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Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a late-onset 

neurodegenerative disorder characterized by progressive motor dysfunction, 

including cerebellar ataxia and gait instability. Although tandem walking is a 

sensitive clinical marker of cerebellar dysfunction, its utility in tracking 

longitudinal motor decline in FXTAS remains unexplored and the trajectory of 

motor decline in FXTAS is not well characterized. Therefore, the purpose of this 

case report was to determine whether tandem walking performance deteriorates 

over a one-year period in an individual with FXTAS. A 68-year-old male with 

genetically confirmed FXTAS completed a 15-second tandem walking trial at 

baseline and again after one year. Kinematic data were collected using a Vicon 

motion capture system. Step width was calculated at each heel strike as the 

distance between the mediolateral position of the left and right heel markers. 

The mean step width considerably increased from baseline tandem walking of 

45.21 ± 33.47 mm (SD) compared to the 1-year follow-up trial step width of 

85.79 ± 15.80 mm (SD) indicating potential progressive mediolateral instability. 

This case report provides preliminary evidence that step width during tandem 

walking may be a sensitive marker of longitudinal motor decline in FXTAS and 

declines in gait stability can occur within one year. Larger studies with repeated 

measures and additional gait metrics are warranted to validate these findings.
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Introduction

Gait is often used as one of the metrics to determine the quality of life of an 

individual due to the importance of mobility on everyday functioning (1–3). Metrics 

such as gait speed, step width, step length, and cadence have been used to compare 

pathological to healthy controls to better understand characteristics of neurological 

conditions (4–7). Gait deviations have been extensively studied in populations such as 

stroke (8–10), ataxia (11–13), Parkinson’s disease (14–16), and cerebral palsy (17–19). 

Perhaps more importantly than classifications of gait by neurological disorders, the 

progression of neurological conditions as they manifest as gait deviations have been 
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studied and reported (20–23). A less studied neurological 

degenerative disorder known as Fragile X-associated Tremor/ 

Ataxia Syndrome (FXTAS), has received less attention in the 

analysis of biomechanical gait studies. The prevalence of the 

fragile X premutation is 1 in 150–300 females and 1 in 400–850 

males with majority of the males with the premutation 

developing FXTAS (24). FXTAS is characterized by cerebellar 

ataxia, intention tremor, cognitive decline, and neural changes 

seen on MRI (i.e., middle cerebellar peduncle sign representing 

white matter disease, and global brain atrophy) (24). 

Characterizing gait changes across the progression of 

neurological disorders such as FXTAS, Parkinson’s disease, and 

cerebellar ataxias is essential, as gait impairments often re:ect 

the underlying neurodegenerative process and may serve as early 

biomarkers of disease severity and progression. Understanding 

these temporal changes can inform clinical staging, guide 

intervention strategies, and improve fall risk management across 

disease stages.

The current understanding of walking gait in FXTAS is limited 

as this disease was relatively recently discovered (25). Compared to 

healthy controls, individuals with FXTAS exhibited significantly 

impaired gait across all domains, characterized by reduced stride 

velocity and cadence, increased gait variability, and longer 

double-limb support times (26). Furthermore, individuals with 

FXTAS exhibited a reduced stride velocity, increased stride 

variability and asymmetry (27). Prior work provides insights 

into gait deficits in individuals with FXTAS, however the 

progression of the disease’s effect on gait remains elusive.

A common hallmark gait deviation in individuals with ataxia 

is an increased step width (5, 28, 29). Tandem walking in 

individuals with ataxia becomes an increasingly difficult task 

with increased step width, high variability in foot placement, 

and a significantly greater number of missteps compared to 

controls (28). As such, tandem walking is one of the most 

sensitive clinical measurements to detect cerebellar dysfunction 

(30). Furthermore, step width may be an indicator of cerebellar 

health during tandem walking as individuals with cerebellar 

disease did not differ in gait speed, step length, cadence, step 

height, foot angle, stance time, or swing them when compared 

to healthy controls (28).

