
EDITED BY  

Kamiar Aminian,  

Swiss Federal Institute of Technology 

Lausanne, Switzerland

REVIEWED BY  

Almudena Montalvo Pérez,  

European University of Madrid, Spain  

Roberto Fernandes Da Costa,  

Autonomous University of Chile, Chile

*CORRESPONDENCE  

Adam S. Lepley  

alepley@umich.edu

RECEIVED 09 June 2025 

REVISED 29 October 2025 

ACCEPTED 05 November 2025 

PUBLISHED 18 November 2025

CITATION 

Carrier B, Melvin AC, Outwin JR, 

Wasserman MG, Audet AP, Soldes KC, 

Kozloff KM and Lepley AS (2025) Wearables 

for health monitoring: body composition 

estimates of commercial smartwatch and 

clinical bioelectrical impedance device.  

Front. Sports Act. Living 7:1644082. 

doi: 10.3389/fspor.2025.1644082

COPYRIGHT 

© 2025 Carrier, Melvin, Outwin, Wasserman, 

Audet, Soldes, Kozloff and Lepley. This is an 

open-access article distributed under the 

terms of the Creative Commons Attribution 

License (CC BY). The use, distribution or 

reproduction in other forums is permitted, 

provided the original author(s) and the 

copyright owner(s) are credited and that the 

original publication in this journal is cited, in 

accordance with accepted academic practice. 

No use, distribution or reproduction is 

permitted which does not comply with 

these terms.

Wearables for health monitoring: 
body composition estimates 
of commercial smartwatch 
and clinical bioelectrical 
impedance device

Bryson Carrier
1
, Amanda C. Melvin

1
, Jacob R. Outwin

2
,  

Marni G. Wasserman
3
, Adam P. Audet

1
, Katherine C. Soldes

4
,  

Kenneth M. Kozloff
1,5 

and Adam S. Lepley
1*

1University of Michigan, School of Kinesiology, Ann Arbor, MI, United States, 2The George Washington 

University, Washington, DC, United States, 3Indiana University Bloomington, Bloomington, IN, United 

States, 4Washington University in St. Louis, St. Louis, MO, United States, 5Department of Orthopaedic 

Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States

Introduction: Body composition is a critical health measure. Accurate 

monitoring of body composition, such as body fat percentage (BF%) and 

skeletal muscle mass percentage (SM%), enables individuals to make informed 

decisions regarding nutrition, exercise, health status and management. 

Recent advancements have integrated bioelectrical impedance analysis (BIA) 

into wearable technology, presenting accessible options for tracking body 

composition measures. However, the validity of wearable BIA devices in 

comparison to criterion methods remains underexplored. Therefore, this 

study aimed to assess the validity of a wrist-worn consumer device and a 

clinical BIA device against the criterion measure of dual-energy x-ray 

absorptiometry (DXA).

Methods: This study included 108 physically active participants (56 females, 52 

males). Participants underwent assessments using DXA, a wearable smartwatch 

BIA device (wearable-BIA; Samsung Galaxy Watch5), and a clinical standing 

hand-to-foot BIA analyzer (clinical-BIA; InBody 770). Measures of interest 

included BF% and SM%. Data were analyzed for accuracy using tests of error 

[mean absolute error [MAE], mean absolute percentage error [MAPE]], linearity 

(Pearson’s r, Deming regression), agreement (Lin’s CCC), and equivalence, 

complemented by Bland-Altman plots to visually represent bias.

Results: When assessing BF%, both the wearable-BIA (r = 0.93; CCC = 0.91) and 

clinical-BIA (r = 0.96; CCC = 0.86), demonstrated very strong correlations and 

agreement compared to DXA, with MAPEs of 14.3% and 21.1%, respectively. 

