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Background: Dynamic balance is a critical foundation for the development of
motor skills in early childhood. Functional tasks such as beam walking pose a
significant challenge to the frontal plane stability of preschool children.
However, the mechanisms by which young children regulate hip, knee, and
ankle joint loading under such conditions remain unclear. Therefore, this
study aimed to explore the regulatory strategies of lower limb joint reaction
forces during beam walking in 4-year-old children.

Methods: Fourteen healthy 4-year-old children participated in overground
walking (OGW) and balance beam walking (BBW). A markerless motion
capture system, OpenCap, was used to collect kinematic data. Joint reaction
forces in the frontal plane for the dominant and non-dominant at the hip,
knee, and ankle were computed using OpenSim. One-dimensional time
series parameters of joint reaction forces were used to assess loading
characteristics between OGW and BBW.

Results: Under BBW, the medial reaction force at the non-dominant hip joint
significantly increased during multiple phases of the gait cycle, and the lateral
force at the non-dominant knee joint decreased during the swing phase, with
slower medial-to-lateral transitions.

Conclusion: In functional walking tasks, asymmetry in lower limb joint loading
between the dominant and non-dominant legs may serve as a sensitive
indicator for assessing the neuromuscular development and gait control
strategies in preschool children.

KEYWORDS
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1 Introduction

Balance is a core component of early motor skill development in children and plays a
crucial role in maintaining gait stability, improving motor coordination, and preventing
injuries (1, 2). As the neuromuscular system matures, children’s balance control abilities
continue to develop and are optimized. Especially in the preschool stage, the rate of
development of balance control in children is significant (3, 4), yet dynamic balance
control in walking exhibits great variability (5).
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Among the functional tasks designed to assess dynamic balance,
narrow beam walking increases the difficulty of walking and places
higher demands on body stability control. Not only is this task
applicable to assessing balance function (6, 7), but it can also be
used to evaluate the effectiveness of balance training (8). Beam
walking has been applied to screen motor skill development and
early identification of disorders in children (9). Studies have
shown that in children with vestibular dysfunction, motor
coordination disorders, and intellectual disability, beam walking
can be employed as a potential early warning tool to help
clinicians detect abnormal tendencies in motor control before
symptoms become apparent, thus enabling early intervention and
treatment (10). Age 4 is considered to be a critical period for the
transition from the initial establishment of gait stability to fine
regulation (3). At this age, children’s neuromuscular system is still
developing, and they may exhibit great gait variability and
regulation variations when faced with challenging tasks such as
beam walking (11). Reducing walking speed, decreasing step
frequency, and increasing lower limb joint range of motion can
maintain balance. These compensatory mechanisms often lead to
increased energy expenditure and changes in joint loading (12).

Relative to spatiotemporal parameters (e.g., step length and step
frequency), center of mass trajectories, and limb kinematics and
dynamics (13, 14), the distribution of mechanical loading at the
hip, knee, and ankle joints during gait control in preschoolers has
not been fully studied. Previous studies have shown that there are
significant differences in gait asymmetry among children with
different weights (15). Additionally, gait symmetry significantly
affects joint loading in the frontal plane (16), potentially leading
to asymmetric loading between the dominant and non-dominant
legs (17). However, there is currently a lack of quantitative
evidence to confirm whether such asymmetry affects joint loading
in functional tasks requiring greater frontal stability.

Therefore, this study aimed to investigate the dynamic changes
at the hip, knee, and ankle joint reaction forces in the frontal plane
during balance beam walking (BBW) and overground walking
(OGW) in 4-year-old children, and to reveal the loading
regulation strategies of lower limb joints in complex functional
balance tasks. We hypothesized that lower limb joint loading
adjustments and balance control strategies during BBW in
4-year-old children may exhibit asymmetrical patterns.

2 Methods
2.1 Study design

An observational study.

2.2 Participants

The sample size was computed using G*Power software
(v3.1.9.7, University of Diisseldorf, Germany), based on a priori
power analysis assuming a difference between two dependent
means (a=0.05, 1-8=0.80, effect size dz=0.81) (18). Fourteen
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TABLE 1 Demographic characteristics of preschool children in this study.
Values are presented as mean + standard deviation (SD)

Gender Age Helght Body BMI (kg/
(M/F) (years) (m) [\ ESN()] m?)

