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This study evaluates the predictive performance of traditional and machine 
learning-based models in forecasting NFL team winning percentages over a 
21-season dataset (2003–2023). Specifically, we compare the Pythagorean 
expectation formula—commonly used in sports analytics—with Random 
Forest regression and a feedforward Neural Network model. Using key 
performance indicators such as points scored, points allowed, turnovers, 
rushing and passing efficiency, and penalties, the machine learning models 
demonstrate superior predictive accuracy. The Neural Network model 
achieved the highest performance (MAE = 0.052, RMSE = 0.064, R2 = 0.891), 
followed by the Random Forest model, both of which significantly 
outperformed the Pythagorean method. Feature importance analysis using 
SHAP values identifies points scored and points allowed as the most 
influential predictors, supplemented by margin of victory, turnovers, and 
offensive efficiency metrics. These findings underscore the limitations of 
fixed-formula models and highlight the flexibility and robustness of data- 
driven approaches. The study offers practical implications for analysts, 
coaches, and sports management professionals seeking to optimize strategic 
decisions and competitive performance. Ultimately, the integration of 
advanced machine learning models provides a powerful tool for enhancing 
decision-making processes across the NFL landscape.
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1 Introduction

American football remains one of the most popular sports in the United States, 
consistently holding this position since 1972. The National Football League (NFL), at 
the heart of this popularity, has grown into an exceptionally lucrative industry. In 
2024, the combined value of the NFL’s 32 teams reached approximately $190 billion, 
reflecting continued financial growth and robust market presence (1). Additionally, 
NFL viewership continues to set unprecedented records, with the 2023 playoffs 
averaging 38.5 million viewers, marking a notable nine-percent increase over the 
previous year (2).

In professional sports, success is fundamentally measured by a team’s ability to win 
games, and NFL explicitly employs winning percentages to determine playoff eligibility 
and team standings. Winning percentage is traditionally calculated by dividing a 
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team’s total wins by the number of games played, with ties 
factored as half a win and half a loss, a standard that the NFL 
adopted in 1972 (3). Historically, one prominent method of 
predicting team success has been the Pythagorean Theorem 
Win/Loss formula, initially developed by Bill James for Major 
League Baseball. James’ formula calculates expected winning 
percentage based on runs scored and allowed, demonstrating 
impressive accuracy with a typical margin of error around 2% 
per team (4). Adaptations of this formula have been explored in 
various sports. Former Houston Rockets General Manager Daryl 
Morey refined the formula specifically for NFL contexts, 
identifying 2.37 as the optimal exponent for predicting NFL 
winning percentages (4). The adapted Pythagorean formula for 
the NFL is mathematically expressed in Equation 1:

Winning Percentage ¼
(points for)2:37

(points for)2:37 þ (points against)2:37 (1) 

Beyond its NFL adaptation, Pythagorean expectation formulas 
have been further modified for other sports, underscoring their 
versatility and wide applicability. For instance, research by 
Morey demonstrated that an exponent of 13.91 optimally 
predicts winning percentages in NBA contexts (4), while Caro 
and Machtmes (5) validated a simpler squared exponent 
formula to forecast win rates in college football. Further 
customization is evident in Davenport’s logarithmic method, 
which adjusts exponents dynamically based on team-specific 
scoring data across an entire season (6). While powerful, the 
fixed mathematical structure of these traditional formulas 
inherently restricts their capacity to fully account for the 
nuanced, complex relationships present in competitive 
sports outcomes.

Recent trends in sports analytics highlight the growing 
potential of machine learning techniques as more flexible and 
robust predictive tools compared to fixed-formula methods (7). 
Algorithms such as random forest regression and neural 
networks—two prominent supervised machine learning 
techniques frequently applied in sports analytics—can efficiently 
model complex, nonlinear relationships among performance 
metrics (8). Unlike traditional prediction methods, these 
algorithms learn from historical data, capturing patterns 
involving offensive and defensive efficiency, schedule difficulty, 
margin of victory, and other influential variables. Random forest 
regression is valued for its interpretability and reliable accuracy 
in modeling intricate sports outcomes (9), while neural 
networks have been highlighted for their flexibility and success 
in capturing deeper, non-linear interactions between 
predictors (10).

