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Introduction: Body composition is a critical health measure. Accurate
monitoring of body composition, such as body fat percentage (BF%) and
skeletal muscle mass percentage (SM%), enables individuals to make informed
decisions regarding nutrition, exercise, health status and management.
Recent advancements have integrated bioelectrical impedance analysis (BIA)
into wearable technology, presenting accessible options for tracking body
composition measures. However, the validity of wearable BIA devices in
comparison to criterion methods remains underexplored. Therefore, this
study aimed to assess the validity of a wrist-worn consumer device and a
clinical BIA device against the criterion measure of dual-energy x-ray
absorptiometry (DXA).

Methods: This study included 108 physically active participants (56 females, 52
males). Participants underwent assessments using DXA, a wearable smartwatch
BIA device (wearable-BIA; Samsung Galaxy Watch5), and a clinical standing
hand-to-foot BIA analyzer (clinical-BIA; InBody 770). Measures of interest
included BF% and SM%. Data were analyzed for accuracy using tests of error
[mean absolute error [MAE], mean absolute percentage error [MAPE]], linearity
(Pearson’s r, Deming regression), agreement (Lin's CCC), and equivalence,
complemented by Bland-Altman plots to visually represent bias.

Results: When assessing BF%, both the wearable-BIA (r=0.93; CCC = 0.91) and
clinical-BIA (r=0.96; CCC = 0.86), demonstrated very strong correlations and
agreement compared to DXA, with MAPEs of 14.3% and 21.1%, respectively.
Female participants using the wearable-BIA device showed the greatest
accuracy for BF% (CCC = 0.91, MAPE = 9.19%, equivalence supported). Bland-
Altman analysis revealed proportional bias, particularly in individuals with
higher BF%. Although correlations were considered strong for SM%,
agreement was classified as weak (wearable-BIA: r=0.92, CCC=0.45;
MAPE = 20.3%; clinical-BIA, r=0.89; CCC = 0.25; MAPE = 36.1%).
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Discussion: Both the wearable- and clinical-BIA device revealed mixed validity,
demonstrating strong correlations for both BF% and SM%, and high levels of
agreement and low error for BF%. Additionally, the wearable-BIA demonstrated
acceptable accuracy for estimating BF% in females. However, wider limits of
agreement and variability suggest limitations in validity, particularly for skeletal
muscle mass and in individuals with higher body fat percentages. These
findings support the practical use of wearable devices for general body
composition monitoring when laboratory-based methods are unavailable,
though caution is warranted. Continued development and validation efforts are

recommended to

enhance accuracy and consistency across diverse

populations and measures.

KEYWORDS

wearable technology, activity monitor, biometric technology, body fat percentage,
skeletal muscle mass, dual-energy x-ray absorptiometry

1 Introduction

Body composition outcomes are key health measures in
understanding an individual’s overall health and fitness status,
providing critical insights into the balance between fat and lean
tissue, which can influence metabolic health and physical
performance (1). Analysis of body composition, including body
fat percentage (BF%) and skeletal muscle percentage (SM%)
offers a more nuanced view of health by differentiating between
fat and lean mass, as compared to more simple but easily
accessible measures such as body mass or body mass index
(BMI) (2-5). This distinction can be important, as two
individuals with the same BMI can have vastly different health
profiles depending on their fat distribution and muscle mass.
Tracking BF% and SM% over time is relevant not only for
identifying potential risk profiles and metabolic health in the
general population, it also can be used to monitor training
outcomes and progress toward goals in those who are physically
active. While the role of body composition in sport performance
is variable, and unique to the sport being performed, the ability
to accurately track compositional changes over time is of great
interest to athletes, coaches, physically active individuals, and
those monitoring weight changes (6-10). Regular monitoring of
body composition can help individuals make informed decisions
about adjusting their diet, exercise, and lifestyle to achieve and
maintain their health and fitness goals (1).

