

OPEN ACCESS

EDITED BY

Wei-Hsun Tai,
Quanzhou Normal University, China

REVIEWED BY

Tianyun Jiang,
China Academy of Chinese Medical Sciences,
China
Batlkham Dambadarjaa,
Mongolian National University of Medical
Sciences, Mongolia
Yida Wang,
Tomsk State University, Russia

*CORRESPONDENCE

Haibin Liu
✉ liuhaibin@dlut.edu.cn
Jian Jiang
✉ rejustin@sina.com

RECEIVED 29 May 2025

REVISED 09 November 2025

ACCEPTED 17 November 2025

PUBLISHED 05 December 2025

CITATION

Duan Y, Liu H, Jiang J, Liu L, Gao F, Li S, Yang Y, Yang S and Yan S (2025) The impact of Tai Chi's "Xuling Dingjin" posture on lumbar biomechanics during stair descent. *Front. Sports Act. Living* 7:1637586. doi: 10.3389/fspor.2025.1637586

COPYRIGHT

© 2025 Duan, Liu, Jiang, Liu, Gao, Li, Yang, Yang and Yan. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The impact of Tai Chi's "Xuling Dingjin" posture on lumbar biomechanics during stair descent

Yiting Duan^{1,2}, Haibin Liu^{1,2*}, Jian Jiang^{1*}, Liqing Liu², Fan Gao³, Suheng Li², Yulong Yang², Shuye Yang² and Shudong Yan²

¹Spine Surgery Department of the Central Hospital, Dalian University of Technology, Dalian, Liaoning, China, ²College of School of Sports and Health Sciences, Dalian University of Technology, Dalian, Liaoning, China, ³College of Physical Education and Health, University of Kentucky, Lexington, KY, United States

Background: Low back pain is common increases stair-related fall. The Tai Chi "Xuling Dingjin" posture may enhance spinal stability, its biomechanical mechanisms remain unclear. This study investigates the effects of this posture on lumbar biomechanics during stair descent, and provides theoretical support for its application in balance improvement and rehabilitation.

Research question: To investigate the biomechanical effects of Tai Chi's "Xuling Dingjin" posture on the lumbar spine and whether it enhances the stability of the lumbar spine in the staircase environment.

Methods: Twelve adults (6 males and 6 females) with a minimum of 5 years of Tai Chi experience participated in the study. Lumbar biomechanics were assessed during normal stair descent (D) and stair descent incorporating the "Xuling Dingjin" posture (XD) using a Vicon motion capture system, an AMTI force platform, OpenSim biomechanical analysis software, and finite element analysis.

Results: Under the XD condition, deep stabilizing muscles (especially quadratus lumborum) exhibited earlier and more intense activation. Additionally, there was a smaller offset between the center of mass (COM) and center of pressure (COP), indicating improved posture stability. Lumbar rotation around the Z-axis was significantly decreased, and finite element analysis demonstrated a more uniform pressure distribution across the intervertebral discs.

Conclusion: Maintaining the "Xuling Dingjin" posture can activate deep stabilizers earlier and more effectively, redistributing lumbar pressure through postural adjustment, thereby enhancing spinal stability and offering potential value in reducing fall risk.

KEYWORDS

Tai Chi, lumbar biomechanics, stair descent, finite element method, opensim

1 Introduction

Stair ascend and descend require coordinated movements of the spine and lower limbs, involving both obstacle navigation and rising from a seated position. Safe stair descent is particularly critical for the elderly and individuals with physical disabilities, as it supports independent living, reduces caregiver burden, and contributes to overall health and quality of life (1). Epidemiological studies indicate falls are prevalent across all age groups, with the risk significantly increasing in older adults—accounting for two-thirds of accidental deaths in individuals over 75 (2, 3). Notably, more than 10%

of these falls occur on stairs (4). Stair ascend increases spinal load and motion amplitude, which may exacerbate low back pain (5), while stair descend presents a higher risk of falling due to spinal instability and erratic movements (6). In recent years, there has been growing emphasis on exercise-based rehabilitation for spinal disorder prevention and management (7), with exercise programs promoting spinal health gaining global recognition (8).

Tai Chi, a traditional Chinese martial art, now as a modern competitive sport featuring both routine practice and free sparring, often with an emphasis on Ornamental. Research has shown that Tai Chi integrates the coordination of “mind, breath, and body” (9), enhances perceptual awareness through cognitive engagement (10), stabilizes the spine via abdominal breathing (11), and improves posture by promoting vertical spinal alignment (12). It has also been demonstrated to enhance dynamic balance and reduce fall risk (13), making it effective in improving physical fitness and preventing diseases.

“Xuling Dingjin” is central to Tai Chi form and body alignment. “Xuling” denotes a relaxed and supple state of the head and neck; “ding” refers to a gentle, intentional upward lift of the crown, as if a force were drawing the baihui acupoint toward the sky (14). “Jin” arises from a spiraling interplay of muscle, bone, and connective tissues—alternating stretch and compression—that converts mechanical energy into elastic potential (15). During “Xuling Dingjin” practice, this elasticity is not confined to the limbs; it flattens the physiological spinal curves, shifting the spine from an “S”-shape toward a “C”-shape and ultimately toward a straight axis. This reconfiguration is expected to distribute disc loads more evenly and to provide effective conditioning of the deep spinal musculature (16). “Xuling Dingjin” integrates core concepts such as “containing the chest and pulling out the back”, “standing upright in the middle” and “Qichen Dantian” (engaging core stability) (17). Biomechanically, this posture transforms the spine into a flexible chain, with the cervical vertebrae acting as a fixed anchor and the lumbar vertebrae free to elongate and align. This configuration is thought to lengthen the spine and improve segmental aligning. However, the physical effects of maintaining the “Xuling Dingjin” posture are often described subjectively, and there is limited empirical data to support its biomechanical benefits.

To address this gap, previous studies have explored Tai Chi from various perspectives. For example, Law et al. (18) explored the muscle activation characteristics of seven types of Tai Chi forms, Hass CJ et al. (19) examined how the center of pressure (COP) contributes to the center of mass (COM) stability, and Zhao L et al. (20) developed an L4-L5 spine model to investigate the biomechanical effects of the “cloud hand” maneuver. Building on this foundation, the present study is the first to quantify biomechanical characteristics of the lumbar spine during the “Xuling Dingjin” posture. Our study aims to determine whether this posture could make stair descent safer and biomechanically less demanding. The hypotheses of this study are: (1) “Xuling Dingjin” posture can enhance the activation of the paraspinal muscles, thereby improving lumbar stability; and (2) maintaining the “Xuling Dingjin” posture

during stair descent can reduce the angle of lumbar curvature, thereby provides a safer way of traveling.

2 Methods

2.1 Participants

Twelve healthy adults were recruited for this study (6 males, age 41.3 ± 8.8 , height 173.7 ± 5.16 cm, mass 74.71 ± 8.2 kg; 6 females, age 54.3 ± 3.2 , height 162.2 ± 2.8 cm, mass 58.3 ± 8.2 kg). Inclusion criteria were: healthy, ≥ 5 years of continuous Tai Chi practice, no recent surgery or illness, and the ability to perform Tai Chi movements accurately. All participants were familiar with the “Xuling Dingjin” posture. The researchers recorded the age, gender, and years of tai chi training, and measured the height, weight, leg length, arm length, shoulder width, elbow width, wrist width, and ankle width data of all participants. All participants signed an informed consent form prior to the trial, and it was approved by the ethics committee.

2.2 Procedures

The experimental setup featured a custom-built two-step staircase with a step height of 17 cm, consistent with dimensions for residential building stairs. Each step was equipped with an AMTI force platform (Optima HPS, AMTI, 103 USA), sampling at a frequency of 1,000 Hz to collect kinetic data. Kinematic data were collected using a Vicon motion capture system (Vicon 99 V5, Oxford Metrics, UK) with eight infrared cameras operating at 100 Hz, that was synchronized with the force plates. Thirty-nine reflective markers were placed on bony landmarks of the head, trunk, pelvis, bilateral upper limbs, bilateral lower limbs, and feet, following the Vicon Full-body AI model. Electromyographic data from the multifidus and psoas major muscles were recorded using a Noraxon Surface Electromyography (sEMG) system at 1,500 Hz (Figure 1).