Building upon this foundation, the current study leverages 
comprehensive NFL data spanning two decades (2003–2023) to 
empirically compare the predictive performance of the 
traditional Pythagorean expectation formula against data-driven 
machine learning algorithms—specifically random forest 
regression and neural network models. By evaluating these 
models, this study aims to identify effective methodologies for 

accurately forecasting NFL team winning percentages, thereby 
contributing valuable insights to the broader field of sport 
management. Sports analysts and team management can use 
insights derived from these predictive methodologies to optimize 
strategic decisions, effectively evaluate team performance, and 
enhance their competitive advantage in the NFL landscape.

2 Data and empirical methods

2.1 Data collection

The dataset utilized in this study was obtained from publicly 
accessible information provided by pro-football-reference.com. It 
comprises comprehensive NFL team statistics covering the 
seasons from 2003 through 2023. The collected data encompass 
details such as total games played, games won and lost, points 
scored (points for), points conceded (points against), average 
margin of victory per season, and performance statistics such as 
total passing yards, passes attempted, rushing yards, turnovers, 
penalties committed by team, etc. Across the 20-year span, the 
dataset contains 672 team-season observations, providing a 
substantial basis for predictive analysis.

Traditionally, the Pythagorean Theorem prediction method 
leverages only two variables—points scored and points allowed 
—to predict a team’s winning percentage. This study 
incorporates this traditional method as a baseline, comparing its 
predictive accuracy against machine learning approaches. 
Random forest and neural network models are utilized as 
powerful analytical frameworks to capture complex patterns in 
the data. The random forest model (11), a robust ensemble 
algorithm, simultaneously analyzes multiple predictive variables, 
capturing complex nonlinear relationships and interactions 
among features included in the model. Unlike the static 
parameter-based Pythagorean approach, random forest 
regression automatically identifies and assigns appropriate 
weights to relevant predictors, significantly enhancing predictive 
flexibility and potentially improving accuracy (9). Similarly, the 
neural network model leverages a multilayered structure 
designed to adapt and learn intricate data patterns during 
training. Neural network is particularly adept at managing 
complex nonlinear relationships inherent within NFL team 
performance metrics such as passing yards, rushing efficiency, 
turnover rate, scoring consistency, and penalty impact—variables 
that extend beyond the simplistic points-based approach of 
the Pythagorean formula. The neural network approach 
continuously adjusts internal parameters (i.e., weights and biases 
of the neurons) to optimize predictive performance, offering 
potential superiority in capturing subtle patterns and 
interactions within large, multidimensional datasets (10).

Prior to model training, rigorous data preprocessing was 
performed. Input features underwent standardization via the 
StandardScaler normalization technique from scikit-learn, which 
adjusts variables to a consistent scale (mean of zero, standard 
deviation of one), ensuring optimal convergence and 
performance of the random forest and neural network models 

Weirich et al.                                                                                                                                                          10.3389/fspor.2025.1638446 

Frontiers in Sports and Active Living 02 frontiersin.org



(12, 13). Additionally, the year variable was incorporated using 
one-hot encoding to control for temporal variability and annual 
differences (14).

2.2 Model architecture

This study employs three distinct methodologies to predict NFL 
teams’ winning percentages: the Pythagorean expectation model, 
random forest regression, and neural network. Each approach 
offers unique strengths, enabling comprehensive comparative 
analyses to ascertain their relative predictive power. Random forest, 
introduced by Breiman (15), constructs multiple decision trees 
during training and outputs the average prediction, effectively 
mitigating overfitting and improving generalization. Specifically, 
each tree within the random forest is constructed using bootstrap 
aggregation and a randomly selected subset of features, enhancing 
diversity among trees and reducing variance (11, 15).