There are various methods currently available to assess body
composition. These devices range from simple and cost-effective
equations based on anthropometric measurements, which are
prone to high error, to criterion measurements, such as the
dual-energy x-ray absorptiometry (DXA) known for its accuracy
and reliability (11). Other high-quality methods, such as
hydrostatic weighing and air displacement plethysmography,
require specialized equipment and facilities, making them time
consuming, expensive, and relatively inaccessible (12). More
accessible options, like skinfold measurements and bioelectrical
impedance analysis (BIA) are common due to their ease of use
and affordability (13). Skinfold measurements are convenient
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and low cost; however, they require a high degree of training to
achieve proper technique and have greater error than other
methods (14). BIA, by contrast, has become an appealing
method for assessing body composition because it is non-
invasive, quick, cost-effective, and relatively accurate,
making it accessible for both in-clinic and at-home use
while providing immediate feedback on body composition
measures (15).

BIA provides estimates of body composition by measuring the
resistance of body tissues to a low-level electrical current (16).
Current BIA devices are manufactured using various
configurations, including at-home BIA scales, clinical hand-to-
foot analyzers, and advanced octopolar systems. Advances in
technology have made many biomonitoring sensors more
practical for everyday health monitoring. Recently, companies
have begun integrating BIA technologies into commercially
available wearable devices (smartwatches), offering the potential
of an accurate, convenient, and accessible solution for
monitoring body composition and enhancing public engagement
in health monitoring. These devices can deliver frequent
estimations of body composition through non-invasive means,
providing users with actionable information about their health
and fitness status. However, many of these devices have yet to
undergo comprehensive independent validation to assess their
accuracy compared to traditional laboratory methods (15).
Additionally, as wearable technologies continue to evolve,
updates to hardware design, sensor configuration, and
proprietary algorithms are common across device generations.
Accordingly, independent validation of new models is critical to
ensure that previously established levels of accuracy remain valid
and that findings from earlier versions can be appropriately
generalized to newer devices. Independent validation is essential
for consumers to rely on these devices for individual health
monitoring. Thus, the purpose of this study is to assess the
accuracy of a wrist-worn wearable device utilizing BIA
technology to estimate body fat percentage and skeletal muscle
percentage compared to DXA and established clinical
BIA methods.

frontiersin.org



Carrier et al.

2 Materials and methods

A total of 108 participants were enrolled in the study,
including 56 females and 52 males (self-reported gender).
Participants were included if they were between the ages of
18-80 and participated in moderate to vigorous physical
activity at least three days per week. Participants were
excluded if they had a contraindication to intense exercise
(e.g., cardiovascular disease, significant musculoskeletal or
neurological impairments, etc.) or were pregnant. All
participants provided written informed consent prior to
testing, and all procedures were approved by the University’s
Board (IRB#  HUMO00220366).

Participants underwent body composition assessments during

Institutional ~ Review
a single visit, where they were required to wear lightweight
athletic clothing. Prior to their visit, participants were
instructed to consume water like they normally would and to
refrain from food, caffeine, or other drink for 3 h prior to
their appointment as per device instructions. Participants
were also instructed to avoid alcohol, smoking and heavy
exercise for 24 h prior to their visit.

During the visit, body composition was measured using
three different methods for comparison: DXA, wearable
(wearable-BIA),
standing hand-to-foot BIA analyzer (clinical-BIA). Criterion

smartwatch BIA device and a clinical
measurements were obtained using a total body DXA scan
(Lunar iDXA, General Electric, Boston, MA, USA; enCORE
v18 software). The wearable-BIA (Samsung Galaxy Watch5,
Samsung Electronics Co. Ltd., Seoul, South Korea) employs
BIA through two metal knobs on the watch. Per device
instructions, after demographic information was input, the
participants were instructed to place their middle and ring
fingers from one hand on these knobs for 30s to 1 min to
obtain body fat percentage readings. At the time of our study,
included