Female participants using the wearable-BIA device showed the greatest 

accuracy for BF% (CCC = 0.91, MAPE = 9.19%, equivalence supported). Bland- 

Altman analysis revealed proportional bias, particularly in individuals with 

higher BF%. Although correlations were considered strong for SM%, 

agreement was classified as weak (wearable-BIA: r = 0.92, CCC = 0.45; 

MAPE = 20.3%; clinical-BIA, r = 0.89; CCC = 0.25; MAPE = 36.1%).
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Discussion: Both the wearable- and clinical-BIA device revealed mixed validity, 

demonstrating strong correlations for both BF% and SM%, and high levels of 

agreement and low error for BF%. Additionally, the wearable-BIA demonstrated 

acceptable accuracy for estimating BF% in females. However, wider limits of 

agreement and variability suggest limitations in validity, particularly for skeletal 

muscle mass and in individuals with higher body fat percentages. These 

findings support the practical use of wearable devices for general body 

composition monitoring when laboratory-based methods are unavailable, 

though caution is warranted. Continued development and validation efforts are 

recommended to enhance accuracy and consistency across diverse 

populations and measures.

KEYWORDS

wearable technology, activity monitor, biometric technology, body fat percentage, 

skeletal muscle mass, dual-energy x-ray absorptiometry

1 Introduction

Body composition outcomes are key health measures in 

understanding an individual’s overall health and fitness status, 

providing critical insights into the balance between fat and lean 

tissue, which can in�uence metabolic health and physical 

performance (1). Analysis of body composition, including body 

fat percentage (BF%) and skeletal muscle percentage (SM%) 

offers a more nuanced view of health by differentiating between 

fat and lean mass, as compared to more simple but easily 

accessible measures such as body mass or body mass index 

(BMI) (2–5). This distinction can be important, as two 

individuals with the same BMI can have vastly different health 

profiles depending on their fat distribution and muscle mass. 

Tracking BF% and SM% over time is relevant not only for 

identifying potential risk profiles and metabolic health in the 

general population, it also can be used to monitor training 

outcomes and progress toward goals in those who are physically 

active. While the role of body composition in sport performance 

is variable, and unique to the sport being performed, the ability 

to accurately track compositional changes over time is of great 

interest to athletes, coaches, physically active individuals, and 

those monitoring weight changes (6–10). Regular monitoring of 

body composition can help individuals make informed decisions 

about adjusting their diet, exercise, and lifestyle to achieve and 

maintain their health and fitness goals (1).

There are various methods currently available to assess body 

composition. These devices range from simple and cost-effective 

equations based on anthropometric measurements, which are 

prone to high error, to criterion measurements, such as the 

dual-energy x-ray absorptiometry (DXA) known for its accuracy 

and reliability (11). Other high-quality methods, such as 

hydrostatic weighing and air displacement plethysmography, 

require specialized equipment and facilities, making them time 

consuming, expensive, and relatively inaccessible (12). More 

accessible options, like skinfold measurements and bioelectrical 

impedance analysis (BIA) are common due to their ease of use 

and affordability (13). Skinfold measurements are convenient 

and low cost; however, they require a high degree of training to 

achieve proper technique and have greater error than other 

methods (14). BIA, by contrast, has become an appealing 

method for assessing body composition because it is non- 

invasive, quick, cost-effective, and relatively accurate, 

making it accessible for both in-clinic and at-home use 

while providing immediate feedback on body composition 

measures (15).

BIA provides estimates of body composition by measuring the 

resistance of body tissues to a low-level electrical current (16). 

Current BIA devices are manufactured using various 

configurations, including at-home BIA scales, clinical hand-to- 

foot analyzers, and advanced octopolar systems. Advances in 

technology have made many biomonitoring sensors more 

practical for everyday health monitoring. Recently, companies 

have begun integrating BIA technologies into commercially 

available wearable devices (smartwatches), offering the potential 

of an accurate, convenient, and accessible solution for 

monitoring body composition and enhancing public engagement 

in health monitoring. These devices can deliver frequent 

estimations of body composition through non-invasive means, 

providing users with actionable information about their health 

and fitness status. However, many of these devices have yet to 

undergo comprehensive independent validation to assess their 

accuracy compared to traditional laboratory methods (15). 

Additionally, as wearable technologies continue to evolve, 

updates to hardware design, sensor configuration, and 

proprietary algorithms are common across device generations. 