4.57 +0.35 1.12+0.05 17.82 £ 1.42 14.22 £0.74

4-year-old children from a local preschool participated in this
study (Table 1). Regarding walking on a balance beam, all
participants had no prior experience. The dominant leg of all
participants was determined based on the leg used for kicking
(19, 20), identified as the right leg. Inclusion criteria were the
absence of neurological dysfunction, musculoskeletal disorders,
and psychological disorders. Written consent was obtained from
their parents prior to the measurements. Ethical approval was
obtained from the Ethics Committee of Zhejiang Normal
University (ZSRT2024203). All measurements were carried out
in accordance with the Declaration of Helsinki.

2.3 Experimental protocol

A schematic diagram of the experimental setup, including the
apparatus configuration, calibration space, and data acquisition
workflow, is shown in Figure 1. A standard-sized balance beam
measuring 3 m in length, 0.1 m in width, and 0.3 m in height
(Reliable Co., Ltd., Beijing, China) served as an apparatus for
the balance tasks. Each end of the beam was equipped with a
0.2x0.3m elevated platform (height: 0.3 m) serving as a safe
starting and ending area (21). Additionally, a straight line
measuring 3 m in length and 0.1 m in width was marked on the
ground using bright yellow tape, serving as the walking path.
Two i0S devices (iPhone 13 Pro Max and iPhone XR, Apple
Inc., Cupertino, CA, USA) integrated with an OpenCap mobile
application (version 1.6, Model Health, Inc., Stanford University,
USA) were mounted on adjustable tripods for motion capture,
which has been confirmed to be sufficient for analyzing
movements such as walking (22). The two iPhone cameras were
positioned at approximately +30° from the walking direction, at
a minimum distance of 3 m from the movement space to reduce
occlusion and ensure that the entire space was covered (22).
These cameras operated at a frame rate of 60 Hz and a
resolution of 720 x 1,280 pixels to record walking videos.

Camera calibration and motion space calibration were
performed before data acquisition, following the steps outlined
below. First, OpenCap automatically loaded intrinsic parameters
of algorithms related to the principal point, focal length, and
distortion parameters of the two camera hardware units for
camera calibration.
checkerboard (5
paper taped to plexiglass perpendicular to the ground was
placed in the view of two cameras for motion space calibration

Subsequently, a printed 210x 175 mm
rows, 6 columns, 35 mm square size) on A4

(22). The calibration checkerboard’s accuracy has been validated
(22). Next, both cameras captured the participant’s still neutral
pose. OpenCap scaled a musculoskeletal model to the child’s
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FIGURE 1

Schematic diagram of the experiment. The entire system consisted of three main components: scene setup (A), online network connection (B), and
motion capture video recording (C) The apparatus included two iPhones mounted on tripods with phone holders, a 210 x 175 mm checkerboard (five
rows, six columns, 35 mm square size) printed on A4 paper, and a laptop running the OpenCap system. Balance beam walking (BBW) data acquisition
involves motion space calibration (D), human neutral posture calibration (E), and walking video recording (F) The overground walking (OGW)
experimental process was the same as BBW, with the balance beam replaced by 3 m bright yellow tape on the floor.

anthropometry using OpenSim’s Scale tool, based on the
anatomical marker positions derived from the neutral pose.

Prior to data acquisition, children underwent a familiarization
block with the OGW and BBW trials to familiarize themselves with
the experimental environment. Data acquisition involved two blocks.
First, children were asked to walk normally along a bright yellow line
on the ground for 3 m. Then, they walked steadily from the starting
point to the end of the beam. Both blocks require children to
complete three trials at a comfortable pace employing a heel-to-toe
walking pattern (23) and keeping arms naturally extended at their
sides (24). A well-trained investigator closely monitored children
throughout the process to prevent potential falls (24). If any child
deviated from the marked line or showed any significant deviation at
any point on the beam, the measurement was repeated to ensure the
accuracy and completeness of the data. The experiment was carried
out in a spacious indoor space with stable natural lighting to
minimize external interference. All children were required to wear
tight-fitting sportswear to ensure the accuracy of data collection and
non-slip athletics shoes to ensure safety.

2.4 Data processing

Upon completion of the walking capture, the recorded videos
were automatically uploaded to OpenCap’s web application. The
built-in algorithm code automatically computed the three-
dimensional marker positions and joint kinematics and output
them in an OpenSim file format. Subsequently, based on muscle-
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driven simulation of joint kinematics, the kinetic parameters were
estimated using the OpenCap processing library. The accuracy of
OpenCap’s kinematic and Kkinetic estimates has been validated
against gold standard marker-based motion capture and force
plates (22). The processing environment included Python (version
3.8, Python Software Foundation) and OpenSim (version 4.5,
Stanford University, USA).

