
EDITED BY  

Laura E. Diamond,  

Griffith University, Australia

REVIEWED BY  

Datao Xu,  

Ningbo University, China  

Daniel Debertin,  

University of Innsbruck, Austria

*CORRESPONDENCE  

Shawn M. Beaudette  

sbeaudette@brocku.ca

RECEIVED 11 July 2025 

ACCEPTED 28 October 2025 

PUBLISHED 13 November 2025

CITATION 

MacNeil AJ, Kritzer TD, Napper AD, Fruet D 

and Beaudette SM (2025) Data driven analysis 

of biomechanical factors associated with 

improved cross-country skiing performance.  

Front. Sports Act. Living 7:1664279. 

doi: 10.3389/fspor.2025.1664279

COPYRIGHT 

© 2025 MacNeil, Kritzer, Napper, Fruet and 

Beaudette. This is an open-access article 

distributed under the terms of the Creative 

Commons Attribution License (CC BY). The 

use, distribution or reproduction in other 

forums is permitted, provided the original 

author(s) and the copyright owner(s) are 

credited and that the original publication in 

this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

Data driven analysis of 
biomechanical factors associated 
with improved cross-country 
skiing performance

Alexander J. MacNeil
1
, Tamar D. Kritzer

1,2
, Alexis D. Napper

1
,  

Damiano Fruet
3 

and Shawn M. Beaudette
1*

1Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, 

Canada, 2Department of Kinesiology, Faculty of Sciences, McMaster University, Hamilton, ON, Canada, 
3Department of Industrial Engineering, University of Trento, Trento, Italy

The objective of this work was to implement a data-driven biomechanical 

approach that can assess the biomechanical determinants of cross-country 

skiing performance. To achieve this, full-body kinematic data were obtained 

and analyzed during over-ground cross-country skiing trials of varied efforts 

to quantify propulsion strategies, spatiotemporal coordination, drag, and joint 

power outputs. Eight athletes of varied skill levels were analyzed, 

encompassing a total of 5,568 movement cycles (i.e., propulsion strategies). 

To assess the many interacting modes of variation potentially associated with 

the skilled performance in cross-country skiing two complementary analyses 

were implemented. First, an automated objective classifier was trained on a 

subset of data to detect varied propulsion strategies associated with different 

athlete skill levels. Second, a principal component analysis was utilized to 

provide animated reconstructions of representative movement styles and 

relevant indicators of variance related to skill level. Results suggest that 

several factors were associated with skill-level including: (1) dominant 

propulsion strategy, (2) smaller frontal area, (3) reduced ski external rotation, 

(4) increased upper and lower body joint power. The data driven approaches 

implemented here can identify key features associated with cross-country 

skiing performance and have the capacity to be used in a sport-field setting 

to communicate efficient strategies to athletes.
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principal component analysis, support vector machine, joint power, ski propulsion 
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1 Introduction

Cross-country skiing performance is reliant on the complex interaction of many body 

segments requiring the athlete to coordinate whole body movement and power to achieve 

enhanced propulsion speed and efficiency (1). The central nervous system must 

coordinate the activation and relaxation of upper and lower body musculature in a 

rhythmic nature to perform complex motor commands in a smooth, efficient manner 

[e.g., (2)]. Classical Skiing (CS) and Skate Skiing (SS) are the two main techniques 

utilized to navigate a cross-country skiing course, which have different sub-techniques 

(3, 4) (Figure 1). CS features sagittal plane movements in both the upper and lower 

body while the skis remain parallel. SS features a frontal plane push-off in the lower 
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body with more abduction and external rotation at the hip, 

resulting in a posterolateral movement of the skis (3, 4). The 

two techniques are considered distinct disciplines, and athletes 

may exclusively train one style. SS is considered to be the faster 

technique and more difficult to learn (5). Each of these 

techniques have sub-techniques that can be used in different 

areas of a track if a skier needs to emphasize speed or force 

across varied terrain. On an uphill section, athletes may choose 

to use a sub-technique with a shorter cycle length and faster 

cycle rate (3). While on a /at or downhill surface, athletes may 

use a sub-technique with longer cycle lengths and lower cycle 

rates as they can glide after each push. One sub-technique in CS 

is the double pole technique, which is most used to generate 

speed with the greatest skiing economy (6). Selection and 

mastery of both CS and SS techniques may be an indicator of 

improved skiing performance (5).