Accordingly, independent validation of new models is critical to 

ensure that previously established levels of accuracy remain valid 

and that findings from earlier versions can be appropriately 

generalized to newer devices. Independent validation is essential 

for consumers to rely on these devices for individual health 

monitoring. Thus, the purpose of this study is to assess the 

accuracy of a wrist-worn wearable device utilizing BIA 

technology to estimate body fat percentage and skeletal muscle 

percentage compared to DXA and established clinical 

BIA methods.
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2 Materials and methods

A total of 108 participants were enrolled in the study, 

including 56 females and 52 males (self-reported gender). 

Participants were included if they were between the ages of 

18–80 and participated in moderate to vigorous physical 

activity at least three days per week. Participants were 

excluded if they had a contraindication to intense exercise 

(e.g., cardiovascular disease, significant musculoskeletal or 

neurological impairments, etc.) or were pregnant. All 

participants provided written informed consent prior to 

testing, and all procedures were approved by the University’s 

Institutional Review Board (IRB#: HUM00220366). 

Participants underwent body composition assessments during 

a single visit, where they were required to wear lightweight 

athletic clothing. Prior to their visit, participants were 

instructed to consume water like they normally would and to 

refrain from food, caffeine, or other drink for 3 h prior to 

their appointment as per device instructions. Participants 

were also instructed to avoid alcohol, smoking and heavy 

exercise for 24 h prior to their visit.

During the visit, body composition was measured using 

three different methods for comparison: DXA, wearable 

smartwatch BIA device (wearable-BIA), and a clinical 

standing hand-to-foot BIA analyzer (clinical-BIA). Criterion 

measurements were obtained using a total body DXA scan 

(Lunar iDXA, General Electric, Boston, MA, USA; enCORE 

v18 software). The wearable-BIA (Samsung Galaxy Watch5, 

Samsung Electronics Co. Ltd., Seoul, South Korea) employs 

BIA through two metal knobs on the watch. Per device 

instructions, after demographic information was input, the 

participants were instructed to place their middle and ring 

fingers from one hand on these knobs for 30 s to 1 min to 

obtain body fat percentage readings. At the time of our study, 

no other commercially available smartwatches included 

wearable BIA assessment, thus we chose this device to be 

compared to a criterion standard and a clinical device using 

BIA to assess body composition. The clinical-BIA (InBody 

770, InBody Co Ltd., Seoul, South Korea) was used as an 

additional clinical comparison. For this assessment, the 

participants were positioned on a standing hand-to-foot BIA 

analyzer following device instructions (Figure 1). Importantly, 

at the time of our study, no other commercially available 

smartwatches included wearable BIA assessment. This 

underscores the novelty of the technology and highlights why 

it was essential to rigorously evaluate its validity at an early 

stage. Establishing this evidence base is critical not only for 

the sponsor, but also for consumers, clinicians, and 

researchers who are increasingly using these devices to 

monitor and track body composition. By comparing the 

smartwatch to both DXA, the criterion standard, and a widely 

used clinical device (InBody), our study provides a 

foundation for interpreting results from a novel technology 

that is rapidly entering both consumer and research settings.

Fat and skeletal muscle mass (kg), and BF% and SM% values 

were directly reported by each device for further analysis.

2.1 Data analysis

Participant data was collected and managed via spreadsheet 

software and a web-based data management system (REDCap, 

Vanderbilt University, Nashville, TN) hosted at University of 

Michigan (17). Measures for body composition were obtained as 

cross-sectional data provided by the test devices after each trial. 

All statistics were run in jamovi [The jamovi project (2024). 

Jamovi (Computer Software). Version 2.6.19, retrieved from 

https://www.jamovi.org]. Equivalence plots were plotted using 

an R Shiny app (R Statistical Software) (18).

Mean differences between the three devices in reported fat and 

skeletal muscle mass (kg) values were compared using a one-way 

ANOVA with Bonferroni post hoc comparisons. Accuracy for BF% 

and SM% was determined via tests of error, linearity, agreement, 

and equivalence, with visual representation of bias shown with 

Bland-Altman plots (19–22). Statistics were performed for the 

overall sample, as well as for gender and weight stratifications. 