Participants wore standardized tight-fitting clothing and Tai Chi shoes. To ensure consistent gait and speed, all participants started from the top step and descended using their right (the traditional kickball method was used to determine that the dominant sides of the subjects were all right-sided) foot in each trial, guided by a metronome (0.5 m/s). The study employed a blinded design: subjects first performed five trials of normal stair descent (D), followed by a 5 min rest. They were then instructed to complete five additional trials while maintaining the Tai Chi “Xuling Dingjin” posture (XD).

2.3 Data acquisition and analysis

Muscles activation data for paravertebral muscles were derived using Opensim software (version 4.4, Stanford University, USA) through static optimization and time normalization. To validate

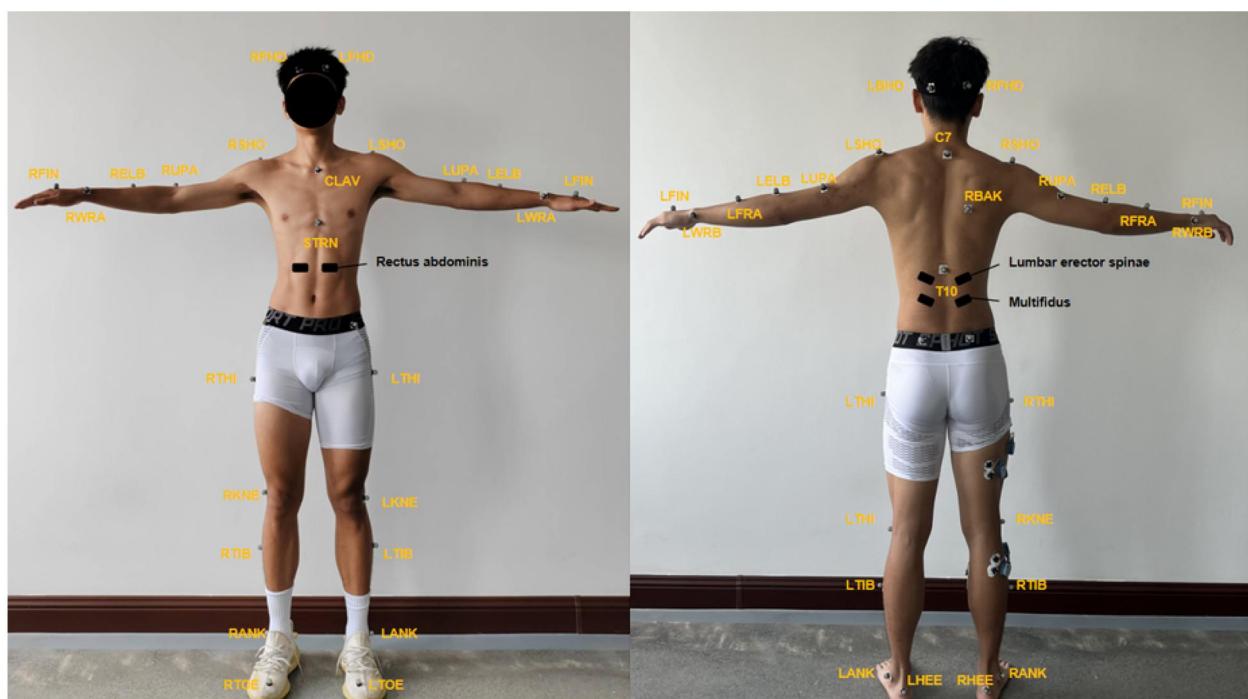


FIGURE 1
39 markers in body joint points.

OpenSim outputs, raw sEMG signals were processed using a Butterworth bandpass filter (10–500 Hz) and 50 Hz notch filter. The signals were then rectified, normalized, and RMS quantized for the multifidus muscle, and smoothed using a 50 ms sliding window. These processed sEMG activation curves were compared with Opensim-simulated muscle activations (21).

The trajectories of the COP were computed from the ground reaction force, specifically from the moment the right foot left the top step until the left foot contacted the lower step. The excursion of COP trajectory in the sagittal (X) and coronal (Y) planes was calculated as the maximal displacement in each direction. COM was calculated by Vicon software from anthropometric data. Both COM and COP were normalized across participants to take into account interindividual variability. Posture stability was assessed by the offset between COM and COP trajectories (22, 23).

Lumbar spine L4–5 angles in flexion-extension (X), lateral bending (Y), and axial rotation (Z) were derived using inverse kinematics and normalized for comparison (24).

For finite element analysis, the lumbar spine (L1–L5) of the participant with the most advanced Tai Chi proficiency was scanned using CT, and DICOM images were imported into Mimics 21.0. Vertebrae were segmented via masking and thresholding, gaps filled, and the model exported as an STL file. Geomagic Wrap 2021 was used to smooth the model (grid doctor, spike removal, hole-filling), separate cancellous and cortical bone (2 mm cortical reference), and saved the result in STP format. Intervertebral disc (including end-plate cartilage, annulus fibrosus, nucleus pulposus) were modeled in SolidWorks using surface offset and Boolean operations, and

performed hexahedral mesh generation. The complete SLDPRT model was analyzed in Abaqus Finite Element Analysis | SIMULIA, with appropriate material properties and apply a fixed constraint to the base surface of the lumbar vertebra L5 segment, restricting all degrees of freedom. OpenSim calculated lumbar reaction force and torque corresponding to the GRF peak moment was applied to simulate stress distribution in the intervertebral discs. The finite element modelling process is shown in Figure 2, and the material properties of all parts are taken from references (25, 26) and listed in Table 1.

All data were analyzed for normality using GraphPad Prism 9.5.0. Paired t-tests were used for normally distributed data, while Wilcoxon signed-rank tests were used for non-normal data. *Indicates $P < 0.05$, ** indicates $P < 0.01$. All data were normalized using Origin.

3 Result

3.1 Muscle activation validation

Paravertebral muscles activation are derived using OpenSim software (version 4.4, Stanford University, USA) after static optimization followed by time normalization. To verify the reliability of the results, the measured sEMG signals were filtered by Butterworth bandpass filter (10–500 Hz) and 50 Hz notch filter, rectified, normalized, and RMS quantized for the multifidus muscle. Finally, the data were smoothed using a 50 ms sliding window to generate the activation curves, which