The random forest architecture employed in this study 
leverages predictive variables including total points scored, total 
points allowed, average margin of victory, passing yards, rushing 
yards, first downs, turnovers, and penalties. Hyperparameter 
tuning was systematically conducted to optimize the number of 
trees, maximum depth, and minimum sample splits, achieving 
enhanced predictive accuracy and robustness. Such ensemble 
models are particularly adept at capturing complex, non-linear 
relationships among predictors, substantially outperforming 
simplistic linear models or fixed formulas (9).

The feedforward neural network model was developed 
utilizing the TensorFlow and Keras libraries, renowned for their 
robustness and versatility in building deep learning models (16, 
17). Neural network implemented in this study consists of 
multiple interconnected layers of neurons—namely input, 
hidden, and output layers—configured to adjust parameters. The 
input layer receives standardized predictors, including points 
scored, points conceded, passing efficiency, rushing effectiveness, 
turnover rates, margin of victory, penalties, and encoded annual 
effects. These inputs are processed through two hidden layers 
that employ activation functions such as Rectified Linear Units 
(ReLU), enabling the network to learn non-linear Evaluation 
Metrics patterns efficiently (17). The final output layer produces 
predicted winning percentages. Hyperparameters such as 
learning rate, number of hidden layers, neuron counts, batch 
size, and epochs were optimized a random-split to ensure 
superior model performance (12, 13).

2.3 Evaluation metrics

Evaluating predictive model performance accurately and 
rigorously is critical, where forecasting outcomes can significantly 
inform strategic decisions. This study adopted three standard 
evaluation metrics: Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and the R-squared value (R2). Each metric 
provides distinct insights into the predictive accuracy and 
effectiveness of the models employed [(18); Namasudra et al, 2023; 

(17)]. MAE quantifies the average magnitude of errors between the 
predicted and actual values, ignoring their direction. The 
estimating Equation 2 is presented as follows:

MAE ¼
1
n

Xn

i¼1
jyi � byij (2) 

where yi represents actual values, ̂yi represents predicted values, and n 
is the number of observations. The strength of MAE lies in its 
simplicity and interpretability, providing an intuitive 
understanding of how much, on average, predictions deviate from 
actual outcomes (19). RMSE measures prediction accuracy by 
calculating the square root of the mean squared differences 
between predicted and actual outcomes. The corresponding 
formula is specified in Equation 3:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
(yi � byi)2

s

(3) 

RMSE places greater emphasis on larger errors by squaring the 
differences, making it sensitive to outliers and particularly useful 
when large errors significantly impact model utility and decision- 
making processes (19). The R-squared value quantifies the 
proportion of variance in the dependent variable explained by the 
independent variables. The corresponding formula is shown 
in Equation 4:

R2 ¼ 1 �
Pn

i¼1 (yi � ŷi)2

Pn
i¼1 (yi � ŷi)2 (4) 

where represents the mean of observed values. R-squared value closer 
to 1 indicates superior predictive performance, reflecting a higher 
explanatory power of the model regarding observed variance. These 
metrics are applied to evaluate the predictive performance of three 
models employed in this study: the traditional Pythagorean 
expectation model, random forest regression, and neural network 
model. Applying these evaluation metrics yields a comprehensive 
and nuanced understanding of model effectiveness, particularly 
beneficial in the multifaceted and dynamic context of NFL team 
performance prediction.

3 Results

3.1 Comparing predictive accuracy

To evaluate the predictive accuracy of different models in 
estimating a team’s winning percentage, we compared the 
performance of the traditional Pythagorean expectation model 
with those of the random forest and neural network models. 
The results are summarized in Table 1.