wearable BIA assessment, thus we chose this device to be

no other commercially available smartwatches
compared to a criterion standard and a clinical device using
BIA to assess body composition. The clinical-BIA (InBody
770, InBody Co Ltd., Seoul, South Korea) was used as an
additional clinical comparison. For this assessment, the
participants were positioned on a standing hand-to-foot BIA
analyzer following device instructions (Figure 1). Importantly,
at the time of our study, no other commercially available
BIA This

underscores the novelty of the technology and highlights why

smartwatches included wearable assessment.
it was essential to rigorously evaluate its validity at an early
stage. Establishing this evidence base is critical not only for
the sponsor, but also for consumers, clinicians, and
researchers who are increasingly using these devices to
monitor and track body composition. By comparing the
smartwatch to both DXA, the criterion standard, and a widely
used clinical device (InBody), our study provides a
foundation for interpreting results from a novel technology
that is rapidly entering both consumer and research settings.
Fat and skeletal muscle mass (kg), and BF% and SM% values

were directly reported by each device for further analysis.
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2.1 Data analysis

Participant data was collected and managed via spreadsheet
software and a web-based data management system (REDCap,
Vanderbilt University, Nashville, TN) hosted at University of
Michigan (17). Measures for body composition were obtained as
cross-sectional data provided by the test devices after each trial.
All statistics were run in jamovi [The jamovi project (2024).
Jamovi (Computer Software). Version 2.6.19, retrieved from
https://www.jamovi.org]. Equivalence plots were plotted using
an R Shiny app (R Statistical Software) (18).

Mean differences between the three devices in reported fat and
skeletal muscle mass (kg) values were compared using a one-way
ANOVA with Bonferroni post hoc comparisons. Accuracy for BF%
and SM% was determined via tests of error, linearity, agreement,
and equivalence, with visual representation of bias shown with
Bland-Altman plots (19-22). Statistics were performed for the
overall sample, as well as for gender and weight stratifications.
The wearable-BIA and clinical-BIA devices were used as the test
measurements for all statistical tests, and DXA as the criterion
measurement. Mean absolute error (MAE) and mean absolute
percentage error (MAPE) were calculated for error analysis.
Agreement and linearity were established via Lin’s Concordance
Correlation Coefficient (CCC),
Correlation (r), and Deming Regression. Correlation coefficients

Pearson’s Product Moment

were interpreted as follows: 0 to <0.2, very weak; >0.2 to <0.4,
weak; >0.4 to <0.6, moderate; >0.6 to <0.8, strong; and >0.8-
1.0, very strong (23). Equivalence testing was conducted using
90% confidence intervals, consistent with the standard approach
at a=0.05. In this framework, a 90% CI that lies entirely within
the predefined
equivalence at the 5% level and is broadly accepted in

equivalence bounds indicates statistical
equivalence testing literature (18). In addition to descriptive
statistics, combined validity criteria were set at MAPE < 10%,
CCC>0.7, and equivalence supported at 10% (£5%) of the
criterion mean for equivalence window, based on the 90% CI
(20, 24). Binary results for the equivalence testing can be found

in the validity statistics.

3 Results

A total of 108 participants completed the body composition
assessments; demographic summary statistics can be found in
Table 1. ANOVA revealed significant differences in both fat
mass [DXA =18.1 +9.6 kg; wearable-BIA =19.0 + 8.9 kg; clinical-
BIA =154+ 9.7 kg; F(2, 323) =4.2, p=0.01] and skeletal muscle
mass [DXA =23.1 + 5.4 kg; wearable-BIA =27.4 + 5.7 kg; clinical-
BIA =312+6.6 kg, F(2, 323)=49.9, p<0.001] across the three
devices. Bonferroni post hoc analyses indicated that all devices
differed significantly from each other in skeletal muscle mass
estimates (p < 0.05), whereas for fat mass, a significant difference
was observed only between the wearable-BIA and clinical-BIA
devices (p=0.01). Neither the wearable-BIA (p =1.0) or clinical-
BIA (p=0.10) device was significantly different from DXA.
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FIGURE 1

foot BIA analyzer (clinical-BIA).

image of methodology to collect body composition from (A). DXA, (B). wearable smartwatch BIA (wearable-BIA) and (C). clinical standing hand-to-

TABLE 1 Participant demographics reported as + standard deviation. Fat mass, body fat percentage (BF%), skeletal muscle mass, and skeletal muscle

percentage (SM%) measures are reported from DXA results.