Coaching cross-country skiing can be challenging and may 

take many years of practice to be able to detect errors and 

communicate them effectively to an athlete to elicit the proper 

changes in mechanics (7). Traditionally, coaches’ provide 

feedback to athletes in the form of visual analysis, while 

leveraging verbal cues and prompts to alter mechanics. 

However, these cues may be subjective to a coaches own 

individual bias. Providing the athlete with objective visual 

feedback from a video or animation derived from an ensemble 

of their own movements may improve motor learning and skill 

acquisition (8). Since cross-country skiing is performed on a 

track that an athlete must navigate, this may restrict the ability 

for a coach to provide analyses across the entirety of a wide 

range of terrains since the coach may only be able to see the 

athlete’s technique for a small portion of time. Motion capture 

technologies, such as those based on Inertial Measurement Units 

(IMUs), can capture full-body kinematic data over large 

distances, enabling coaches to monitor athlete technique even 

when out of visual range. This can permit coaches to collect 

data from athletes in sport-specific settings and around all areas 

of the track. These datasets can then be used to generate whole- 

body animations to visualize the technique of the athlete, 

provide quality feedback, and improve performance. Feedback 

can then be presented to a coach in a format that is 

interpretable (i.e., 3D human movement animation) rather than 

an artificially reduced format (i.e., discrete or time-varying 

metrics), which can discount whole-body multi-segment 

coordination strategies.

Fundamentally, cross-country skiing performance is defined 

by the ability of an individual to navigate a track in the shortest 

period of time. Cross-country skiing performance is affected by 

multiple potentially interacting and intersecting variables, 

thereby reducing the utility of analyzing specific sub- 

components (i.e., joints, or other specific movement features) in 

isolation (9, 10). Despite this, many previous studies have 

selected discrete parameters a priori for statistical analysis to 

infer performance (10–12). Given the dynamic nature of 

performance, there is a need to evaluate large volumes of time 

varying data in ecologically relevant (i.e., real-world, over- 

ground) scenarios. By leveraging tools rooted in data science, 

data structures can be examined to isolate biomechanical trends 

related to performance outcomes. One such tool capable of data 

reduction and feature identification is a principal component 

analysis (PCA). PCA is a statistical technique that reduces 

complex data sets into a series of orthogonal patterns of 

variances called principal components (PCs) (13). It helps to 

reduce and compare structures of variability within large time- 

varying datasets, to describe and discern objective waveform 

characteristics of high dimensionality between subjects or 

groups. PC scores describe the magnitude and timing variability 

FIGURE 1 

Depiction of cross-country skiing techniques from Herbert-Losier et al. (10) (CC BY 4.0). Left column represents classical technique and sub- 

techniques of double pole (top), kick double pole (middle), and diagonal stride (bottom). Right column represents skating technique and sub- 

techniques of G2 (top), G3 (middle) and G4 (bottom).
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of each data point obtained along a PC loading vector to 

understand the degree to which specific patterns of variance are 

observed (13). A main benefit of PCA in biomechanics is the 

capacity to use PC scores paired with subsequent multi- 

component reconstruction (MCR), to reconstruct data along 

specific modes of variation relating to an area of interest (i.e., 

performance, injury, etc.), providing the opportunity to develop 

full-body 3D animated tools for visual inspection. 

Reconstructing a full-body avatar may be an especially efficient 

way to provide athletes and coaches with an easy-to-interpret 

biomechanical analysis, communicating key technical 

components relating to high-dimensional data such as 

spatiotemporal kinematics. PCA and machine learning driven 

analyses have been previously used to examine these various 

factors associated with cross-country skiing performance (9, 14, 

15), as well as across a variety of other human movements (2, 

16, 17). PCA can assist researchers in examining a reduced 

feature set which lacks the redundancy or collinearity often 

associated with discrete biomechanical outcomes that are 

selected a priori.

