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Background: Low back pain is common increases stair-related fall. The Tai Chi 

“Xuling Dingjin” posture may enhance spinal stability, its biomechanical 

mechanisms remain unclear. This study investigates the effects of this posture 

on lumbar biomechanics during stair descent, and provides theoretical 

support for its application in balance improvement and rehabilitation.

Research question: To investigate the biomechanical effects of Tai Chi’s “Xuling 

Dingjin” posture on the lumbar spine and whether it enhances the stability of 

the lumbar spine in the staircase environment.

Methods: Twelve adults (6 males and 6 females) with a minimum of 5 years of 

Tai Chi experience participated in the study. Lumbar biomechanics were 

assessed during normal stair descent (D) and stair descent incorporating the 

“Xuling Dingjin” posture (XD) using a Vicon motion capture system, an AMTI 

force platform, OpenSim biomechanical analysis software, and finite 

element analysis.

Results: Under the XD condition, deep stabilizing muscles (especially quadratus 

lumborum) exhibited earlier and more intense activation. Additionally, there was 

a smaller offset between the center of mass (COM) and center of pressure 

(COP), indicating improved posture stability. Lumbar rotation around the 

Z-axis was significantly decreased, and finite element analysis demonstrated a 

more uniform pressure distribution across the intervertebral discs.

Conclusion: Maintaining the “Xuling Dingjin” posture can activate deep 

stabilizers earlier and more effectively, redistributing lumbar pressure through 

postural adjustment, thereby enhancing spinal stability and offering potential 

value in reducing fall risk.

KEYWORDS
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1 Introduction

Stair ascend and descend require coordinated movements of the spine and lower 

limbs, involving both obstacle navigation and rising from a seated position. Safe stair 

descent is particularly critical for the elderly and individuals with physical disabilities, 

as it supports independent living, reduces caregiver burden, and contributes to overall 

health and quality of life (1). Epidemiological studies indicate falls are prevalent across 

all age groups, with the risk significantly increasing in older adults—accounting for 

two-thirds of accidental deaths in individuals over 75 (2, 3). Notably, more than 10% 
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of these falls occur on stairs (4). Stair ascend increases spinal load 

and motion amplitude, which may exacerbate low back pain (5), 

while stair descend presents a higher risk of falling due to spinal 

instability and erratic movements (6). In recent years, there has 

been growing emphasis on exercise-based rehabilitation for 

spinal disorder prevention and management (7), with exercise 

programs promoting spinal health gaining global recognition (8).

Tai Chi, a traditional Chinese martial art, now as a modern 

competitive sport featuring both routine practice and free 

sparring, often with an emphasis on Ornamental. Research has 

shown that Tai Chi integrates the coordination of “mind, breath, 

and body” (9), enhances perceptual awareness through cognitive 

engagement (10), stabilizes the spine via abdominal breathing 

(11), and improves posture by promoting vertical spinal 

alignment (12). It has also been demonstrated to enhance 

dynamic balance and reduce fall risk (13), making it effective in 

improving physical fitness and preventing diseases.

“Xuling Dingjin” is central to Tai Chi form and body 

alignment. “Xuling” denotes a relaxed and supple state of the 

head and neck; “ding” refers to a gentle, intentional upward lift 

of the crown, as if a force were drawing the baihui acupoint 

toward the sky (14). “Jin” arises from a spiraling interplay of 

muscle, bone, and connective tissues—alternating stretch and 

compression—that converts mechanical energy into elastic 

potential (15). During “Xuling Dingjin” practice, this elasticity is 

not confined to the limbs; it <attens the physiological spinal 

curves, shifting the spine from an “S”-shape toward a “C”-shape 

and ultimately toward a straight axis. This reconfiguration is 

expected to distribute disc loads more evenly and to provide 

effective conditioning of the deep spinal musculature (16). 

“Xuling Dingjin” integrates core concepts such as “containing 

the chest and pulling out the back”, “standing upright in the 

middle” and “Qichen Dantian” (engaging core stability) (17). 