In our random forest regression analysis, we employed an 
ensemble of 100 decision trees to balance predictive stability against 
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computational cost (20). Each tree was trained on a different 
bootstrap sample of the data and, at every split, considered a 
random subset of the available features, thereby reducing variance 
and decorrelating the individual predictors (15). We standardized 
all input variables to zero mean and unit variance before training, 
and fixed the pseudo-random seed to guarantee full reproducibility 
of our results. During prediction, each of the 100 trees casts an 
individual estimate of the winning percentage, and the final forest 
prediction is simply the average of these tree-level outputs. This 
configuration—100 trees with default maximum depth and feature- 
sampling settings—proved sufficient for the error curve to 
converge, as additional trees yielded negligible reductions in out- 
of-bag error. The model’s predictive accuracy was strong, with a 
MAE of 0.061, a RMSE of 0.075, and an R2 value of 0.857 (see 
Table 1). These results outperformed the traditional Pythagorean 
expectation method across all metrics, underscoring the value of 
data-driven ensemble approaches in modeling team performance. 
Feature importance analysis further revealed the dominant 
influence of total points scored and points allowed on the 
prediction of winning percentage. Specifically, “points for” and 
“points_allowed” accounted for 54% and 34% of the total 
importance, respectively. Other meaningful, albeit less influential, 
predictors included rush attempts (3%), turnovers (2%), penalties 
(2%), passing yards (2%), and passing attempts (2%). These results 
suggest that while scoring remains the most significant determinant 
of success, additional team statistics—particularly those related to 
ball control and offensive efficiency—play secondary but non- 
negligible roles in predicting performance.

Our multilayer perceptron (MLP), a type of feedforward 
neural network, comprises two hidden layers, containing 64 and 
32 neurons, respectively. We incorporated dropout layers with a 
rate of 0.2 after each hidden layer in the neural network 
architecture. By randomly deactivating 20% of neurons during 
each training iteration, dropout disrupts potential over-reliance 
on specific features and encourages the model to learn more 
generalized patterns. This regularization technique is particularly 
important when working with datasets that are prone to 
overfitting. Among the configurations tested, the combination of 
an 80% training size, a batch size of 20, and 100 epochs was 
found to be optimal based on the performance metrics. 
Hyperparameters were optimized via grid search with 5-fold 
cross-validation on the training set, and the held-out test set was 
used only for final evaluation. A learning rate of 0.001 strikes an 
optimal balance, facilitating rapid convergence while 
maintaining stability. The neural network model demonstrated 
the best overall performance, achieving the lowest MAE of 
0.052, the lowest RMSE of 0.064, and the highest R² value of 

0.891. This suggests that the neural network model captured the 
variation in actual team winning percentages more effectively 
than the other models.

Under the forecasting-style chronological split, performance 
shifts modestly relative to the random split but the ranking 
remains unchanged. The neural network still leads with 
the lowest errors and highest fit (Δ MAE =  + 11.5%; 
Δ RMSE = + 12.5%; Δ R2 = −0.029), followed by random forest 
(Δ MAE = + 3.3%; Δ RMSE = + 5.3%; Δ R2 = −0.024). The 
Pythagorean baseline shows slightly lower error under 
chronology (Δ MAE = –10.6%; Δ RMSE = –15.9%) with 
essentially unchanged Δ R2 (–0.005). Despite these shifts, both 
machine-learning models continue to outperform the 
Pythagorean approach overall.

Additionally, the predicted average winning percentages for 
each model provide insight into potential under- or over- 
estimation tendencies. The neural network’s prediction (0.493) 
was closest to the actual mean winning percentage (0.500), while 
the Pythagorean and Random Forest models predicted lower 
average values (0.434 and 0.439, respectively). An examination 
of season-by-season predictive performance reveals that the 
neural network model consistently produced strong results, with 
MAE values typically ranging between 0.05 and 0.06 and R2 

values exceeding 0.80 (see Table 2). However, two notable 
exceptions—2016 and 2020—stand out due to elevated error 
metrics. In both years, the MAE exceeded 0.07, and the RMSE 
surpassed 0.09, indicating decreased model accuracy during 
these periods. Figure 1 visualizes the season-by-season R² scores 
of the three models from 2003 to 2023, highlighting relative 
consistency in neural network performance and the notable dips 
in 2016, 2020, and 2022.