Elite cross-country skiers can produce high skiing velocities 

with minimal kinematic variation to perform efficient propulsive 

movements (1). Identifying the variability of the individual may 

provide interpretable data relating to performance level and/or 

injury risk (18). For example, a decreased variability may be 

indicative of enhanced performance but can also lead to a risk 

of chronic injury as the same bodily tissues are repeatedly used 

to perform a given task. An increased task variability can relate 

to poorer performance and can lead to a risk of acute injury 

(18). The ability of an athlete to self-regulate their kinematic 

variability while settling on an optimized strategy given 

environmental constraints may be an important factor in 

reducing injury risk while maximizing performance.

The overall objective of this work was to (1) develop an 

objective method to identify and classify discrete cross-country 

skiing technique types (2) implement a data-driven 

biomechanical approach that can objectively assess the kinematic 

and kinetic cross-country skiing characteristics associated with 

performance through the analysis of a large dataset. Given the 

data-driven, exploratory nature of this research, it can be 

considered hypothesis generating.

2 Materials and methods

2.1 Participants

Eight participants of varied skill levels completed an over- 

ground skiing protocol consisting of three trials of varied effort: 

easy, medium, hard. On the field, participants self-imposed the 

effort to correspond to the targeted heart rate (HR) zones. Easy 

effort corresponded to zone 1 (50%–60% max HR), medium 

effort to zone 3 (60%–80% max HR), and hard effort to zones 

4/5 (80%–100% max HR). Demographic variables for all 

participants are provided in Table 1. The recruited subjects were 

healthy adult volunteers with no declared cardiovascular, 

respiratory, or autonomic control diseases. They were required 

to complete a cross-country skiing outing of at least 10 km. 

Detailed information regarding the inclusion criteria was 

provided to all participants, and the trial commenced only after 

each participant had provided a signed informed consent form. 

All participants who did not meet the inclusion criteria were 

excluded from the study. The protocol for the current study was 

reviewed and approved by the Research Ethics Committee of the 

University of Trento (protocol number 2023-021) in accordance 

with the Declaration of Helsinki. All participants reviewed and 

signed informed consent prior to data acquisition. Athlete skill 

level was self-reported by participants based on the following 

criteria: 

• Beginner: individuals who engage in recreational cross-country 

skiing approximately once per week during the winter season 

without structured training programs.

• Intermediate: amateur athletes who train at least twice weekly 

during the winter season, incorporating structured training 

sessions, and regularly participate in organized local or 

regional cross-country competitions.

• Advanced: highly skilled amateur athletes who train 

consistently throughout the year, with a focus on 

performance improvement. They participate in regional or 

national level competitions.

• Elite: professional athletes from the Fiamme Gialle Sports 

Group of Guardia di Finanza, who train year-round with a 

dedicated coaching staff and compete at national and 

international levels.

2.2 Materials

Participants wore an XSens Link sensor suit consisting of 17 

inertial measurement unit (IMU) sensors on the body and four 

additional sensors located on the ski poles (×2) and skis (×2) 

that sampled kinematic data at 240 Hz (Movella Inc., 

Henderson, NV). The XSens Link was available in six sizes, and 

each participant wore the suit that best fit their specific body 

characteristics. Sensors and cables were affixed to the body using 

dedicated housings placed on the suit. The sensor on the foot 

was directly attached with a strap around the ski boot, 

positioned on the instep. IMUs on the poles were fixed 

immediately below the pole handles. IMUs on the skis were 

placed in front of the ski bindings. Once all sensors were placed, 

the calibration process was performed using MVN software. The 

guided procedure first required the measurement of specific 

sensor positions (e.g., the height of the IMU on the poles), 

followed by the repetition of specific movements. This allowed 

for the exact alignment of each sensor’s orientation with its 

corresponding body segment. The experimenter assisted with 

the donning procedure and the placement of sensors on the 

poles and skis, ensuring correct sensor positioning and 

connection to the main acquisition unit. Each participant was 

allowed to use their own equipment, consisting of skis, ski 

boots, and poles, avoiding the time required for familiarization 

MacNeil et al.                                                                                                                                                         10.3389/fspor.2025.1664279 

Frontiers in Sports and Active Living 03 frontiersin.org



with equipment and binding settings, thus preventing the 

introduction of any other familiarization-related variables into 

the study. Therefore, sensors were positioned individually for 

each subject for each acquisition. Elite skiers used skating skis to 

complete the course (due to training of that technique later in 

the day), the remaining equipment types were not recorded. 