Biomechanically, this posture transforms the spine into a <exible 

chain, with the cervical vertebrae acting as a fixed anchor and 

the lumbar vertebrae free to elongate and align. This 

configuration is thought to lengthen the spine and improve 

segmental aligning. However, the physical effects of maintaining 

the “Xuling Dingjin” posture are often described subjectively, 

and there is limited empirical data to support its 

biomechanical benefits.

To address this gap, previous studies have explored Tai Chi 

from various perspectives. For example, Law et al. (18) explored 

the muscle activation characteristics of seven types of Tai Chi 

forms, Hass CJ et al. (19) examined how the center of pressure 

(COP) contributes to the center of mass (COM) stability, and 

Zhao L et al. (20) developed an L4–L5 spine model to 

investigate the biomechanical effects of the “cloud hand” 

maneuver. Building on this foundation, the present study is the 

first to quantify biomechanical characteristics of the lumbar 

spine during the “Xuling Dingjin” posture. Our study aims to 

determine whether this posture could make stair descent safer 

and biomechanically less demanding. The hypotheses of this 

study are: (1) “Xuling Dingjin” posture can enhance the 

activation of the paraspinal muscles, thereby improving lumbar 

stability; and (2) maintaining the “Xuling Dingjin” posture 

during stair descent can reduce the angle of lumbar curvature, 

thereby provides a safer way of traveling.

2 Methods

2.1 Participants

Twelve healthy adults were recruited for this study (6 males, 

age 41.3 ± 8.8, height 173.7 ± 5.16 cm, mass 74.71 ± 8.2 kg; 6 

females, age 54.3 ± 3.2, height 162.2 ± 2.8 cm, mass 

58.3 ± 8.2 kg). Inclusion criteria were: healthy, ≥5 years of 

continuous Tai Chi practice, no recent surgery or illness, and 

the ability to perform Tai Chi movements accurately. All 

participants were familiar with the “Xuling Dingjin” posture. 

The researchers recorded the age, gender, and years of tai chi 

training, and measured the height, weight, leg length, arm 

length, shoulder width, elbow width, wrist width, and ankle 

width data of all participants. All participants signed an 

informed consent form prior to the trial, and it was approved 

by the ethics committee.

2.2 Procedures

The experimental setup featured a custom-built two-step 

staircase with a step height of 17 cm, consistent with dimensions 

for residential building stairs. Each step was equipped with an 

AMTI force platform (Optima HPS, AMTI, 103 USA), sampling 

at a frequency of 1,000 Hz to collect kinetic data. Kinematic 

data were collected using a Vicon motion capture system (Vicon 

99 V5, Oxford Metrics, UK) with eight infrared cameras 

operating at 100 Hz, that was synchronized with the force plates. 

Thirty-nine re<ective markers were placed on bony landmarks 

of the head, trunk, pelvis, bilateral upper limbs, bilateral lower 

limbs, and feet, following the Vicon Full-body AI model. 

Electromyographic data from the multifidus and psoas major 

muscles were recorded using a Noraxon Surface 

Electromyography (sEMG) system at 1,500 Hz (Figure 1).

Participants wore standardized tight-fitting clothing and Tai 

Chi shoes. To ensure consistent gait and speed, all participants 

started from the top step and descended using their right (the 

traditional kickball method was used to determine that the 

dominant sides of the subjects were all right-sided) foot in each 

trial, guided by a metronome (0.5 m/s). The study employed a 

blinded design: subjects first performed five trials of normal 

stair descent (D), followed by a 5 min rest. They were then 

instructed to complete five additional trials while maintaining 

the Tai Chi “Xuling Dingjin” posture (XD).

2.3 Data acquisition and analysis

Muscles activation data for paravertebral muscles were derived 

using Opensim software (version 4.4, Stanford University, USA) 

through static optimization and time normalization. To validate 
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OpenSim outputs, raw sEMG signals were processed using a 

Butterworth bandpass filter (10–500 Hz) and 50 Hz notch filter. 

The signals were then rectified, normalized, and RMS quantized 

for the multifidus muscle, and smoothed using a 50 ms sliding 

window. These processed sEMG activation curves were 

compared with Opensim-simulated muscle activations (21).

