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Introduction: This study aimed to quantify kinematic relationships across body

segments during forehand strokes to provide interpretable metrics for single-

camera based lightweight table tennis diagnostics.

Methods: We analyzed 34 female players (aged 9.1–21.7 years) from provincial

teams, recording a total of 340 strokes (10 per player). An SVM model was

used to predict ball speed, after which 320 strokes (8–10 per player) were

retained by removing outliers in ball speed. From MediaPipe position time

series, we calculated velocity, angle and angular velocity time series, and

extracted kinematic parameters from these time series, including range, mean/

peak/impact values. Within-subject correlation coefficients (rws) were

calculated to identify key biomechanical parameters that contribute to the ball

speed, while between-subject correlation coefficients (rbs) were used to

detect the relationship between age/height and ball speed.

Results: Ball speed increased with greater playing-side arm linear movement at the

shoulder (rws=0.51 to 0.63), elbow (rws=0.63 to 0.70) and wrist (rws=0.50 to

0.60), as well as with enhanced rotational motion at the playing-side upper arm

(rws=0.65 to 0.71), shoulder line (rws=0.54 to 0.57), and hip line (rws=0.51 to

0.59). Conversely, ball speed decreased with excessive contralateral shoulder

horizontal flexion/extension (rws=−0.44 to −0.62) and playing-side elbow

flexion-extension (rws=−0.35). At the population-level, ball speed increases with

age before 14.3 years (rbs=0.68) but plateaus thereafter (rbs=0.17).

Discussion: This MediaPipe-based framework demonstrates potential for

efficient biomechanical analysis in table tennis, providing a promising

foundation for lightweight real-time analysis solutions.
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1 Introduction

Table tennis requires precise whole-body coordination and accurate stroke timing,

creating unique biomechanical analysis challenges. Biomechanical analysis reveals

underlying technique patterns and improves player training and performance.

Researchers employ various devices to study motion characteristics: optical systems

(1–5), pressure and force sensors (1, 2), electromyography (EMG) (3), and inertial

measurement units (IMUs) attached to the body or racket (6).

Optical devices serve as primary tools, used alone or combined with other sensors.

They capture precise three-dimensional spatial data while allowing players to move
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freely without interference. Researchers examine movement

patterns across skill levels, identifying subtle joint and muscle

dynamics invisible to the naked eye. Wang et al. used optical

systems and EMG to compare elite and amateur players. Elite

players showed greater ankle eversion and larger knee and hip

flexion angles during backswing and follow-through phases (3).

He et al. employed a VICON optical system to study driving leg

kinematics during topspin forehand loops. They found significant

ankle movement differences between elite and intermediate

players, recommending that intermediate players enhance lower

limb muscle response to improve energy transfer (7). Qian et al.

compared superior and intermediate players using VICON,

finding that superior players exhibited greater hip flexion and

knee external rotation at stroke initiation, plus increased hip

internal rotation and extension at stroke completion (1).

However, these optical systems require controlled environments,

expensive multi-camera setups, high-frequency capabilities, time-

consuming marker placement, large laboratories, and skilled

technicians. These limitations restrict widespread use in

practical training.

Researchers have adopted lightweight machine learning-based

pose estimation models (e.g., OpenPose, MediaPipe Pose,

PoseNet, AlphaPose, DeepLabCut, HRNet, BlazePose,

EfficientPose, MoveNet) as alternatives to complex optical

motion analysis systems (8–12). These models provide human

body landmarks for further development (8, 11). In sports and

exercise, these models analyze movements (e.g., running,

jumping, squatting) to optimize technique (8, 11, 12), detect

injury-prone postures, and provide real-time form feedback via

mobile apps (12). They also assess team dynamics, monitor

exercise quality in fitness apps, and enable remote training

guidance (9). Compared to other models requiring complex

configurations, MediaPipe provides easy-to-use APIs and

comprehensive documentation, lowering the development barrier.

Developers can quickly integrate it into existing projects (9, 10,

13). These advantages make MediaPipe Pose the preferred

solution suitable for scenarios requiring real-time performance

and cross-platform deployment.

While lightweight machine learning-based pose estimation

models exhibit lower precision compared to high-fidelity motion

capture systems like VICON (10, 13, 14), recent advances in

machine learning have significantly enhanced the utilization of

keypoint data from lightweight pose estimation models (10, 15).

Machine learning includes classical approaches and deep learning

architectures. Integrating these methods with pose estimation

data creates new opportunities for automated movement quality

assessment (AQA) in athletic and rehabilitative applications.