Participants also wore an MTi 680-G GNSS (Movella Inc., 

Henderson, NV) unit that collected global positioning data at 

4 Hz, which was used to reconstruct track topography. All data 

were logged into a portable data pack, ensuring synchronization, 

and subsequently downloaded using XSens MVN Analyze 

software (version 2022.0).

2.3 Experimental protocol

All data were acquired along a standardized track located at 

the Cross-Country Stadium of Lago di Tesero (Trento, Italy). 

The track used for data collection was an oval shape, primarily 

/at, with one short climb and one short descent on each long 

side (∼20 m elevation change). Data were captured over two 

days with an average temperature of −7.3°C ± 3.8°C, an average 

wind speed of 9.3 km/h ± 2.7 km/h and an average snow depth 

of 68.8 cm ± 2 cm. Following an initial warm-up loop for 

familiarization with the environment and acquisition equipment, 

participants completed three separate rounds of the track at 

increasing effort levels (1–3× easy, 2–3× medium, 3–3× hard) 

with the hard being a maximum effort trial. Trials were 

completed in order of increasing power, ensuring all athletes 

were adequately warmed up before the maximum effort (i.e., 

final) laps. Within each course loop, participants were required 

to employ a range of sub-techniques based on their preferred 

main technique (Figure 1): G2, G3, G4 for skating; double pole, 

kick double pole (/at), double pole, kick double pole, diagonal 

stride, or herringbone (diagonal stride with skis angled outward 

and without a glide phase for uphill) for Classic; free glide or 

standing glide (i.e., skis parallel during downhills and without 

any arm or leg push-off) for both Skating and Classic. All 

downhill sections were completed in a tucked position (free glide).

2.4 3d track reconstruction

To reconstruct a 3D representation of the cross-country skiing 

track, the GNSS data from one participant (P13) were used. 

Specifically, the local x and y coordinates were used in addition 

to the elevation relative to sea level. Following unit conversion, 

track revolutions were segmented and demeaned to remove any 

spatiotemporal drift within the GNSS data. A visual 

representation of the 3D track topography is depicted in Figure 2.

2.5 Pre-processing & joint power analysis

Raw IMU sensor data were high-definition (HD) reprocessed 

using MVN Analyze (version 2022.0), with all processed kinematic 

data being exported as .C3D files for further analysis elsewhere. To 

facilitate the analysis of joint power, whole-body kinematic data of 

all participants were imported into Visual 3D (C-Motion, 

Germantown MD, USA). For all participants and trials, a time- 

varying scalar metric of joint power (summed across all 

component axes of each joint) was extracted for the shoulders 

(bilaterally), thorax and abdomen (i.e., RTA), and knees 

(bilaterally). All joint power data were then normalized to 

participant mass and exported to MATLAB (The MathWorks, 

2022a) for additional analysis.

Coordinate (C3D) data and joint power outputs were 

processed and analyzed using a custom MATLAB script. First, 

point cloud data consisting of all 76 (x, y, z) data points were 

aligned to a 3D local reference frame located to each 

participants’ pelvis, at each instant in time. Specifically, a 3 × 3 

rotation transformation matrix was generated at every frame to 

represent the 3D misalignment between the participant’s pelvis 

local coordinates and global coordinate system, which was then 

TABLE 1 Participant demographic information, including the overall elapsed time and number of cycles extracted from each trial across all participants.

