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Introduction: This study aimed to quantify kinematic relationships across body
segments during forehand strokes to provide interpretable metrics for single-
camera based lightweight table tennis diagnostics.

Methods: We analyzed 34 female players (aged 9.1-21.7 years) from provincial
teams, recording a total of 340 strokes (10 per player). An SVM model was
used to predict ball speed, after which 320 strokes (8—10 per player) were
retained by removing outliers in ball speed. From MediaPipe position time
series, we calculated velocity, angle and angular velocity time series, and
extracted kinematic parameters from these time series, including range, mean/
peak/impact values. Within-subject correlation coefficients (r.s) were
calculated to identify key biomechanical parameters that contribute to the ball
speed, while between-subject correlation coefficients (r,s) were used to
detect the relationship between age/height and ball speed.

Results: Ball speed increased with greater playing-side arm linear movement at the
shoulder (rys=0.51 to 0.63), elbow (r.s=0.63 to 0.70) and wrist (r,s=0.50 to
0.60), as well as with enhanced rotational motion at the playing-side upper arm
(rws = 0.65 to 0.71), shoulder line (rns=0.54 to 0.57), and hip line (r,s=0.51 to
0.59). Conversely, ball speed decreased with excessive contralateral shoulder
horizontal flexion/extension (r,s=-0.44 to -0.62) and playing-side elbow
flexion-extension (s = —0.35). At the population-level, ball speed increases with
age before 14.3 years (rps = 0.68) but plateaus thereafter (r,s = 0.17).

Discussion: This MediaPipe-based framework demonstrates potential for
efficient biomechanical analysis in table tennis, providing a promising
foundation for lightweight real-time analysis solutions.

KEYWORDS
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1 Introduction

Table tennis requires precise whole-body coordination and accurate stroke timing,
creating unique biomechanical analysis challenges. Biomechanical analysis reveals
underlying technique patterns and improves player training and performance.
Researchers employ various devices to study motion characteristics: optical systems
(1-5), pressure and force sensors (1, 2), electromyography (EMG) (3), and inertial
measurement units (IMUs) attached to the body or racket (6).

Optical devices serve as primary tools, used alone or combined with other sensors.
They capture precise three-dimensional spatial data while allowing players to move
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freely without interference. Researchers examine movement
patterns across skill levels, identifying subtle joint and muscle
dynamics invisible to the naked eye. Wang et al. used optical
systems and EMG to compare elite and amateur players. Elite
players showed greater ankle eversion and larger knee and hip
flexion angles during backswing and follow-through phases (3).
He et al. employed a VICON optical system to study driving leg
kinematics during topspin forehand loops. They found significant
ankle movement differences between elite and intermediate
players, recommending that intermediate players enhance lower
limb muscle response to improve energy transfer (7). Qian et al.
compared superior and intermediate players using VICON,
finding that superior players exhibited greater hip flexion and
knee external rotation at stroke initiation, plus increased hip
internal rotation and extension at stroke completion (1).
However, these optical systems require controlled environments,
expensive multi-camera setups, high-frequency capabilities, time-
consuming marker placement, large laboratories, and skilled
These
practical training.

technicians. limitations restrict widespread use in

Researchers have adopted lightweight machine learning-based

pose estimation models (e.g., OpenPose, MediaPipe Pose,
PoseNet,  AlphaPose, DeepLabCut, = HRNet, BlazePose,
EfficientPose, MoveNet) as alternatives to complex optical

motion analysis systems (8-12). These models provide human
body landmarks for further development (8, 11). In sports and
(e.g.,
jumping, squatting) to optimize technique (8, 11, 12), detect

exercise, these models analyze movements running,
injury-prone postures, and provide real-time form feedback via
mobile apps (12). They also assess team dynamics, monitor
exercise quality in fitness apps, and enable remote training
guidance (9). Compared to other models requiring complex
MediaPipe APIs and

comprehensive documentation, lowering the development barrier.

configurations, provides easy-to-use
Developers can quickly integrate it into existing projects (9, 10,
13). These advantages make MediaPipe Pose the preferred
solution suitable for scenarios requiring real-time performance
and cross-platform deployment.

While lightweight machine learning-based pose estimation
models exhibit lower precision compared to high-fidelity motion
capture systems like VICON (10, 13, 14), recent advances in
machine learning have significantly enhanced the utilization of
keypoint data from lightweight pose estimation models (10, 15).
Machine learning includes classical approaches and deep learning
architectures. Integrating these methods with pose estimation
data creates new opportunities for automated movement quality
assessment (AQA) in athletic and rehabilitative applications.

Classical machine learning approaches include Decision Trees,
Random Forest, SVM, Naive Bayes, K-NN, and Linear/Logistic
Regression (9). These methods address classification (16-20),
regression (21-23), clustering tasks, and feature importance
ranking (24). Naive Bayes offers mathematical robustness and
efficiency but relies on independence assumptions (16). Decision

Trees are capable of identifying contributing factors in
biomechanical analyses, with applications including knee
biomechanical asymmetry (24). Random Forest combines
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multiple trees to improve prediction accuracy and reduce
overfitting (24, 25), successfully predicting joint angles and
moments (21). Linear regression predicts continuous outcomes,
such as running stride temporal variables and peak vertical
ground reaction force (22), while logistic regression addresses
classification problems, such as binary musculoskeletal disorder
classification (16, 17). Linear and logistic regression can work
together to identify key predictors and examine high vs. low knee
abduction moments (18). Support Vector Machines (SVM)
provide nonlinear classification and regression capabilities
through kernel methods, making them well-suited for complex
tasks

approaches. Applications of SVM include predicting athlete

biomechanical among classical machine learning
aerobic fitness (19), analyzing running gait (20), and predicting
fastball speed using kinetic and kinematic predictors (23).

These classical machine learning approaches offer significant
advantages in interpretability (16, 23)
efficiency (18, 21),

applications and

and computational
making them well-suited for clinical
with
However, their dependency on manual feature engineering (26),

scenarios limited data availability.
limited capacity for processing high-dimensional data structures
(27), constrained nonlinear modeling capabilities, and insufficient
handling of temporal sequences (28) restrict their effectiveness in
advanced analytical tasks (26). In contrast, deep learning
architectures—including Convolutional Neural Networks (CNNs),
Recurrent Neural Networks/Long Short-Term Memory networks
(RNNSs/LSTMs), and Transformers—provide superior accuracy
and automation capabilities for complex spacial or temporal
movement analysis. Nevertheless, these approaches require
substantial computational resources and large training datasets to
achieve optimal performance (29).

CNNs excel at processing visual data through hierarchical
structures and have been successfully applied to performance
classification and kinetic parameter prediction (27, 30). While
CNN s effectively extract spatial features, they struggle with
temporal sequence modeling, prompting researchers to integrate
CNNs with RNNs to achieve comprehensive spatial and temporal
analysis (31, 32). RNNs handle time-series prediction effectively
(29) but suffer from vanishing and exploding gradient problems
(33). LSTM units address these limitations as a specialized RNN
component (29, 33, 34). LSTMs have predicted joint reaction
forces (35), segmented jump phases (36), and modeled stress
evolution in skeletal muscle tissue (33). Transformers extend
RNN capabilities by overcoming LSTM’s long-range dependency
limitations. Their attention mechanisms capture relationships
across entire sequences simultaneously, providing superior
sequence modeling and interpretability through attention weights
while enabling efficient parallelization.