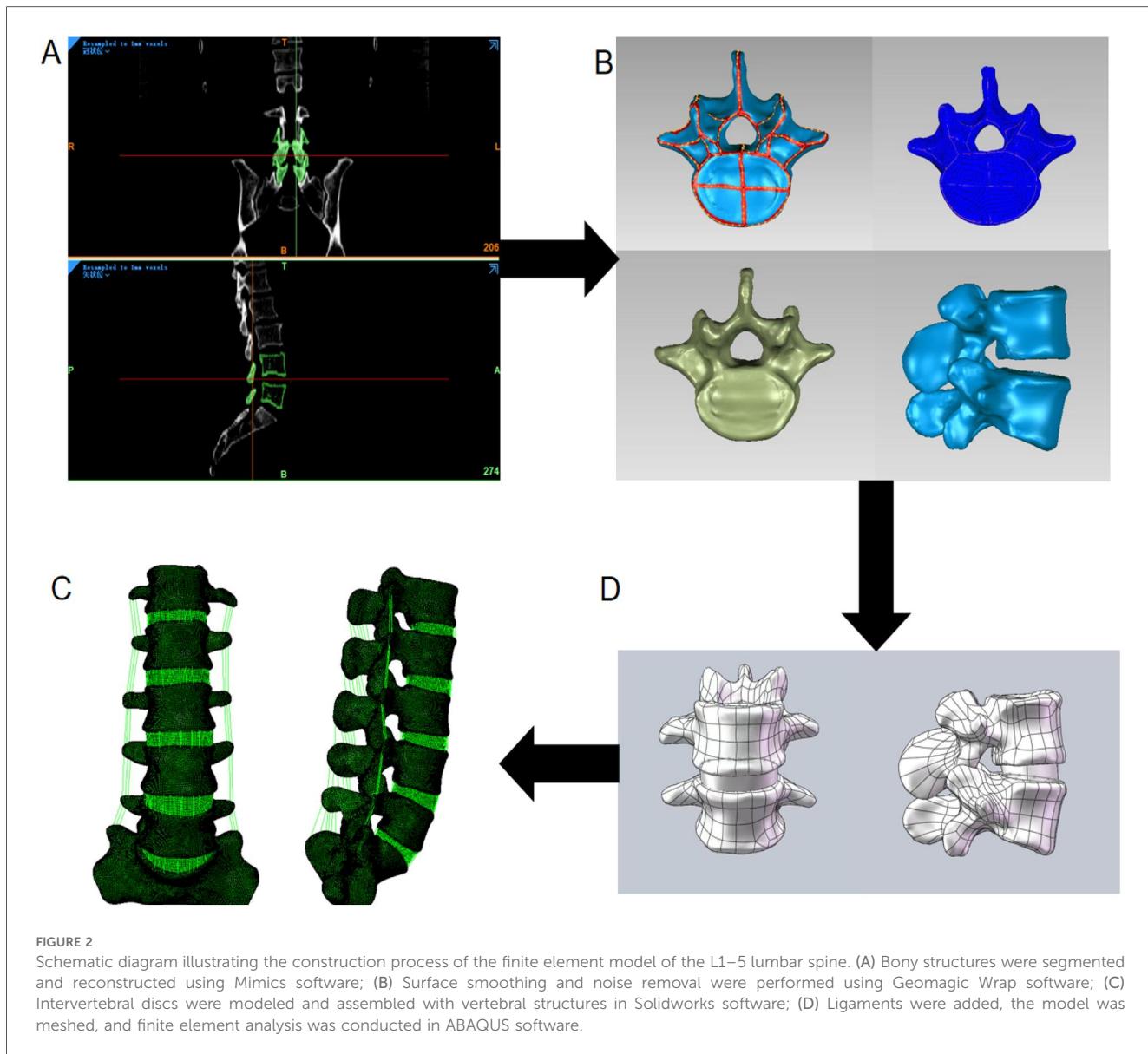


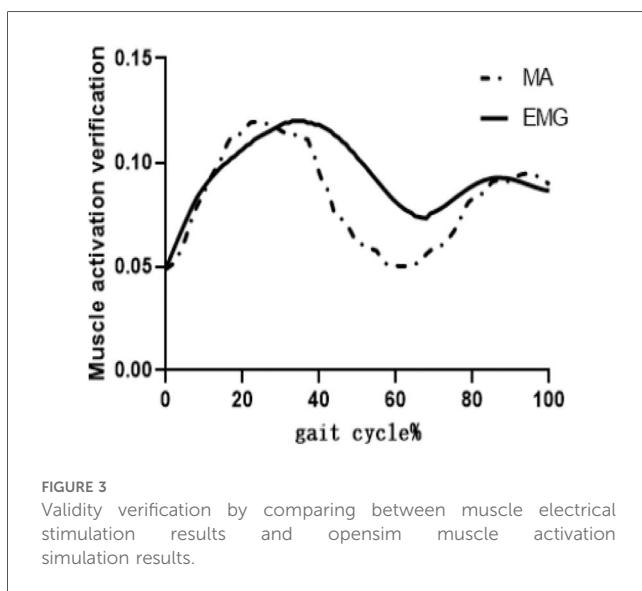
FIGURE 2

Schematic diagram illustrating the construction process of the finite element model of the L1–5 lumbar spine. (A) Bony structures were segmented and reconstructed using Mimics software; (B) Surface smoothing and noise removal were performed using Geomagic Wrap software; (C) Intervertebral discs were modeled and assembled with vertebral structures in Solidworks software; (D) Ligaments were added, the model was meshed, and finite element analysis was conducted in ABAQUS software.

were compared with the muscle activation curves simulated by Opensim (21, 27). The muscle activation predicted by the Opensim model and the experimental EMG average graph (Figure 3) show that the overall trends of the muscle activation simulated by Opensim and the processed EMG are approximately the same, indicating that the simulation results are reliable.

3.2 Muscle activation

During both D and XD, the iliococcygeus (IL), longissimus (LT), multifidus (MF), and quadratus lumborum (QL) showed a biphasic activation pattern. In contrast, the psoas major (PS) showed a single activation plateau during D (at 40%–60% of the gait cycle). For IL, LT, MF, the maximum activation during D occurred at the second peak (IL: 10.128 ± 3.087 , LT:


7.258 ± 2.306 , MF: 2.424 ± 0.405) whereas during XD it shifted to the first peak (IL: 9.751 ± 2.65 , LT: 7.468 ± 0.246 , MF: 2.287 ± 0.499). PS activation was consistently higher during XD (peak angle: 1.330 ± 0.121) than D (peak angle: 1.310 ± 0.083). In addition, QL had significantly greater muscle activation in XD (1.327 ± 0.085) compared to D (1.468 ± 0.246) ($P = 0.002$), while no significant differences were observed in other muscles ($P > 0.05$) (Figures 4, 5).

3.3 Relative position analysis of COP and COM

The two stair descent conditions affected the relationship between the center of mass (COM) and center of pressure (COP) differently. In D, there were significant differences between COM and COP displacements in both the sagittal (X)

TABLE 1 Paravertebral muscle activation peaks and troughs.

Tissue	Element type	Young's modulus (MPa)	Poisson's ratio
Cortical bone	Tetrahedron	12,000	0.3
Cancellous bone	Tetrahedron	100	0.2
Cartilage	Tetrahedron	35	0.4
Marrow	Hexahedron	4	0.45
Annulus fibrosus matrix	Hexahedron	4.5	0.4
Annulus fibrosus	Hexahedron	550	0.3
Anterior longitudinal ligament	Spring	7.8	–
Posterior longitudinal ligament	Spring	10	–
Interspinous ligament	Spring	10	–
Supraspinous ligament	Spring	8	–
Lateral ligament	Spring	10	–
Ligamentum flavum	Spring	10	–
Muscle	Spring	–	–

and coronal (Y) planes, indicating less stability. In contrast, no significant differences were observed in XD. In the X direction, COP displacement was significantly larger in D than XD, while COM displacement was smaller but not significantly different. In the Y direction, no significant differences in either COM or COP were found between D and XD (Figure 6).