The wearable-BIA and clinical-BIA devices were used as the test 

measurements for all statistical tests, and DXA as the criterion 

measurement. Mean absolute error (MAE) and mean absolute 

percentage error (MAPE) were calculated for error analysis. 

Agreement and linearity were established via Lin’s Concordance 

Correlation Coefficient (CCC), Pearson’s Product Moment 

Correlation (r), and Deming Regression. Correlation coefficients 

were interpreted as follows: 0 to <0.2, very weak; ≥0.2 to <0.4, 

weak; ≥0.4 to <0.6, moderate; ≥0.6 to <0.8, strong; and ≥0.8– 

1.0, very strong (23). Equivalence testing was conducted using 

90% confidence intervals, consistent with the standard approach 

at α = 0.05. In this framework, a 90% CI that lies entirely within 

the predefined equivalence bounds indicates statistical 

equivalence at the 5% level and is broadly accepted in 

equivalence testing literature (18). In addition to descriptive 

statistics, combined validity criteria were set at MAPE < 10%, 

CCC > 0.7, and equivalence supported at 10% (±5%) of the 

criterion mean for equivalence window, based on the 90% CI 

(20, 24). Binary results for the equivalence testing can be found 

in the validity statistics.

3 Results

A total of 108 participants completed the body composition 

assessments; demographic summary statistics can be found in 

Table 1. ANOVA revealed significant differences in both fat 

mass [DXA = 18.1 ± 9.6 kg; wearable-BIA = 19.0 ± 8.9 kg; clinical- 

BIA = 15.4 ± 9.7 kg; F(2, 323) = 4.2, p = 0.01] and skeletal muscle 

mass [DXA = 23.1 ± 5.4 kg; wearable-BIA = 27.4 ± 5.7 kg; clinical- 

BIA = 31.2 ± 6.6 kg; F(2, 323) = 49.9, p < 0.001] across the three 

devices. Bonferroni post hoc analyses indicated that all devices 

differed significantly from each other in skeletal muscle mass 

estimates (p < 0.05), whereas for fat mass, a significant difference 

was observed only between the wearable-BIA and clinical-BIA 

devices (p = 0.01). Neither the wearable-BIA (p = 1.0) or clinical- 

BIA (p = 0.10) device was significantly different from DXA.
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Validity statistics for BF% and SM% can be found in Table 2

for combined data and Table 3 for gender stratified data. 

Accompanying plots are depicted in Figures 2–4. When 

assessing BF%, results showed very strong correlations for both 

the wearable-BIA and clinical-BIA compared to DXA. Validity 

criteria for BF% accuracy were met for agreement for both 

devices (wearable-BIA CCC = 0.91, clinical-BIA CCC = 0.86) but 

were not met for error (wearable-BIA MAPE: 14.30%, clinical- 

BIA MAPE: 21.19%) or equivalence testing. The wearable-BIA 

met validity thresholds for female BF% estimation (CCC = 0.91, 

MAPE = 9.19%, Equivalence Test = Supported). When assessing 

SM%, results also showed very strong correlations for both the 

FIGURE 1 

image of methodology to collect body composition from (A). DXA, (B). wearable smartwatch BIA (wearable-BIA) and (C). clinical standing hand-to- 

foot BIA analyzer (clinical-BIA).

TABLE 1 Participant demographics reported as ± standard deviation. Fat mass, body fat percentage (BF%), skeletal muscle mass, and skeletal muscle 
percentage (SM%) measures are reported from DXA results.