Recent advances in table tennis research have leveraged
lightweight machine learning models and pose estimation
techniques to analyze player performance. Chen et al. enhanced
swing recognition through an improved OpenPose framework
integrated with MobileNet
architectures (8). Building on pose estimation approaches, Llanos

v3-small and InceptionTime

et al. developed a comprehensive assessment system using
OpenPose and SVM-RBF classifiers to differentiate four key
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postural elements: upper body lean, knee bend, forehand/backhand
strokes, and footwork patterns (11). For real-time applications, He
et al. combined YOLOv5 and MediaPipe for stroke and posture
assessment, implementing dynamic time warping algorithms to
compare temporal sequences of joint angles (elbow-shoulder-hip)
between player motions and reference techniques (12).Similarly,
Huang and colleagues employed OpenPose for skeleton
extraction combined with SVM for real-time swing recognition,
incorporating Dynamic Time Warping (DTW) algorithms to
evaluate technique through keypoint trajectory comparison and
identification of suboptimal joint movements (37). Transformer-
based approaches have also shown promise, with Dong and
colleagues utilizing MediaPipe for human keypoint extraction
and employing Transformer models for stroke recognition across
six distinct stroke types (38).

Despite advances in lightweight pose estimation for table

tennis, existing methods focus primarily on stroke classification

without quantifying how multi-segment body kinematics
influence ball impact outcomes. These approaches have not yet
established measurable relationships between whole-body

movement patterns and performance metrics, limiting their
utility for diagnostic applications in sports training.

This study aimed to quantify kinematic relationships
across body segments during forehand strokes to provide
interpretable metrics for lightweight table tennis diagnostics.
Using single-camera whole-body landmark detection and ball
speed measurement, we employed statistical analysis to
identify key kinematic factors influencing ball performance.
This research bridges lightweight human motion capture
with actionable biomechanical insights for practical sports

training applications.

2 Methods

The research method consists of the following steps: (1) Pre-
train a Support Vector Machine (SVM) model to serve as a tool
for direct ball speed measurement from video footage. (2)
Participants perform forehand strokes while MediaPipe captures
the 3D position series of human body landmarks. (3) Calibrate
the position series to compute velocity, angle, and angular
velocity sequences, from which kinematic summaries are
extracted. (4) Apply the pre-trained SVM model to predict ball
speed based on the ball trajectory. (5) Conduct statistical analysis
to examine correlations between kinematic summaries and ball
velocity, as well as between

relationships participant

demographics (age and height) and ball speed.

2.1 SVM ball speed model

A Support Vector Machine (SVM) regression model was pre-
trained on ball coordinates (x and y values) extracted from video
frames to predict ball speed. This model was then employed in
the main experiment to streamline the measurement process,
ensuring efficiency for practical applications.
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Ball speed specifically denotes average horizontal ball speed,
which critically measures offensive performance in table tennis.
The table surface was divided into 10cm x 10 cm squares using
fine lines to accurately identify ball landing spots and
determine horizontal flight distance. A centrally positioned
audio recorder captured sounds from ball-racket and ball-
table contact. These sound waves were analyzed using Adobe
Audition, which provides 1 millisecond temporal resolution,
enabling precise measurement of impact time intervals.
Corrections were applied based on sound velocity at 20°C
(343 m/s) to account for varying sound travel times caused
by different distances between impact points, drop points,
and the recorder. Ball speed was calculated by dividing
horizontal flight distance by travel time.

The SVM regression model was developed using 517 preliminary
stroke measurements from standardized ball trajectories at controlled
speeds. Manually annotated (x, y) coordinates from six consecutive
video frames created 12-dimensional feature vectors capturing ball
movement immediately before screen exit.

Using six-frame coordinates with SVM regression rather than
simple two-point measurement offers several advantages: (1)
Table tennis ball trajectories are inherently nonlinear due to air
resistance, spin effects, and gravitational forces. SVM’s ability to
find optimal decision boundaries in high-dimensional space makes
it particularly suitable for processing multi-frame coordinate data
and learning complex velocity patterns that simple kinematic
equations cannot capture. (2) Six frames provide finer temporal
sampling of ball motion, effectively filtering random noise and
measurement errors common in single-frame coordinate detection.
(3) If ball detection fails in one or two frames, SVM can still
make accurate predictions using remaining frames, whereas two-
point methods would fail completely.

The 517 preliminary measurements were split into training
(80%) and test (20%)
independent throughout the training process. Hyperparameter

sets, with the test set remaining

optimization employed 5-fold cross-validation with grid search
across C parameters [0.1, 1, 10, 100, 1,000, 10,000, 100,000] and
v values [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]. This strategy
ensured robust parameter selection while preventing overfitting.
The optimal configuration achieved C = 100,000 and 7y = 0.001,
yielding best cross-validation score (R* =0.987) and test set
R? = 0.981 (Figure 1).

Bland-Altman analysis demonstrated excellent agreement
between predicted and measured speeds in the test set.
Most data points fell within 95% confidence limits with
minimal systematic bias of 0.02 km/h (Figure 2). This
validated SVM model was employed for lightweight ball
speed prediction.

2.2 Participants and protocol

This study included 34 female table tennis players (aged 9.1-
21.7 years) from provincial teams training at Nanjing Sport
Institute in February 2023. Twenty-six were from the Jiangsu
team and eight from the Shanghai team. (Table 1). Power
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FIGURE 1
Validation of SVM ball speed prediction model against acoustic
measurements with high accuracy.

analysis using PASS 2023 demonstrated adequate statistical power
for within-subject correlations (93%, ICC = 0.5) and between-
subject correlations (87%, r = 0.5) at a = 0.05. All participants
were physically fit with no training contraindications. The Ethics
Committee at Nanjing Sport Institute approved these procedures
(Approval No. RT-2023-02). Participants or their guardians
provided written informed consent before the study began.

10.3389/fspor.2025.1635581

An experienced coach delivered balls at slow speed
(approximately 24 km/h) to allow players adequate physical
and mental preparation based on her movements and optimal
shot timing. Right-handed players positioned themselves on the
table’s left side and executed forehand strokes toward the
opposite corner, maintaining ball trajectory approximately
20 cm above the table surface. A single camera (SONY FDR-
AX700) positioned 95 cm above ground level captured body
movements and ball trajectories from a 45° angle on the right
front (Figure 3). The camera operated at 1920 x 1080 pixel
resolution and 100 fps frame rate. The experimental setup was
mirrored across the net for left-handed players: participants
stood on the table’s right side, and the camera position was
correspondingly adjusted. The first ten valid strokes per player—
excluding edge and net contacts-were recorded, resulting in a
total of 340
processing removed 20 strokes due to ball speed outliers,

strokes across 34 participants. Subsequent
leaving 320 strokes (8-10 per player). The outlier was identified
using the criterion of values exceeding Q3 + 1.5 X IQR or
falling below Q1 — 1.5 x IQR, where Q1 and Q3 represent first
and IQR denotes the

interquartile range, reflecting the spread within the middle 50%

and third quartiles, respectively,
of data. Finally, for correlation analysis, only the fastest and

slowest two strokes per player (68 strokes in total) were selected.