The 2016 season, in particular, was widely regarded as one of 
the most unpredictable in NFL history. Numerous teams 
significantly underperformed relative to expectations, including 
the Cleveland Browns, San Francisco 49ers, New York Jets, 
Chicago Bears, and Jacksonville Jaguars. These franchises had 
been expected to show signs of improvement following roster 
changes but instead regressed dramatically. The Browns, for 
instance, finished the season with just one win, down from three 
the previous year, despite offseason acquisitions. The Jets 
dropped from ten wins in 2015 to just five in 2016. Additional 
contributing factors to the volatility of that season include 
inconsistent officiating and an unusually high number of 
penalties, especially concerning celebration rules that were later 
relaxed in 2017. Furthermore, injuries to key players such as 
Derek Carr, Marcus Mariota, Adrian Peterson, and Rob 
Gronkowski disrupted team dynamics and may have reduced 

TABLE 1 Comparison of predicted winning percentage.

Model Predicted 
winning %

MAE 
(Rd)

MAE 
(Chron)

Δ 
MAE

RMSE 
(Rd)

RMSE 
(Chron)

Δ 
RMSE

R2 

(Rd)
R2 

(Chron)
Δ R2

Pythagorean 0.434 0.066 0.059 −10.6% 0.082 0.069 −15.9% 0.816 0.811 −0.005
RF 0.439 0.061 0.063 +3.3% 0.075 0.079 +5.3% 0.857 0.833 −0.024
NN 0.493 0.052 0.058 +11.5% 0.064 0.072 +12.5% 0.891 0.862 −0.029

RF, random forest; NN, neural networks; Rd, random split; Chron, chronological split; Δ MAE and Δ RMSE are percent changes: (Chron−Rd)/Rd × 100%; Δ R² is the absolute point change: 
R²Chron−R²Rd.
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the predictive reliability of input metrics. The 2020 season may 
have been similarly impacted by disruptions related to the 
COVID-19 pandemic, which affected player availability, game 
schedules, and team performance consistency. The 2022 NFL 
season presented a unique set of challenges that contributed to 
decreased predictive accuracy in our models. While the 2016 

and 2020 seasons were marked by significant unpredictability 
due to factors like team underperformance and the COVID-19 
pandemic, the 2022 season’s complexity stemmed from a 
confluence of unexpected team performances, significant 
injuries, and coaching transitions. The Tampa Bay Buccaneers 
and Green Bay Packers, both considered strong Super Bowl 
contenders, experienced offensive struggles that deviated sharply 
from projections. The Buccaneers, for instance, suffered 
unexpected losses to underperforming teams like the Carolina 
Panthers and Pittsburgh Steelers, highlighting the volatility of 
team performances during the season (21). Injuries also played a 
pivotal role in the season’s unpredictability. Key players 
returning from major injuries, such as J.K. Dobbins of the 
Baltimore Ravens, faced setbacks that impacted team 
performance. The league saw a high number of players 
returning from ACL injuries, introducing variability in player 
availability (22). Collectively, these anomalies help explain the 
comparatively higher prediction errors in these years.

3.2 Paired bootstrap test: model 
comparison

To rigorously compare the predictive accuracy of the models, 
we conducted a paired bootstrap analysis with 1,000 iterations, 
estimating the distribution of differences in MAE and RMSE 
across model pairs. Table 3 presents the mean difference and 
95% confidence intervals for each comparison. The paired 
bootstrap analysis shows that the neural network model achieves 
the best predictive performance, significantly outperforming the 
Pythagorean method in both MAE (mean difference = −0.029, 

TABLE 2 Neural network prediction results by year.