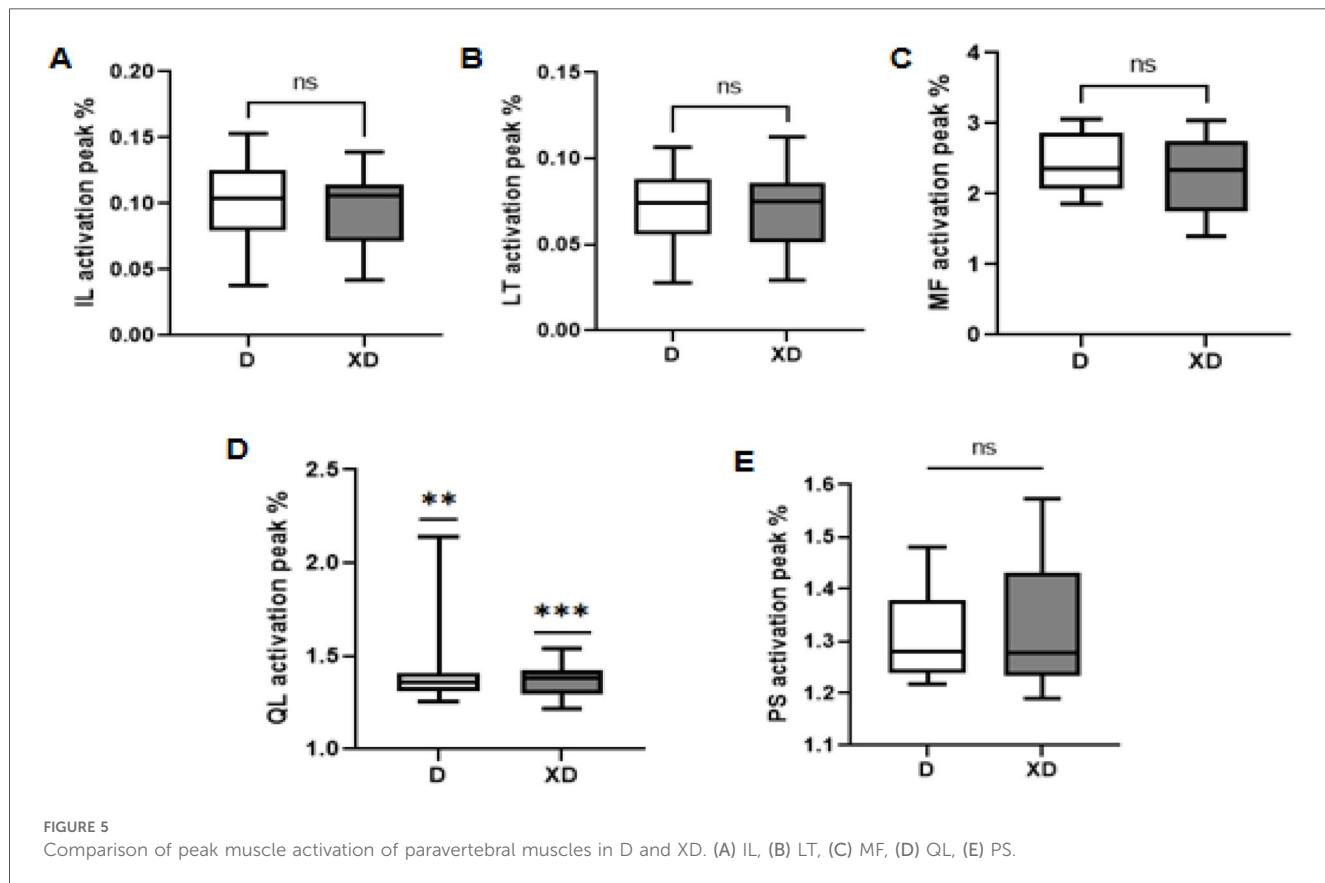
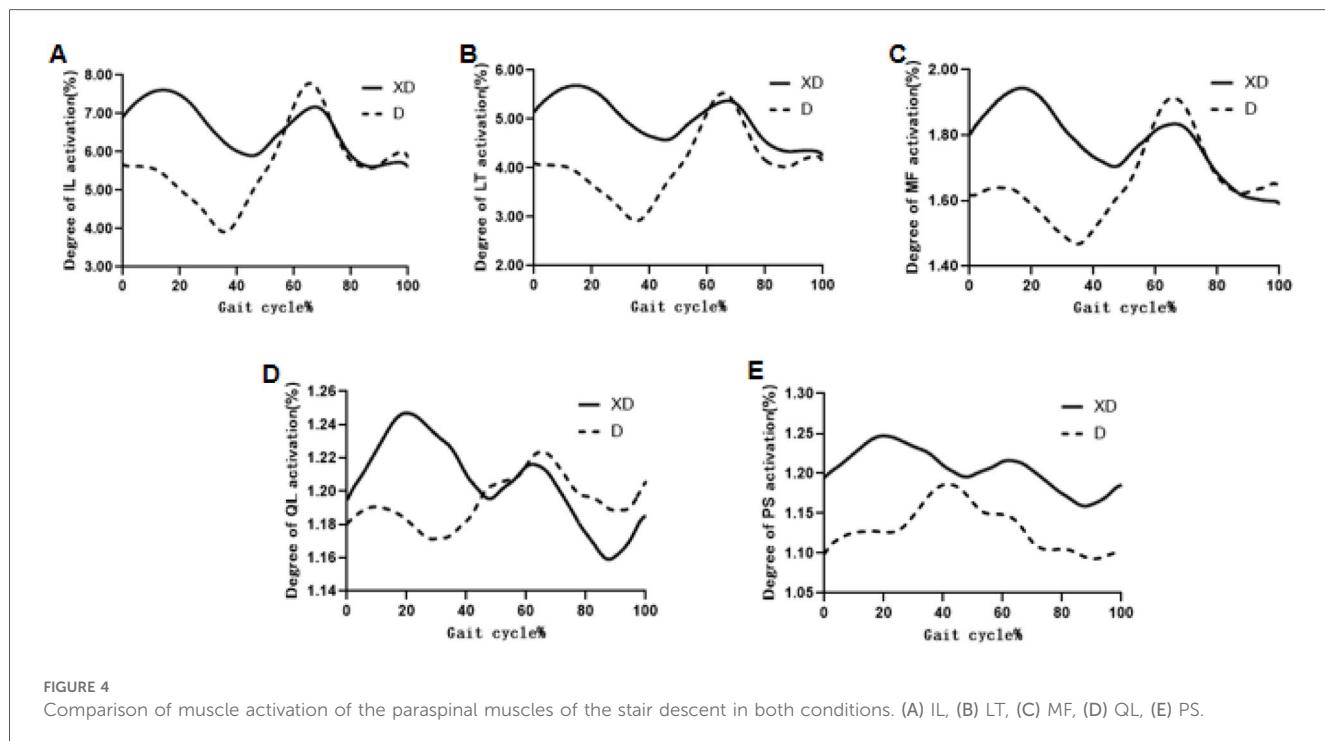
3.4 Lumbar spine kinematics

The movement patterns of the L4–5 in the X, Y and Z directions were similar across both D and XD conditions. No significant differences were found in X axis (D: $-0.419\text{du} \pm 0.308$, XD: -0.488 ± 0.477) or Y axis

(D: $0.387^\circ \pm 0.272^\circ$, XD: $0.281^\circ \pm 0.208^\circ$). However, the rotation angle around the Z-axis was significantly reduced in XD (-2.096 ± 1.025) compared to D (-1.957 ± 0.682) ($P = 0.002$) (Figure 7).