The trajectories of the COP were computed from the ground 

reaction force, specifically from the moment the right foot left the 

top step until the left foot contacted the lower step. The excursion 

of COP trajectory in the sagittal (X) and coronal (Y) planes was 

calculated as the maximal displacement in each direction. COM 

was calculated by Vicon software from anthropometric data. 

Both COM and COP were normalized across participants to 

take into account interindividual variability. Posture stability was 

assessed by the offset between COM and COP trajectories (22, 23).

Lumbar spine L4–5 angles in <exion-extension (X), lateral 

bending (Y), and axial rotation (Z) were derived using inverse 

kinematics and normalized for comparison (24).

For finite element analysis, the lumbar spine (L1–L5) of the 

participant with the most advanced Tai Chi proficiency was 

scanned using CT, and DICOM images were imported into 

Mimics 21.0. Vertebrae were segmented via masking and 

thresholding, gaps filled, and the model exported as an STL file. 

Geomagic Wrap 2021 was used to smooth the model (grid 

doctor, spike removal, hole-filling), separate cancellous and 

cortical bone (2 mm cortical reference), and saved the result in 

STP format. Intervertebral disc (including end-plate cartilage, 

annulus fibrosus, nucleus pulposus) were modeled in 

SolidWorks using surface offset and Boolean operations, and 

performed hexahedral mesh generation. The complete SLDPRT 

model was analyzed in Abaqus Finite Element Analysis | 

SIMULIA, with appropriate material properties and apply a 

fixed constraint to the base surface of the lumbar vertebra L5 

segment, restricting all degrees of freedom. OpenSim calculated 

lumbar reaction force and torque corresponding to the GRF 

peak moment was applied to simulate stress distribution in the 

intervertebral discs. The finite element modelling process is 

shown in Figure 2, and the material properties of all parts are 

taken from references (25, 26) and listed in Table 1.

All data were analyzed for normality using GraphPad Prism 

9.5.0. Paired t-tests were used for normally distributed data, 

while Wilcoxon signed-rank tests were used for non—normal 

data. *Indicates P < 0.05, ** indicates P < 0.01. All data were 

normalized using Origin.

3 Result

3.1 Muscle activation validation

Paravertebral muscles activation are derived using Opensim 

software (version 4.4, Stanford University, USA) after static 

optimization followed by time normalization. To verify the 

reliability of the results, the measured sEMG signals were 

filtered by Butterworth bandpass filter (10–500 Hz) and 50 Hz 

notch filter, rectified, normalized, and RMS quantized for the 

multifidus muscle. Finally, the data were smoothed using a 

50 ms sliding window to generate the activation curves, which 

FIGURE 1 

39 markers in body joint points.
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were compared with the muscle activation curves simulated by 

Opensim (21, 27). The muscle activation predicted by the 

Opensim model and the experimental EMG average graph 

(Figure 3) show that the overall trends of the muscle activation 

simulated by Opensim and the processed EMG are 

approximately the same, indicating that the simulation results 

are reliable.

3.2 Muscle activation

During both D and XD, the iliococcygeus (IL), longissimus 

(LT), multifidus (MF), and quadratus lumborum (QL) showed a 

biphasic activation pattern. In contrast, the psoas major (PS) 

showed a single activation plateau during D (at 40%–60% of the 

gait cycle). For IL, LT, MF, the maximum activation during 

D occurred at the second peak (IL: 10.128 ± 3.087, LT: 

7.258 ± 2.306, MF:2.424 ± 0.405) whereas during XD it shifted to 

the first peak (IL:9.751 ± 2.65, LT:7.468 ± 0.246, MF: 

2.287 ± 0.499). PS activation was consistently higher during XD 

(peak angle:1.330 ± 0.121) than D (peak angle:1.310 ± 0.083). In 

addition, QL had significantly greater muscle activation in XD 

(1.327 ± 0.085) compared to D (1.468 ± 0.246) (P = 0.002), while 

no significant differences were observed in other muscles 

(P > 0.05) (Figures 4, 5).

