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Data driven analysis of
biomechanical factors associated
with improved cross-country
skiing performance
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The objective of this work was to implement a data-driven biomechanical
approach that can assess the biomechanical determinants of cross-country
skiing performance. To achieve this, full-body kinematic data were obtained
and analyzed during over-ground cross-country skiing trials of varied efforts
to quantify propulsion strategies, spatiotemporal coordination, drag, and joint
power outputs. Eight athletes of varied skill levels were analyzed,
encompassing a total of 5,568 movement cycles (i.e., propulsion strategies).
To assess the many interacting modes of variation potentially associated with
the skilled performance in cross-country skiing two complementary analyses
were implemented. First, an automated objective classifier was trained on a
subset of data to detect varied propulsion strategies associated with different
athlete skill levels. Second, a principal component analysis was utilized to
provide animated reconstructions of representative movement styles and
relevant indicators of variance related to skill level. Results suggest that
several factors were associated with skill-level including: (1) dominant
propulsion strategy, (2) smaller frontal area, (3) reduced ski external rotation,
(4) increased upper and lower body joint power. The data driven approaches
implemented here can identify key features associated with cross-country
skiing performance and have the capacity to be used in a sport-field setting
to communicate efficient strategies to athletes.

KEYWORDS

principal component analysis, support vector machine, joint power, ski propulsion
techniques, motor coordination, wearable sensors, field testing, sport performance

1 Introduction

Cross-country skiing performance is reliant on the complex interaction of many body
segments requiring the athlete to coordinate whole body movement and power to achieve
enhanced propulsion speed and efficiency (1). The central nervous system must
coordinate the activation and relaxation of upper and lower body musculature in a
rhythmic nature to perform complex motor commands in a smooth, efficient manner
[e.g., (2)]. Classical Skiing (CS) and Skate Skiing (SS) are the two main techniques
utilized to navigate a cross-country skiing course, which have different sub-techniques
(3, 4) (Figure 1). CS features sagittal plane movements in both the upper and lower
body while the skis remain parallel. SS features a frontal plane push-off in the lower
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FIGURE 1

techniques of G2 (top), G3 (middle) and G4 (bottom).

Depiction of cross-country skiing techniques from Herbert-Losier et al. (10) (CC BY 4.0). Left column represents classical technique and sub-
techniques of double pole (top), kick double pole (middle), and diagonal stride (bottom). Right column represents skating technique and sub-

body with more abduction and external rotation at the hip,
resulting in a posterolateral movement of the skis (3, 4). The
two techniques are considered distinct disciplines, and athletes
may exclusively train one style. SS is considered to be the faster
technique and more difficult to learn (5). Each of these
techniques have sub-techniques that can be used in different
areas of a track if a skier needs to emphasize speed or force
across varied terrain. On an uphill section, athletes may choose
to use a sub-technique with a shorter cycle length and faster
cycle rate (3). While on a flat or downhill surface, athletes may
use a sub-technique with longer cycle lengths and lower cycle
rates as they can glide after each push. One sub-technique in CS
is the double pole technique, which is most used to generate
speed with the greatest skiing economy (6). Selection and
mastery of both CS and SS techniques may be an indicator of
improved skiing performance (5).

Coaching cross-country skiing can be challenging and may
take many years of practice to be able to detect errors and
communicate them effectively to an athlete to elicit the proper
changes in mechanics (7). Traditionally, coaches’ provide
feedback to athletes in the form of visual analysis, while
leveraging verbal cues and prompts to alter mechanics.
However, these cues may be subjective to a coaches own
individual bias. Providing the athlete with objective visual
feedback from a video or animation derived from an ensemble
of their own movements may improve motor learning and skill
acquisition (8). Since cross-country skiing is performed on a
track that an athlete must navigate, this may restrict the ability
for a coach to provide analyses across the entirety of a wide
range of terrains since the coach may only be able to see the
athlete’s technique for a small portion of time. Motion capture
technologies, such as those based on Inertial Measurement Units
(IMUs), can capture full-body kinematic data over large
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distances, enabling coaches to monitor athlete technique even
when out of visual range. This can permit coaches to collect
data from athletes in sport-specific settings and around all areas
of the track. These datasets can then be used to generate whole-
body animations to visualize the technique of the athlete,
provide quality feedback, and improve performance. Feedback
can then be presented to a coach in a format that is
interpretable (i.e., 3D human movement animation) rather than
an artificially reduced format (i.e., discrete or time-varying
which
coordination strategies.

