ULESS test is 

shown in Figure 2.

The subjects were instructed to perform a horizontal drop 

from the box toward the force plate with a bilateral take-off, 

landing unilaterally on the force plate, and jumping with the 

same leg vertically and as high as possible immediately after 

ground contact. Following the completion of the vertical 

jump, a bilateral landing was permitted on the force plate. 

The arms had to be placed on the hips during the whole task 

(61). To familiarize themselves with the task, the subjects had 

three practice trials for each leg. Afterwards, three test trials 

were conducted for each leg, with a 30-second rest interval 

between trials. A two-minute rest interval was observed 

during the transition to the other leg. Trials were considered 

successful when the subjects (1) performed symmetrical 

bilateral take-off from the box, (2) landed completely and 

unilaterally on the force plate, (3) and performed a vertical, 

unilateral jump in ,uid motion, and landed with both feet 

on the force plate. The performances were recorded in the 

frontal plane using a high-speed camera (VCXU-50C, 100 Hz 

sampling frequency, Baumer Holding AG, Frauenfeld, 

Switzerland). The frontal camera was positioned at a distance 

of 3.80 m from the force plate and at a height of 1 m. 

The 2D video data were processed by movement analysis 

software TEMPLO® (Version 2022.1, Contemplas GmbH, 

Kempten, Germany).

2.3.2 Core stability analysis

Different studies have shown a relation between various 

biomechanical variables of the core kinematics and lower limb 

kinematics during jumping tasks (14, 15, 57, 58). It has been 

proposed that the control of the vertical axis of the upper body, 

the knee, and the horizontal axis of the pelvis in unilateral 

movements should be key parameters for assessing core stability 

(see Figure 3). Therefore, the lateral trunk lean, lateral pelvic tilt, 

and frontal knee angles in the first ground contact of the drop 

jump at the moment of maximal knee ,exion of the jumping 

leg (63–65) were determined using movement analysis software 

(Kinovea, version 0.9.5) (61). The frame at peak knee ,exion 

was visually identified for 2D video analysis (63). The lateral 

trunk lean angle (blue angle in Figure 3) is formed by the lateral 

shoulder joint center and the anterior superior iliac spine (ASIS) 

of the jumping leg side. A line connects these landmarks, and 

the angle of the frontal plane is determined (66). The difference 

between the baseline lateral trunk lean angle in the standing 

position before jumping and the lateral trunk angle at the time 

of the first ground contact was calculated. A negative value 

characterized a lateral trunk leaning toward the jumping leg, 

and a positive value characterized a lateral trunk leaning toward 

the swinging leg. For the frontal knee angle (green angle in 

Figure 3), a line was drawn from the ASIS to the center of the 

patella and from the patella to the center of the ankle joint of 

the jumping leg. The angle of the frontal plane was calculated 

(64). Positive values indicate a valgus knee position, and 

negative values indicate a varus knee position. The lateral pelvic 

tilt angle (red angle in Figure 3) was determined through the 

height difference between the left and right ASIS. The ASISs 

were connected with a horizontal line starting at the ASIS of the 

jumping leg. The angle of the horizontal plane was defined (63). 

A positive value represented a contralateral pelvis rise, whereas a 

negative value represented a contralateral pelvis drop. Absolute 

values of the core stability variables were determined under the 

assumption that core stability decreases with increasing distance 

from zero degrees in the vertical axis of the spine (lateral trunk 

lean angle) and knee (frontal knee angle) and the horizontal 

axis of the pelvis (lateral pelvic tilt angle), regardless of 

the direction.

2.3.3 Athletic performance analysis

The jump height and ground contact time at the first ground 

contact of the drop jump in the ULESS test were automatically 

calculated by movement analysis software TEMPLO® (Version 

2022.1, Contemplas GmbH, Kempten, Germany). Therefore, the 

ground reaction force signals of the force plate for the drop 

jumps were synchronized and automatically transformed into 

jump height and ground contact time values. Jump height 

FIGURE 2 

Experimental set-up.

FIGURE 1 

Study design.
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values were used for the statistical analysis, while the ground 

contact time was taken to control the stretch-shortening cycle of 

the participants.