Group Age (yrs) Height Weight (kg) BMI (kg/m2) Fat mass (kg) BF% Skeletal muscle mass (kg) SM%

Overall (n = 108) 39.3 ± 13.7 171.0 ± 9.0 70.6 ± 14.8 24.0 ± 4.3 18.1 ± 9.6 25.4 ± 9.3 23.1 ± 5.4 32.6 ± 9.7

Male (n = 52) 41.1 ± 14.5 177.4 ± 7.1 75.8 ± 13.2 24.0 ± 3.8 15.6 ± 8.3 20.3 ± 7.8 27.9 ± 4.4 35.7 ± 3.2

Female (n = 56) 37.7 ± 12.9 165.0 ± 6.0 65.7 ± 14.6 24.0 ± 4.7 20.4 ± 10.2 30.1 ± 8.2 19.5 ± 3.2 29.7 ± 3.5

TABLE 2 Validity statistics for overall data, wearable-BIA (samsung galaxy Watch5) and clinical-BIA (inBody 770) compared to dual-energy x-Ray 
absorptiometry (DXA) for estimating body fat percentages (BF%), and skeletal muscle percentages (SM%).

Variable Device n Mean ± SD MAE MAPE r CCC Slope Intercept Eq. Bias (95% CI) LOA

Body fat (%) Wearable-BIA 108 26.30 ± 7.93 2.87 14.36 0.93 0.91 0.83 5.11 No −0.88 (−1.55, −0.20) −7.85, 6.1

Clinical-BIA 108 20.84 ± 9.73 4.73 21.33 0.96 0.86 1.04 −5.55 No 4.58 (4.09, 5.07) −0.47, 9.63

Skeletal muscle (%) Wearable-BIA 106 37.11 ± 4.78 6.47 20.33 0.92 0.45 1.07 4.23 No −6.46 (−6.87, −6.05) −10.65, −2.27

Clinical-BIA 107 44.38 ± 5.86 11.7 36.14 0.89 0.25 1.33 0.83 No −11.68 (−12.15, −11.21) −16.52, −6.84

MAE, mean absolute error; MAPE, mean absolute percentage error; CCC, Lin’s concordance correlation coefficient; r, Pearson’s product MOMENT correlation; Eq., equivalence test 

(supported yes/no); CI, confidence interval; LOA, limits of agreement (reported as lower, upper).
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wearable-BIA and clinical-BIA compared to DXA. Validity criteria 

for SM% accuracy were not met for agreement (wearable-BIA 

CCC = 0.45, clinical-BIA CCC = 0.25), error (wearable-BIA 

MAPE: 20.3%, clinical-BIA MAPE: 36.1%), or equivalence 

testing for overall or gender stratified data. Overall, Bland- 

Altman analyses revealed wide limits of agreement across both 

BF% and SM% outcomes, suggesting a wide range of variability. 

Additionally, the plots demonstrated proportional bias, with 

differences increasing with those who demonstrate higher BF% 

estimates. Additional validity statistics stratified by weight can 

be found in the supplementary files (Supplementary Table S1).

4 Discussion

The current study aimed to evaluate the accuracy of a 

smartwatch utilizing BIA technology for estimating body 

composition. The ability to accurately assess body composition 

using a smartwatch offers significant advantages, including on- 

demand monitoring and improved accessibility without the need 

for frequent laboratory visits or DXA-associated ionizing 

radiation exposure. This capability can provide users with timely 

and actionable insights into their health and fitness, supporting 

informed decisions about diet, training, and overall health 

management. This study discovered significant mean differences 

in skeletal muscle mass (kg) observed across all devices. While 

both the wearable-BIA and clinical-BIA devices produced fat 

mass (kg) estimates similar to DXA, they differed significantly 

from each other. These findings support the broader validity 

results, discussed below, highlighting that while group-level fat 

mass estimates were generally comparable between DXA and 

wearable-BIA, significant discrepancies remain between BIA 

devices, particularly for skeletal muscle mass. The observed 

differences across all three devices for skeletal muscle mass 

underscore the limited agreement and high variability seen in 

other validity metrics, reinforcing the caution needed when 

interpreting absolute values from BIA devices.

Both the wearable- and clinical-BIA device revealed mixed 

validity, demonstrating strong correlations for both BF% and 

SM%, and high levels of agreement and low error for BF%. 