metrics), can discount whole-body multi-segment

Fundamentally, cross-country skiing performance is defined
by the ability of an individual to navigate a track in the shortest
period of time. Cross-country skiing performance is affected by
multiple
thereby

components (i.e., joints, or other specific movement features) in

potentially interacting and intersecting variables,

reducing the utility of analyzing specific sub-
isolation (9, 10). Despite this, many previous studies have
selected discrete parameters a priori for statistical analysis to
infer performance (10-12). Given the dynamic nature of
performance, there is a need to evaluate large volumes of time
varying data in ecologically relevant (i.e., real-world, over-
ground) scenarios. By leveraging tools rooted in data science,
data structures can be examined to isolate biomechanical trends
related to performance outcomes. One such tool capable of data
reduction and feature identification is a principal component
analysis (PCA). PCA is a statistical technique that reduces
complex data sets into a series of orthogonal patterns of
variances called principal components (PCs) (13). It helps to
reduce and compare structures of variability within large time-
varying datasets, to describe and discern objective waveform
characteristics of high dimensionality between subjects or

groups. PC scores describe the magnitude and timing variability
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of each data point obtained along a PC loading vector to
understand the degree to which specific patterns of variance are
observed (13). A main benefit of PCA in biomechanics is the
capacity to use PC scores paired with subsequent multi-
component reconstruction (MCR), to reconstruct data along
specific modes of variation relating to an area of interest (ie.,
performance, injury, etc.), providing the opportunity to develop
full-body 3D
Reconstructing a full-body avatar may be an especially efficient

animated tools for wvisual inspection.

way to provide athletes and coaches with an easy-to-interpret

biomechanical  analysis, communicating key technical

data
spatiotemporal kinematics. PCA and machine learning driven

components relating to high-dimensional such as
analyses have been previously used to examine these various
factors associated with cross-country skiing performance (9, 14,
15), as well as across a variety of other human movements (2,
16, 17). PCA can assist researchers in examining a reduced
feature set which lacks the redundancy or collinearity often
associated with discrete biomechanical outcomes that are
selected a priori.

Elite cross-country skiers can produce high skiing velocities
with minimal kinematic variation to perform efficient propulsive
movements (1). Identifying the variability of the individual may
provide interpretable data relating to performance level and/or
injury risk (18). For example, a decreased variability may be
indicative of enhanced performance but can also lead to a risk
of chronic injury as the same bodily tissues are repeatedly used
to perform a given task. An increased task variability can relate
to poorer performance and can lead to a risk of acute injury
(18). The ability of an athlete to self-regulate their kinematic
variability while settling on an optimized strategy given
environmental constraints may be an important factor in
reducing injury risk while maximizing performance.

The overall objective of this work was to (1) develop an
objective method to identify and classify discrete cross-country
types  (2)

biomechanical approach that can objectively assess the kinematic

skiing  technique implement a data-driven
and kinetic cross-country skiing characteristics associated with
performance through the analysis of a large dataset. Given the
data-driven, exploratory nature of this research, it can be

considered hypothesis generating.

2 Materials and methods
2.1 Participants

Eight participants of varied skill levels completed an over-
ground skiing protocol consisting of three trials of varied effort:
easy, medium, hard. On the field, participants self-imposed the
effort to correspond to the targeted heart rate (HR) zones. Easy
effort corresponded to zone 1 (50%-60% max HR), medium
effort to zone 3 (60%-80% max HR), and hard effort to zones
4/5 (80%-100% max HR). Demographic variables for all
participants are provided in Table 1. The recruited subjects were
healthy adult volunteers with no declared cardiovascular,
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respiratory, or autonomic control diseases. They were required
to complete a cross-country skiing outing of at least 10 km.
Detailed information regarding the inclusion criteria was
provided to all participants, and the trial commenced only after
each participant had provided a signed informed consent form.
All participants who did not meet the inclusion criteria were
excluded from the study. The protocol for the current study was
reviewed and approved by the Research Ethics Committee of the
University of Trento (protocol number 2023-021) in accordance
with the Declaration of Helsinki. All participants reviewed and
signed informed consent prior to data acquisition. Athlete skill
level was self-reported by participants based on the following
criteria:

 Beginner: individuals who engage in recreational cross-country
skiing approximately once per week during the winter season
without structured training programs.