ID Sex Age (years) Height (cm) Skill level Trial [time (s), Num cycles]

Easy Medium Hard

P3 M 38 175 Beginner 253.5 s 

226 cycles

230.8 s 

224 cycles

237.5 s 

234 cycles

P12 M 33 183 248 s 

510 cycles

218 s 

443 cycles

208.7 s 

360 cycles

P13 M 13 165 Intermediate 155.5 s 

180 cycles

131.3 s 

179 cycles

113.7 s 

156 cycles

P14 M 13 151 165 s 

192 cycles

129.4 s 

164 cycles

123.6 s 

173 cycles

P7 F 30 172 Advanced 240.5 s 

318 cycles

154.9 s 

246 cycles

193.5 s 

270 cycles

P8 F 27 171 155.5 s 

257 cycles

132 s 

236 cycles

124.5 s 

207 cycles

P5 F 23 164 Elite 184 s 

250 cycles

114 s 

200 cycles

109.4 s 

183 cycles

P6 M 21 200 138.6 s 

143 cycles

114.3 s 

107 cycles

100 s 

119 cycles
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subtracted, such that all data were represented with respect to the 

local reference frame of the pelvis. This was to ensure that each 

participant would be facing the same direction for all 

movements, even when changes in heading occurred. Next, 3D 

locations of all data points were referenced to the location of the 

T12 spinous process to remove effects of small linear 

translations of the point cloud throughout the trial (Figure 3).

Individual movement cycles (i.e., propulsion strategies) were 

automatically segmented by referencing the displacement of the 

left toe marker derived from the XSens MVN kinematic body 

model. Specifically, all Euclidean Norm displacement peaks 

exceeding 1 cm were used to partition individual propulsive 

movements. These criteria were selected following visual analysis 

of the 3D kinematic data of several participants/trials to identify 

a parameter capable of segmenting a wide range of propulsion 

strategies (i.e., double-pole, kick double-pole, etc.). Following 

cycle segmentation, all 3D coordinate data and joint-power time 

series data for each cycle were time-normalized to 101 data 

points by evenly resampling data from a Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP). Next, mean cycle 

durations were interpreted across athlete skill levels to ascertain 

any differences in athlete cadence across skill levels (Figure 4). 

Point cloud data within each cycle were retained for further 

analysis and the development of an automated propulsion 

strategy classification framework.

2.6 Principal component analysis (PCA)

Once aligned, demeaned, segmented, and time-normalized a 

structured database was developed of the following format:

time1
1-101 disp(x1-76, y1-76, z1-76)1

1-101 power(shoulder, knee, RTA)1
1-101

time2
1-101 disp(x1-76, y1-76, z1-76)2

1-101 power(shoulder, knee, RTA)2
1-101

timen
1-101 disp(x1-76, y1-76, z1-76)n

1-101 power(shoulder, knee, RTA)3
1-101

2

6

4

3

7

5

All rows correspond to individual cycles (from all participants), 

and all columns correspond to time-normalized, time, x/y/z 

coordinate, and scalar power time-series data (summed 

bilaterally for upper and lower body). All subsegments of the 

data representing different units of measurement (i.e., 

millimeters, seconds, or W/kg) were feature (i.e., amplitude) 

normalized by multiplying by scalar values such that the range 

FIGURE 2 

3D track reconstruction from P13 GNSS data.
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of amplitude for each time-series metric occupied approximately 

the same range of values. A principal component analysis (PCA) 

was conducted on the database to deconstruct the variance into 

principal components (PCs). As a means of further data 

reduction, only PC scores explaining a cumulative 90% of 

variance within the data were retained for further statistical 

analysis (17 PCs, Table 2). PCA preserves the variability of 

multivariate datasets while reducing data dimensionality (19). 

Many studies use features extracted by PCA as input to machine 

learning models [e.g., (2, 16, 17, 19)]. In this study, we used 

PCA to extract data features and to eliminate redundant 

variables. Following PCA, propulsion cycle waveforms were 

reconstructed to visualize the biomechanical meaning of all PC 

scores associated with improved skill level.

2.7 Automated propulsion strategy 
classification

A subset of individual propulsive cycles was animated and 

manually labelled as either: (1) double pole, (2) kick double 

pole, (3) diagonal stride, (4) standing glide, (5) free glide, (6) 

skating, or (7) unknown. Specifically, 241 cycles were manually 

labelled from the database of 5,568 cycles (4.32% of available 

data). Given the comparatively low number of skating cycles, all 

these sub-techniques (i.e., G2, G3, G4) were grouped together. 