Notably, BF% estimation for female participants met all 

accuracy thresholds, including low MAPE, high correlation, and 

equivalence with DXA values. This finding suggests that female 

users may have greater confidence in the wearable-BIA device’s 

measurements, highlighting its potential as a practical and 

reliable tool for body composition monitoring in this 

population. It is important to note that the thresholds utilized 

for the current investigation of MAPE < 10%, CCC > 0.7, and 

equivalence supported at a window of 10% (±5%) based on 90% 

CI’s, are relatively liberal, and chosen as we believe it is 

sufficiently stringent for testing consumer-grade devices for 

recreational use. As acceptable thresholds have not been widely 

established (24), those looking to utilize these devices for other 

purposes (athletics, research, clinical, etc.) may choose to apply 

more stringent validity thresholds than what we have chosen.T
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FIGURE 2 

Bland-Altman and equivalency plots for combined BF% and SM% data for wearable-BIA and clincal-BIA devices compared to criterion measurement 

(DXA). Wearable-BIA BF% results found in panel (A), Clinical-BIA BF% results found in panel (B). Wearable-BIA SM% results found in panel (C), Clinical- 

BIA SM% results found in panel (D). Blue lines on Bland-Altman plots represent the proportional bias line with shadings representing 95% confidence 

intervals of proportional bias line. X-axis is the mean of the two measurements with the Y-axis the difference between the two measurements. The 

mean bias line and upper and lower limits of agreement are shown in dashed lines (mean bias being the middle-dashed line). The solid line represents 

the hypothetical mean bias of 0. Equivalence window for equivalence plots determined based on 10% of criterion mean (±5%).
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BIA devices estimate body composition by measuring the 

impedance/conductance of low-level electrical currents through 

body tissues, relying on proprietary algorithms to generate these 

estimates. While the literature has consistently shown that BIA 

devices exhibit errors in measuring body composition when 

compared to criterion DXA assessments, advancements in 

technology have improved their accuracy and accessibility (15, 

25). In this study, both the wearable- and clinical-BIA devices 

FIGURE 3 

Bland-Altman and equivalency plots for male participant BF% and SM% data for wearable-BIA and clinical-BIA devices compared to criterion 

measurement (DXA). Wearable-BIA BF% results found in panel (A), Clinical-BIA BF% results found in panel (B). Wearable-BIA SM% results found in 

panel (C), Clinical-BIA SM% results found in panel (D). Blue lines on Bland-Altman plots represent the proportional bias line with shadings 

representing 95% confidence intervals of proportional bias line. X-axis is the mean of the two measurements with the Y-axis the difference 

between the two measurements. The mean bias line and upper and lower limits of agreement are shown in dashed lines (mean bias being the 

middle-dashed line). The solid line represents the hypothetical mean bias of 0. Equivalence window for equivalence plots determined based on 

10% of criterion mean (±5%).
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FIGURE 4 

Bland-Altman and equivalency plots for female participant BF% and SM% data for wearable-BIA and clinical-BIA devices compared to criterion 

measurement (DXA). Wearable-BIA BF% results found in panel (A), Clinical-BIA BF% results found in panel (B). Wearable-BIA SM% results found in 

panel (C), Clinical-BIA SM% results found in panel (D). Blue lines on Bland-Altman plots represent the proportional bias line with shadings 

representing 95% confidence intervals of proportional bias line. X-axis is the mean of the two measurements with the Y-axis the difference 

between the two measurements. The mean bias line and upper and lower limits of agreement are shown in dashed lines (mean bias being the 

middle-dashed line). The solid line represents the hypothetical mean bias of 0. Equivalence window for equivalence plots determined based on 

10% of criterion mean (±5%). Equivalency test supported for Females wearable-BIA BF% condition only.
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demonstrated errors in their estimations compared to DXA. 