3.3 Relative position analysis of COP and 
COM

The two stair descent conditions affected the relationship 

between the center of mass (COM) and center of pressure 

(COP) differently. In D, there were significant differences 

between COM and COP displacements in both the sagittal (X) 

FIGURE 2 

Schematic diagram illustrating the construction process of the finite element model of the L1–5 lumbar spine. (A) Bony structures were segmented 

and reconstructed using Mimics software; (B) Surface smoothing and noise removal were performed using Geomagic Wrap software; (C) 

Intervertebral discs were modeled and assembled with vertebral structures in Solidworks software; (D) Ligaments were added, the model was 

meshed, and finite element analysis was conducted in ABAQUS software.
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and coronal (Y) planes, indicating less stability. In contrast, no 

significant differences were observed in XD. In the X direction, 

COP displacement was significantly larger in D than XD, while 

COM displacement was smaller but not significantly different. 

In the Y direction, no significant differences in either COM or 

COP were found between D and XD (Figure 6).

3.4 Lumbar spine kinematics

The movement patterns of the L4–5 in the X, Y and 

Z directions were similar across both D and XD conditions. No 

significant differences were found in X axis (D: 

−0.419du ± 0.308, XD: −0.488 ± 0.477) or Y axis 

(D:0.387° ± 0.272°, XD: 0.281° ± 0.208°). However, the rotation 

angle around the Z-axis was significantly reduced in XD 

(−2.096 ± 1.025) compared to D (−1.957 ± 0.682) (P = 0.002) 

(Figure 7).

3.5 Model validation

To validate our model, we applied loading parameters and 

boundary conditions from Renner S. M et al. (28), in their 

study, lower end of the fifth lumbar vertebra of the fixed 

cadaver specimen was preloaded with a vertical load of 1,200 N 

and a <exion-extension torque of 8 Nm at the top of the first 

lumbar vertebra, and the results were compared with the 

simulation data from the established finite element model. The 

same loads and boundary conditions were applied to the finite 

element model in this study, and the simulation data were 

compared with the reference literature data. The results are 

shown in Figure 8, where the model results are similar to those 

in the literature, indicating that the model is valid.

3.6 Finite element analysis of lumbar 
intervertebral discs

Static optimization and finite element analysis were used to 

assess the stress distribution across the lumbar intervertebral 

discs during stair descent. Peak ground reaction forces and 

torques form both D and XD contions were applied to the 

lumbar spine model. In the nucleus pulposus, XD produced 

higher stress than D. For L1–2, stress in XD concentrated 

posteriorly, whereas in D it appeared at both the anterior and 

posterior regions. In L4–5 Stress, D showed unilateral stress (left 

side), while XD exhibited a more symmetrical distribution. The 

maximum stress area was larger in D than in XD. In the 

annulus fibrosus, although the peak XD pressure is generally 

0.01 MPa higher, the overall stress area is larger compared to D, 

which has a smaller maximum stress distribution (Figure 9).

4 Discussion

Previous studies examining the effects of Tai Chi on the spine 

have been largely limited to textual descriptions and lacked 

theoretical basis. In this study, we focused on exploring the core 

principle of Tai Chi, the state of “Xuling Dingjin”, and 

quantified its biomechanical characteristics. Our findings 

demonstrated that this posture can help stabilize the lumbar 

spine during stair descend, potentially reducing the risk of injury.

In the natural stair descent condition (D), paraspinal muscles 

exhibit a bimodal activation pattern, with peaks at approximately 

25% (right leg swing phase) and 60%–80% (right leg stance, left leg 

swing) of the gait cycle, and a trough at around 40% (right foot 

contact, left leg initiation). This pattern aligns with human 

motion datasets by Camargo et al. (Human Motion Dataset) 

(29) and re<ects varying mechanical demands. The second peak, 

TABLE 1 Paravertebral muscle activation peaks and troughs.