« Intermediate: amateur athletes who train at least twice weekly
during the winter season, incorporating structured training
sessions, and regularly participate in organized local or
regional cross-country competitions.

o Advanced: highly
consistently

athletes who train

with a

skilled amateur

throughout the year, focus on
performance improvement. They participate in regional or
national level competitions.

« Elite: professional athletes from the Fiamme Gialle Sports
Group of Guardia di Finanza, who train year-round with a
dedicated coaching staff and compete at national and

international levels.

2.2 Materials

Participants wore an XSens Link sensor suit consisting of 17
inertial measurement unit (IMU) sensors on the body and four
additional sensors located on the ski poles (x2) and skis (x2)
data at 240 Hz (Movella
Henderson, NV). The XSens Link was available in six sizes, and

that sampled kinematic Inc.,
each participant wore the suit that best fit their specific body
characteristics. Sensors and cables were affixed to the body using
dedicated housings placed on the suit. The sensor on the foot
was directly attached with a strap around the ski boot,
positioned on the instep. IMUs on the poles were fixed
immediately below the pole handles. IMUs on the skis were
placed in front of the ski bindings. Once all sensors were placed,
the calibration process was performed using MVN software. The
guided procedure first required the measurement of specific
sensor positions (e.g., the height of the IMU on the poles),
followed by the repetition of specific movements. This allowed
for the exact alignment of each sensor’s orientation with its
corresponding body segment. The experimenter assisted with
the donning procedure and the placement of sensors on the
poles and skis, ensuring correct sensor positioning and
connection to the main acquisition unit. Each participant was
allowed to use their own equipment, consisting of skis, ski
boots, and poles, avoiding the time required for familiarization
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TABLE 1 Participant demographic information, including the overall elapsed time and number of cycles extracted from each trial across all participants.

Age (years) Height (cm) NN EIYE Trial [time (s), Num cycles]

Easy Medium Hard

P3 M 38 175 Beginner 25355 230.8 s 237.5s
226 cycles 224 cycles 234 cycles

P12 M 33 183 248 s 218 s 208.7 s
510 cycles 443 cycles 360 cycles

P13 M 13 165 Intermediate 15558 1313 113.7 s
180 cycles 179 cycles 156 cycles

P14 M 13 151 165 s 1294 s 123.6s
192 cycles 164 cycles 173 cycles

P7 F 30 172 Advanced 240.5s 1549 s 1935
318 cycles 246 cycles 270 cycles

P8 F 27 171 155.5s 132s 1245
257 cycles 236 cycles 207 cycles

P5 F 23 164 Elite 184 s 114 s 109.4 s
250 cycles 200 cycles 183 cycles

P6 M 21 200 138.6 s 1143 s 100 s
143 cycles 107 cycles 119 cycles

with equipment and binding settings, thus preventing the
introduction of any other familiarization-related variables into
the study. Therefore, sensors were positioned individually for
each subject for each acquisition. Elite skiers used skating skis to
complete the course (due to training of that technique later in
the day), the remaining equipment types were not recorded.
Participants also wore an MTi 680-G GNSS (Movella Inc,
Henderson, NV) unit that collected global positioning data at
4 Hz, which was used to reconstruct track topography. All data
were logged into a portable data pack, ensuring synchronization,
and subsequently downloaded using XSens MVN Analyze
software (version 2022.0).

2.3 Experimental protocol

All data were acquired along a standardized track located at
the Cross-Country Stadium of Lago di Tesero (Trento, Italy).
The track used for data collection was an oval shape, primarily
flat, with one short climb and one short descent on each long
side (~20m elevation change). Data were captured over two
days with an average temperature of —7.3°C £ 3.8°C, an average
wind speed of 9.3 km/h £2.7 km/h and an average snow depth
of 688 cm+2cm. Following an initial warm-up loop for
familiarization with the environment and acquisition equipment,
participants completed three separate rounds of the track at
increasing effort levels (1-3x easy, 2-3x medium, 3-3x hard)
with the hard being a maximum effort trial. Trials were
completed in order of increasing power, ensuring all athletes
were adequately warmed up before the maximum effort (ie.,
final) laps. Within each course loop, participants were required
to employ a range of sub-techniques based on their preferred
main technique (Figure 1): G2, G3, G4 for skating; double pole,
kick double pole (flat), double pole, kick double pole, diagonal
stride, or herringbone (diagonal stride with skis angled outward
and without a glide phase for uphill) for Classic; free glide or
standing glide (i.e., skis parallel during downhills and without
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any arm or leg push-off) for both Skating and Classic. All
downbhill sections were completed in a tucked position (free glide).