2.3.4 Core strength measurement

All strength components (endurance, maximal strength, and 

power) of the core muscles were measured in a lying position 

via the abdominal ,exion test (anterior abdominal muscles), the 

Biering-Sørensen test (back muscles), and the lateral ,exion test 

(oblique muscles) (33, 50, 51). The order of tests remained 

consistent for all participants following a prescribed sequence 

for technical reasons: abdominal ,exion, back extension, lateral 

,exion right, and lateral ,exion left (33). The positions in each 

test were standardized and controlled manually using a 

goniometer. The parameters of holding time, maximal voluntary 

isometric contraction (MVC), and peak rate of force 

development (pRFD) were measured in each of the four 

exercises. The instruction provided to the participants within the 

holding time measurement was to maintain the different test 

positions for as long as possible. A stopwatch was used by the 

examiner to record the holding time in seconds. The 

participants performed one familiarization trial for a maximum 

duration of five seconds, followed by a test trial in each test 

position (,exion, extension, lateral ,exion right, and lateral 

,exion left). Five minutes of rest between the test positions was 

permitted. In MVC and pRFD measurement, the participants 

were instructed to pull from a light preload as hard and fast as 

possible on the force sensor for a duration of five seconds (67, 

68). Three practice trials with submaximal effort were permitted 

for each test position, followed by three test trials with maximal 

effort. The participants rested one minute between each test trial 

in a single test position and two minutes during transition 

between positions. The processing of the force-time curves was 

undertaken using MuscleLab software (Version 10.200.90.5097, 

Ergotest Innovation AS, Stathelle, Norway) with a sampling rate 

of 1 kHz (68). The MVC values were extracted as a 

20-millisecond moving average from the raw data for each test 

trial. Moreover, the pRFD values were also determined by a 

20-millisecond moving average in force-time curves. The mean 

MVC and pRFD values of the three test trials in each position 

were used for further analysis. A comprehensive description and 

further details of the test setup of the core strength component 

measurements have been provided by Schulte et al. (33).

2.4 Statistical analysis

The data were statistically analyzed using JASP (version 0.18.3, 

University of Amsterdam, Netherlands). First, the data were 

checked with the Shapiro–Wilk test for normal distribution and 

further examined for skewness, kurtosis, and unimodality (69). The 

means and standard deviations of core strength variables, core 

stability variables, and drop jump heights were calculated for each 

testing session and pooled for the dominant and nondominant legs. 

The intraclass correlation coefficients (ICCs) for the core strength 

variables, core stability variables, and the drop jump height were 

calculated to determine test-retest reliability (2-way mixed effects, 

absolute agreement, multiple raters or measurements). The test- 

retest reliability of core stability variables and drop jump height was 

determined by the three ULESS test trials in the first testing session. 

Test-retest reliability of MVC and pRFD variables was determined 

using the three test trials for maximal core strength and core power 

measurement. The ICC values were interpreted according to Koo 

and Li (70) as poor (< 0.50), moderate (0.50–0.75), good (0.75– 

0.90), or excellent (> 0.90). Moreover, the standard error 

measurement (SEM) was computed as SEM ¼ SD x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 - ICC
p

(71), and the coefficient of variation (CV) was calculated as 

CV ¼ SD
M
�100 to evaluate the degree of variation between 

measurements. All CV values < 10% can be considered acceptable 

according to Cormack et al. (72). The interrater and intrarater 

reliability (2-way mixed effects, consistency of multiple raters or 

measurements and 2-way mixed effects, absolute agreement, 

multiple raters or measurements, respectively) of core stability 

variables (lateral trunk lean, frontal knee, and lateral pelvic tilt 

angles) were quantified using the ICCs following the 

recommendations of Koo and Li (70). Two raters screened and 

rated a selection of 82 recordings (one random trial of each subject 

for the dominant and nondominant legs). The values of the core 

stability variables of the two raters were summarized for the 

dominant and nondominant legs and compared to compute 

interrater reliability (.83 ≤ ICC ≥ .99). Moreover, one rater re-rated 

the same 82 recordings a second time, at least one week apart, to 

calculate intrarater reliability (.88 ≤ ICC ≥ .99) combined for both 

the dominant and nondominant legs (see supplementary material 

Table 1). Inter- and intrarater reliability separated for both the 

dominant and nondominant legs are represented in Supplementary 

material Table 2.