Classical machine learning approaches include Decision Trees,

Random Forest, SVM, Naive Bayes, K-NN, and Linear/Logistic

Regression (9). These methods address classification (16–20),

regression (21–23), clustering tasks, and feature importance

ranking (24). Naive Bayes offers mathematical robustness and

efficiency but relies on independence assumptions (16). Decision

Trees are capable of identifying contributing factors in

biomechanical analyses, with applications including knee

biomechanical asymmetry (24). Random Forest combines

multiple trees to improve prediction accuracy and reduce

overfitting (24, 25), successfully predicting joint angles and

moments (21). Linear regression predicts continuous outcomes,

such as running stride temporal variables and peak vertical

ground reaction force (22), while logistic regression addresses

classification problems, such as binary musculoskeletal disorder

classification (16, 17). Linear and logistic regression can work

together to identify key predictors and examine high vs. low knee

abduction moments (18). Support Vector Machines (SVM)

provide nonlinear classification and regression capabilities

through kernel methods, making them well-suited for complex

biomechanical tasks among classical machine learning

approaches. Applications of SVM include predicting athlete

aerobic fitness (19), analyzing running gait (20), and predicting

fastball speed using kinetic and kinematic predictors (23).

These classical machine learning approaches offer significant

advantages in interpretability (16, 23) and computational

efficiency (18, 21), making them well-suited for clinical

applications and scenarios with limited data availability.

However, their dependency on manual feature engineering (26),

limited capacity for processing high-dimensional data structures

(27), constrained nonlinear modeling capabilities, and insufficient

handling of temporal sequences (28) restrict their effectiveness in

advanced analytical tasks (26). In contrast, deep learning

architectures—including Convolutional Neural Networks (CNNs),

Recurrent Neural Networks/Long Short-Term Memory networks

(RNNs/LSTMs), and Transformers—provide superior accuracy

and automation capabilities for complex spacial or temporal

movement analysis. Nevertheless, these approaches require

substantial computational resources and large training datasets to

achieve optimal performance (29).

CNNs excel at processing visual data through hierarchical

structures and have been successfully applied to performance

classification and kinetic parameter prediction (27, 30). While

CNNs effectively extract spatial features, they struggle with

temporal sequence modeling, prompting researchers to integrate

CNNs with RNNs to achieve comprehensive spatial and temporal

analysis (31, 32). RNNs handle time-series prediction effectively

(29) but suffer from vanishing and exploding gradient problems

(33). LSTM units address these limitations as a specialized RNN

component (29, 33, 34). LSTMs have predicted joint reaction

forces (35), segmented jump phases (36), and modeled stress

evolution in skeletal muscle tissue (33). Transformers extend

RNN capabilities by overcoming LSTM’s long-range dependency

limitations. Their attention mechanisms capture relationships

across entire sequences simultaneously, providing superior

sequence modeling and interpretability through attention weights

while enabling efficient parallelization.

Recent advances in table tennis research have leveraged

lightweight machine learning models and pose estimation

techniques to analyze player performance. Chen et al. enhanced

swing recognition through an improved OpenPose framework

integrated with MobileNet v3-small and InceptionTime

architectures (8). Building on pose estimation approaches, Llanos

et al. developed a comprehensive assessment system using

OpenPose and SVM-RBF classifiers to differentiate four key
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postural elements: upper body lean, knee bend, forehand/backhand

strokes, and footwork patterns (11). For real-time applications, He

et al. combined YOLOv5 and MediaPipe for stroke and posture

assessment, implementing dynamic time warping algorithms to

compare temporal sequences of joint angles (elbow-shoulder-hip)

between player motions and reference techniques (12).Similarly,

Huang and colleagues employed OpenPose for skeleton

extraction combined with SVM for real-time swing recognition,

incorporating Dynamic Time Warping (DTW) algorithms to

evaluate technique through keypoint trajectory comparison and

identification of suboptimal joint movements (37). Transformer-

based approaches have also shown promise, with Dong and

colleagues utilizing MediaPipe for human keypoint extraction

and employing Transformer models for stroke recognition across

six distinct stroke types (38).

Despite advances in lightweight pose estimation for table

tennis, existing methods focus primarily on stroke classification

without quantifying how multi-segment body kinematics

influence ball impact outcomes. These approaches have not yet

established measurable relationships between whole-body

movement patterns and performance metrics, limiting their

utility for diagnostic applications in sports training.

This study aimed to quantify kinematic relationships

across body segments during forehand strokes to provide

interpretable metrics for lightweight table tennis diagnostics.