2.3 Landmark tracking and data processing

2.3.1 Human landmark tracking
We tracked thirty-three landmark positions for each player

using MediaPipe Pose (Version 0.10.14), as defined by
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FIGURE 2
Bland—Altman analysis of predicted vs. measured ball speeds. Dotted lines indicate limits of agreement (+1.96 SD), with shaded areas representing
95% confidence intervals for the mean difference and limits of agreement.
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TABLE 1 Participant characteristics, means+SD or N (%).

‘ Characteristics Participants

N 34
Age (yr) 15.0 £+ 3.5
Height (cm) 161.2 + 9.5
Weight (kg) 51.4 + 10.1
Left-handed 8 (23.5%)

Right-handed 26 (76.5%)

N
e
¥
M
Standing Ne'“a\
Position
£ i
N H
X !
{> Camera

FIGURE 3

Camera positioning and coordinate system for right-handed players.
The MediaPipe coordinate system was modified such that the x and
z axes lie parallel to the floor plane and perpendicular to each other,
while the y-axis points upward, perpendicular to the
transverse plane.

Bazarevsky et al. (39) (Figure 4). Each landmark was represented by
three-dimensional coordinates (x, y, z), where x and y indicate
relative position in the 2D image, and z reflects regressed depth
value. Data were stored as time series sampled at 100 Hz,
matching the video frame rate. Left-handed players’ video frames
were horizontally flipped before MediaPipe tracking to maintain
consistency with right-handed movement patterns.

2.3.2 Ball trajectory and impact timing annotation

To ensure the progression of the main experiment, this study
employed manual annotation to identify ball flight trajectories
and racket-ball impact timing. Ball trajectories were determined
by marking the coordinates of the ball in the final six frames
before it exited the video frame boundaries. These trajectory data
were subsequently used to predict ball speed using the pre-
trained Support Vector Machine (SVM) model. Meanwhile, the
manually identified racket-ball impact timing served as temporal
reference points to extrac forward swing phase.

2.3.3 Position data filtering

Landmark position time series were filtered using a low-pass
Finite Impulse Response (FIR) filter designed with a Hamming
window and 31 taps, implemented through the scipy.signal.firwin
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function. The filter applied 100 Hz sampling rate and 0.08
normalized cutoff frequency, corresponding to 4 Hz actual cutoff.

2.3.4 Position data scaling

Two scaling factors converted landmark coordinates from video
frames to actual positions. The first factor, calculated solely for the
initial frame, addresses disparity between MediaPipe-estimated body
dimensions and actual measurements. It compares cumulative
lengths of bilateral shoulder-hip-knee-ankle segments calculated by
MediaPipe with manually measured lengths. The second factor,
computed for every subsequent frame, compensates for apparent
size variations due to body movement, maintaining proportional
consistency across frames. This factor adjusts landmark positions by
comparing cumulative segment lengths in the current frame to
those in the first frame. Each landmark position is then multiplied
by both factors to obtain real-world coordinates.

2.3.5 Dynamic origin calibration

MediaPipe’s coordinate system is based on the camera
coordinate system, which originally placed its origin (0, 0, 0)
between the hips, with the x-axis extending rightward, y-axis
downward, and z-axis toward the camera. We still use the
camera coordinate system, but repositioned the origin to the
time-averaged midpoint between both feet across all frames
during the current forehand stroke and redefined the y-axis to
extend upward (Figure 3). Landmark coordinates were then
transformed relative to this motion-adaptive origin.

2.3.6 Kinematic parameter calculation

Landmark velocities were computed from position time series
using the central difference method. Velocity components in x-, y-,
and z-directions were calculated from Equation 1:

_ Xl T X1 v = Ye+1 = Ye-1 _ Rl T 21 )
= , = ==

A YN T 2At £ 20t

where x, y, and z represent each landmark’s camera coordinates.

Body segments, defined as anatomical regions between two
landmarks, were analyzed for orientation angles in the xy-, yz-,
and zx-planes. Angles were computed from Equation 2:

@ = arctan (%), B = arctan G) , Y= arctan (;—C), 2)

where x, y, and z denote landmark’s camera coordinates. The
xy-plane is perpendicular to the camera’s optical axis, the
yz-plane is parallel to the camera’s optical axis, and the zx-plane
is parallel to the floor.

Angular velocities in each plane (wyy, ®,;, @) were derived
using Equation 3:

_ Q) — Q1 _ B:H — B
v 208 F 20t 3)
_ Y1 — Y
@z = 2At ’
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30 right heel 29 left heel
32 right foot index 31 left foot index
FIGURE 4
MediaPipe landmarks.

Position series

Velocity series

1.5
//X N —
= 101 0 Y
£ V E, z
c 7 —
S 051 — x J— % R
8 r——Yy = kel 04 \
i ’ v O
_0.5—|_ R\/ . . -2 i .

40 20 0 20 40 60
Time (frames, 1/100 s)

-60

FIGURE 5

Forward swing phase in position and velocity time series. R = resultant values; x, y, z = components (x: rightward, y: upward, z: toward camera). All
series are time-aligned to ball impact (vertical dashed line). Shaded area indicates the mathematically extracted forward swing phase.
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Joint angles were defined as angles between two adjacent body
segments, determined by three landmarks (e.g., points A, B, and
C, with B at the joint). Joint angle 6 was calculated from vectors
BA and BC using Equation 4:

BA-BC
0=———, (4)
IBA|| - | BC||

with corresponding angular velocity computed from Equation 5:

b1 — 611
w=——F+"" (5)
2.3.7 Forward swing phase extraction

A forehand stroke consists of three distinct phases: backswing,
forward swing, and follow-through. This study focuses exclusively
on the forward swing phase, defined as the interval during which
players maximally accelerate the racket toward the ball to achieve
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precise contact. Forward swing duration was extracted from a
duplicate playing-side wrist (Landmark 16) resultant velocity
time series. The series was processed using the previously applied
31st-order FIR filter again, and its second derivative was
calculated to identify inflection points. The inflection point
immediately before ball impact marked phase start time, while
the inflection point directly after impact defined its end time. All
landmark position and velocity time-series data were then
truncated based on calculated boundaries. Taking the playing-
side wrist (Landmark 16) as an example, Figure 5 displays its
position and velocity time series, with the shaded portion
representing the truncated forward swing phase. The duration of
the forward stroke phase across all players is 30.34 + 2.03
frames or 303.4 + 20.3 milliseconds.

We compared the mathematically derived start and end points
of the forward swing phase with manually annotated timepoints
obtained through frame-by-frame expert analysis (n = 320). The
validation results demonstrate excellent agreement between the
two methods. Bland-Altman analysis showed that >95% of
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measurements fell within the limits of agreement for both start and
end time detection. Both timepoint detections exhibited excellent
reliability (ICC: 0.968 and 0.987) and strong correlations with
manual annotation (r: 0.974 and 0.988, both p < 0.001). The
mathematical method showed minimal systematic bias with
mean differences of —1.016 ms for start time and —0.278 ms for
end time. Mean relative errors were low at 3.69% and 1.46%
respectively (Table 2).

2.4 Data validation

2.4.1 Repeated measurement reliability

To compare the consistency and similarity of repeated position
time series measurements, all position time series were truncated to
a uniform duration of 0.8 s, which was slightly shorter than the
minimum stroke length observed across all participants. Two
strokes were randomly selected per player. Three metrics were
employed for consistency and similarity validation: the intraclass
(ICO),
Warping (DTW) similarity, and cosine similarity (CS). For each

correlation  coefficient normalized Dynamic Time
participant, these three similarity measures were computed for
their stroke pairs, and overall similarity values were calculated as
the mean across all participants.