The means and standard deviations of core stability and jumping 

performance variables were further summarized for both testing 

sessions and both the dominant and nondominant legs. All 

variables were z-standardized to indicate the relations between core 

strength variables, core stability variables, and drop jump height in 

FIGURE 3 

Kinematic parameters for core stability in single-leg drop jump.
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the mediation analysis. Before running the mediation analysis, a 

principal component analysis (PCA) was used to reduce the 

dimensionality of the core strength data. The z-standardized values 

of holding time, MVC, and pRFD variables of the four exercises 

(,exion, extension, lateral ,exion right, and lateral ,exion left) in 

core strength measurement were included in the PCA. Through 

the orthogonally varimax rotation, the variables were assigned to 

the component on which they loaded higher than on the other 

components. The PCA extracted three principal components out 

of twelve different core strength variables, which explained 73.4% 

of variance. MVC variables loaded high on one component, pRFD 

variables loaded high on one component, and holding time 

variables loaded high on one component. Based on the results of 

the PCA, the holding time, MVC, and pRFD values in the ,exion, 

extension, lateral ,exion right, and lateral ,exion left exercises of 

the core strength measurement were summed into three 

components: core muscle endurance, maximal core strength, and 

core power. According to the theoretical hypothesis, core strength 

variables (maximal core strength, core power, and core muscle 

endurance) were considered as predictor variables, core stability 

parameters (lateral trunk lean, frontal knee, and lateral pelvic tilt 

angles) demonstrated the mediator variables, and the athletic 

performance variable drop jump height was characterized as the 

criterion variable in the simplified mediation model (see Figure 4).

Statistical mediation analysis was performed to expand the 

understanding of how core strength affects athletic performance 

through the indirect effect of core stability. If the observed 

relation between the predictor and criterion variables becomes 

weaker after the inclusion of an objectively measured mediator 

variable, partial mediation will occur. If the size of the 

association between the predictor variable and the criterion 

variable was not significant and the confidence interval of the 

beta-coefficient included zero after the inclusion of an 

objectively measured mediator variable, complete mediation 

would be observed (73). Multiple predictors (core muscle 

endurance, maximal core strength, and core power) and 

multiple mediators (lateral pelvic tilt, lateral trunk lean, and 

frontal knee angles) were included in the mediation analysis 

which was performed with JASP (version 0.18.3, University of 

Amsterdam, Netherlands) based on an R package for structural 

equation modeling of Rosseel (74). The mediation hypothesis 

test was estimated using a confidence interval by the 

bootstrapping method with bias-correction and acceleration 

(95% BCa, 5000 resamplings) (73). The bootstrapping method is 

a non-parametric approach by Preacher and Hayes (75) to 

estimate the effect size and hypothesis testing that does not rely 

on the assumption about the distributions of the variables and 

applies to small sample sizes. The method is accomplished by 

creating new samples from the original data, sampling with 

replacement is conducted, and the indirect effect is computed 

for each sample (75). The effect size of R2 was determined to 

assess the explained variance accounted for in the mediation 

model. Thus, both the total effect and component paths in the 

mediation model can be evaluated (76). The effect size of R2 

was interpreted according to Cohen (77) as small (R2 = .02), 

medium (R2 = .13), and large (R2 = .26).

3 Results

The assumption of normal distribution for all variables can be 

maintained. Descriptive data, test-retest reliability (ICC), SEM, 

FIGURE 4 

Mediation model of the relations between core strength, core stability, and athletic performance (ab, indirect effect; c’, direct effect; c, total effect).
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and CV of the core stability, core strength, and athletic 

performance variables are presented in Table 1. Test-retest 

reliability was considered moderate to good (.72 ≤ ICC ≥ .88) for 

core stability variables, good to excellent (.82 ≤ ICC ≥ .99) for 

core strength variables, and excellent (ICC = .96) for the athletic 

performance variable. The SEMs of 0.8–1.5°, 11.1–17.3 N, 

150.8–335.2 N/s, and 0.01 m were observed for core stability, 

MVC, pRFD, and athletic performance variables, respectively. 

The core stability, MVC, and pRFD variables displayed CV 

ranges of 19.3–24.1%, 5.5–11.8%, and 24.0–29.8%, respectively. 

The drop jump height shows a CV of 8.2%. Test-retest reliability 

separated for both the dominant and nondominant legs is 

represented in Supplementary material Table 3.