Using single-camera whole-body landmark detection and ball

speed measurement, we employed statistical analysis to

identify key kinematic factors influencing ball performance.

This research bridges lightweight human motion capture

with actionable biomechanical insights for practical sports

training applications.

2 Methods

The research method consists of the following steps: (1) Pre-

train a Support Vector Machine (SVM) model to serve as a tool

for direct ball speed measurement from video footage. (2)

Participants perform forehand strokes while MediaPipe captures

the 3D position series of human body landmarks. (3) Calibrate

the position series to compute velocity, angle, and angular

velocity sequences, from which kinematic summaries are

extracted. (4) Apply the pre-trained SVM model to predict ball

speed based on the ball trajectory. (5) Conduct statistical analysis

to examine correlations between kinematic summaries and ball

velocity, as well as relationships between participant

demographics (age and height) and ball speed.

2.1 SVM ball speed model

A Support Vector Machine (SVM) regression model was pre-

trained on ball coordinates (x and y values) extracted from video

frames to predict ball speed. This model was then employed in

the main experiment to streamline the measurement process,

ensuring efficiency for practical applications.

Ball speed specifically denotes average horizontal ball speed,

which critically measures offensive performance in table tennis.

The table surface was divided into 10 cm� 10 cm squares using

fine lines to accurately identify ball landing spots and

determine horizontal flight distance. A centrally positioned

audio recorder captured sounds from ball-racket and ball-

table contact. These sound waves were analyzed using Adobe

Audition, which provides 1 millisecond temporal resolution,

enabling precise measurement of impact time intervals.

Corrections were applied based on sound velocity at 20�C

(343 m/s) to account for varying sound travel times caused

by different distances between impact points, drop points,

and the recorder. Ball speed was calculated by dividing

horizontal flight distance by travel time.

The SVM regression model was developed using 517 preliminary

stroke measurements from standardized ball trajectories at controlled

speeds. Manually annotated (x, y) coordinates from six consecutive

video frames created 12-dimensional feature vectors capturing ball

movement immediately before screen exit.

Using six-frame coordinates with SVM regression rather than

simple two-point measurement offers several advantages: (1)

Table tennis ball trajectories are inherently nonlinear due to air

resistance, spin effects, and gravitational forces. SVM’s ability to

find optimal decision boundaries in high-dimensional space makes

it particularly suitable for processing multi-frame coordinate data

and learning complex velocity patterns that simple kinematic

equations cannot capture. (2) Six frames provide finer temporal

sampling of ball motion, effectively filtering random noise and

measurement errors common in single-frame coordinate detection.

(3) If ball detection fails in one or two frames, SVM can still

make accurate predictions using remaining frames, whereas two-

point methods would fail completely.

The 517 preliminary measurements were split into training

(80%) and test (20%) sets, with the test set remaining

independent throughout the training process. Hyperparameter

optimization employed 5-fold cross-validation with grid search

across C parameters [0.1, 1, 10, 100, 1,000, 10,000, 100,000] and

g values [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]. This strategy

ensured robust parameter selection while preventing overfitting.

The optimal configuration achieved C ¼ 100,000 and g ¼ 0:001,

yielding best cross-validation score (R2 ¼ 0:987) and test set

R2 ¼ 0:981 (Figure 1).

Bland–Altman analysis demonstrated excellent agreement

between predicted and measured speeds in the test set.

Most data points fell within 95% confidence limits with

minimal systematic bias of 0.02 km/h (Figure 2). This

validated SVM model was employed for lightweight ball

speed prediction.

2.2 Participants and protocol

This study included 34 female table tennis players (aged 9.1–

21.7 years) from provincial teams training at Nanjing Sport

Institute in February 2023. Twenty-six were from the Jiangsu

team and eight from the Shanghai team. (Table 1). Power
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analysis using PASS 2023 demonstrated adequate statistical power

for within-subject correlations (93%, ICC ¼ 0.5) and between-

subject correlations (87%, r ¼ 0.5) at a ¼ 0.05. All participants

were physically fit with no training contraindications. The Ethics

Committee at Nanjing Sport Institute approved these procedures

(Approval No. RT-2023-02). Participants or their guardians

provided written informed consent before the study began.