Group Age (yrs) | Height = Weight (kg) | BMI (kg/m?) | Fat mass (kg) BF% | Skeletal muscle mass (kg) SM%

Overall (n=108) | 39.3+13.7 | 171.0+9.0  70.6+148 24.0+43 18.1+9.6 254493 231454 32,6497
Male (= 52) 4114145 | 1774471 758+132 240+38 15.6+8.3 203+7.8 27.9+44 357432
Female (1=56) | 37.7+129 | 1650460  657+146 240447 20.4+10.2 301482 195432 297435

TABLE 2 Validity statistics for overall data, wearable-BIA (samsung galaxy Watch5) and clinical-BIA (inBody 770) compared to dual-energy x-Ray
absorptiometry (DXA) for estimating body fat percentages (BF%), and skeletal muscle percentages (SM%).

Variable Device

n | Mean +SD | MAE MAPE  r

Bias (95% Cl)

CCC Slope  Intercept | Eq.

Body fat (%) Wearable-BIA | 108 | 26.30+7.93 2.87 14.36 | 093 | 091 0.83 5.11 No —0.88 (—1.55, —0.20) —7.85, 6.1
Clinical-BIA | 108 | 20.84+9.73 4.73 21.33 | 096 | 0.86 1.04 —5.55 No 4.58 (4.09, 5.07) —0.47, 9.63

Skeletal muscle (%) | Wearable-BIA | 106 | 37.11+4.78 6.47 2033 092 045 1.07 4.23 No —6.46 (—6.87, —6.05) | —10.65, —2.27
Clinical-BIA | 107 | 44.38 +5.86 11.7 36.14 | 089 | 0.25 1.33 0.83 No | —11.68 (—12.15, —11.21) | —16.52, —6.84

MAE, mean absolute error; MAPE, mean absolute percentage error; CCC, Lin’s concordance correlation coefficient; r, Pearson’s product MOMENT correlation; Eq., equivalence test
(supported yes/no); CI, confidence interval; LOA, limits of agreement (reported as lower, upper).

Validity statistics for BF% and SM% can be found in Table 2
for combined data and Table 3 for gender stratified data.
Accompanying plots are depicted in Figures 2-4. When
assessing BF%, results showed very strong correlations for both
the wearable-BIA and clinical-BIA compared to DXA. Validity
criteria for BF% accuracy were met for agreement for both
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devices (wearable-BIA CCC =0.91, clinical-BIA CCC =0.86) but
were not met for error (wearable-BIA MAPE: 14.30%, clinical-
BIA MAPE: 21.19%) or equivalence testing. The wearable-BIA
met validity thresholds for female BF% estimation (CCC=10.91,
MAPE =9.19%, Equivalence Test=Supported). When assessing
SM%, results also showed very strong correlations for both the
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TABLE 3 validity statistics for gender stratified data, wearable-BIA (samsung galaxy Watch5) and clinical-BIA (inBody 770) compared to dual-energy x-Ray absorptiometry (DXA) for estimating body fat percentages

(BF%), and skeletal muscle percentages (SM%).

Intercept

Slope

CCC
0.82
0.83

MAPE

MAE
326
4.61
6.44
11.85

2.5

21.64 £5.79
16.03 £ 8.24
42.14 + 3.69
47.56 +4.99
30.63+7.18

Mean + SD

Outcome

Body fat (%)

Gender
Male

—8.96, 6.43
—0.68, 9.37
—11.51, —=1.37

—17.15, —6.54

—6.74, 5.71

—0.37, 9.97
—9.76, —3.24

—15.95, -7.19

—1.26 (—2.36, —0.17)

4.34 (3.63, 5.06)
—6.44 (-7.17, =5.71)
—11.85 (—12.60, —11.09)

—0.52 (—1.37, 0.33)

4.80 (4.08, 5.51)
—6.50 (—6.95, —6.05)
—11.57 (—12.17, —10.96)

No

No
Yes

No

No

7.18
—5.47
0.33
—10.56
4.76
—7.24
3.01
-2.21

0.71
1.06
1.17
1.63
0.86
1.08
1.12
1.46

0.27
0.16
0.91

0.82
0.35
0.19

88
95

0.