The total (c), direct (c’), and indirect effects (ab) of the mediation 

analysis are presented in Table 2. The relations between core strength 

variables (core muscle endurance, maximal core strength, and core 

power), core stability variables (lateral pelvic tilt angle, lateral trunk 

lean angle, and frontal knee angle), and drop jump height showed 

no statistically significant indirect effects (see Table 2). The direct 

effect estimated by the mediation model revealed a statistically 

significant positive relation between maximal core strength and 

drop jump height [c’ = 0.19, 95% BCa CI (0.10, 0.27), p < .001]. No 

statistically significant direct effects were observed between core 

muscle endurance and drop jump height, nor between core power 

and drop jump height. The total effect of the mediation analysis 

was statistically significant for the relation between maximal core 

strength and drop jump height [c = 0.21, 95% BCa CI (0.13, 0.28), 

p < .001]. There were no statistically significant total effects 

between core muscle endurance and drop jump height, and 

between core power and drop jump height. Nevertheless, specific 

path coefficients of the mediation model were statistically 

significant (see supplementary material Table 4). The core strength 

variables together explained. 10 ≤ R2 
≥ .34 of variance in the core 

stability variables (a paths) and R2 = .52 of variance in jumping 

height (c paths). The core stability variables together explained 

R2 = .19 of variance in jumping height (b paths). The core strength 

and core stability variables together explained a variance of 

R2 = .57 in the drop jump height (ab paths). In addition, separate 

mediation analyses were performed for both the dominant and 

nondominant legs, which yielded similar results (see 

supplementary material Tables 5, 6).

4 Discussion

This study aimed to examine the relation between core 

strength, core stability, and athletic performance. The hypothesis 

was that core stability mediates the relation between core 

strength and athletic performance (specifically: jumping 

performance). The main findings indicate that core stability 

(none of the selected parameters) does not seem to mediate the 

relation between core strength and athletic performance. In 

contrast, core strength, particularly maximal core strength, 

appeared to be directly related to athletic performance with a 

small effect size (β = 0.19), whereas core muscle endurance and 

TABLE 1 Descriptive statistics and test-retest reliability of the core 
stability, core strength, and athletic performance variables.

M SD ICC 95% 
CI

SEM CV 
[%]

Core stability variablesa

Lateral pelvic tilt 
angle [°]

5.1 1.4 .72 .53, .84 0.8 24.1

Lateral trunk lean 

angle [°]

10.1 2.9 .84 .74, .91 1.1 19.3

Frontal knee angle [°] 9.9 4.3 .88 .80, .93 1.5 28.3

Core strength variables

Holding time [s]

Flexion 223.4 138.5 -b -b -b -b

Extension 161.3 49.4 -b -b -b -b

Lateral ,exion right 65.5 28.6 -b -b -b -b

Lateral ,exion left 73.3 28.9 -b -b -b -b

MVC [N]

Flexion 294.6 102.1 .99 .97, .99 12.5 5.5

Extension 316.7 85.4 .96 .93, .98 17.3 8.5

Lateral ,exion right 150.5 71.4 .98 .96, .99 11.1 11.6

Lateral ,exion left 162.5 72.4 .96 .93, .98 15.0 11.8

pRFD [N/s]

Flexion 1,895.9 939.1 .88 .78, .93 332.0 29.2

Extension 1,600.9 805.9 .83 .71, .90 335.2 29.8

Lateral ,exion right 750.7 356.4 .82 .68, .91 150.8 24.0

Lateral ,exion left 753.5 453.7 .88 .80, .94 155.9 24.8

Athletic performance variable

Drop jump height [m] 0.121 0.036 .96 .94, .98 0.010 8.2

CI, confidence interval; CV, coefficient of variation; ICC, intraclass correlation coefficient; 

M, mean value; MVC, maximal voluntary isometric contraction; pRFD, peak rate of force 

development; SD, standard deviation; SEM, standard error of measurement.
aAbsolute values of core stability variables.
bFor methodological reasons, only one trial was recorded.

TABLE 2 Total, direct, and indirect effects of the mediation analysis.