The ICC measures reliability and consistency between repeated

. _ __ MSz—MSy
measurements, calculated as: ICC = WSy 1 DM where MSg
represents between-subjects mean square, MSy represents

within-subjects mean square, and k represents the number of
measurements per subject.
Normalized DTW similarity captures temporal alignment
between sequences with potential time warping, computed as:
— 1
Sprw = DTW(X, Y) where L., represents average sequence

Lavg * Riata
length and Ry, denotes data range.
Cosine similarity measures angular similarity between vectors,

. _q1_ XY
defined as: S = 1 I

TABLE 2 Comparison of mathematical method and manual measurement
for forward swing phase timing detection.

‘ Statistical measure Start time
) 320 320

Sample size (n

Mean difference (95% CI) | —1.016 (—1.246, —0.785) | —0.278 (—0.440, —0.116)
Limits of agreement (LoA) —5.140 to 3.109 —3.182 to 2.625
Within LoA (%) 96.2 95.3

ICC (95% CI) 0.968 (Excellent) 0.987 (Excellent)
Pearson correlation (r) 0.974 (p < 0.001) 0.988 (p < 0.001)

Spearman correlation (p) 0.958 (p < 0.001) 0.981 (p < 0.001)

MAE (frames, 1/100 s) 1.716 1.109
RMSE (frames, 1/100 s) 2.337 1.507
Mean relative error (%) 3.69 1.46

Note: Comparison between automated mathematical algorithm and manual expert
measurement for forward swing phase timing detection. CI, confidence interval; LoA,
limits of agreement (Bland-Altman analysis); ICC, intraclass correlation coefficient; MAE,
mean absolute error; RMSE, root mean square error. Negative mean differences indicate
earlier detection by the mathematical method. ICC interpretation: excellent (>0.90), good
(0.75-0.90), moderate (0.50-0.75), poor (<0.50). All correlations are statistically significant
(p < 0.001).
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Table 3 demonstrate strong measurement consistency across
different similarity metrics. Most landmarks achieved excellent
reliability (>0.90) in multiple dimensions, confirming the
robustness of the motion capture model and the consistency of
skilled athletic performance.

Figure 6 demonstrates a single player’s position trajectories
across multiple trials, revealing high consistency, particularly
in the dominant-side wrist's x and y coordinates, while the
This
performance across trials reflects both the movement reliability

z-coordinate  shows greater variability. consistent
of professionally trained players and MediaPipe’s consistency and

similarity in repeated assessments.

2.4.2 Left-handed data validation

Left-handed video frames were horizontally flipped before
MediaPipe processing to generate coordinate data comparable
to right-handed players. Landmark position curve analysis
employed multiple statistical approaches to assess group
differences. Curves were preprocessed through cubic spline
interpolation to achieve uniform temporal resolution.
Eighteen kinematic features were extracted, including basic
statistics (mean, standard deviation, maximum, minimum,
range, median), distribution characteristics  (skewness,
kurtosis), peak properties (peak count, peak maximum, peak
mean), temporal dynamics (mean velocity, maximum
acceleration, zero crossings), spectral properties (dominant
frequency, spectral centroid), and curve morphology (curve
length, area under curve). Statistical comparisons utilized
appropriate parametric or non-parametric tests based on
normality and variance assessments. Bonferroni correction
addressed multiple comparison issues. Multivariate analysis
included dimensionality reduction and clustering for pattern
recognition. Curve similarity was quantified using distance
matrices comparing intra-group vs. inter-group variations.

Results demonstrated no significant differences in resultant
position curves for all 33 landmarks between left-handed and
(corrected p > 0.05),
groups originated from the same population. This finding
validates the comparability of left-handed and right-handed

player data. Figure 7 illustrates the consistent resultant position

right-handed players suggesting both

curves between groups for playing-side wrist, elbow, shoulder,
and contralateral wrist, elbow, shoulder landmarks.

2.5 Statistical analysis

The fastest and slowest strokes from each player were
paired and analyzed using two correlation approaches:
within-subject and between-subject. We chose correlation
analysis over machine learning approaches for several
reasons: (1) it provides direct, interpretable relationships
between biomechanical variables that coaches and researchers
can immediately understand and apply; (2) correlation
analysis is statistically appropriate and robust for small

sample sizes; and (3) this exploratory approach helps identify
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TABLE 3 Consistency and similarity measures for repeated landmark position measurements: intraclass correlation coefficients (ICC), normalized DTW
similarity, and cosine similarity.

Normalized DTW similarity

Cosine similarity

R X y X y
0 0.982° 0.909° 0.978 0.860 0.900 0.985° 0.953° 0.987° 1.000° 0.815 1.000° | 0.985
11 0.983° 0.907° 0.982° 0.849 0.941° 0.967° 0.958° 0.991° 1.000° 0.895 1.000° | 0.936°
12 0.982° 0.843 0978 0.843 0.961° 0.988" 0.967° 0.976* 1.000° 0.874 1.000° | 0.963
13 0.895 0.886 0.939* 0.831 0.981° 0.976" 0.984° 0.992 0.998° 0.897 0998 | 0.907°
14 0.952 0.836 0.945° 0.866 0.989° 0.993* 0.989° 0.982° 0.999° 0.944 0998 | 0.957°
15 0.901° 0.901° 0918 0.854 0.983* 0.982° 0.985° 0.991° 0.991° 0.841 0992 | 0.863
16 0.930° 0.798 0911° 0.857 0.993* 0.995 0.993* 0.975° 0.997% 0.963* 0996 | 0.935°
23 0.982° 0.803 0.986° 0.910° 0.782 0.976" 0.775 0.973 1.000° 0.932° 1.000° | 0.847
24 0.987° 0712 0.984* 0.926 0.821 0.977* 0.772 0.976* 1.000° 0.976* 1.000* | 0.990°
25 0915 0.905* 0.893 0.817 0.976* 0.956* 0.983° 0.983° 0.996* 0.991° 0996 | 0.764
26 0.885 0.862 0916 0.847 0.980° 0.983* 0.975% 0.971° 0.998 0.904* 0.999° | 0.991°
27 0.796 0.863 0.738 0.763 0.966* 0.954* 0.980° 0.970° 0.992 0.991° 0.889 | 0.978*
28 0.835 0.858 0.731 0.824 0.968* 0.954* 0.978* 0.969* 0.994° 0.993* 0851 | 0.966%

Note: LM, landmark number; X, y, z, displacement components in camera coordinate system; R = /x> 4 y? + z2; ICC, intraclass correlation coefficient; DTW, dynamic time warping.
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FIGURE 6
Wrist position time series for a single participant across multiple trials. x, y, z = position components (x: rightward, y: upward, z: toward the camera),
and R = \/x2 4+ y? 4 z2. Lines of different colors represent the eight trials. All time series are aligned to ball impact (vertical dashed line).

which biomechanical factors are most relevant before

developing more complex predictive models.

2.5.1 Within-subject corrilation

Within-subject correlation is a statistical method used to
assess association between paired measures across multiple
occasions for each individual (40). This technique examines
whether an increase in one variable corresponds to change in
another (41). For example, it determines whether faster wrist
movement correlates with higher ball speeds.