To minimize the influence of random variability, three
consecutive gait cycles were selected. For the comparison of
continuous time-series variables, the reaction forces at the hip,
knee, and ankle joints were normalized as percentages of the
gait cycle (101 data points, ranging from 0% to 100%). The gait
cycle was defined as the interval between the heel-strike of a
given foot and its subsequent heel-strike (25). Data were filtered
using a second-order low-pass Butterworth filter with a cutoff
frequency of 6Hz (26). Both normalization and filtering
processes were performed using Python.

2.5 Statistical analyses

This study analyzed one-dimensional time series of joint reaction
force throughout the gait cycle. We employed Python (v3.8, Python
Software Foundation) software for data statistical tests. The code
utilized one-dimensional statistical parametric mapping (spmld)
developed by Pataky (27) based on random field theory. Shapiro—
Wilk test within the script was performed to assess the normality
of the data distribution. Paired t-test with a non-parametric
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approach (SnPM) were performed to analyze and compare hip, knee,
and ankle joint reaction force between OGW and BBW. Data
visualization and plotting were performed using Origin software
(v 2024, OriginLab Corporation, Inc., Northampton, MA). The
statistical significance was set at 0.05.

3 Results

Schematic diagrams of the medial and lateral reaction forces at
the hip, knee, and ankle joints are shown in Figure 2A;-A;. Under
the BBW condition, the non-dominant hip joint (Figure 2B;)
exhibited greater medial reaction forces from loading response to
mid-stance at 4.82-28.72% (p =0.001), from initial swing to mid-
swing at 68.99-74.11% (p = 0.031), and during the terminal swing
phase at 98.91-100.00% (p =0.039), whereas the dominant hip
joint (Figure 2B,) showed no significant differences. Compared
with the knee
(Figure 2C;) exhibited lower lateral reaction forces during the

dominant knee, the non-dominant joint
transition phase from initial swing to mid-swing at 70.34-81.81%
of the gait cycle (p=0.018). Under the OGW condition, the non-
dominant knee joint exhibited a negative reaction force at 70.34%
of the gait cycle, indicating that the reaction force acted on the
lateral side. However, under the BBW condition, the knee reaction
force exhibited a slower transition from the medial side to the
lateral side at 79% of the gait cycle. Under both conditions, no
significant differences in reaction forces were observed at the
dominant knee joint (Figure 2C,) or ankle joint (Figure 2D,,D,).

4 Discussion

By comparing the joint reaction forces in the frontal plane under
BBW and OGW conditions, we found that 4-year-old children

10.3389/fspor.2025.1660112

exhibited a unilateral loading shift strategy during dynamic
balance control tasks. Children enhanced control of lateral body
stability by increasing reaction forces in the mediolateral direction
of the non-dominant lower limb (especially the hip and knee
joints), thereby maintaining balance. Such adjustments were
mainly reflected in the regulation of unilateral lower limb loading
rather than symmetric regulation of bilateral loading, indicating a
compensatory gait pattern characterized by unilateral regulation
and contralateral coordination.

BBW is a functional task that requires highly precise control
and regulation of balance and is commonly used to assess
motor coordination and stability (28, 29). Compared to normal
walking, unstable gait tends to cause the trunk to sway laterally
(30), which is negatively correlated with age (31). This
instability is particularly pronounced in tasks requiring balance
adjustments (32). Previous studies have shown that gait stability
can be maintained across different movement patterns through
the coordinated action of the hip, knee, and ankle joints along
with their muscle synergies (33).

As the primary connection between the trunk and lower limbs,
the hip joint serves to generate and transmit force (34). When
walking conditions change, gait patterns consequently alter (35,
36). Previous studies have shown that a wider step helps
improve lateral stability (37), while a narrower step width
increases hip joint reaction forces (38). In the current study, the
non-dominant hip joint exhibited greater reaction forces at the
early and late swing phases under the BBW condition, which is
consistent with the findings of previous studies (38, 39). The
reaction force of the non-dominant knee was negative under
OGW, indicating that the knee joint was subjected to a force in
the medial direction, whereas the reaction force of the left knee
gradually transitioned from the lateral to the medial side under
BBW, exhibiting a slower transition pattern. Previous studies
have found that changes in gait patterns lead to shifts in joint

A, B, Non-dominant hip S Non-dominant knee D, Non-dominant ankle
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loading patterns (40-43), such as a slower transition from the
stance to the swing phase and a significant increase of double
support time, thereby reducing joint pressure and avoiding rapid
loading impacts to prevent joint injuries (44, 45). The knee joint
is primarily responsible for absorbing impact and transmitting
ground reaction forces, playing a critical role in overall balance
adjustment and fine-tuning of gait during dynamic balance tasks
(1, 46). Compared to the hip and ankle joints, the knee joint
has a smaller range of motion in the frontal plane and therefore
has limited direct control over balance. Its main function is to
assist in maintaining postural control (47). Gait adjustment can
reduce knee varus moment and medial reaction force, but with
little effect on the overall reaction force (48, 49).