Tissue Element 
type

Young’s 
modulus (MPa)

Poisson’s 
ratio

Cortical bone Tetrahedron 12,000 0.3

Cancellous bone Tetrahedron 100 0.2

Cartilage Tetrahedron 35 0.4

Marrow Hexahedron 4 0.45

Annulus fibrosus 

matrix

Hexahedron 4.5 0.4

Annulus fibrosus Hexahedron 550 0.3

Anterior 

longitudinal 

ligament

Spring 7.8 –

Posterior 

longitudinal 

ligament

Spring 10 –

Interspinous 

ligament

Spring 10 –

Supraspinous 

ligament

Spring 8 –

Lateral ligament Spring 10 –

Ligamentum <avum Spring 10 –

Muscle Spring – –

FIGURE 3 

Validity verification by comparing between muscle electrical 

stimulation results and opensim muscle activation 

simulation results.
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in particular, supports lumbar stability as the center of gravity 

shifts backward and the lower limbs extend, with eccentric 

contractions aiding in impact absorption and trunk balance, as 

noted by Muscle Contraction Study (30).

In contrast, during the Tai Chi “Xuling Dingjin” (XD) 

condition, peak muscle activation shifts to 20%–40% of the gait 

cycle, indicating earlier recruitment of deep stabilizers like 

multifidus (MF) and quadratus lumborum (QL) during initial 

FIGURE 4 

Comparison of muscle activation of the paraspinal muscles of the stair descent in both conditions. (A) IL, (B) LT, (C) MF, (D) QL, (E) PS.

FIGURE 5 

Comparison of peak muscle activation of paravertebral muscles in D and XD. (A) IL, (B) LT, (C) MF, (D) QL, (E) PS.
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foot contact. This aligns with Tai Chi’s principle of “using 

intention, not force,” which emphasizes neuromuscular 

coordination and movement efficiency (18). While the psoas 

(PS) muscle also showed greater activation in XD (though not 

statistically significant), it plays a vital role in posture control, 

spinal stabilization, and hip <exion during contralateral weight- 

bearing, consistent with findings from Hodges (Psoas Function 

Study) (31) and Tai Chi’s “XuLing DingJin” emphasis on spinal 

elongation. Notably, QL exhibited significantly greater activation 

in XD (P < 0.01), supporting its functions in spinal extension, 

lateral bending, and rotation. The enhanced activation 

contributes to better core stability and balance control in the 

lower limbs, key components of the “Xuling Dingjin” principle. 

Collectively, these findings suggest that the XD posture improves 

spinal stability during functional tasks, and may potentially 

reduce injury risk.

Asynchronous trunk <exion and lower limb propulsion in the 

D group during stair descent caused significant displacement in 

both X and Y directions, (Figures 5A,B), altering lumbar torque 

and increasing the COM-COP phase difference (32, 33). In 

contrast, the XD group showed no significant differences, likely 

due to enhanced spinal stability associated with the XD posture. 

Furthermore, the D group had a significantly larger COP 

displacement than the XD group (Figure 5C), indicating 

increased forward foot pressure without proportional trunk 

<exion. This re<ects a compensatory “braking strategy” 

commonly observed in older adults (34), where heel pressure is 

shifted backward to counterbalance trunk lean and prevent falls. 

The spatial relationship between COM-COP is crucial for 

postural control (35). Improved alignment and reduced 

displacement under SD suggests enhanced neuromuscular 

coordination and dynamic balance, hallmarks of Tai Chi 

practice (36).

Comparing the two stair descent conditions, no significant 

differences were found in lumbar <exion/extension or lateral 

bending angles. However, the XD posture significantly reduced 

L4–L5 rotation toward the left, indicating that the trunk shifted 

toward the right—that is, toward the advancing right leg— 

thereby decreasing the angle between the spine and the leg. 

Muscle activation patterns further revealed earlier peak 

FIGURE 6 

Comparison of COP and COM displacement during stair descent between D and XD. (A) Comparison of COP and COM maximum offset along 

X-axis; (B) Comparison of COP and COM maximum offset along Y-axis; (C) COM and COP offset between D and XD along X-axis; (D) COM and 

COP offset between D and XD along Y-axis.
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activation (20%–40% gait cycle) in the iliocostalis (IL), 

longissimus thoracis (LT), multifidus (MF), and quadratus 

lumborum (QL) under XD, with QL showing significantly 

higher activation than in D. These findings align with the Tai 

Chi practice “Qichen Dantian”, which emphasizes trunk stability 

through core engagement. Previous studies show that Tai Chi 

improves lower-limb stability in senior women, reducing fall 

risk (37). Excessive lumbar rotation is linked to chronic low 

back pain and disc injury (38), and impaired equilibrium (39). 