Season Actual 
winning %

Predicted 
winning %

MAE RMSE R2

2003 0.500 0.502 0.065 0.078 0.827
2004 0.500 0.508 0.067 0.081 0.816
2005 0.500 0.500 0.054 0.064 0.906
2006 0.500 0.493 0.064 0.078 0.809
2007 0.500 0.490 0.056 0.067 0.894
2008 0.500 0.490 0.066 0.078 0.854
2009 0.500 0.495 0.055 0.070 0.875
2010 0.500 0.487 0.062 0.072 0.846
2011 0.500 0.496 0.063 0.072 0.872
2012 0.500 0.488 0.058 0.073 0.855
2013 0.500 0.489 0.059 0.071 0.863
2014 0.500 0.498 0.053 0.065 0.889
2015 0.500 0.492 0.055 0.069 0.865
2016 0.500 0.503 0.078 0.094 0.775
2017 0.500 0.494 0.069 0.086 0.810
2018 0.500 0.486 0.051 0.062 0.877
2019 0.500 0.488 0.061 0.082 0.823
2020 0.500 0.488 0.071 0.091 0.818
2021 0.500 0.483 0.066 0.083 0.752
2022 0.501 0.488 0.070 0.091 0.748
2023 0.500 0.490 0.055 0.064 0.840

All numbers represent averages across 32 teams per season.

FIGURE 1 

Model comparison of R2 values by season.
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95% CI [−0.033, −0.024) and RMSE (mean difference = −0.023, 
95% CI [−0.029, −0.018), and significantly outperforming the 
random forest model in RMSE (mean difference = −0.014, 95% 
CI [−0.022, −0.006). There is no significant difference between 
the neural network and random forest in MAE. These findings 
support the neural network as the most effective predictive 
model for estimating a team’s winning percentage.

3.3 Understanding feature impact through 
SHAP

To better understand how various game metrics influence 
predicted winning percentages in the trained neural network 
model, we employed SHAP (SHapley Additive exPlanations) 
analysis. The resulting SHAP beeswarm plot visualizes the 
contribution of each feature to the model’s output—NFL team 

winning percentage—across all samples in the test dataset. The 
features with the most significant impact on predicted winning 
percentages are points scored and points allowed. These two 
variables dominate the top of the plot with the broadest SHAP 
value distributions (see Figure 2). Specifically, higher point totals 
(shown in red) strongly increase predicted winning percentages 
(positive SHAP values), while lower point totals (blue) reduce 
them. High-scoring seasons (bright red points) almost 
universally exhibit large positive SHAP values, boosting 
predicted win rates by as much as 0.30 or more. The average 
margin of victory (avg_mov) and turnovers also show 
meaningful influence, albeit less than the core scoring variables. 
Higher margin values (red) generally increase predicted winning 
percentages, while lower or negative margins (blue) suppress 
predictions. Turnovers exhibit a similar trend: higher turnover 
counts (red) are associated with negative SHAP values, 
indicating that teams committing more turnovers are predicted 
to have lower winning percentages.

4 Conclusion

This study empirically evaluated the effectiveness of the 
traditional Pythagorean expectation formula against advanced 
machine learning methods, specifically random forest 
regression and neural network models, in predicting NFL 
teams’ winning percentages over a substantial 21-season dataset 
(2003–2023). The findings demonstrate that the machine 
learning models significantly outperform the traditional 
Pythagorean expectation approach, achieving greater predictive 
accuracy as evidenced by lower MAE, RMSE, and higher R2 

TABLE 3 Paired bootstrap test.