The reaction forces at the dominant hip and knee joint did not
vary significantly under OGW and BBW conditions. Typically,
healthy preschoolers exhibit symmetrical gait patterns when
walking normally. However, changes in walking conditions lead
to increased unilateral limb loading, resulting in significant gait
asymmetry (50, 51). Subsequently, this asymmetry affects the
symmetry of the hip joint reaction forces (52). Changes in gait
patterns may lead to variability in hip joint loading peaks
and the occurrence (38, 39, 53), thereby forming continuous,
unstructured adaptive patterns rather than abrupt changes
(52, 54). This decentralized loading regulation strategy may
reflect that preschool children have not yet established mature
motor control patterns in functional tasks of higher difficulty, as
evidenced by the dominant hip joint assuming a higher
functional role in synergistic regulation. Studies have shown that
exhibits
functions, while the non-dominant leg contributes more to

the dominant leg more pronounced regulatory
support assistance, resulting in a unilateral regulation and
contralateral assistance gait pattern (55).

Joint loading is influenced by joint kinematics, muscle
activation, and neuromuscular control. The greater the joint
loading, the higher the gait variability (56, 57). Variations in joint
loading appear to be induced by gait variability, but from a
control theory perspective, this variability actually reflects the
presence of motor redundancy (58). When attempting to perform
task, children

combinations and movement patterns to achieve the same motor

a motor regulate through various muscle
goal (59). By increasing antagonist muscle activity, dynamic knee
joint stiffness is improved, thereby overcoming knee joint
instability (60). Typically, ankle control strategies serve as the
primary mechanism for adults to counteract environmental
disturbances (61, 62). However, preschoolers exhibit weaker ankle
dorsiflexion and inversion-eversion regulatory capabilities, along
with differences in muscle activation patterns (63). When faced
with unstable conditions, children’s ankle joints cannot perform
fine-tuning adjustments as effectively as adults (64). Moderate
motor variability is not a sign of control failure but rather reflects
children’s continuous adjustments and optimization of movement
patterns in response to environmental conditions. However, long-
term irregular distribution of loading on the lower limbs may
cause excessive pressure on joints, impairing their ability to
absorb impact and ultimately resulting in joint injury, such as
osteoarthritis and fractures (65, 66).
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The core challenge of beam walking lies in maintaining
lateral balance on a narrow support surface (28). Lateral
stability is crucial for dynamic balance regulation in gait (67),
and the coordination of the hip, knee, and ankle joints and
associated muscles significantly influences the adjustment of the
center of gravity in the frontal plane (68). The primary
mechanism for adults to counteract interference conditions is
ankle control strategies, whereas this study found that 4-year-
old children seem to prefer hip control strategies for beam
walking. This has important implications for understanding the
overall balance control mechanisms and injury prevention
in preschoolers.

5 Limitation

Assessing functional gait tasks through joint reaction forces
enables a more comprehensive understanding of preschool
children’s balance control strategies from a biomechanical
perspective. As a functional training tool, beam walking places
emphasis on continuity and prevention of excessive lateral sway.
This facilitates targeted rehabilitation training for preschool
children with impaired gait function. Cognition and attention may
influence balance performance (69), which was not considered in
the present study, representing a limitation that warrants attention.
Cognitive processes related to balance in children vary across tasks,
influenced by perceptual characteristics and task specificity. When
children focus on task completion, these processes alter gait
patterns, thereby increasing gait variability. Children with superior
balance abilities tend to perform tasks more efficiently (69-71).
However, this relationship requires further confirmation in
preschool children. Integrating electroencephalography or eye-
tracking technology could analyze the neural mechanisms linking
attentional allocation with gait variability in depth (69, 72).
This may provide a more comprehensive neurocentral perspective
for investigating functional gait task control strategies in
preschool children.

6 Conclusion

Beam walking in 4-year-old children significantly increased
the demand for loading regulation in the non-dominant lower
limb joints, and the motor control strategies demonstrated
pronounced asymmetry. In functional tasks, preschoolers require
greater joint loading regulation capabilities to maintain body
stability. Children’s neuromuscular control system is still
developing at this age, but they have already acquired a certain
degree of adaptability.
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