2.4 3d track reconstruction

To reconstruct a 3D representation of the cross-country skiing
track, the GNSS data from one participant (P13) were used.
Specifically, the local x and y coordinates were used in addition
to the elevation relative to sea level. Following unit conversion,
track revolutions were segmented and demeaned to remove any
drift within the GNSS data.
representation of the 3D track topography is depicted in Figure 2.

spatiotemporal A visual

2.5 Pre-processing & joint power analysis

Raw IMU sensor data were high-definition (HD) reprocessed
using MVN Analyze (version 2022.0), with all processed kinematic
data being exported as .C3D files for further analysis elsewhere. To
facilitate the analysis of joint power, whole-body kinematic data of
all participants were imported into Visual 3D (C-Motion,
Germantown MD, USA). For all participants and trials, a time-
varying scalar metric of joint power (summed across all
component axes of each joint) was extracted for the shoulders
(bilaterally), thorax and abdomen (i.e., RTA), and knees
(bilaterally). All joint power data were then normalized to
participant mass and exported to MATLAB (The MathWorks,
2022a) for additional analysis.

Coordinate (C3D) data and joint power outputs were
processed and analyzed using a custom MATLAB script. First,
point cloud data consisting of all 76 (x, y, z) data points were
aligned to a 3D local reference frame located to each
participants’ pelvis, at each instant in time. Specifically, a 3x 3
rotation transformation matrix was generated at every frame to
represent the 3D misalignment between the participant’s pelvis
local coordinates and global coordinate system, which was then
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3D track reconstruction from P13 GNSS data.

P13 GNSS Data
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subtracted, such that all data were represented with respect to the
local reference frame of the pelvis. This was to ensure that each
participant would be facing the same direction for all
movements, even when changes in heading occurred. Next, 3D
locations of all data points were referenced to the location of the
T12

translations of the point cloud throughout the trial (Figure 3).

spinous process to remove effects of small linear

Individual movement cycles (i.e., propulsion strategies) were
automatically segmented by referencing the displacement of the
left toe marker derived from the XSens MVN kinematic body

model. Specifically, all Euclidean Norm displacement peaks

Point cloud data within each cycle were retained for further
analysis and the development of an automated propulsion
strategy classification framework.

2.6 Principal component analysis (PCA)

Once aligned, demeaned, segmented, and time-normalized a
structured database was developed of the following format:

1 . 1 1

exceeding 1 cm were used to partition individual propulsive time) g, disp(X1-76, ¥1.76> Z1-76)1-101  POWer(shoulder, knee, RTA), o,
s 2 : 2 2

movements. These criteria were selected following visual analysis timey o disp(Xi-76, ¥1-76> Z1-76)1-191 POWer(shoulder, knee, RTA){
time} o, disp(x1-76, ¥1_7¢> Z1-76)1-101 POWer(shoulder, knee, RTA)?_101

of the 3D kinematic data of several participants/trials to identify
a parameter capable of segmenting a wide range of propulsion
strategies (i.e., double-pole, kick double-pole, etc.). Following
cycle segmentation, all 3D coordinate data and joint-power time
series data for each cycle were time-normalized to 101 data
points by evenly resampling data from a Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP). Next, mean cycle
durations were interpreted across athlete skill levels to ascertain
any differences in athlete cadence across skill levels (Figure 4).
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All rows correspond to individual cycles (from all participants),
and all columns correspond to time-normalized, time, x/y/z
coordinate, and scalar power time-series data (summed
bilaterally for upper and lower body). All subsegments of the
data (i.e.,

millimeters, seconds, or W/kg) were feature (i.e., amplitude)