Statistical summaries of positional and angular changes
are provided in Table 4. These kinematic parameters were

Frontiers in Sports and Active Living

extracted across three levels:

(1)
including positional range (PR), mean velocity (MV), peak

velocity (PV), and impact velocity (IV), decomposed into

Landmark parameters

resultant components (subscript R) and axial components
(subscripts x, y, z);
angular range (AR), mean angular velocity (MAV), peak
angular velocity (PAV), and impact angular velocity (IAV),

(2) Segment parameters including

analyzed as resultant components (subscript R) and planar
components (subscripts xy, yz, zx); (3) Joint parameters
including joint angular range (JAR), joint mean angular
velocity (JMAV), joint peak angular velocity (JPAV), and
joint impact angular velocity (JIAV), treated as scalar
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FIGURE 7
Average resultant position curves for left-handed (n = 8, coral pink) vs. right-handed (n = 26, turquoise) players, aligned to ball impact (dashed line).

quantities without directional decomposition. Within-subject
correlations (rys) between kinematic parameters and ball
speeds were calculated using repeated measures correlation
analysis (Pingouin.rm_corr function), following the rmcorr
methodology of Bakdash and Marusich (42) (Equation 6).

rem = SSMeasure
SSMeasure + SSError

(6)

Sign of rrm (positive or negative) = Sign of 8

where SSpfeasure represents the sum of squares for the
measure (dependent variable), SSpyror represents the sum
of squares for error (residual variance), and B represents
the common regression slope coefficient estimated across all
participants, of
(ANCOVA).

For each player, the fastest stroke was compared with the
slowest stroke to compute 7. This method aimed to identify key
factors driving differences between fastest and slowest ball speeds.

estimated through analysis covariance

TABLE 4 Summary of kinematic variables during the forward swing phase.

NI ETES Descriptions

Positional/angular Total absolute positional or angular change during

range forward swing

Mean velocity Absolute mean linear or angular velocity during forward

swing

Peak velocity Absolute peak linear or angular velocity during forward

swing

Impact velocity Absolute linear or angular velocity at racket-ball impact

Frontiers in Sports and Active Living

2.5.2 Between-subject corrilation

Between-subject correlation evaluates whether individuals with
higher values in one variable tend to exhibit higher values in
another across subjects (41). For example, it can assess whether
age or height correlates with ball speed. The between-subject
correlation coefficient (r,s) is calculated using Equation 7
proposed by Bland and Altman (41):

> mixy; — 2 Mixi le: miyi

(o B - 527

where m; is the number of measurements for subject i (stroke

r=

(7)

> mign)’

Zmi Zmi

count for a given player), and &; and y; are the means of two
variables across multiple measurements for subject i.

3 Results

3.1 Within-subject correlation between
biomechanical kinematic characteristics
and ball speed

3.1.1 Relationship between positional range, linear
velocity of landmarks, and ball speed

The positional range and velocities (mean, peak, and at impact)
of the head, playing-side shoulder (r,s=0.51, 0.63, 0.61 for PRy,
MVx, PVy), elbow (rys=0.63, 0.70, 0.69 for PRR, MVR, PVR),
wrist (rys=0.60, 0.56, 0.50 for MVR, PVR, IVR), fingers, and

09 frontiersin.org


https://doi.org/10.3389/fspor.2025.1635581
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/

Lyu et al.

both hips show significant positive correlations with ball speed,
particularly along the x-axis. The resultant peak and impact
velocities of the legs reveal distinct patterns: the playing-side
knee shows a weak positive correlation, while the contralateral
knee and ankle display weak to moderate negative correlations
with ball speed (Figure 8 and Table 5).

3.1.2 Relationship between angular range, angular
velocity of body segments, and ball speed

The resultant angular range and mean angular velocity of the
shoulder line (11-12) (ry,s=0.57, 0.54 for MAVR, MAV;x) and
hip line (23-24) (rws=0.51, 0.59 for ARR, MAVzx) show
moderate correlation with ball speed. The playing-side upper arm
(12-14) demonstrates significant positive correlations in both
angular range and angular velocities with ball speed (r,=0.65,
0.71, 0.70 for ARXy, MAVXy, PAVXy), while the contralateral
upper arm (11-13) shows no significant relationship. In the
lower limbs, the playing-side segments (24-26, 26-28) present
weak to moderately positive correlations, whereas the
contralateral segments (23-25, 25-27) display weak to moderate

negative correlations (Figure 9, Table 6).

3.1.3 Relationship between angular range, angular
velocity of joint, and ball speed

Negative correlations with ball speed are observed for the
contralateral shoulder’s horizontal flexion-extension (.= —0.44,
—0.62 for joint JAR and JPAV), the playing-side elbow’s flexion-
extension (rys=—0.35 for joint JPAV), and both knees’ flexion-
extension (Figure 10, Table 7).

3.2 Between-subject correlation
coefficients of age and height with ball
speed

Ball speed correlates significantly with age (rys=0.62),
particularly in younger participants (9.1-14.3 years, rys=0.68).
Height also shows positive correlations with ball speed. However,
among female adolescents (14.3-21.7 years), age shows weak
correlation (r,s=0.17) while height shows slight negative
correlation (r,s = —0.29) with ball speed (Table 8, Figure 11).

4 Discussion

4.1 MediaPipe-based motion capture
reveals critical kinematic parameters

Our MediaPipe-based analysis revealed specific kinematic
metrics that correlate with ball speed in table tennis forehand
strokes. Ball speed increased with greater playing-side arm linear
movement at the shoulder, elbow and wrist (Figure 8 and
Table 5), as well as with enhanced rotational motion at the
playing-side upper arm, shoulder line, and hip line (Figure 9 and
Table 6). Conversely, ball speed decreased with excessive
contralateral shoulder horizontal flexion/extension and playing-
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side elbow flexion-extension (Figure 10 and Table 7). These
features, derived from 33 landmarks, 19 inter-keypoint segments,
and 12 joint angles, comprehensively characterize forward stroke
mechanics in table tennis. They reveal biomechanical principles
for optimizing body segment activation to achieve peak ball speed.

Our findings align with prior studies (43, 44), confirming that
playing-side arm linear velocity and positional range directly
Racket speed, the
determinant of ball speed, originates from the upper limb’s

enhance ball speed (Figure 8). direct
kinetic chain through sequential joint velocity propagation from
shoulder to wrist (4, 45). The playing-side shoulder serves as the
proximal driver, generating angular momentum that transmits
distally to the elbow and wrist (45). These results support
previous evidence linking playing-side shoulder motion to racket
speed (4, 46, 47) (Figure 10, Table 7).

The contralateral shoulder showed negative correlations
between horizontal flexion-extension range and velocity and ball
speed. This suggests that minimizing non-playing-side arm
motion relative to the torso improves stroke efficiency. Stabilizing
the contralateral shoulder through scapular muscles anchors the
upper arm during forehand strokes, enhancing whole-body
power transfer and movement consistency.