Effect β SE 95% BCa CI z p

Total effect (c)

CME → DJH −0.007 0.04 −0.08, 0.06 −0.19 .850

MCS → DJH 0.21 0.04 0.13, 0.28 5.11 <.001

CP → DJH 0.008 0.04 −0.07, 0.10 0.20 .839

Direct effect (c’)

CME → DJH −0.03 0.05 −0.14, 0.06 −0.60 .549

MCS → DJH 0.19 0.04 0.10, 0.27 4.57 <.001

CP → DJH 0.03 0.05 −0.06, 0.15 0.60 .549

Indirect effect (ab)

CME → LPT → DJH 0.002 0.01 −0.02, 0.04 0.20 .845

CME → LTL → DJH 0.007 0.01 −0.01, 0.05 0.80 .422

CME → FKA → DJH 0.01 0.02 −0.04, 0.06 0.65 .514

MCS → LPT → DJH 0.03 0.02 −0.004, 0.08 1.45 .146

MCS → LTL → DJH < −0.001 0.01 −0.03, 0.02 −0.03 .977

MCS → FKA → DJH −0.01 0.02 −0.07, 0.03 −0.65 .516

CP → LPT → DJH −0.03 0.02 −0.09, 0.01 −1.57 .117

CP → LTL → DJH 0.01 0.01 −0.01, 0.08 0.96 .340

CP → FKA → DJH −0.01 0.01 −0.05, 0.01 −0.58 .564

β, beta-coefficient; BCa CI, bias-corrected and accelerated bootstrap confidence interval; 

CME, core muscle endurance; CP, core power; DJH, drop jump height; FKA, frontal 

knee angle; LPT, lateral pelvic tilt angle; LTL, lateral trunk lean angle; MCS, maximal 

core strength; p, p-value; SE, standard error; z, z-value.
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core power did not. Thus, the mediating hypothesis that core 

stability mediates the relation between core strength and athletic 

performance could not be verified. According to Zhao et al. 

(78), these results can be interpreted as direct-only non-mediation.

4.1 Causes of non-mediating core stability

The absence of mediation could result from an insufficient 

transfer of force between the core and lower extremities in the 

kinetic chain (26). Functionally, in addition to the local and 

global system of the core, the hip musculature (e.g., hip ,exors, 

hip extensors, hip abductors, and hip adductors) is classified as 

an axial-appendicular musculature that connects the lower 

extremities to the pelvic girdle of the core and transfers forces 

through the kinetic chain between the core and the lower 

extremities during movement (29, 30). Studies investigating the 

correlations between hip muscle strength and control of the 

core and lower extremities in single-leg activities (e.g., 

jumping, step-down task, squat, bridge) have indicated that 

weak hip abductors may alter muscle activation to control and 

stabilize the core and lower extremities (79–83). The gluteal 

muscles (e.g., the gluteus maximus and gluteus medius) appear 

to play an important role in the frontal plane stability of the 

pelvis, trunk, and lower extremities during jumping tasks (80, 

82). The gluteus maximus is attached to the pelvis and lumbar 

spine via the thoracolumbar fascia (84). In our study, the hip 

musculature may have been unable to adequately support the 

mass of the body during the first ground contact of the drop 

jump, resulting in compensatory movement of the trunk and/ 

or lower extremities to maintain stability. The hip muscles may 

not have been able to transfer forces effectively between the 

lower extremities and core, meaning that the mediating 

in,uence of core stability on the relation between core strength 

and athletic performance of the lower extremities could not be 

observed. Resende et al. (79) reported that core strength and 

hip strength predict part of the variability in core stability. Hip 

strength could be included in an analysis (1) alongside core 

strength as an additional predictor or (2) alongside core 

stability as an additional mediator/moderator because of its 

ability to transfer between the lower extremities and the core. 

Although no mediating effect of core stability could be 

indicated, the total mediation model already shows a large 

effect size (R2 = .57). Extending the mediation model with an 

additional component may improve the variance accounted for 

by the component paths (a paths) in the mediation analysis. 

Further studies could indicate a potentially mediating effect of 

core stability on the relation of core and hip strength with 

athletic performance of lower extremities in drop jumps. 

Alternatively, the potentially mediating effect of core stability 

and hip strength on the relation between core strength and 

athletic performance of the lower extremities could be revealed. 