representing  different units of measurement

normalized by multiplying by scalar values such that the range
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Fia2 i 2
timef_101  disp(x1-76 Y1-76:21-76)i-101

imel i 1
[‘lmemm disp(X1-76: Y1-76:21-76)1-101
timej_yo;  disp(X1-76: Y1-76Z1-76)1-101
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power (should, knee, RTA)} 101
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Train a Support Vector
Machine (SVM) algorithm Coach and athlete friendly Multi-component
to identify all techniques movement quality report reconstruction of significant
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FIGURE 3
Flowchart depiction of the data analysis process

of amplitude for each time-series metric occupied approximately
the same range of values. A principal component analysis (PCA)
was conducted on the database to deconstruct the variance into
principal components (PCs). As a means of further data
reduction, only PC scores explaining a cumulative 90% of
variance within the data were retained for further statistical
analysis (17 PCs, Table 2). PCA preserves the variability of
multivariate datasets while reducing data dimensionality (19).
Many studies use features extracted by PCA as input to machine
learning models [e.g., (2, 16, 17, 19)]. In this study, we used
PCA to extract data features and to eliminate redundant
variables. Following PCA, propulsion cycle waveforms were
reconstructed to visualize the biomechanical meaning of all PC
scores associated with improved skill level.

2.7 Automated propulsion strategy
classification

A subset of individual propulsive cycles was animated and
manually labelled as either: (1) double pole, (2) kick double
pole, (3) diagonal stride, (4) standing glide, (5) free glide, (6)
skating, or (7) unknown. Specifically, 241 cycles were manually
labelled from the database of 5,568 cycles (4.32% of available
data). Given the comparatively low number of skating cycles, all
these sub-techniques (i.e., G2, G3, G4) were grouped together.
The cycles were selected in an effort to manually label a
sufficient number of examples of each strategy, without the need
to manually label all cycles. Following this, the labels and PC
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scores (1-17) were used to train a quadratic support vector
machine (SVM) automated classifier. Once trained, this classifier
was used to automate the classification of propulsion strategies
used across all 5,568 cycles.

2.8 Statistical analysis & training tool 3d
reconstruction

A general linear model (GLM) one-way ANOVA was
implemented with athlete skill level (i.e., beginner to elite) as the
independent variable, and PC scores (1-17) as the dependent
variables. Further, violin plots were generated to depict the
relationship between PC scores and athlete skill levels. Those
identified as having systematic (i.e., stepwise), and significant (i.e.,
p <0.05) relationships with skill-level were used as inputs into a
multi-component reconstruction framework with representative
PCs reconstructed as either the 95th or 5th percentiles for PCs
displaying positive or negative relationships with skill-level (2):

XBeginner/Elitt = X 1~ U1 * Zg5/5 + Up * Zgs/5 + U3 * Zgs/5

+...un*295/5

Where X represents the reconstructed data, X represents the mean, u
represents the PC loading vector and z represents the 95th or 5th
percentile PC score. This framework animates the primary modes
of variation present within the dataset which are systematically
(and significantly) related to athlete skill level.
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TABLE 2 Statistical analysis depicting PC scores related to skill level.

10.3389/fspor.2025.1664279

PC number Explained variance (%) Cumulative explained variance (%) F statistic p-value
1 234 234 249.08 <.0001
2 20.5 43.9 331.61 <.0001
3 10.7 54,5 3,919.97 <.0001
4 63 60.9 37232 <.0001
5 48 65.6 9.59 0.0020
6 38 69.4 13.30 0.0003
7 34 72.8 102.16 <.0001
8 2.8 75.6 1.19 02761
9 2.7 78.3 1.55 02126
10 24 80.7 788.02 <.0001
11 22 82.9 101.16 <.0001
12 1.7 84.6 111.57 <.0001
13 15 86.2 1,421.41 <.0001
14 13 87.5 692.78 <.0001
15 1.1 88.5 440.51 <.0001
16 1.0 89.5 449 0.0341
17 0.9 90.4 251.06 <.0001

Highlighted row indicates statistically significant stepwise relationship with skill level.

3 Results

The distribution of skill levels, and segmented propulsion cycles
from each athlete are presented in Table 1. Violin plots of cadence
characteristics across skill levels revealed changes in the distribution
of cycle times across skill levels (Figure 4). Although differences in
cycle time distributions existed, there was no significant difference
in mean cycle time across the skill levels.