0.

0.73

0.87

0.92
0.96

0.9
0.

92

19.92
25.66

18.33
33.15

9.19

17.32
22.19

38.95

4.85
6.5

11.57

25.32+£8.90
36.29 +3.89
41.36 £ 5.00

52
52
51

52
56
56
55
55

Wearable-BIA
Clinical-BIA

Wearable-BIA
Clinical-BIA

Wearable-BIA
Clinical-BIA

Wearable-BIA
Clinical-BIA

Skeletal muscle (%)

Body fat (%)

Skeletal muscle (%)

Female

MAE, mean absolute error; MAPE, mean absolute percentage error; CCC, Lin’s concordance correlation coefficient; r, Pearson’s product moment correlation; Eq., equivalence test (supported yes/no); CI, confidence interval; LOA, limits of agreement (reported as

lower, upper).

10.3389/fspor.2025.1644082

wearable-BIA and clinical-BIA compared to DXA. Validity criteria
for SM% accuracy were not met for agreement (wearable-BIA
CCC=0.45, clinical-BIA CCC=0.25), error (wearable-BIA
MAPE: 20.3%, clinical-BIA MAPE: 36.1%), or equivalence
testing for overall or gender stratified data. Overall, Bland-
Altman analyses revealed wide limits of agreement across both
BF% and SM% outcomes, suggesting a wide range of variability.
Additionally, the plots demonstrated proportional bias, with
differences increasing with those who demonstrate higher BF%
estimates. Additional validity statistics stratified by weight can
be found in the supplementary files (Supplementary Table SI).

4 Discussion

The current study aimed to evaluate the accuracy of a
smartwatch utilizing BIA technology for estimating body
composition. The ability to accurately assess body composition
using a smartwatch offers significant advantages, including on-
demand monitoring and improved accessibility without the need
for frequent laboratory visits or DXA-associated ionizing
radiation exposure. This capability can provide users with timely
and actionable insights into their health and fitness, supporting
informed decisions about diet, training, and overall health
management. This study discovered significant mean differences
in skeletal muscle mass (kg) observed across all devices. While
both the wearable-BIA and clinical-BIA devices produced fat
mass (kg) estimates similar to DXA, they differed significantly
from each other. These findings support the broader validity
results, discussed below, highlighting that while group-level fat
mass estimates were generally comparable between DXA and
wearable-BIA, significant discrepancies remain between BIA
devices, particularly for skeletal muscle mass. The observed
differences across all three devices for skeletal muscle mass
underscore the limited agreement and high variability seen in
other validity metrics, reinforcing the caution needed when
interpreting absolute values from BIA devices.

Both the wearable- and clinical-BIA device revealed mixed
validity, demonstrating strong correlations for both BF% and
SM%, and high levels of agreement and low error for BF%.
Notably, BF% estimation for female participants met all
accuracy thresholds, including low MAPE, high correlation, and
equivalence with DXA values. This finding suggests that female
users may have greater confidence in the wearable-BIA device’s
measurements, highlighting its potential as a practical and
reliable tool for body composition monitoring in this
population. It is important to note that the thresholds utilized
for the current investigation of MAPE <10%, CCC>0.7, and
equivalence supported at a window of 10% (+5%) based on 90%
CI's, are relatively liberal, and chosen as we believe it is
sufficiently stringent for testing consumer-grade devices for
recreational use. As acceptable thresholds have not been widely
established (24), those looking to utilize these devices for other
purposes (athletics, research, clinical, etc.) may choose to apply
more stringent validity thresholds than what we have chosen.

frontiersin.org



Carrier et al.