Researchers disagree about elbow angular velocity. Xiao et al.
reported positive correlations between elbow angular velocity and
ball speed (44), while Zheng et al. found no significant
correlation between playing-side elbow angular velocity and ball
speed (43). Chen et al. found that elite players had smaller elbow
flexion angles but greater elbow flexion angular velocities at
impact (48). We found weak negative correlations between
playing-side elbow angular range, angular velocities and ball
speed (r,,s=—0.35 to —0.17) (Table 7, Figure 10). This difference
may result from different motion phase divisions compared to
other studies. Further experiments are needed to validate
these findings.

Hip motion critically influences trunk rotation, which forms
the foundation of kinetic chain initiation. Racket speed at impact
was related to the hip axial rotation torque at the playing side
(49). While previous studies established the importance of hip
kinematics (1-3, 46), our analysis provides higher-resolution
evidence that hip positional range and velocity (particularly
along the x-axis) and inter-hip angular dynamics in the xz-plane
positively correlate with ball speed (Figures 8, 9).

Force transmission begins with lower limb engagement, where
playing-side leg activity (positive correlations) contrasts with
contralateral leg stabilization (negative correlations) (Figures 8,
9). During forward swing, weight shifts toward the playing-side
leg, positioning it closer to the rotational axis to bear load, while
the contralateral leg balances and stabilizes rotation. Knee
flexion-extension range and velocity negatively correlated with
ball speed (Figure 10),
movement during forward swing helps maintain efficient trunk

indicating that minimizing knee

rotation. Excessive knee motion appears to compromise this
rotation, likely by introducing unnecessary vertical displacement
that disrupts kinetic transfer.

Previous table tennis kinematic studies used keypoint
positions and linear velocities (43), body segment angles and

frontiersin.org


https://doi.org/10.3389/fspor.2025.1635581
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/

Lyu et al.

10.3389/fspor.2025.1635581

- Resultant
x 654 1
o
N

()

(@)

o

©

o
®©

c
9
=

0

o

o
P

>

=

N

>

=

&

o

o

>

ot

®

)]

=

PN

>

o

N

>

=

(&}

o

o

>

X

©

)

o

T

=

N

>

=

O

o

]

>

-

O

@©

Q.

E
FIGURE 8
Heatmap visualization of within-subject correlation between landmark kinematics and ball speed in the camera coordinate system, where the x-axis
points right, y-axis points up and z-axis points toward the camera (Figure 3). The resultant value represents the square root of the sum of squared
components from the x, y, and z axes. Colored circles indicate significant correlations, with red representing positive correlations and blue
representing negative correlations. Numbers indicate anatomical landmarks.

angular velocities (1, 3, 49, 50), and joint angles and angular
velocities (1-3, 48, 50). These metrics included mean values
(2), peak values (2, 48), and kinematic or racket movement
characteristics at impact (2, 43, 48, 49). We comprehensively
applied these metrics within the MediaPipe lightweight
framework and provided more intuitive analysis of these
kinematic features and their relationships with ball speed.
Players with only
generate high-speed balls but also maintain excellent body
movement stability and consistency (1, 3, 49, 50). This
stability is crucial for continuous, stable, high-speed striking in

extensive professional training not

high-level competition.
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Beyond individual performance assessment, MediaPipe-based
analysis enables population-level insights into developmental trends.
Between-subject correlations reveal that female players’ forehand
speed increases with age and height before 14.3 years but plateaus
after 14.3 years (Table 8, Figure 11). This analysis provides valuable
guidance for athletes at different developmental stages. For example,
young players from pre-adolescence to early adolescence should
balance fundamental technical training with strength and speed
development to improve ball velocity and enhance attacking
capabilities. In contrast, during middle to late adolescence, players
must prioritize technical, tactical, psychological, and fitness factors
over reliance on physical growth to advance performance.
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TABLE 5 Within-subject correlation coefficients (r,,s) between landmark kinematic variables (positional range and velocities) and ball speed.

Positional range (PR)

Mean velocity (MV)

Peak velocity (PV)

Impact velocity (IV)

X y X y X s X y
0 0.47° 0.52° —0.06 0.30 0.53" 0.62° 0.02 0.48" 0.38% 0.56" 0.20 0.22 0.42% 0.46° —0.04 0.22
11 0.21 0.08 —0.07 0.21 0.35° 0.15 0.09 0.40° 0.27 0.14 0.44° 0.24 0.24 —0.05 —0.04 0.22
12 0.50° 0.51° 0.17 —0.03 0.45° 0.63° 0.28 0.01 0.51° 0.61° 0.30 —0.27 0.39° 0.46° 0.22 0.11
13 0.12 —0.30 —0.04 0.18 0.25 —0.23 0.14 0.38 —0.05 0.26 0.01 0.03 0.11 —0.43* —0.17 0.22
14 0.63" 0.59° 0.23 —0.15 0.70° 0.68" 0.35° —0.10 0.69° 0.65° 0.23 —0.10 0.50° 0.44° 0.27 —0.10
15 0.12 —0.412 0.11 0.12 0.30 —0.30 0.21 0.25 0.05 0.33 0.12 0.02 0.16 —0.36 0.02 0.16
16 0.46" 0.52° 0.06 —0.21 0.60° 0.64° 0.22 —0.16 0.56 0.55° 0.17 0.12 0.50° 0.46P 0.20 —0.10
17 0.15 —0.40° 0.15 0.13 0.32 —0.29 0.24 0.25 0.07 0.36° 0.14 0.02 0.18 —0.36° 0.07 0.16
18 0.43° 0.49° 0.04 —0.21 0.56° 0.61° 0.19 —0.15 0.53° 0.52° 0.15 0.13 0.49° 0.45° 0.17 —0.09
19 0.16 —0.40° 0.17 0.13 0.34° —0.28 0.25 0.25 0.10 0.36* 0.16 0.04 0.19 —0.35% 0.10 0.16
20 0.41° 0.48> 0.02 —0.19 0.57° 0.62° 0.17 —0.15 0.53° 0.52° 0.13 0.13 0.50° 0.46P 0.18 —0.04
21 0.13 —0.41° 0.13 0.13 0.32 —0.30 0.22 0.25 0.07 0.33 0.13 0.03 0.17 —0.36° 0.05 0.16
22 0.45° 0.51° 0.05 —0.21 0.59° 0.63° 0.21 —0.16 0.55° 0.54° 0.16 0.11 0.50° 0.46° 0.20 —0.07
23 0.49° 0.51° —0.19 0.36° 0.49° 0.59° —0.14 0.49° 0.38° 0.50° —0.13 0.14 0.38° 0.37° 0.03 0.32
24 0.49° 0.51° —0.32 0.37° 0.48° 0.60° —0.22 0.48" 0.40° 0.50° —0.06 0.16 0.38° 0.38° —0.10 0.32
25 —0.04 —0.14 —0.08 0.27 —0.36° —0.04 —0.02 0.34° —0.36° —0.24 —0.22 —0.23 —0.33 —0.35° —0.11 0.05
26 0.28 0.31 —0.10 0.04 0.29 0.38° 0.08 0.16 0.27 0.27 —0.04 0.17 0.24 0.33 —0.14 0.00
27 —0.28 —0.16 —0.37° —0.16 —0.40° —0.09 —0.32 —0.17 —0.45° —0.26 —0.37° —0.30 —0.42° —0.23 —0.47° —0.17
28 0.26 0.44° —0.11 0.14 0.26 0.49° —0.11 0.20 0.27 0.41° —0.03 0.28 0.17 0.31 —0.13 0.05
29 —0.28 —0.20 —0.37° —0.15 —0.41° —0.14 —0.31 —0.17 —0.45° —027 —0.37° —0.30 —0.41° —0.21 —0.43° —0.14
30 0.27 0.38° —0.08 0.13 0.27 0.42° —0.07 0.20 0.26 0.42° —0.04 0.28 0.18 0.28 —0.10 0.05
31 —0.17 —0.23 —0.33 —0.09 —0.24 —0.20 —0.30 —0.08 —0.21 —0.33° —0.15 —0.11 —0.25 —0.26 —0.43° —0.11
32 0.30 0.49° —0.21 0.11 0.31 0.52° —0.18 0.16 0.21 0.41° —0.11 0.19 0.21 0.50° —0.13 0.09