3.1 Assessment of technique and SVM
classification

The SVM classifier trained to identify the propulsion cycle
techniques demonstrated 84% accuracy, with an AUC test
statistic of 0.94 (Figure 5A). Following automated classification,
the 5,568 cycles were plotted to depict the relative use of each
propulsion strategy across skill levels (Figure 5B). This analysis

(5]

F -

N

Segment Time (sec)
w

—

S Mean
—— Median

Beginner Intermediate Advanced Elite
Skill Level

FIGURE 4
Cycle cadence characteristics across skill level.
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(A) ROC curve for propulsion strategy prediction model. (B) Depiction of propulsion strategies across skill levels.
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suggests that the beginner skiers relied more on the diagonal stride
technique than advanced and elite skiers, who relied more on a
skating technique. Further, as the skill level increased, so did the
frequency of usage of the double pole technique.

3.2 Assessment of kinematics and
characteristics related to skill level

The assessment of the kinematic data included the first 17 PCs
which explained a cumulative variance of 90.4% in the pre-
processed dataset (Figure 6). A GLM model one-way ANOVA
assessing the effect of skill level on the PCs revealed that PC4
(p <.0001), PC6 (p=.0003), PC10 (p<.0001), PC11 (p <.0001),
PC15 (p <.0001) were significantly and systematically associated
with skill level (Table 2).

Multi-component  reconstruction  depicting
spatiotemporal ~ differences associated with skill
completed using PCs 4, 6, 10, 11, and 15. Collectively, these PCs
represent 15.8% of the total variance in the dataset (Figure 7).
Functional interpretation of kinematic PCs through MCR

provided over-emphasized visualization of the spatiotemporal

whole-body
level was

modes of variation between “Elite” and “Beginner” groups for
means of visualization. Reconstructed time-series from these
reconstructed data include outcomes related to frontal area, ski
angle, and upper/lower body power. Results of the multi-
component reconstruction indicate that elite athletes generate a
greater upper body peak power (bilaterally) than beginner athletes.
In comparison, elite athletes also tend to occupy less frontal area
and have a reduced ski angle, resulting in a reduced drag.

4 Discussion

The overall objectives of this work were to (1) develop an
objective method to identify and classify discrete cross-country
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skiing technique types (2) implement a data-driven
biomechanical approach that can objectively assess the kinematic
and kinetic cross-country skiing characteristics associated with
performance through the analysis of a large dataset. Currently,
coaches use subjective observations of technique through a
skilled, trained eye to develop athletes to the elite level (7). The
model developed in this study demonstrates that implementing
data-driven biomechanical approaches, such as a PCA and SVM,
can assist in the objective identification of phenotypic
differences between athletes of differing skill levels. One of the
strengths of using these approaches is the capacity to represent
meaning and context of large volumes of time-varying data
obtained from real-world scenarios. As such, the analysis
implemented here used every movement from every trial and
every athlete to inform the current results and demonstrate
powerful data reduction capabilities. This however may not have
accounted for differences that are a result of comparing
mechanics across technique types. A practical application of this
model would be to first use the SVM classifier to identify all of
the cycles by a specific technique type, then perform a statistical
analysis on the mechanical features obtained from this stratified
dataset. This is, of course, an interesting area for further study.
The findings regarding cycle cadence not being an indicator of
better performance (Figure 5) align with most studies on cross-
country skiing performance and faster cycle cadence may lead to
worse skiing economy (1). This demonstrated that a skiing
performance analysis would need to capture spatiotemporal
variations to identify differences across skill level.

The results from the SVM automated classification of sub-
techniques suggested that the double pole sub-technique was
one of the favored strategies for producing the greatest speed
and the fastest time to complete the track associated with higher
skill levels. The diagonal stride sub-technique was associated
with less experienced skiers and therefore slower speeds.
Complementing these findings were the results of the MCR,

where differences between skill level may be better explained by
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upper and lower body power outputs during propulsion. As each
of the upper and lower body power metrics are informed by the
sum of a different number of joints, the results suggest larger
power contributions from the shoulder and upper body
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components in all skiers (especially those classified as elite).
This aligns well with the type of sub-techniques that were
selected by different skill levels. It has previously been
demonstrated that there are greater contributions to speed and
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power from the upper body joints (shoulder and waist) than the
lower body joints (12, 18). This may suggest that the upper
body is responsible for generating propulsion while lower body
This is
unsurprising given the recent change in preferred strategies