10.3389/fspor.2025.1644082

Bland-Altman plot

. Equivalence Bounds Equivalence Window - Mean Difference + 90 % CI
-6.47
-6.82 == -6.12 ; i .
-1.63 ' 1 1.63
-15 -10 -5 0
Difference (%)

5
@ 0
@
g
2
2
£
(=]
5
<10 *
.
0 20 30 40 50
Means
B Bland-Altman plot
1
.............. R SNSRI
B LT .
« 8
s| Emegsmnc s .0 o o .
@ L P, s . P T - -
@ . » .
e . o e .
S ™
3 ‘ Q " *
b3 .
=] . .
0
5
.
0 20 30 40 50
Means
C Bland-Altman plot
°
w5
bt
g
g
2
£
(=]
-10
.
.
25 3 35 40 45
Means
D Bland-Altman plot
°
-5 @
” .
@
g
g
2
£
Q -1
a5

-15 -10

FIGURE 2

Bland-Altman and equivalency plots for combined BF% and SM% data for wearable-BIA and clincal-BIA devices compared to criterion measurement
(DXA). Wearable-BIA BF% results found in panel (A), Clinical-BIA BF% results found in panel (B). Wearable-BIA SM% results found in panel (C), Clinical-
BIA SM¥% results found in panel (D). Blue lines on Bland-Altman plots represent the proportional bias line with shadings representing 95% confidence
intervals of proportional bias line. X-axis is the mean of the two measurements with the Y-axis the difference between the two measurements. The
mean bias line and upper and lower limits of agreement are shown in dashed lines (mean bias being the middle-dashed line). The solid line represents
the hypothetical mean bias of 0. Equivalence window for equivalence plots determined based on 10% of criterion mean (+5%).
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FIGURE 3
Bland-Altman and equivalency plots for male participant BF% and SM% data for wearable-BIA and clinical-BIA devices compared to criterion
measurement (DXA). Wearable-BIA BF% results found in panel (A), Clinical-BIA BF% results found in panel (B). Wearable-BIA SM% results found in
panel (C), Clinical-BIA SM% results found in panel (D). Blue lines on Bland-Altman plots represent the proportional bias line with shadings
representing 95% confidence intervals of proportional bias line. X-axis is the mean of the two measurements with the Y-axis the difference
between the two measurements. The mean bias line and upper and lower limits of agreement are shown in dashed lines (mean bias being the
middle-dashed line). The solid line represents the hypothetical mean bias of 0. Equivalence window for equivalence plots determined based on
10% of criterion mean (+5%).

BIA devices estimate body composition by measuring the
impedance/conductance of low-level electrical currents through
body tissues, relying on proprietary algorithms to generate these
estimates. While the literature has consistently shown that BIA
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devices exhibit errors in measuring body composition when
compared to criterion DXA assessments, advancements in
technology have improved their accuracy and accessibility (15,
25). In this study, both the wearable- and clinical-BIA devices
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FIGURE 4
Bland-Altman and equivalency plots for female participant BF% and SM% data for wearable-BIA and clinical-BIA devices compared to criterion
measurement (DXA). Wearable-BIA BF% results found in panel (A), Clinical-BIA BF% results found in panel (B). Wearable-BIA SM% results found in
panel (C), Clinical-BIA SM% results found in panel (D). Blue lines on Bland-Altman plots represent the proportional bias line with shadings
representing 95% confidence intervals of proportional bias line. X-axis is the mean of the two measurements with the Y-axis the difference
between the two measurements. The mean bias line and upper and lower limits of agreement are shown in dashed lines (mean bias being the
middle-dashed line). The solid line represents the hypothetical mean bias of 0. Equivalence window for equivalence plots determined based on
10% of criterion mean (+5%). Equivalency test supported for Females wearable-BIA BF% condition only.
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demonstrated errors in their estimations compared to DXA.
While the MAEs for the wearable-BIA (BF% =2.8%; SM
% = 6.4%) clinical-BIA  (BF% =4.3%; SM% = 11.7%)
devices were relatively small, indicating the average absolute