Metric Comparison Mean 
difference

95% CI 
lower

95% CI 
upper

MAE NN vs. RF 0.001 −0.005 0.005
MAE NN vs. PY −0.029 −0.033 −0.024
MAE RF vs. PY −0.029 −0.035 −0.023
RMSE NN vs. RF −0.014 −0.022 −0.006
RMSE NN vs. PY −0.023 −0.029 −0.018
RMSE RF vs. PY −0.009 −0.016 −0.003

NN, neural network; RF, random forest; PY, Pythagorean expectation. Negative mean 
differences indicate that the first model in the comparison achieved lower error than 
the second.
Confidence intervals (CI) were calculated using 1,000 paired bootstrap iterations.

FIGURE 2 

SHAP summary plot: feature impact on predicted wiin percentage (neural network model).
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values. Specifically, the neural network model exhibited the 
strongest predictive performance, with the lowest MAE (0.052), 
lowest RMSE (0.064), and highest R2 value (0.891). The 
random forest model also consistently outperformed the 
Pythagorean approach, indicating the advantage of leveraging 
data-driven ensemble methods for capturing complex 
nonlinear relationships among NFL performance metrics. 
Importantly, under the forecasting-style chronological 
evaluation, the neural network achieved an average MAE of 
0.058. Because our outcome variable is winning percentage, it 
is useful to translate this value into season outcomes. In a 
17-game NFL season, one game corresponds to approximately 
1 ÷ 17 = 0.059 (≈5.9%) of winning percentage. Thus, an error 
of 0.058 equates to about one game difference in the standings. 
This level of predictive accuracy is practically meaningful, as a 
single win can determine playoff qualification, alter betting 
market expectations, and influence front-office or 
coaching evaluations.

The feature importance analysis using SHAP values further 
revealed critical insights into key variables influencing winning 
predictions. Consistent with prior literature (4, 9), points 
scored and points allowed emerged as dominant predictors. 
However, additional metrics such as average margin of 
victory, turnovers, rushing yards, passing efficiency, and 
penalties also significantly contributed to predictive accuracy, 
suggesting the importance of adopting comprehensive 
analytical frameworks rather than simplified scoring-based 
predictions alone.

This study contributes to existing sport management and 
analytics literature by validating advanced analytical methods 
within NFL contexts, demonstrating their accuracy and 
flexibility in predictive tasks compared to traditional formulas. 
These findings align with previous research highlighting the 
effectiveness of machine learning techniques in sports 
prediction (8, 10, 23), thereby reinforcing the growing 
scholarly consensus regarding their value. Specifically, 
previous machine learning studies in sports prediction— 
particularly in the NFL context (24), have typically focused on 
classification problems, where the outcome is categorical (i.e., 
win or loss). Only a limited number of studies have addressed 
continuous prediction tasks, such as spread and scoreline (8). 
In terms of predictive accuracy, classification models in the 
NFL context have achieved between 75% and 86%, while 
models predicting continuous outcomes have attained 
accuracy levels between 72% and 77% (8). The current study 
explains 89% of the variance in team winning percentage, 
with an average prediction error of approximately 5%, 
indicating a relatively higher level of predictive accuracy.

From a practical perspective, this research provides 
valuable implications for sports analysts, coaches, and 
management in professional football. Given the neural 
network’s minimal error margin, sports analysts can utilize 
this approach to predict team winning percentages and 
playoff outcomes. Similarly, sports bettors could leverage 
these predictive insights to estimate team success and 
strategically inform betting decisions, including predicting 

playoff appearances and championship outcomes. NFL teams 
could adopt neural network-based deep learning models to 
evaluate and predict their performance, determining whether 
team performance aligns with, surpasses, or falls short of 
expectations (5). Additionally, such analytical tools can assist 
coaches and management in systematically reviewing critical 
in-game decisions related to scoring opportunities, fourth 
down strategies, turnover management, and clock 
management, ultimately enhancing strategic decision-making 
and competitive performance (5). Overall, this study 
underscores the substantial potential of machine learning 
methods, notably neural networks and random forest models, 
as robust decision-support tools in contemporary sport 
management, enhancing strategic planning and decision- 
making processes within professional sports organizations.
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