X, ¥, z are displacement components in the camera coordinate system: x-axis points right, y-axis points up, and z-axis points toward the camera (Figure 3), R =

%2+ y2 + 22 “LM” refers to Landmark (Figure 4). *p < 0.05. °p < 0.01.
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FIGURE 9
Heatmap visualization of within-subject correlation between segment kinematics and ball speed. The human skeleton model displays correlations for
different kinematic components across three planar projections (xy, yz, and zx-plane) in the camera coordinate system, where the x-axis points right,
y-axis points up, and z-axis points toward the camera (Figure 3). The resultant value represents the combined magnitude of these components.
Colored lines indicate significant correlations, with red representing positive correlations and blue representing negative correlations. Numbers
indicate anatomical landmarks.

4.2 MediaPipe-based table tennis analysis
solution

MediaPipe is an open-source framework created by Google that
provides cross-platform machine learning solutions for real-time
perception tasks including human pose tracking, body keypoint
detection, hand tracking, facial analysis, face detection, object
detection, and augmented reality applications. The framework offers
superior computational efficiency with lower latency and cross-
platform compatibility across Linux, macOS, Windows, Android,
and iOS platforms, making it highly suitable for practical
applications (12). Its vision-based approach eliminates dependency
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on specialized hardware, enabling flexible deployment with
consumer-grade cameras while maintaining computational
efficiency. The system tracks 33 anatomical landmarks across
consecutive frames to model temporal kinematics of human motion,
effectively balancing accuracy with low computational overhead.
Researchers investigated MediaPipe’s reliability by comparing it
with widely recognized accurate optoelectronic systems (e.g, VICON
and Qualisys). Hii et al. used MediaPipe 3D for gait analysis and
reported good to excellent agreement across spatiotemporal
parameters, with good (ICC(2,1) >0.75) to excellent (ICC(2,1)
>0.90) agreement in all temporal gait parameters except right-to-left
leg transition time (ICC(2,1) >0.50), attributed to the very short
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TABLE 6 Within-subject correlation coefficients (r,,s) between segment kinematic variables (angular range and velocities) and ball speed.

Segment Angular range (AR) Mean angular velocity (MAV) Peak angular velocity (PAV) Impact angular velocity (IAV)
Xy yz R Xy yz zZX R Xy yz zZX R Xy yz ZX
2-9 0.46° 0.38° —0.06 0.16 0.48° 0.52° 0.13 0.53 0.32 0.27 —0.22 0.40° 0.34° 0.30 —0.06 0.40°
5-10 0.52° 0.46° 0.08 0.25 0.60° 0.54° 0.35° 0.56 0.41° 0.42° —0.12 0.43° 0.32 0.32 0.05 0.32
7-8 0.49° 0.25 —0.29 0.39* 0.33 0.28 0.37% 0.58" 0.13 0.26 —0.03 0.29 0.31 0.28 0.19 0.44>
11-12 0.41° 0.46° 0.36 0.33 0.57° 0.36° 0.48° 0.54° 0.45° 0.32 0.44° 0.15 0.37° 0.38° 0.32 0.27
23-24 0.51° 0.06 0.16 0.47° 0.43° —0.05 0.30 0.59° 0.24 0.09 —0.02 0.37% 0.412 —0.09 0.23 0.39*
11-13 —0.15 —0.20 —0.12 —0.16 —0.20 —0.24 0.00 —0.19 —0.24 —0.08 —0.07 —0.24 —0.19 —0.372 0.01 —0.25
12-14 0.55° 0.65° 0.14 0.05 0.52° 0.71° 0.39° 0.38° 0.36° 0.70° 0.29 0.25 0.46° 0.46° 0.28 0.31
13-15 —0.03 —0.14 0.15 —0.16 0.27 0.05 0.36* —0.01 0.04 —0.04 0.17 0.07 0.09 —0.13 0.33 —0.17
14-16 —0.13 —0.08 —0.18 0.10 0.20 —0.23 0.15 0.16 0.14 —0.02 0.08 0.33 0.18 0.04 0.12 0.27
15-19 0.34% 0.01 0.42° 0.382 0.44° 0.30 0.45° —0.02 0.43° 0.40% 0.50° 0.07 0.35% 0.42° 0.40° 0.02
16-20 —0.38° —0.15 —0.44° 0.10 —0.18 —0.17 —0.36 0.19 —0.34* —0.34* —0.52b 0.12 0.03 0.19 —0.34° 0.02
11-23 0.16 0.05 0.15 0.382 0.16 0.37* 031 0.13 0.03 0.22 0.15 0.03 0.18 0.10 0.14 0.18
12-24 0.33 0.47° —0.35% 0.27 —0.35% 0.59° 0.08 —0.34% —0.30 0.52° —0.11 —0.30 —0.41* 0.46° 0.08 —0.41*
23-25 —0.24 —0.33 —0.12 —0.45° —0.42° —0.22 0.03 —0.07 —0.46" —0.27 —0.31 —0372 —0.35° —0.54" —0.25 —0.27
24-26 0.23 0.19 0.03 0.32 0.40° 0.25 0.25 0.39* 0.21 0.27 0.00 0.19 0.40% 0.21 —0.07 0.39*
25-27 —0.29 —0.36 —0.26 —0.13 —0.32 —0.21 —0.14 —0.18 —0.38° —0.36* —0.33 —0.28 —0.40° —0.29 —0.25 —0.21
26-28 0.05 —0.03 —0.33 0.43* 0.37% 0.05 0.38° 0.46" 0.41° 0.08 0.09 0.412 0.27 0.02 0.05 0.31
29-31 0.13 0.17 0.15 0.16 0.41° 0.30 0.26 0.28 0.38° 0.22 0.38° 0.20 0.11 0.07 0.04 0.12
30-32 0.34* 0.18 —0.09 0.412 0.29 0.21 0.00 0.46" 0.25 0.18 —0.12 0.34* 0.24 0.15 0.10 0.33

Segment denotes the anatomical connection between two MediaPipe landmarks (Figure 4). R represents the resultant angular value (position or velocity), with xy, yz, and zx as planar components relative to the camera coordinate system (Figure 3): the xy-plane

(perpendicular to the optical axis), yz-plane (parallel to the optical axis), and zx-plane (parallel to the floor). *p < 0.05. °p < 0.01.
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FIGURE 10

anatomical landmarks.