and

difference from DXA-measured values, the corresponding
MAPEs are substantially larger (wearable-BIA: BF% = 14.3%;
SM% =20.3%; clinical-BIA: BF% =21.3%; SM% =36.1%). This
discrepancy highlights a key limitation of MAPE when used with
percentage-based variables like BF% and SM%, where small
absolute differences can yield large relative percentage errors due
to the proportional scaling. Therefore, it is important to interpret
MAPE values in conjunction with MAE to better understand the
practical magnitude of error. These MAE values align with
prior reports on the accuracy of wearable and clinical BIA
technologies. (26, 27).

As mentioned above, many BIA devices utilize proprietary
algorithms that indirectly estimate body composition from
electrical conductivity of the body, among other measures. It
has been suggested that BIA-derived outputs may not provide
valid results if the underlying prediction equations are not
appropriately selected or calibrated based on factors such as sex,
age, race, and body size (28). However, the specific algorithms
used by most commercial systems, including wearable BIA
devices, are not publicly disclosed. This lack of transparency
prevents the scientific community from fully evaluating how
input signals are processed or weighted, identifying potential
sources of systematic error, or proposing refinements that might
improve generalizability across populations. The inability to
access or replicate these proprietary algorithms limits scientific
reproducibility and constrains the interpretability of validation
findings. While studies such as ours can rigorously assess
applied validity, that is, the degree to which device outputs
correspond with criterion measures under controlled conditions,
they cannot isolate which aspects of the algorithm or hardware
contribute to observed discrepancies. Consequently, results
should be viewed as an evaluation of overall device performance
rather than a mechanistic validation of the underlying model.
Despite this
scientifically valuable because it provides transparent, empirical

limitation, independent validation remains
evidence regarding real-world measurement accuracy, helps
identify consistent sources of bias across device generations, and
informs researchers and clinicians on the practical reliability of
wearable technology when algorithmic details remain opaque.
And while a complete analysis of BIA estimation equations is
outside the scope of the current study, we believe it is important
to note it as a limitation inherent with testing the validity of
consumer-grade devices where proprietary algorithms are not
disclosed and changes and updates to the models are inevitable.
With the above said, and based on the output of the included
devices, we speculate that the models are a 3-compartment
model, similar to the criterion DXA assessment. As stated
earlier, the only group that the device provided sufficiently
accurate results were female BF% estimation, where female
participants demonstrated high correlation and low error, and
equivalency testing deemed the wearable-BIA comparable to
DXA BF% values. Thus, based on our results, females can
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expect acceptably accurate results with less than 10% error (in
terms of MAPE) and 2.51% (in terms of MAE) in their BF%
estimate when using this device. Although the reason for the
higher accuracy of female BF% measurements compared to
males remains unclear, previous research has also highlighted
differences in BIA assessment accuracy between genders. This
discrepancy may be attributed to variations in fat and fat-free
mass distribution between genders, as well as potential
algorithmic adjustments for gender that are not fully disclosed
across different devices (29). Further research is needed to better
understand these influencing factors and enhance the accuracy
of BIA across different populations.

One of the key strengths of our study is the inclusion of a large
and diverse participant pool. Specifically, participants varied in age
(18-77 years), BMI (17.70-41.38 BMI), and DXA BF% values
(8.60%-52.60%). This broad

generalizability and applicability of our findings. There were,

representation enhances the
however, notable biases detected, particularly for individuals
with higher body fat percentages using the wearable-BIA. The
Bland-Altman plots display proportional
difference between devices increases with higher BF% estimates.

bias where the
This indicates increasing disagreement between devices at higher
their
individuals with higher BF%. These biases also suggest that

measurement ranges, limiting interchangeability ~for
while the wearable devices can provide general trends in body
composition, they may lack the precision required for clinical
assessments or detailed monitoring, especially in cases where
small changes are significant for training adjustments or health
should be noted that this

investigated these devices during a one-time, cross-sectional

interventions. It study only
assessment. Future research should evaluate the effectiveness of
these devices to detect changes over time in the same
individuals, which would provide users additional confidence in
the measurements and the devices ability to detect longitudinal
changes in body composition measures.