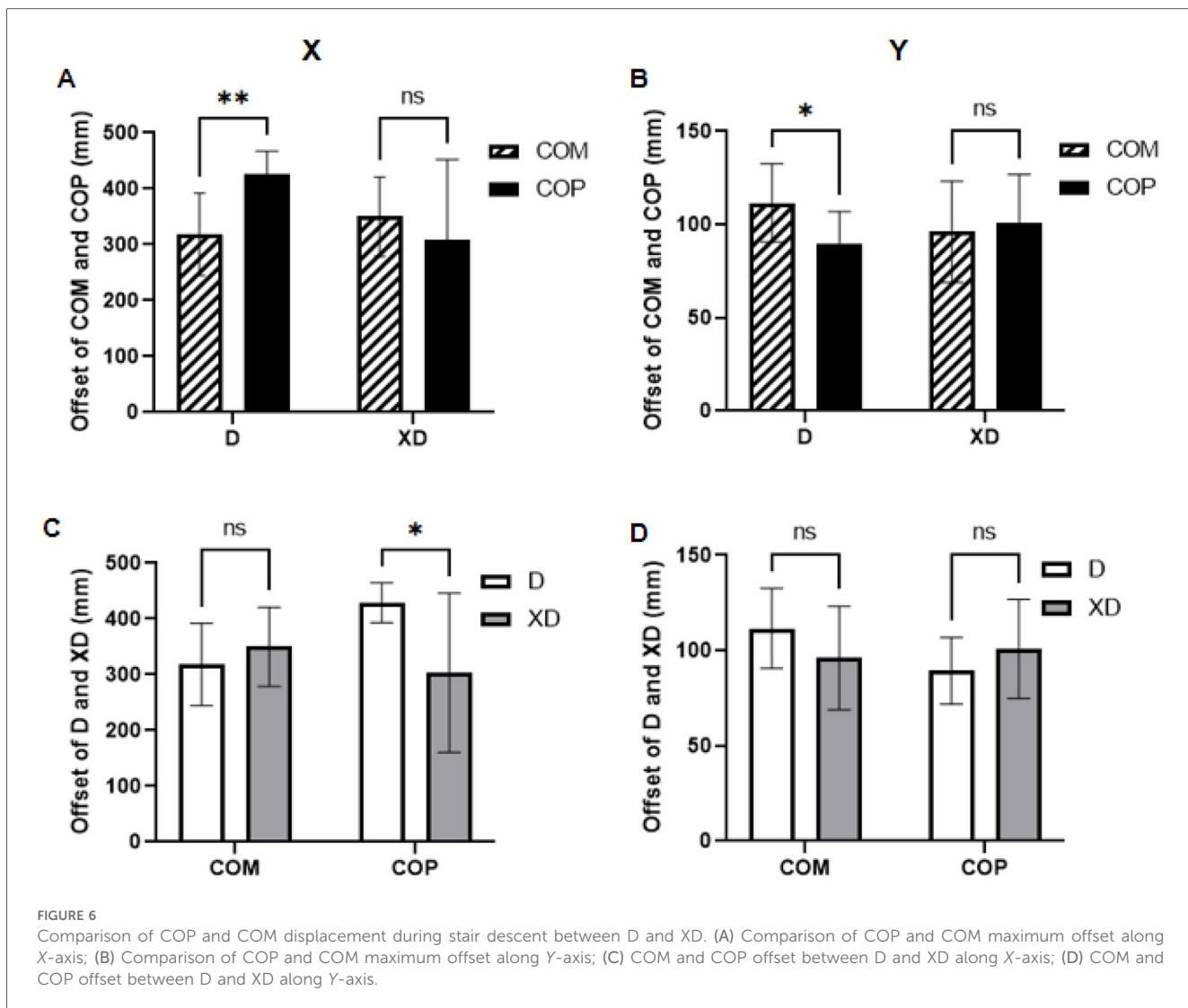
3.5 Model validation

To validate our model, we applied loading parameters and boundary conditions from Renner S. M et al. (28), in their study, lower end of the fifth lumbar vertebra of the fixed cadaver specimen was preloaded with a vertical load of 1,200 N and a flexion-extension torque of 8 Nm at the top of the first lumbar vertebra, and the results were compared with the simulation data from the established finite element model. The same loads and boundary conditions were applied to the finite element model in this study, and the simulation data were compared with the reference literature data. The results are shown in Figure 8, where the model results are similar to those in the literature, indicating that the model is valid.



3.6 Finite element analysis of lumbar intervertebral discs

Static optimization and finite element analysis were used to assess the stress distribution across the lumbar intervertebral discs during stair descent. Peak ground reaction forces and torques from both D and XD conditions were applied to the lumbar spine model. In the nucleus pulposus, XD produced higher stress than D. For L1–2, stress in XD concentrated posteriorly, whereas in D it appeared at both the anterior and posterior regions. In L4–5 Stress, D showed unilateral stress (left side), while XD exhibited a more symmetrical distribution. The maximum stress area was larger in D than in XD. In the annulus fibrosus, although the peak XD pressure is generally 0.01 MPa higher, the overall stress area is larger compared to D, which has a smaller maximum stress distribution (Figure 9).

4 Discussion


Previous studies examining the effects of Tai Chi on the spine have been largely limited to textual descriptions and lacked theoretical basis. In this study, we focused on exploring the core principle of Tai Chi, the state of “Xuling Dingjin”, and quantified its biomechanical characteristics. Our findings demonstrated that this posture can help stabilize the lumbar spine during stair descent, potentially reducing the risk of injury.

In the natural stair descent condition (D), paraspinal muscles exhibit a bimodal activation pattern, with peaks at approximately 25% (right leg swing phase) and 60%–80% (right leg stance, left leg swing) of the gait cycle, and a trough at around 40% (right foot contact, left leg initiation). This pattern aligns with human motion datasets by Camargo et al. (Human Motion Dataset) (29) and reflects varying mechanical demands. The second peak,

in particular, supports lumbar stability as the center of gravity shifts backward and the lower limbs extend, with eccentric contractions aiding in impact absorption and trunk balance, as noted by Muscle Contraction Study (30).

In contrast, during the Tai Chi “Xuling Dingjin” (XD) condition, peak muscle activation shifts to 20%–40% of the gait cycle, indicating earlier recruitment of deep stabilizers like multifidus (MF) and quadratus lumborum (QL) during initial

foot contact. This aligns with Tai Chi's principle of "using intention, not force," which emphasizes neuromuscular coordination and movement efficiency (18). While the psoas (PS) muscle also showed greater activation in XD (though not statistically significant), it plays a vital role in posture control, spinal stabilization, and hip flexion during contralateral weight-bearing, consistent with findings from Hodges (Psoas Function Study) (31) and Tai Chi's "XuLing DingJin" emphasis on spinal elongation. Notably, QL exhibited significantly greater activation in XD ($P < 0.01$), supporting its functions in spinal extension, lateral bending, and rotation. The enhanced activation contributes to better core stability and balance control in the lower limbs, key components of the "Xuling Dingjin" principle. Collectively, these findings suggest that the XD posture improves spinal stability during functional tasks, and may potentially reduce injury risk.

Asynchronous trunk flexion and lower limb propulsion in the D group during stair descent caused significant displacement in both X and Y directions, (Figures 5A,B), altering lumbar torque and increasing the COM-COP phase difference (32, 33). In

contrast, the XD group showed no significant differences, likely due to enhanced spinal stability associated with the XD posture. Furthermore, the D group had a significantly larger COP displacement than the XD group (Figure 5C), indicating increased forward foot pressure without proportional trunk flexion. This reflects a compensatory "braking strategy" commonly observed in older adults (34), where heel pressure is shifted backward to counterbalance trunk lean and prevent falls. The spatial relationship between COM-COP is crucial for postural control (35). Improved alignment and reduced displacement under SD suggests enhanced neuromuscular coordination and dynamic balance, hallmarks of Tai Chi practice (36).

Comparing the two stair descent conditions, no significant differences were found in lumbar flexion/extension or lateral bending angles. However, the XD posture significantly reduced L4-L5 rotation toward the left, indicating that the trunk shifted toward the right—that is, toward the advancing right leg—thereby decreasing the angle between the spine and the leg. Muscle activation patterns further revealed earlier peak