Despite the absence of a mediating effect of core stability on 

the relation between core strength and athletic performance in 

the present study, a distinction was made between the 

theoretical constructs of core strength and core stability, 

considering their divergent definitions, in contrast to most 

previous studies. In accordance with a small number of studies 

(37, 40), different measurement methods have been employed 

to quantify (1) isolated core strength, with a focus on the 

force-generating task of distinct core muscle groups; and (2) 

core stability, with a focus on the coordination aspect of core 

muscles during athletic movement. A more thorough 

examination of the relation between core strength and core 

stability revealed very small correlations (see supplementary 

material Table 2). Consistent with our study, similar results 

have been reported by other studies (37, 40, 85, 86).

In our study, both core stability and athletic performance were 

determined with drop jump movements to achieve a high degree 

of representativeness and a potential correlation between core 

stability and athletic performance following a head-to-toe 

approach (44). From the perspective of the principle of the 

kinetic chain (26), poorer athletic performance is expected when 

the axial stability of the spine, pelvis, and knee in the frontal 

plane varies in the first ground contact of the drop jump. 

Nevertheless, in the current study, trivial to small correlations 

were indicated between core stability and jumping performance 

(see supplementary material Table 4). Our study partially 

revealed a weak relation between core stability and athletic 

performance. In the current literature, there is a paucity of 

evidence regarding the relation between core stability and 

athletic performance (87, 88). More evidence is necessary for a 

comprehensive understanding of how core stability works in the 

different planes of movement and how it’s related to athletic 

performance (37).

4.2 Relation between core strength and 
jumping performance

In contrast to most studies, which focus on core muscle 

endurance in relation with athletic performance (2, 6, 21, 34), 

our study used a systematic and comprehensive approach to 

evaluate maximal core strength, core power, and core muscle 

endurance under highly standardized conditions (33). The 

results of the present study indicate that maximal core strength 

is related to jumping performance, whereas core muscle 

endurance and core power are not. In relation to the jumping 

performance of the drop jump, it appears that maximal core 

strength contributes more than core power and core muscle 

endurance. The single-leg drop jump is a dynamic movement 

with a high physical load during the initial ground contact. 

According to the general classification of strength (89), it seems 

reasonable that maximal core strength, as a basic dimension, 

was related to jumping performance rather than core muscle 

endurance and core power. Similar to our study, Prieske et al. 

(52) revealed positive correlations between maximal core 

strength of the extensor muscles and drop jump height under 

stable (r = 0.64) and unstable conditions (r = 0.66). Other studies 

investigating the relation between core power as well as core 

muscle endurance and jumping performance, have yielded 

inconclusive results (41, 53, 90–94).
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4.3 Limitations and future directions

Readers should note the following limitations of this 

study. The kind of muscle action involved in isometric 

core strength measurements and during drop jumps may 

not be similar. Thus, dynamic core strength measurements, 

in addition to isometric core strength measurements, could 

be considered in further studies (95). The results of this 

study reveal a relatively high coefficient of variation for 

certain core power and core stability variables without any 

systematic biases (e.g., learning or fatigue effects). In 

future studies, further methodological measures should be 

taken to improve data quality. The sex and training 

background of the participants may be potential 

moderators in the mediation model, which can in,uence 

the results. Further studies with larger sample sizes should 

consider potential sex differences and differences in 

training background in core strength (96) and 

biomechanical measurements (e.g., frontal knee angle) (97). 

Moreover, the current study first of all provides results on 

core stability in the frontal plane of movement during a 

drop jump. Further studies should consider biomechanical 

measurements in different planes of movement to evaluate 

core stability during movements more precisely and 

comprehensively in relation to athletic performance.

5 Conclusion

The present study revealed that core stability, with the 

parameters selected in our study, does not seem to mediate 

the relation between core strength and jumping performance, 

but a direct relation between core strength, particularly 

maximal core strength, and jumping performance was 

observed. Our current approach suggests that the hip muscles 

do not adequately transfer forces between the core and lower 

extremities during the initial ground contact of the drop jump, 

thereby altering the motor control mechanisms of the core 

and lower extremities. Future studies should measure hip 

strength as an additional mediator alongside core stability or 

as an additional predictor alongside core strength to identify a 

mediating effect of core stability on the relation of core 

strength with athletic performance of the lower extremities. 

A more profound understanding of the interactions between 

core strength, hip strength, core stability, and athletic 

performance will facilitate the development of assessments and 

training that are tailored to the specific demands of different 

tasks or sports by sport scientists and practitioners.
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