The cycles were selected in an effort to manually label a 

sufficient number of examples of each strategy, without the need 

to manually label all cycles. Following this, the labels and PC 

scores (1–17) were used to train a quadratic support vector 

machine (SVM) automated classifier. Once trained, this classifier 

was used to automate the classification of propulsion strategies 

used across all 5,568 cycles.

2.8 Statistical analysis & training tool 3d 
reconstruction

A general linear model (GLM) one-way ANOVA was 

implemented with athlete skill level (i.e., beginner to elite) as the 

independent variable, and PC scores (1–17) as the dependent 

variables. Further, violin plots were generated to depict the 

relationship between PC scores and athlete skill levels. Those 

identified as having systematic (i.e., stepwise), and significant (i.e., 

p < 0.05) relationships with skill-level were used as inputs into a 

multi-component reconstruction framework with representative 

PCs reconstructed as either the 95th or 5th percentiles for PCs 

displaying positive or negative relationships with skill-level (2):

x̂Beginner=Elite ¼ �x þ u1 � z95=5 þ u2 � z95=5 þ u3 � z95=5

þ . . . un � z95=5 

Where x̂ represents the reconstructed data, x̄ represents the mean, u 

represents the PC loading vector and z represents the 95th or 5th 

percentile PC score. This framework animates the primary modes 

of variation present within the dataset which are systematically 

(and significantly) related to athlete skill level.

FIGURE 3 

Flowchart depiction of the data analysis process.
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3 Results

The distribution of skill levels, and segmented propulsion cycles 

from each athlete are presented in Table 1. Violin plots of cadence 

characteristics across skill levels revealed changes in the distribution 

of cycle times across skill levels (Figure 4). Although differences in 

cycle time distributions existed, there was no significant difference 

in mean cycle time across the skill levels.

3.1 Assessment of technique and SVM 
classification

The SVM classifier trained to identify the propulsion cycle 

techniques demonstrated 84% accuracy, with an AUC test 

statistic of 0.94 (Figure 5A). Following automated classification, 

the 5,568 cycles were plotted to depict the relative use of each 

propulsion strategy across skill levels (Figure 5B). This analysis 

TABLE 2 Statistical analysis depicting PC scores related to skill level.

PC number Explained variance (%) Cumulative explained variance (%) F statistic p-value

1 23.4 23.4 249.08 <.0001

2 20.5 43.9 331.61 <.0001

3 10.7 54.5 3,919.97 <.0001

4 6.3 60.9 372.32 <.0001

5 4.8 65.6 9.59 0.0020

6 3.8 69.4 13.30 0.0003

7 3.4 72.8 102.16 <.0001

8 2.8 75.6 1.19 0.2761

9 2.7 78.3 1.55 0.2126

10 2.4 80.7 788.02 <.0001

11 2.2 82.9 101.16 <.0001

12 1.7 84.6 111.57 <.0001

13 1.5 86.2 1,421.41 <.0001

14 1.3 87.5 692.78 <.0001

15 1.1 88.5 440.51 <.0001

16 1.0 89.5 4.49 0.0341

17 0.9 90.4 251.06 <.0001

Highlighted row indicates statistically significant stepwise relationship with skill level.

FIGURE 4 

Cycle cadence characteristics across skill level.
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suggests that the beginner skiers relied more on the diagonal stride 

technique than advanced and elite skiers, who relied more on a 

skating technique. Further, as the skill level increased, so did the 

frequency of usage of the double pole technique.

3.2 Assessment of kinematics and 
characteristics related to skill level

The assessment of the kinematic data included the first 17 PCs 

which explained a cumulative variance of 90.4% in the pre- 

processed dataset (Figure 6). A GLM model one-way ANOVA 

assessing the effect of skill level on the PCs revealed that PC4 

(p < .0001), PC6 (p = .0003), PC10 (p < .0001), PC11 (p < .0001), 

PC15 (p < .0001) were significantly and systematically associated 

with skill level (Table 2).