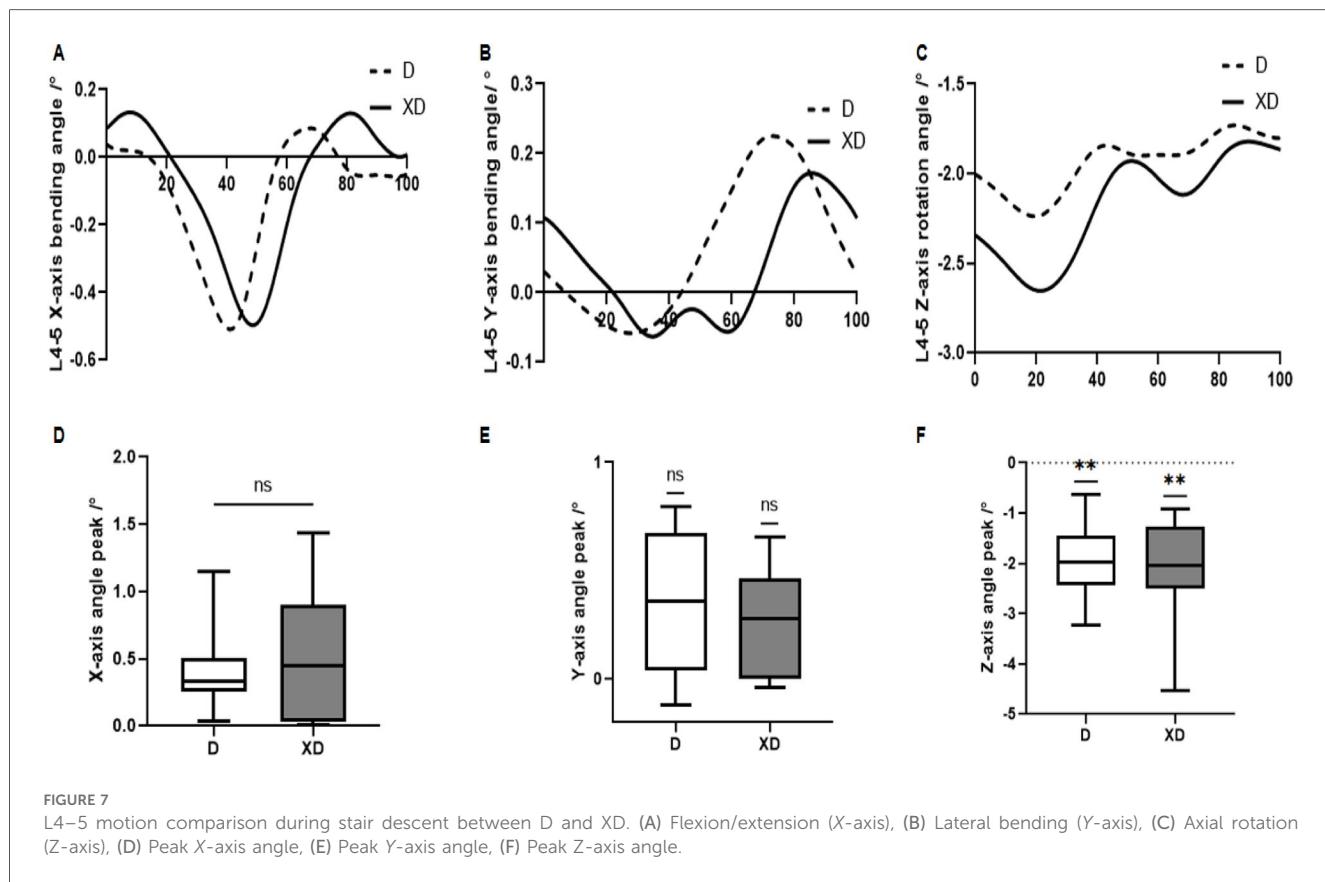


FIGURE 7

L4-5 motion comparison during stair descent between D and XD. (A) Flexion/extension (X-axis), (B) Lateral bending (Y-axis), (C) Axial rotation (Z-axis), (D) Peak X-axis angle, (E) Peak Y-axis angle, (F) Peak Z-axis angle.

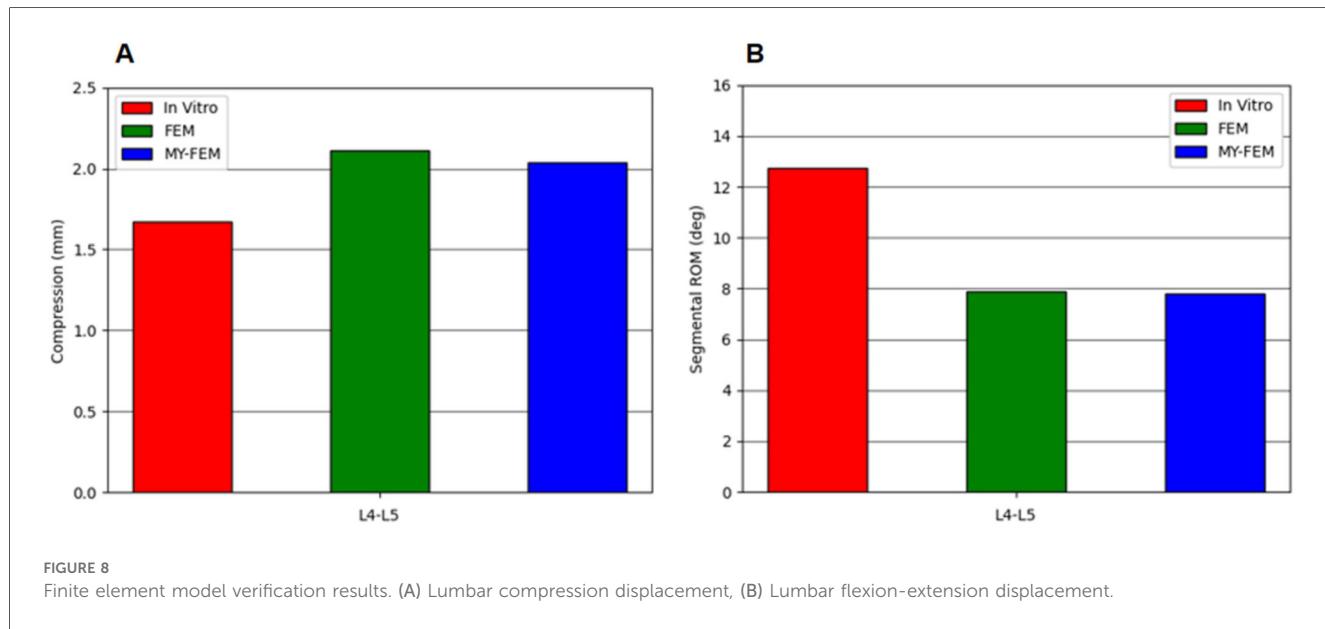


FIGURE 8

Finite element model verification results. (A) Lumbar compression displacement, (B) Lumbar flexion-extension displacement.

activation (20%–40% gait cycle) in the iliocostalis (IL), longissimus thoracis (LT), multifidus (MF), and quadratus lumborum (QL) under XD, with QL showing significantly higher activation than in D. These findings align with the Tai Chi practice “Qichen Dantian”, which emphasizes trunk stability through core engagement. Previous studies show that Tai Chi improves lower-limb stability in senior women, reducing fall

risk (37). Excessive lumbar rotation is linked to chronic low back pain and disc injury (38), and impaired equilibrium (39). The XD posture may mitigate these risks by restricting lumbar rotation and optimizing muscle activation.

Finite element model showed that the intradiscal pressure in the D condition was about 0.1 MPa higher than in the XD condition, a minor difference relative to typical intradiscal