While the MAEs for the wearable-BIA (BF% = 2.8%; SM 

% = 6.4%) and clinical-BIA (BF% = 4.3%; SM% = 11.7%) 

devices were relatively small, indicating the average absolute 

difference from DXA-measured values, the corresponding 

MAPEs are substantially larger (wearable-BIA: BF% = 14.3%; 

SM% = 20.3%; clinical-BIA: BF% = 21.3%; SM% = 36.1%). This 

discrepancy highlights a key limitation of MAPE when used with 

percentage-based variables like BF% and SM%, where small 

absolute differences can yield large relative percentage errors due 

to the proportional scaling. Therefore, it is important to interpret 

MAPE values in conjunction with MAE to better understand the 

practical magnitude of error. These MAE values align with 

prior reports on the accuracy of wearable and clinical BIA 

technologies. (26, 27).

As mentioned above, many BIA devices utilize proprietary 

algorithms that indirectly estimate body composition from 

electrical conductivity of the body, among other measures. It 

has been suggested that BIA-derived outputs may not provide 

valid results if the underlying prediction equations are not 

appropriately selected or calibrated based on factors such as sex, 

age, race, and body size (28). However, the specific algorithms 

used by most commercial systems, including wearable BIA 

devices, are not publicly disclosed. This lack of transparency 

prevents the scientific community from fully evaluating how 

input signals are processed or weighted, identifying potential 

sources of systematic error, or proposing refinements that might 

improve generalizability across populations. The inability to 

access or replicate these proprietary algorithms limits scientific 

reproducibility and constrains the interpretability of validation 

findings. While studies such as ours can rigorously assess 

applied validity, that is, the degree to which device outputs 

correspond with criterion measures under controlled conditions, 

they cannot isolate which aspects of the algorithm or hardware 

contribute to observed discrepancies. Consequently, results 

should be viewed as an evaluation of overall device performance 

rather than a mechanistic validation of the underlying model. 

Despite this limitation, independent validation remains 

scientifically valuable because it provides transparent, empirical 

evidence regarding real-world measurement accuracy, helps 

identify consistent sources of bias across device generations, and 

informs researchers and clinicians on the practical reliability of 

wearable technology when algorithmic details remain opaque. 

And while a complete analysis of BIA estimation equations is 

outside the scope of the current study, we believe it is important 

to note it as a limitation inherent with testing the validity of 

consumer-grade devices where proprietary algorithms are not 

disclosed and changes and updates to the models are inevitable. 

With the above said, and based on the output of the included 

devices, we speculate that the models are a 3-compartment 

model, similar to the criterion DXA assessment. As stated 

earlier, the only group that the device provided sufficiently 

accurate results were female BF% estimation, where female 

participants demonstrated high correlation and low error, and 

equivalency testing deemed the wearable-BIA comparable to 

DXA BF% values. Thus, based on our results, females can 

expect acceptably accurate results with less than 10% error (in 

terms of MAPE) and 2.51% (in terms of MAE) in their BF% 

estimate when using this device. Although the reason for the 

higher accuracy of female BF% measurements compared to 

males remains unclear, previous research has also highlighted 

differences in BIA assessment accuracy between genders. This 

discrepancy may be attributed to variations in fat and fat-free 

mass distribution between genders, as well as potential 

algorithmic adjustments for gender that are not fully disclosed 

across different devices (29). Further research is needed to better 

understand these in�uencing factors and enhance the accuracy 

of BIA across different populations.

One of the key strengths of our study is the inclusion of a large 

and diverse participant pool. Specifically, participants varied in age 

(18–77 years), BMI (17.70–41.38 BMI), and DXA BF% values 

(8.60%–52.60%). This broad representation enhances the 

generalizability and applicability of our findings. There were, 

however, notable biases detected, particularly for individuals 

with higher body fat percentages using the wearable-BIA. The 

Bland-Altman plots display proportional bias where the 

difference between devices increases with higher BF% estimates. 

This indicates increasing disagreement between devices at higher 

measurement ranges, limiting their interchangeability for 

individuals with higher BF%. These biases also suggest that 

while the wearable devices can provide general trends in body 

composition, they may lack the precision required for clinical 

assessments or detailed monitoring, especially in cases where 

small changes are significant for training adjustments or health 

interventions. It should be noted that this study only 

investigated these devices during a one-time, cross-sectional 

assessment. Future research should evaluate the effectiveness of 

these devices to detect changes over time in the same 

individuals, which would provide users additional confidence in 

the measurements and the devices ability to detect longitudinal 

changes in body composition measures.