It should be noted that the wearable device assessed in this
study represents a newer generation of a model that has
previously incorporated wearable-BIA technology and has been
assessed for accuracy (Samsung Galaxy Watch 4 vs. Watch 5).
Although manufacturers rarely disclose the specific nature of
hardware or algorithmic updates between device iterations,
available marketing material for the Galaxy Watch 5 indicates
refinements to the bioimpedance sensors and wrist electrode
interface, suggesting that independent validation of each new
generation remains warranted. In the present study, the Galaxy
Watch 5 demonstrated similar levels of correlation, error and
agreement with criterion measures compared to those previously
reported for the Galaxy Watch 4 (26), indicating comparable
performance across models. Importantly, our analysis is the first
to examine gender-specific and weight-stratified accuracy for any
wearable-BIA device, providing new insight into potential
demographic influences on measurement validity. Given that
even minor modifications in sensor design or signal-processing
algorithms can meaningfully alter impedance-derived estimates,
future generations of this and similar consumer wearables
should be independently re-evaluated. Routine validation of each
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hardware and software generation aligns with best practice
recommendations (30, 31) for consumer device evaluation and
supports transparency and reproducibility as these technologies
continue to evolve.

While discrepancies between wearable-BIA estimates and
DXA measurements highlight current limitations in wearable-
derived body composition estimates, it is noteworthy that the
wearable-BIA performed comparably to, and in some cases
better than, the clinical-BIA device as indicated by lower
MAE and MAPE values,
agreement statistics.

correlation and

and higher

Previous research has shown that
wearable-derived BIA measurements exhibit similar levels of
agreement with other BIA methods, such as octopolar BIA
(26). These findings collectively suggest that the inherent
limitations of BIA as a technique may be consistent across
specific types of BIA used. This is particularly relevant as
standard clinical and commercial body composition analyzers
are costly and often inaccessible. Consumers can therefore
feel confident in achieving similar levels of accuracy with
wearable BIA devices. Smartwatch-derived body composition
estimates offer a practical and accessible alternative, or at the
very least a complementary tool, particularly when higher-
accuracy methods are unavailable or infeasible, or for self-
monitoring between clinical visits.

While we were able to include a relatively large and diverse
sample, a limitation of the current study is that we only
included healthy individuals who were considered physically
active. Our data should be interpreted as such, and further
research is needed to confirm if accuracy values detected here
can also be applied to other populations, such as sedentary
individuals or those with cardiovascular or metabolic medical
conditions. Additionally, our results can only be applied to
the wearable device used in this study. As mentioned above,
technology and proprietary algorithms adapt and evolve over
time, therefore regular independent evaluation is important
for the ever-evolving hardware and sensor changes in
wearable technology. Lastly, although all three devices were
used during a single, same-session visit, ensuring concurrent
measurements within each participant, we did not standardize
the time of day for the visit across participants. As a result,
we cannot determine the potential influence of testing time or
diurnal variation on device agreement.

In conclusion, the wearable-BIA device assessed in this study
performed comparably to the clinical-BIA device and
demonstrated acceptable accuracy for estimating BF% in females
compared to the criterion DXA values. However, the broader
findings, especially for skeletal muscle mass and in those with
greater BF%, highlight variability and limitations in validity that
restrict the use of these devices for precise, individual-level
assessments. While not a valid replacement for laboratory-based
methods, wearable-BIA may offer a practical, accessible
alternative for general monitoring in recreational settings. Future
research should further examine the device’s ability to track
changes over time and validate its accuracy in more diverse
populations to strengthen confidence in its use for health and

fitness monitoring.
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