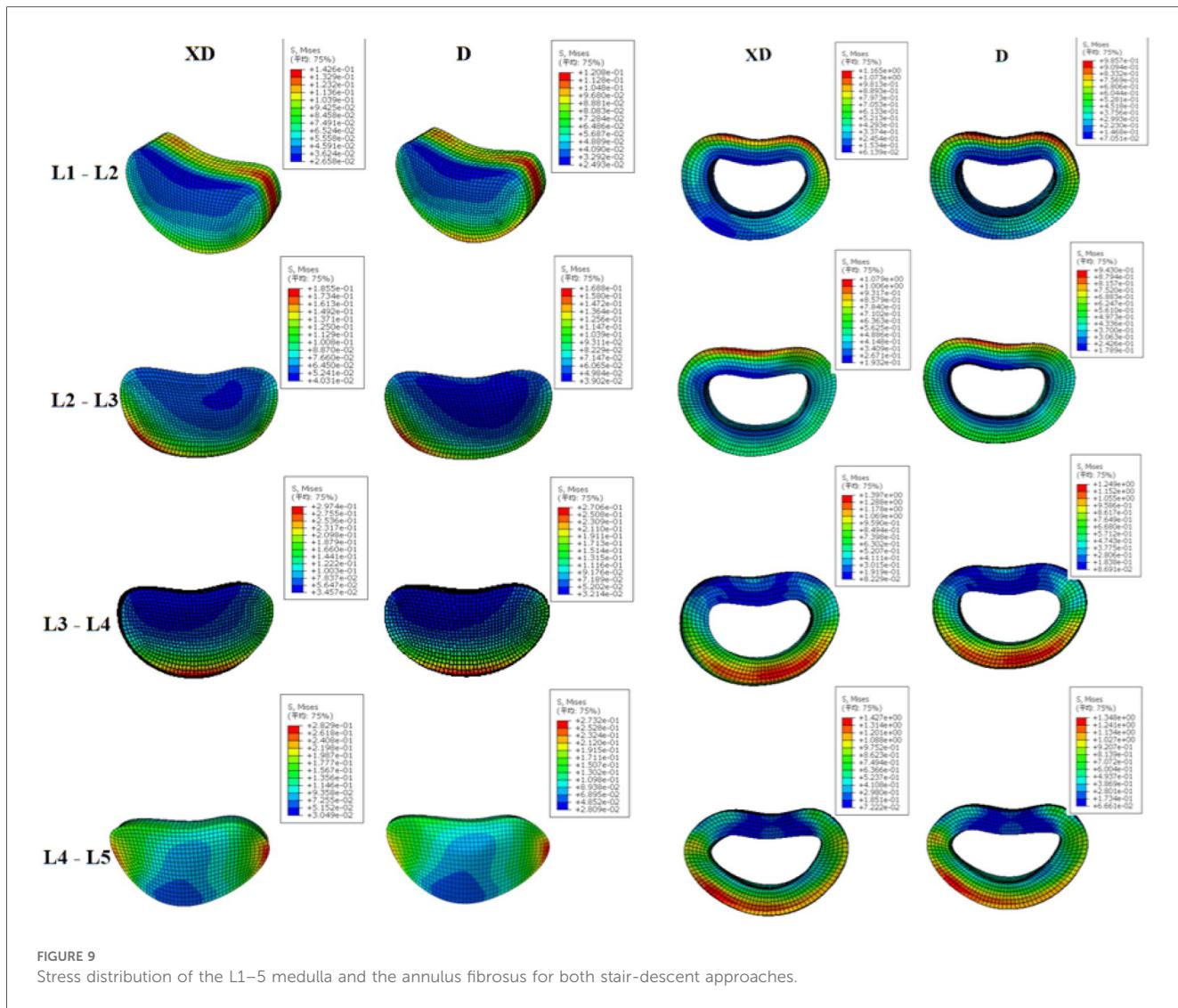


FIGURE 9

Stress distribution of the L1–5 medulla and the annulus fibrosus for both stair-descent approaches.

pressures (0.5 MPa standing, 1.0–2.3 MPa during activities) (40). However, pressure distribution was more uniform in the XD condition, which had a larger X-axis angle and smaller Z-axis range of motion at L4–L5, suggesting reduced localized stress. In contrast, the D condition exhibited a smaller pressure-concentrated area, which may relate to the observed lumbar motion pattern.

Uniform pressure distribution is more critical than peak pressure in preventing disc injury (41). Localized pressure peaks are associated with chronic low back pain and functional impairments (42). These biomechanical findings are consistent with Tai Chi principles such as 'Xuling Dingjin' and 'Songyao Luokuang', emphasizing natural spinal alignment and even force distribution to reduce stress concentrations. Regarding older adults, Muscle function degradation and pain interference in older adults may lead to lower activation peaks or delayed timing (43). The "Xuling Dingjin" posture not only activates the back muscles but also induces a pre-activation state in the muscles, serving as a potential intervention measure. This posture can serve as a low-intensity, non-invasive intervention

in daily training, integrated into balance training programs. By instructing practitioners to maintain the "Xuling Dingjin" posture during stair descent, core stability and neuromuscular coordination can be enhanced, thereby reducing the risk of falls associated with lumbar instability. For patients with lower limb or lumbar issues, such as chronic low back pain or balance disorders, this posture can be incorporated into functional rehabilitation training to optimize spinal alignment and muscle activation patterns, potentially alleviating pain and improving dynamic balance. In summary, we recommend incorporating Tai Chi exercises, particularly the "Xuling Dingjin" movement, into clinical practice in daily life, enabling patients to consciously maintain it during walking or stair navigation.

5 Study limitations

This study's small sample size limits the generalizability of the findings. Future research should involve larger cohorts for more robust statistical analysis. Additionally, the finite element model

assumed uniform intervertebral disc material properties and fixed boundary conditions, overlooking individual anatomical variations and/or dynamic loading complexities. To address this, future work will include multiple lumbar models representing different morphologies and conditions. In this study, finite-element modelling of spinal stress employed static loading, however, stair descent is a dynamic task. Future work will therefore incorporate dynamic simulations to more accurately characterise the underlying movement mechanisms. The stair descent task was selected to emphasize lumbar motion and loading, allowing clearer biomechanical differentiation between conditions. Our results suggest the “Xuling Dingjin” posture may improve stair descent safety. Future research will explore its influence across a broader range of movements. These insights offer valuable implications for clinical rehabilitation and Tai Chi-based training.

6 Conclusion

Compared with natural stair descent, maintaining the “Xuling Dingjin” posture significantly activates deep stabilizing muscles earlier, promotes lumbar pressure distribution, thereby enhancing spinal stability and offering potential value in reducing fall risk. These findings offer a theoretical basis for incorporating Tai Chi movements into balance training, rehabilitation programs and movement instruction. Future research should further explore the effectiveness of “Xuling Dingjin” in improving dynamic stability and preventing falls, particularly in the elderly.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics Committee of Dalian University of Technology. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Author contributions

YD: Conceptualization, Data curation, Investigation, Methodology, Visualization, Writing – original draft. HL:

Writing – review & editing, Supervision, Conceptualization, Formal analysis. JJ: Conceptualization, Writing – review & editing, Funding acquisition. LL: Writing – review & editing, Supervision, Funding acquisition. FG: Writing – review & editing, Supervision, Conceptualization, Formal analysis. SL: Writing – review & editing, Conceptualization. YY: Writing – review & editing, Conceptualization. SYang: Conceptualization, Writing – review & editing. SYan: Conceptualization, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work is supported by the Planning Project of Liaoning Provincial Society of Sports Science (2024LTXH009).