It should be noted that the wearable device assessed in this 

study represents a newer generation of a model that has 

previously incorporated wearable-BIA technology and has been 

assessed for accuracy (Samsung Galaxy Watch 4 vs. Watch 5). 

Although manufacturers rarely disclose the specific nature of 

hardware or algorithmic updates between device iterations, 

available marketing material for the Galaxy Watch 5 indicates 

refinements to the bioimpedance sensors and wrist electrode 

interface, suggesting that independent validation of each new 

generation remains warranted. In the present study, the Galaxy 

Watch 5 demonstrated similar levels of correlation, error and 

agreement with criterion measures compared to those previously 

reported for the Galaxy Watch 4 (26), indicating comparable 

performance across models. Importantly, our analysis is the first 

to examine gender-specific and weight-stratified accuracy for any 

wearable-BIA device, providing new insight into potential 

demographic in�uences on measurement validity. Given that 

even minor modifications in sensor design or signal-processing 

algorithms can meaningfully alter impedance-derived estimates, 

future generations of this and similar consumer wearables 

should be independently re-evaluated. Routine validation of each 
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hardware and software generation aligns with best practice 

recommendations (30, 31) for consumer device evaluation and 

supports transparency and reproducibility as these technologies 

continue to evolve.

While discrepancies between wearable-BIA estimates and 

DXA measurements highlight current limitations in wearable- 

derived body composition estimates, it is noteworthy that the 

wearable-BIA performed comparably to, and in some cases 

better than, the clinical-BIA device as indicated by lower 

MAE and MAPE values, and higher correlation and 

agreement statistics. Previous research has shown that 

wearable-derived BIA measurements exhibit similar levels of 

agreement with other BIA methods, such as octopolar BIA 

(26). These findings collectively suggest that the inherent 

limitations of BIA as a technique may be consistent across 

specific types of BIA used. This is particularly relevant as 

standard clinical and commercial body composition analyzers 

are costly and often inaccessible. Consumers can therefore 

feel confident in achieving similar levels of accuracy with 

wearable BIA devices. Smartwatch-derived body composition 

estimates offer a practical and accessible alternative, or at the 

very least a complementary tool, particularly when higher- 

accuracy methods are unavailable or infeasible, or for self- 

monitoring between clinical visits.

While we were able to include a relatively large and diverse 

sample, a limitation of the current study is that we only 

included healthy individuals who were considered physically 

active. Our data should be interpreted as such, and further 

research is needed to confirm if accuracy values detected here 

can also be applied to other populations, such as sedentary 

individuals or those with cardiovascular or metabolic medical 

conditions. Additionally, our results can only be applied to 

the wearable device used in this study. As mentioned above, 

technology and proprietary algorithms adapt and evolve over 

time, therefore regular independent evaluation is important 

for the ever-evolving hardware and sensor changes in 

wearable technology. Lastly, although all three devices were 

used during a single, same-session visit, ensuring concurrent 

measurements within each participant, we did not standardize 

the time of day for the visit across participants. As a result, 

we cannot determine the potential in�uence of testing time or 

diurnal variation on device agreement.

In conclusion, the wearable-BIA device assessed in this study 

performed comparably to the clinical-BIA device and 

demonstrated acceptable accuracy for estimating BF% in females 

compared to the criterion DXA values. However, the broader 

findings, especially for skeletal muscle mass and in those with 

greater BF%, highlight variability and limitations in validity that 

restrict the use of these devices for precise, individual-level 

assessments. While not a valid replacement for laboratory-based 

methods, wearable-BIA may offer a practical, accessible 

alternative for general monitoring in recreational settings. Future 

research should further examine the device’s ability to track 

changes over time and validate its accuracy in more diverse 

populations to strengthen confidence in its use for health and 

fitness monitoring.
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