Multi-component reconstruction depicting whole-body 

spatiotemporal differences associated with skill level was 

completed using PCs 4, 6, 10, 11, and 15. Collectively, these PCs 

represent 15.8% of the total variance in the dataset (Figure 7). 

Functional interpretation of kinematic PCs through MCR 

provided over-emphasized visualization of the spatiotemporal 

modes of variation between “Elite” and “Beginner” groups for 

means of visualization. Reconstructed time-series from these 

reconstructed data include outcomes related to frontal area, ski 

angle, and upper/lower body power. Results of the multi- 

component reconstruction indicate that elite athletes generate a 

greater upper body peak power (bilaterally) than beginner athletes. 

In comparison, elite athletes also tend to occupy less frontal area 

and have a reduced ski angle, resulting in a reduced drag.

4 Discussion

The overall objectives of this work were to (1) develop an 

objective method to identify and classify discrete cross-country 

skiing technique types (2) implement a data-driven 

biomechanical approach that can objectively assess the kinematic 

and kinetic cross-country skiing characteristics associated with 

performance through the analysis of a large dataset. Currently, 

coaches use subjective observations of technique through a 

skilled, trained eye to develop athletes to the elite level (7). The 

model developed in this study demonstrates that implementing 

data-driven biomechanical approaches, such as a PCA and SVM, 

can assist in the objective identification of phenotypic 

differences between athletes of differing skill levels. One of the 

strengths of using these approaches is the capacity to represent 

meaning and context of large volumes of time-varying data 

obtained from real-world scenarios. As such, the analysis 

implemented here used every movement from every trial and 

every athlete to inform the current results and demonstrate 

powerful data reduction capabilities. This however may not have 

accounted for differences that are a result of comparing 

mechanics across technique types. A practical application of this 

model would be to first use the SVM classifier to identify all of 

the cycles by a specific technique type, then perform a statistical 

analysis on the mechanical features obtained from this stratified 

dataset. This is, of course, an interesting area for further study. 

The findings regarding cycle cadence not being an indicator of 

better performance (Figure 5) align with most studies on cross- 

country skiing performance and faster cycle cadence may lead to 

worse skiing economy (1). This demonstrated that a skiing 

performance analysis would need to capture spatiotemporal 

variations to identify differences across skill level.

The results from the SVM automated classification of sub- 

techniques suggested that the double pole sub-technique was 

one of the favored strategies for producing the greatest speed 

and the fastest time to complete the track associated with higher 

skill levels. The diagonal stride sub-technique was associated 

with less experienced skiers and therefore slower speeds. 

Complementing these findings were the results of the MCR, 

where differences between skill level may be better explained by 

FIGURE 5 

(A) ROC curve for propulsion strategy prediction model. (B) Depiction of propulsion strategies across skill levels.
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upper and lower body power outputs during propulsion. As each 

of the upper and lower body power metrics are informed by the 

sum of a different number of joints, the results suggest larger 

power contributions from the shoulder and upper body 

components in all skiers (especially those classified as elite). 

This aligns well with the type of sub-techniques that were 

selected by different skill levels. It has previously been 

demonstrated that there are greater contributions to speed and 

FIGURE 6 

(A) Scree plot depicting explained variance statistics from PCA. (B) Statistically significant effect of skill level on PC10.

FIGURE 7 

Multi-component reconstruction (PC 4, 6, 10, 11, and 15) depicting whole-body spatiotemporal differences associated with skill level. Red and blue 

figures represent extremes in variance associated with lower (red) and higher (blue) skill levels. Ski angle was calculated from transverse plane rotation 

of ski sensor data. Frontal area was estimated as a sum of two rectangular frontal planes derived from the maximum mediolateral and anteroposterior 

point cloud data (representing the upper and lower body respectively). RTA and knee power are summed together to represent gross lower 

body power.
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power from the upper body joints (shoulder and waist) than the 

lower body joints (12, 18). This may suggest that the upper 

body is responsible for generating propulsion while lower body 

joints create stability and in/uence direction. This is 

unsurprising given the recent change in preferred strategies 

during competition. Skating evolved over time from traditional 

Classic skiing by adding a one-sided outward leg push, and it is 

now prohibited during Classic races. In recent years, elite skiers 

have developed their upper body strength to such an extent that, 

in Classic races, they can use Skating skis exclusively with the 

double-poling (DP) technique, particularly for long distances 

(20). In order to generate more upper body power, skiers have 

shown increases in upper body range of motion and wind up 

(shoulder /exion and trunk extension) to generate more force 

during pole-plant (1).