The XD posture may mitigate these risks by restricting lumbar 

rotation and optimizing muscle activation.

Finite element model showed that the intradiscal pressure in 

the D condition was about 0.1 MPa higher than in the XD 

condition, a minor difference relative to typical intradiscal 

FIGURE 7 

L4–5 motion comparison during stair descent between D and XD. (A) Flexion/extension (X-axis), (B) Lateral bending (Y-axis), (C) Axial rotation 

(Z-axis), (D) Peak X-axis angle, (E) Peak Y-axis angle, (F) Peak Z-axis angle.

FIGURE 8 

Finite element model verification results. (A) Lumbar compression displacement, (B) Lumbar flexion-extension displacement.
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pressures (0.5 MPa standing, 1.0–2.3 MPa during activities) (40). 

However, pressure distribution was more uniform in the XD 

condition, which had a larger X-axis angle and smaller Z-axis 

range of motion at L4–L5, suggesting reduced localized stress. In 

contrast, the D condition exhibited a smaller pressure- 

concentrated area, which may relate to the observed lumbar 

motion pattern.

Uniform pressure distribution is more critical than peak 

pressure in preventing disc injury (41). Localized pressure peaks 

are associated with chronic low back pain and functional 

impairments (42). These biomechanical findings are consistent 

with Tai Chi principles such as ‘Xuling Dingjin’ and ‘Songyao 

Luokuang’, emphasizing natural spinal alignment and even force 

distribution to reduce stress concentrations. Regarding older 

adults, Muscle function degradation and pain interference in 

older adults may lead to lower activation peaks or delayed 

timing (43). The “Xuling Dingjin” posture not only activates the 

back muscles but also induces a pre-activation state in the 

muscles, serving as a potential intervention measure. This 

posture can serve as a low-intensity, non-invasive intervention 

in daily training, integrated into balance training programs. By 

instructing practitioners to maintain the “Xuling Dingjin” 

posture during stair descent, core stability and neuromuscular 

coordination can be enhanced, thereby reducing the risk of falls 

associated with lumbar instability. For patients with lower limb 

or lumbar issues, such as chronic low back pain or balance 

disorders, this posture can be incorporated into functional 

rehabilitation training to optimize spinal alignment and muscle 

activation patterns, potentially alleviating pain and improving 

dynamic balance. In summary, we recommend incorporating 

Tai Chi exercises, particularly the “Xuling Dingjin” movement, 

into clinical practice in daily life, enabling patients to 

consciously maintain it during walking or stair navigation.

5 Study limitations

This study’s small sample size limits the generalizability of the 

findings. Future research should involve larger cohorts for more 

robust statistical analysis. Additionally, the finite element model 

FIGURE 9 

Stress distribution of the L1–5 medulla and the annulus fibrosus for both stair-descent approaches.
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assumed uniform intervertebral disc material properties and fixed 

boundary conditions, overlooking individual anatomical 

variations and/or dynamic loading complexities. To addres this, 

future work will include multiple lumbar models representing 

different morphologies and conditions. In this study, finite- 

element modelling of spinal stress employed static loading, 

however, stair descent is a dynamic task. Future work will 

therefore incorporate dynamic simulations to more accurately 

characterise the underlying movement mechanisms. The stair 

descent task was selected to emphasize lumbar motion and 

loading, allowing clearer biomechanical differentiation between 

conditions. Our results suggest the “Xuling Dingjin” posture 

may improve stair descent safety. Future research will explore its 

in<uence across a broader range of movements. These insights 

offer valuable implications for clinical rehabilitation and Tai 

Chi-based training.

6 Conclusion

Compared with natural stair descent, maintaining the “Xuling 

Dingjin” posture significantly activates deep stabilizing muscles 

earlier, promotes lumbar pressure distribution, thereby 

enhancing spinal stability and offering potential value in 

reducing fall risk. These findings offer a theoretical basis for 

incorporating Tai Chi movements into balance training, 

rehabilitation programs and movement instruction. Future 

research should further explore the effectiveness of “Xuling 

Dingjin” in improving dynamic stability and preventing falls, 

particularly in the elderly.
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