Heatmap visualization of within-subject correlation between joint kinematics and ball speed. The "J” prefix in parameter abbreviations denotes joint-
related measurements. Each joint is defined by three landmarks, with the middle landmark representing the joint position. Joints and their adjacent
segments are color-coded, with red representing positive correlations and blue representing negative correlations. Numbers indicate

duration (0.20 s) (51). Roggio et al. applied MediaPipe to obtain 3D joint
angles (shoulder adduction, hip adduction) from 250 healthy volunteers,
confirming high reliability of ML-driven posture analysis (ICC 0.67-
0.95), with hip adduction showing the highest ICC (0.95) and knee
valgus showing the lowest (0.67) (52). Latreche et al. compared 3D
measurements with goniometer and digital inclinometer results,
finding MediaPipe shoulder motion measurements all showed ICC
>(.81: shoulder abduction ICC = 0.968, adduction = 0.99, extension
= 099, flexion = 0992, indicating excellent reliability. Mean
differences were —0.01° compared to goniometer and —0.36°
compared to digital inclinometer, with 95% limits of agreement
confirming good validity (53).

Despite questions about MediaPipe 3D measurement
accuracy, particularly at specific angles or during occlusion
(13), MediaPipe 2D measurements have proven accurate and
reliable (10, 54). Hamilton et al. compared MediaPipe 2D joint
angles and range of motion with 3D motion capture systems
(Qualisys), finding mean CV below 10% and CC = 0.95,

TABLE 7 Within-subject correlation coefficients (r,s) between joint
kinematic variables (angular range and velocities) and ball speed.

Joint Angular Mean Peak Impact
angle range angular angular angular
(JAR) velocity velocity velocity
(JMAV) (JPAV) (JIAV)
11-12-14 0.02 —0.23 —0.03 0.22
12-11-13 —0.44° —0.35° —0.62° —0.21
12-14-16 —0.32 —0.17 —0.35% —0.33
11-13-15 —0.03 0.42* 0.01 0.05
14-16-20 —0.07 —0.11 0.06 0.12
13-15-19 0.26 0.16 031 0.37*
12-24-26 0.14 0.21 0.39 —0.00
11-23-25 —0.28 —0.32 —0.26 —0.44>
24-26-28 —0.26 —0.13 —032 —0.05
23-25-27 —0.34* —0.07 —0.47° -0.28
25-27-31 0.13 0.15 0.06 0.25
26-28-32 —0.07 —0.00 0.03 —0.18

Joint angles are calculated using three consecutive landmarks (Figure 4), with the middle
keypoint defining the joint center. *p < 0.05. °p < 0.01.
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demonstrating MediaPipe 2D accuracy (54). Some researchers
compute 3D coordinates through post-processing of 2D
measurements using multiple cameras (14, 55). Ceriola et al.
used two cameras to acquire 2D keypoints and estimated 3D
coordinates through stereo triangulation, reporting minimum
absolute errors of (3.1° + 1.8°) and (3.5° £+ 1.9°) for hip joints
and (4.0° £+ 3.7°) and (4.8° £ 4.3°) for knee joints (55). We
did not map MediaPipe’s camera-based 3D coordinates to
anatomical coordinate systems but preserved the original
This
accurate x and y values, while z-axis depth variations do not

coordinates. approach retains MediaPipe’s relatively
affect accuracy in the plane perpendicular to the camera axis
(xy-plane).

4.3 Limitations and future works

The study has several limitations. First, despite including 8-
10 forehand strokes per player, only the fastest and slowest
strokes were paired to calculate within-subject correlation
coefficients. Elite participants exhibited highly consistent stroke
patterns, leaving minimal variations in body motions and ball
speeds. Measurement speed

distinctions, misclassifying fast strokes as slow and vice versa.

errors occasionally blurred
Prioritizing extreme-speed strokes mitigated overlap effects but
reduced statistical power. Two solutions could resolve this
issue: (1) integrating high-speed cameras for precise
measurements, albeit at the cost of practicality, or (2)
recruiting lower-skilled players, who inherently display broader
ball speed variations. Future work will refine the ball speed
measurement model for higher precision, expand the
participant pool to include diverse skill levels.

Second, this study recruited female provincial athletes, which
limits the generalizability of findings to other populations. For
athletes

characteristics due to variations in movement patterns and skill

example, male may display different kinematic

levels. Future research should include mixed-gender cohorts or
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TABLE 8 Between-subject correlation matrix showing relationships among age, height, and ball speed across age groups.

Participant characteristics

Total (9.1-21.7 yr)

Age Height BS
Age - 0.61* 0.62* - 0.87% 0.68° - —0.14 0.17
Height 0.61* - 0.55* 0.87° - 0.63" —0.14 - -0.29
BS 0.62% 0.55% - 0.68* 0.63* - 0.17 —-0.29 -
BS, ball speed.
2p < 0.01.
57.54
55.0 + + +
—_~
£ t
£ 52.51 +
=3 ¢ + + #
] .01
3 50.0
)
& 47.51 +
= Age group ry
(o] S
m 45.0 Total 0.62
42.5_ 9.1"14.3 yr 0-68
14.3 yr 14.3--21.7yr 0.17
40.0- ; ; ; ; ; ; ;
10 12 14 16 18 20 22
Age (years)
FIGURE 11
Ball speed distribution by age group. Black dots represent individual player means, colored lines show 95% confidence intervals, and rps denotes the
between-subject correlation coefficient.

develop population-specific ~feature models for different
demographics, including gender, age, and training level.
Real-time systems offer greater value for technical diagnosis.
However, implementing real-time solutions requires addressing
several technical challenges: (1) Action segmentation: Deep
learning models must classify continuous time-series data into
discrete stroke types (e.g., forehand strokes, backhand strokes,
forehand chops, and backhand chops).

classification: The system must distinguish successful shots from

(2) Success/failure

faults by analyzing ball trajectories and automatically detecting
net contacts or boundary violations. (3) Automated ball speed
measurement: Current ball trajectory calibration relies on
manually annotated video coordinates. Real-time automation
requires machine learning approaches, such as Ji et al’s
(56), which VOCUS-based

segmentation, LGP+Adaboost classification for smear detection,

framework integrates image
and dynamic ROI optimization to address environmental noise,
motion blur, and computational delays. (4) Accurate racket-ball
impact timing is essential for movement phase segmentation.
Machine learning models must automatically detect trajectory
discontinuities to precisely calibrate impact moments based on

ball flight path changes. (5) Player movement tracking: Players
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move rapidly during rallies, causing partial occlusion or frame
exit. Wide-angle lenses expand the field of view, while advanced
deep learning algorithms can reduce occlusion effects.

5 Conclusions

This study scanned 33 skeletal landmarks, 19 segments, and 12
joints using MediaPipe to identify kinematic features linked to ball
speed in table tennis forehand strokes. These features may enable
lightweight technical evaluation. Ball speed increased with greater
playing-side arm linear movement at the shoulder, elbow and
wrist, as well as with enhanced rotational motion at the playing-
side upper arm, shoulder line, and hip line. Conversely, ball
speed decreased with excessive contralateral shoulder horizontal
flexion/extension and playing-side elbow flexion-extension. These
kinematic patterns comprehensively characterize forward stroke
mechanics, providing critical metrics for technical assessment
and improvement. MediaPipe demonstrated robust performance,
showing high consistency during repetitive motions. Its low-cost,
cross-platform compatibility, high computational
minimal hardware dependency, and open-source nature position

efficiency,
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it as a promising tool for real-time biomechanical analysis in table
tennis training systems.
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