Therefore, the purpose of this case report was to investigate 

whether tandem walking could detect progression in gait deficits 

after a one-year follow-up period in an individual with FXTAS. 

We hypothesized that the participant would exhibit a wider step 

width at the one-year follow-up compared to baseline during a 

15-second tandem walking trial.

This investigation serves as a feasibility report to determine 

whether quantitative tandem gait assessment can detect 

longitudinal changes in motor performance in FXTAS, and to 

evaluate the practicality of using step width as markers of 

disease progression in a single-subject design. Establishing 

reliable markers of gait progression, such as changes in tandem 

walking performance, could lay the groundwork for defining 

distinct stages of motor decline in FXTAS and lead to larger 

study sizes. By complementing tandem gait assessment with 

standard gait metrics over time, it may be possible to develop a 

comprehensive, clinically relevant staging system that re:ects the 

natural trajectory of gross motor impairment in this population.

Methods

Participant

One participant was recruited from the Medical Investigations 

of Neurodevelopmental Disorders (MIND) Institute and was 

medically confirmed through genetic testing to have the 

premutation of the fragile-X messenger ribonucleoprotein 1 

gene (FMR1) and confirmed FXTAS. FXTAS was diagnosed 

genetically by the MIND Institute. At baseline, the participant 

was a 68 year old male, 177 cm in height, weighed 110 kg, and 

had a BMI of 35.1. The participant’s FXTAS stage was unknown 

at the time of the biomechanical testing. The gait evaluation of 

this FXTAS case report was not part of a standard procedure at 

the Medical Investigation of Neurological Disorders Institute as 

only one individual’s data was collected. We believe the 

individual was in the earlier stages of the disease due to 

independence of ambulation but this was not 

officially determined. Furthermore, the participant was able to 

drive independently to our laboratory. Gait analysis of the 

participant was conducted at the California State University, 

Sacramento in the Biomechanics Laboratory. The 

participant signed an informed consent that was approved by 

the Institutional Review Board at the California State University, 

Sacramento (31). Follow-up testing of gait for the FXTAS 

participant occurred one year later at the age of 69 years.

Instrumentation

An 8-camera Vicon motion capture system (Vicon 612, Vicon 

Motion Systems, Lake Forest, CA, USA) collected kinematic data 

at 100 Hz at the California State University, Sacramento.

Procedures

The participant had re:ective markers placed bilaterally on 

the posterior heel on the calcaneus, in line with the Achilles 

tendon. The participant was instructed to perform a single 

15-second tandem walking trial by taking steps and having 

each foot land in front of the other foot at their self- 

selected speed. The tandem walk was visually demonstrated 

by the researcher. The participant did not complete a 

familiarization trial, but did practice taking 2 steps for 

confirmation that he was performing this correctly. The 

15-second data collection began when the participant took 

their first tandem step. The participant traversed a designated 

6-meter walkway and completed a single trial, during which 

they took as many steps as possible within the allotted time. 

The trial ended after 15 s, regardless of how far the 

participant traversed.
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Data analysis

Step width, defined as the mediolateral distance between the 

heels at heel strike (Figure 1), was calculated for each 

consecutive step throughout the 15-second tandem walking trial. 

While there is no universally accepted cutoff for a “failed” step 

during tandem walking, prior work in cerebellar ataxia suggests 

that step widths near 50 mm re:ect instability and deviation 

from ideal tandem foot placement of 4 mm in healthy controls 

(28). In this case report, step width was treated as a continuous 

indicator of balance control, with larger values indicating greater 

mediolateral instability. All motion trajectory data were 

processed using a custom-written MATLAB program 

(MathWorks Inc., Natick, MA, USA) and low-pass filtered at 

20 Hz using a second-order Butterworth filter.

The step widths for each heel strike at baseline and at the 

1-year follow-up were calculated and summarized descriptively. 