Acknowledgments

The authors thanks to all the participants who contributed to this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Nadeau S, McFadyen BJ, Malouin F. Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? *Clin Biomech (Bristol)*. (2003) 18(10):950–9. doi: 10.1016/s0268-0033(03)00179-7
2. Annus P, Sievanen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. *Lancet*. (2005) 366:1885–93. doi: 10.1016/S0140-6736(05)67604-0
3. Ubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. *Age Ageing*. (2006) 35(Suppl 2):374. doi: 10.1093/ageing/afl084
4. Startzell JK, Owens DA, Mulfinger LM, Cavanagh PR. Stair negotiation in older people: a review. *J Am Geriatr Soc*. (2000) 48:567–80. doi: 10.1111/j.1532-5415.2000.tb05006.x
5. Lee JK, Desmoulin GT, Khan AH, Park EJ. Comparison of 3D spinal motions during stair-climbing between individuals with and without low back pain. *Gait Posture*. (2011) 34(2):222–6. doi: 10.1016/j.gaitpost.2011.05.002
6. Gou Y, Tao J, Huang J, Lei H, Chen X, Wang X. Biomechanical analysis of trunk and lower limbs during stair activity in patients with scoliosis. *Sci Rep*. (2024) 14:14541. doi: 10.1038/s41598-024-65665-2
7. van Middelkoop M, Rubinstein SM, Kuijpers T, Verhagen AP, Ostelo R, Koes BW, et al. A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain. *Eur Spine J*. (2011) 20(1):19–39. doi: 10.1007/s00586-010-1518-3
8. Cheng M, Tian Y, Ye Q, Li J, Xie L, Ding F. Evaluating the effectiveness of six exercise interventions for low back pain: a systematic review and meta-analysis. *BMC Musculoskelet Disord*. (2025) 26(1):433. doi: 10.1186/s12891-025-08658-0
9. Kraemer KM, Litrownik D, Moy ML, Wayne PM, Beach D, Klings ES, et al. Exploring tai chi exercise and mind-body breathing in patients with COPD in a randomized controlled feasibility trial. *COPD*. (2021) 18(3):288–98. doi: 10.1080/15412555.2021.1928037
10. Wang H, Guo Y, Fan H, Chen Z, Liu S, Zhao L, et al. The effects of an acute tai chi on emotional memory and prefrontal cortex activation: a fNIRS study. *Front Behav Neurosci*. (2025) 18:1520508. doi: 10.3389/fnbeh.2024.1520508
11. Yin Y, Zhang Y, Wang M, Zhu Y, Bi G, Zhang S. The impact of reverse abdominal breathing on lower limb muscle strength and muscle synergy characteristics in tai chi chuan. *Front Bioeng Biotechnol*. (2025) 13:1579139. doi: 10.3389/fbioe.2025.1579139
12. Li W, Liang M, Xiang L, Radak Z, Gu Y. A cross-sectional study on the biomechanical effects of squat depth and movement speed on dynamic postural stability in tai chi. *Life (Basel)*. (2025) 15(6):977. doi: 10.3390/life15060977
13. Chen W, Li M, Li H, Lin Y, Feng Z. Tai chi for fall prevention and balance improvement in older adults: a systematic review and meta-analysis of randomized controlled trials. *Front Public Health*. (2023) 11:1236050. doi: 10.3389/fpubh.2023.1236050
14. Chen E. On the concept of “xu ling ding jin” in chen-style tai chi. *Sports Sci Res*. (2006) 10(4):42–4. doi: 10.3969/j.issn.1007-7413.2006.04.011
15. Zhang ZH, Liu ZL, Wang YC. Analysis of the energy conversion model for force accumulation and release in chen-style tai chi. *J Wuhan Inst Phys Educ*. (2011) 45(3):64–7. doi: 10.3969/j.issn.1000-520X.2011.03.013
16. Wu D, Yan XP. An empirical study on the impact of tai chi cloud hands technique on spinal curvature. *Journal of Beijing Sport University*. (2017) 40(1):129–37. doi: 10.19582/j.cnki.11-3785/g.2017.01.021
17. Zhou GQ, Li H. The intrinsic connection between tai chi’s “xuling dingjin”, “qi chen dantian” and spinal core stability training. *Chin J Health Preserv Rehabil*. (2024) 42(5):74–7680.
18. Law N-Y, Li JX. Biomechanics analysis of seven tai chi movements. *Sports Med Health Sci*. (2022) 4:245–52. doi: 10.1016/j.smhs.2022.06.002
19. Hass CJ, Gregor RJ, Waddell DE, Oliver A, Smith DW, Fleming RP, et al. The influence of tai chi training on the center of pressure trajectory during gait initiation in older adults. *Arch Phys Med Rehabil*. (2004) 85(10):1593–8. doi: 10.1016/j.apmr.2004.01.020
20. Zhao L, Chen W. Biomechanical analysis of the waist movement of Taijiquan based on finite element method. *Int J Bioauto*. (2018) 22:39–48. doi: 10.7546/ijba.2018.22.1.39-48
21. Karimi MT, Hemmati F, Mardani MA, Sharifmoradi K, Hosseini SI, Fadayevatan R, et al. Determination of the correlation between muscle forces obtained from OpenSim and muscle activities obtained from electromyography in the elderly. *Phys Eng Sci Med*. (2021) 44(1):243–51. doi: 10.1007/s13246-021-00973-9
22. Ruhe A, Fejer R, Walker B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: a systematic review of the literature. *Eur Spine J*. (2011) 20:358–68. doi: 10.1007/s00586-010-1543-2
23. Jian Y, Winter D, Ishac M, Gilchrist L. Trajectory of the body COG and COP during initiation and termination of gait. *Gait Posture*. (1993) 1(1):9–22. doi: 10.1016/0966-6362(93)90038-3
24. Kang H, Li Y, Liu D, Yang C. Human kinematics modeling and simulation based on OpenSim. *2021 International Conference on Control, Automation and Information Sciences (ICCAIS)*; Xi'an, China (2021). p. 644–9
25. Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, et al. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. *J Biomech*. (1985) 18(3):167–76. doi: 10.1016/0021-9290(85)90202-7
26. Zahari SN, Latif MJA, Rahim NRA, Kadir MRA, Kamarul T. The effects of physiological biomechanical loading on intradiscal pressure and Annulus stress in lumbar spine: a finite element analysis. *J Healthc Eng*. (2017) 2017:9618940. doi: 10.1155/2017/9618940
27. Alemi MM, Banks JJ, Lynch AC, Allaire BT, Bouxsein ML, Anderson DE. EMG validation of a subject-specific thoracolumbar spine musculoskeletal model during dynamic activities in older adults. *Ann Biomed Eng*. (2023) 51(10):2313–22. doi: 10.1007/s10439-023-03273-3
28. Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, et al. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. *J Biomech*. (2007) 40(6):1326–32. doi: 10.1016/j.jbiomech.2006.05.019
29. Camargo J, Ramanathan A, Flanagan W, Young A. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. *J Biomech*. (2021) 119:110320. doi: 10.1016/j.jbiomech.2021.110320
30. Belavý DL, Albracht K, Bruggemann GP, Vergroesen PP, van Dieën JH. Can exercise positively influence the intervertebral disc? *Sports Med*. (2016) 46:473–85. doi: 10.1007/s40279-015-0444-2
31. Andersson E, Oddsson L, Grundström H, Thorstensson A. The role of the psoas and iliacus muscles for stability and movement of the lumbar spine, pelvis and hip. *Scand J Med Sci Sports*. (1995) 5(1):10–6. doi: 10.1111/j.1600-0838.1995.tb00004.x
32. Letenier S, Gillet C, Sadeghi H, Allard P, Barbier F. Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait. *Clin Biomech*. (2009) 24(2):190–5. doi: 10.1016/j.clinbiomech.2008.10.005
33. McFadyen BJ, Winter DA. An integrated biomechanical analysis of normal stair ascent and descent. *J Biomech*. (1988) 21(9):733–44. 2–5. doi: 10.1016/0021-9290(88)90282-5
34. Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. *J Gerontol*. (1994) 49(2):M72–84. doi: 10.1093/geronj/49.2.M72
35. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. *J Neurophysiol*. (1998) 80(3):1211–21. doi: 10.1152/jn.1998.80.3.1211
36. Peterka RJ. Sensorimotor integration in human postural control. *J Neurophysiol*. (2002) 88(3):1097–118. doi: 10.1152/jn.2002.88.3.1097
37. Zou L, Han J, Li C, Yeung AS, Hui SS, Tsang WWN, et al. Effects of tai chi on lower limb proprioception in adults aged over 55: a systematic review and meta-analysis. *Arch Phys Med Rehabil*. (2019) 100(6):1102–13. doi: 10.1016/j.apmr.2018.07.425
38. Javadian Y, Akbari M, Talebi G, Taghipour-Darzi M, Jammohammadi N. Influence of core stability exercise on lumbar vertebral instability in patients presented with chronic low back pain: a randomized clinical trial. *Caspian J Intern Med*. (2015) 6(2):98–102.
39. Rogers MW, Mille M-L. Lateral stability and falls in older people. *Exerc Sport Sci Rev*. (2003) 31(4):182–7. doi: 10.1097/00003677-200310000-00005
40. Li JQ, Kwong WH, Chan YL, Kawabata M. Comparison of *in vivo* intradiscal pressure between sitting and standing in human lumbar spine: a systematic review and meta-analysis. *Life (Basel)*. (2022) 12(3):457. doi: 10.3390/life12030457
41. Neidlinger-Wilke C, Galbusera F, Pratsinis H, Mavrogonatou E, Mietsch A, Kletsas D, et al. Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level. *Eur Spine J*. (2014) 23(Suppl 3):S333–43. doi: 10.1007/s00586-013-2855-9
42. Sima S, Diwan A. Contemporary clinical perspectives on chronic low back pain: The biology, mechanics, etc. underpinning clinical and radiological evaluation. *JOR Spine*. (2025) 8(1):e70021. doi: 10.1002/jsp2.70021
43. Rozand V, Sundberg CW, Hunter SK, Smith AE. Age-related deficits in voluntary activation: a systematic review and meta-analysis. *Med Sci Sports Exerc*. (2020) 52(3):549–60. doi: 10.1249/MSS.0000000000002179