joints create stability and influence direction.
during competition. Skating evolved over time from traditional
Classic skiing by adding a one-sided outward leg push, and it is
now prohibited during Classic races. In recent years, elite skiers
have developed their upper body strength to such an extent that,
in Classic races, they can use Skating skis exclusively with the
double-poling (DP) technique, particularly for long distances
(20). In order to generate more upper body power, skiers have
shown increases in upper body range of motion and wind up
(shoulder flexion and trunk extension) to generate more force
during pole-plant (1).

In addition to the technique results, a number of additional
kinematic factors were identified as having high variance across
skill level. Specifically, the frontal area of elite skiers is smaller,
resulting in less aerodynamic drag force. This indicates that higher
skill level skiers were able to maintain a smaller frontal area and
are able to ski at faster speeds with greater efficiency. Previous
studies have found a relationship between decreased drag from
lower air resistance being related to lower demand on propulsive
force, lower metabolic cost and lower oxygen cost to maintain the
same speeds (21). Further, elite skiers had a decreased external
rotation angle of the skis while gliding compared to the beginners
who skied with their skis more externally flared. A decreased
external rotation of the ski angle could suggest lower braking
forces throughout the trial resulting in greater speed due to
reduced friction from the ski-snow interaction (22). Notably, the
SVM classifier trained within the current study complements
those presented previously using head-mounted GNSS data (23)
This
although similar cycle classification can be obtained with fewer

and obtained comparable performance. suggests that
sensors, the current approach has the added benefit of full body
3D animation to administer actionable feedback to improve on
the execution of each sub-technique.

Although this study is novel in many ways, due to the field-
based nature of the results reported, there are several limitations
to consider. One notable limitation of this study is that only eight
participants were recruited for the analysis, all of whom had
varying skill levels and came from different demographic groups.
This includes the varied distributions of sexes and ages across
different skill groups. This small sample size may limit the
generalizability of the results to a broader population of skiers.
Further, this study only focuses on the biomechanical factors
associated with cross-country skiing performance and may
overlook factors beyond mechanical changes to technique that
may have an impact on performance outcomes. Participants were
not instructed to use a specific technique for navigating the track
and could decide which techniques to use on their own. This may
have affected the comparison of movements between the athletes
as all of the segments were compiled together despite variations in
techniques used. In addition, out of the 5,568 cycles generated,
only 241 were manually labelled to train the SVM classifier.
Although this an undoubtedly more efficient means of evaluating
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propulsion strategies across a large breadth of data, this may have
created bias for certain techniques despite the AUC statistic
reaching 0.94, suggesting strong fit statistics. Certain external
factors that may have affected the gliding performance of the skis
were not accounted for, such as ski specifications and snow
conditions, further, turning mechanics were not considered for
the current study. Finally, it is worth noting the potential effects
of both artificial stimulus, and wearable sensor drift. Although the
wearable sensors used here facilitated the acquisition of large
quantities of over-ground skiing movement, their body-worn
nature may have affected skier movement. Further, although care
was taken to correct for sensor drift (Section 2.5) through careful
debiasing, segmentation, and re-alignment, the results here may be
affected by some degree of drift.

This study provides valuable insights on the biomechanical
differences between skill levels of cross-country skiing athletes
and contributes to the body of literature on full-body cross-
country kinematics during natural over-ground skiing
movements. Data reduction techniques such as PCA may be
identify factors

performance and can be used in sport-field settings. This

used to significantly ~related to skiing
framework used in this analysis to evaluate human movement
can be applied across a variety of sports to identify factors
relating to performance and determine differences between skill
levels. This model can also be applied using data captured from
a marker-less video-driven setup which allows for it to be used
by coaches and athletes outside of a research setting. Coaches
can use the current model as a framework for evaluating and
comparing developing athletes to examine how their technique
compares to a higher skill athlete. From this analysis, it can be
determined that selection of technique, decreasing drag by
maintaining a small frontal area and reducing ski external
rotation, and lower

increasing upper and body power

production were all factors that varied with skill level.
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