Because the participant completed only four full steps at 

baseline and two full steps at follow-up, the sample size was too 

small to assume normality or perform inferential testing with 

confidence. Therefore, statistical analyses were de-emphasized, 

and the focus was placed on descriptive comparisons of the 

trajectories, mean values, and variability of step width between 

the two sessions. Observed features of the trajectories (e.g., 

ability to achieve true tandem stance, corrective steps, and side- 

to-side differences) were also qualitatively interpreted to provide 

a more comprehensive picture of the participant’s performance.

Results

The individual took four full steps in the baseline tandem 

15-second walking trial and two full steps in the 1-year follow- 

up. The mean step width during the baseline tandem walking 

trial was 45.22 ± 33.47 mm (SD). The mean step width at the 

1-year follow-up trial was 85.79 ± 15.80 mm (SD) (Figure 2). At 

FIGURE 1 

Schematic illustration of step width calculation during tandem walking. (A) shows a trial with a relatively narrow step width, while (B) shows a trial with 

a wider step width. LH, left heel marker; RH, right heel marker; vertical dashed lines represent the positions of the heel markers at heel strike; SW, step 

width, indicated by the double-headed arrow.
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the one-year follow-up, the patient was indeed incapable of 

achieving a true tandem position even in standing, whereas one 

year earlier they were able to attain a true tandem position, 

albeit with a corrective step. In addition to the widening of step 

width, the number of steps achieved within the fixed 15-second 

trial window decreased from four steps at baseline to two steps 

at follow-up.

Discussion

This pilot case report investigated whether tandem walking 

could detect progressive gait deficits at a one-year period in an 

individual with FXTAS. In support with our hypothesis, we 

found an increase in step width during the tandem walking trial 

at the one-year follow-up compared to baseline.

The observed increase in step width is consistent with known 

gait characteristics of cerebellar ataxias and supports the notion 

that individuals with FXTAS exhibit progressive deterioration in 

mediolateral balance control over time. Tandem walking is a 

task that challenges dynamic postural stability by narrowing the 

base of support and requiring precise coordination of foot 

placement. The increase in step width observed in this case 

report may represent a compensatory strategy to maintain 

balance in the face of declining cerebellar control, which is a 

finding that aligns with prior studies in cerebellar ataxias 

reporting widened step width and increased gait variability as 

markers of progression (32, 33). Related cerebellar ataxias, such 

as spinocerebellar ataxia, have identified changes in tandem gait 

over a one year period, suggesting that FXTAS may follow a 

similar trajectory (34). The feasibility of tracking longitudinal 

changes over time have been observed in individuals with 

Parkinson’s Disease. It is reported that individuals with 

Parkinson’s Disease exhibited a 6%–10% increase in step 

width for each year that individuals were diagnosed with 

Parkinson’s Disease (35). Lastly, it is reported that aging is 

significantly correlated to increases in step width 

during tandem gait, however healthy older adults did not 

exhibit greater than 50 mm (36). At baseline, our participant 

may have exhibited a step width that is considered healthy 

but exceeded the expected step width due to progression 

of disease.

Tandem walking is a particularly valuable task for assessing 

cerebellar dysfunction because it requires precise mediolateral 

control and challenges postural stability by narrowing the base 

of support. Importantly, tandem walking is already embedded in 

validated clinical tools such as the Scale for the Assessment and 

Rating of Ataxia (SARA), highlighting its established 

acceptability to both patients and clinicians. However, the 

categorical scoring used in SARA (based on the number of 

consecutive tandem steps achieved) may lack sensitivity to subtle 

longitudinal changes in performance. By quantifying kinematic 

features of tandem walking, such as step width, our case report 

demonstrates how biomechanical metrics can enhance the 

resolution of this established clinical task. This approach not 

only aligns with current clinical practice but also provides a 

path forward for developing more sensitive markers of 

progression in FXTAS.