In addition to the technique results, a number of additional 

kinematic factors were identified as having high variance across 

skill level. Specifically, the frontal area of elite skiers is smaller, 

resulting in less aerodynamic drag force. This indicates that higher 

skill level skiers were able to maintain a smaller frontal area and 

are able to ski at faster speeds with greater efficiency. Previous 

studies have found a relationship between decreased drag from 

lower air resistance being related to lower demand on propulsive 

force, lower metabolic cost and lower oxygen cost to maintain the 

same speeds (21). Further, elite skiers had a decreased external 

rotation angle of the skis while gliding compared to the beginners 

who skied with their skis more externally /ared. A decreased 

external rotation of the ski angle could suggest lower braking 

forces throughout the trial resulting in greater speed due to 

reduced friction from the ski-snow interaction (22). Notably, the 

SVM classifier trained within the current study complements 

those presented previously using head-mounted GNSS data (23) 

and obtained comparable performance. This suggests that 

although similar cycle classification can be obtained with fewer 

sensors, the current approach has the added benefit of full body 

3D animation to administer actionable feedback to improve on 

the execution of each sub-technique.

Although this study is novel in many ways, due to the field- 

based nature of the results reported, there are several limitations 

to consider. One notable limitation of this study is that only eight 

participants were recruited for the analysis, all of whom had 

varying skill levels and came from different demographic groups. 

This includes the varied distributions of sexes and ages across 

different skill groups. This small sample size may limit the 

generalizability of the results to a broader population of skiers. 

Further, this study only focuses on the biomechanical factors 

associated with cross-country skiing performance and may 

overlook factors beyond mechanical changes to technique that 

may have an impact on performance outcomes. Participants were 

not instructed to use a specific technique for navigating the track 

and could decide which techniques to use on their own. This may 

have affected the comparison of movements between the athletes 

as all of the segments were compiled together despite variations in 

techniques used. In addition, out of the 5,568 cycles generated, 

only 241 were manually labelled to train the SVM classifier. 

Although this an undoubtedly more efficient means of evaluating 

propulsion strategies across a large breadth of data, this may have 

created bias for certain techniques despite the AUC statistic 

reaching 0.94, suggesting strong fit statistics. Certain external 

factors that may have affected the gliding performance of the skis 

were not accounted for, such as ski specifications and snow 

conditions, further, turning mechanics were not considered for 

the current study. Finally, it is worth noting the potential effects 

of both artificial stimulus, and wearable sensor drift. Although the 

wearable sensors used here facilitated the acquisition of large 

quantities of over-ground skiing movement, their body-worn 

nature may have affected skier movement. Further, although care 

was taken to correct for sensor drift (Section 2.5) through careful 

debiasing, segmentation, and re-alignment, the results here may be 

affected by some degree of drift.

This study provides valuable insights on the biomechanical 

differences between skill levels of cross-country skiing athletes 

and contributes to the body of literature on full-body cross- 

country kinematics during natural over-ground skiing 

movements. Data reduction techniques such as PCA may be 

used to identify factors significantly related to skiing 

performance and can be used in sport-field settings. This 

framework used in this analysis to evaluate human movement 

can be applied across a variety of sports to identify factors 

relating to performance and determine differences between skill 

levels. This model can also be applied using data captured from 

a marker-less video-driven setup which allows for it to be used 

by coaches and athletes outside of a research setting. Coaches 

can use the current model as a framework for evaluating and 

comparing developing athletes to examine how their technique 

compares to a higher skill athlete. From this analysis, it can be 

determined that selection of technique, decreasing drag by 

maintaining a small frontal area and reducing ski external 

rotation, and increasing upper and lower body power 

production were all factors that varied with skill level.
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