FIGURE 2 

Time-series data exhibiting the step width between the left and right heel during tandem walking for the baseline trial (purple line) and the 1-year 

follow-up (green line). The x-axis represents time after starting in seconds, and the y-axis represents the step width between the left and right heel. 

S = Peak step width during swing phase of stepping foot. Each dot represents the measured step width at the initial foot position and subsequent heel 

strikes during tandem gait.
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The decline in the number of achievable tandem steps is a 

complementary indicator of progression. At baseline, the 

participant could generate four consecutive tandem steps, 

suggesting that despite instability he could still initiate and 

maintain the task. At the one-year follow-up, only two steps 

were possible, re:ecting a diminished ability to coordinate 

successive foot placements and sustain the trial. Taken together 

with the increased step width, this reduction in step count 

highlights the progressive nature of mediolateral gait instability 

in FXTAS.

Several limitations should be considered when interpreting the 

findings of this pilot case report. First, the case report involved 

only a single individual with FXTAS, limiting the 

generalizability of the results. While the within-subject 

longitudinal design allows for observation of change over time, 

individual variability in disease trajectory, compensatory 

strategies and physical condition may not re:ect patterns 

observed in the broader FXTAS population. Second, only one 

15-second tandem walking trial was conducted at each time 

point, which may reduce the reliability of the measured 

outcomes and increase the chance of random variability. 

Repeated trials, and increased steps such as SARA clinical 

guidelines, would improve measurement stability and increase 

the sensitivity to detect subtle changes. Additional kinematic 

variables such as step length variability, trunk sway, or center of 

mass excursions may provide a more comprehensive 

understanding of motor decline. Finally, potential confounding 

factors such as fatigue, attention (37–40), medication status (41), 

and motivation at the time of testing were not controlled, which 

could in:uence gait performance in a single-session assessment. 

Lastly, the disease stage of FXTAS in our participant was not 

clinically classified, and no biomechanical staging system 

currently exists for this condition, although the FXTAS clinical 

stage is determined by the severity of the motor problems and 

their interference with activities of daily living (42). 

Consequently, the baseline and follow-up assessments may have 

coincided with an atypical or non-representative phase of 

disease progression. Future studies should aim to recruit 

individuals with genetically confirmed FXTAS in early disease 

stages or FMR1 premutation carriers who have not developed 

FXTAS who exhibit relatively preserved gait function at baseline 

and track them longitudinally to enable more meaningful 

interpretations of functional decline and clinically relevant 

disease progression.

Comparative case studies in rare progressive gait disorders 

further highlight the utility of targeted kinematic and 

biomechanical analysis. For instance, Sassi et al. described 

altered ankle muscle activity and gait propulsion deficits in 

siblings with progressive pseudorheumatoid dysplasia, using 

EMG and kinematics to elucidate compensatory patterns during 

stance (43). In another case, Tedeschi et al. combined spatial- 

temporal parameters with plantar pressure mapping in a patient 

with Strumpell–Lorrain disease, identifying monopodal reliance 

and increased forefoot loading due to dorsi:exion constraints 

(44). Although our case report employs a simpler tandem 

walking paradigm, focusing specifically on mediolateral stability 

through step width, these reports highlight the depth and range 

of gait features that can be revealed with more comprehensive 

approaches. Such multi-modal assessments represent promising 

directions for future longitudinal gait research in FXTAS and 

related ataxias.

In conclusion, this feasibility case report demonstrates that 

step width during tandem walking increased markedly over one 

year in an individual with FXTAS, suggesting that this measure 

may be a biomarker for motor progression. Future studies 

should incorporate additional gait variables such as cadence and 

stride time variability, foot placement asymmetry, or stance to 

swing ratios. Most importantly, this case report provides vital 

feasibility data to examine the progression of FXTAS across 

multiple disease stages.
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