An experienced coach delivered balls at slow speed

(approximately 24 km/h) to allow players adequate physical

and mental preparation based on her movements and optimal

shot timing. Right-handed players positioned themselves on the

table’s left side and executed forehand strokes toward the

opposite corner, maintaining ball trajectory approximately

20 cm above the table surface. A single camera (SONY FDR-

AX700) positioned 95 cm above ground level captured body

movements and ball trajectories from a 45� angle on the right

front (Figure 3). The camera operated at 1920� 1080 pixel

resolution and 100 fps frame rate. The experimental setup was

mirrored across the net for left-handed players: participants

stood on the table’s right side, and the camera position was

correspondingly adjusted. The first ten valid strokes per player–

excluding edge and net contacts–were recorded, resulting in a

total of 340 strokes across 34 participants. Subsequent

processing removed 20 strokes due to ball speed outliers,

leaving 320 strokes (8–10 per player). The outlier was identified

using the criterion of values exceeding Q3þ 1:5� IQR or

falling below Q1� 1:5� IQR, where Q1 and Q3 represent first

and third quartiles, respectively, and IQR denotes the

interquartile range, reflecting the spread within the middle 50%

of data. Finally, for correlation analysis, only the fastest and

slowest two strokes per player (68 strokes in total) were selected.

2.3 Landmark tracking and data processing

2.3.1 Human landmark tracking
We tracked thirty-three landmark positions for each player

using MediaPipe Pose (Version 0.10.14), as defined by

FIGURE 1

Validation of SVM ball speed prediction model against acoustic

measurements with high accuracy.

FIGURE 2

Bland–Altman analysis of predicted vs. measured ball speeds. Dotted lines indicate limits of agreement (+1:96 SD), with shaded areas representing

95% confidence intervals for the mean difference and limits of agreement.
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Bazarevsky et al. (39) (Figure 4). Each landmark was represented by

three-dimensional coordinates (x, y, z), where x and y indicate

relative position in the 2D image, and z reflects regressed depth

value. Data were stored as time series sampled at 100 Hz,

matching the video frame rate. Left-handed players’ video frames

were horizontally flipped before MediaPipe tracking to maintain

consistency with right-handed movement patterns.

2.3.2 Ball trajectory and impact timing annotation
To ensure the progression of the main experiment, this study

employed manual annotation to identify ball flight trajectories

and racket-ball impact timing. Ball trajectories were determined

by marking the coordinates of the ball in the final six frames

before it exited the video frame boundaries. These trajectory data

were subsequently used to predict ball speed using the pre-

trained Support Vector Machine (SVM) model. Meanwhile, the

manually identified racket-ball impact timing served as temporal

reference points to extrac forward swing phase.

2.3.3 Position data filtering

Landmark position time series were filtered using a low-pass

Finite Impulse Response (FIR) filter designed with a Hamming

window and 31 taps, implemented through the scipy:signal:firwin

function. The filter applied 100 Hz sampling rate and 0.08

normalized cutoff frequency, corresponding to 4 Hz actual cutoff.

2.3.4 Position data scaling
Two scaling factors converted landmark coordinates from video

frames to actual positions. The first factor, calculated solely for the

initial frame, addresses disparity between MediaPipe-estimated body

dimensions and actual measurements. It compares cumulative

lengths of bilateral shoulder-hip-knee-ankle segments calculated by

MediaPipe with manually measured lengths. The second factor,

computed for every subsequent frame, compensates for apparent

size variations due to body movement, maintaining proportional

consistency across frames. This factor adjusts landmark positions by

comparing cumulative segment lengths in the current frame to

those in the first frame. Each landmark position is then multiplied

by both factors to obtain real-world coordinates.

2.3.5 Dynamic origin calibration
MediaPipe’s coordinate system is based on the camera

coordinate system, which originally placed its origin (0, 0, 0)

between the hips, with the x-axis extending rightward, y-axis

downward, and z-axis toward the camera. We still use the

camera coordinate system, but repositioned the origin to the

time-averaged midpoint between both feet across all frames

during the current forehand stroke and redefined the y-axis to

extend upward (Figure 3). Landmark coordinates were then

transformed relative to this motion-adaptive origin.

2.3.6 Kinematic parameter calculation

Landmark velocities were computed from position time series

using the central difference method. Velocity components in x-, y-,

and z-directions were calculated from Equation 1:

vx ¼
xtþ1 � xt�1

2Dt
, vy ¼

ytþ1 � yt�1

2Dt
, vz ¼

ztþ1 � zt�1

2Dt
, (1)

where x, y, and z represent each landmark’s camera coordinates.

Body segments, defined as anatomical regions between two

landmarks, were analyzed for orientation angles in the xy-, yz-,

and zx-planes. Angles were computed from Equation 2:

a ¼ arctan
y

x

� �

, b ¼ arctan
z

y

� �

, g ¼ arctan
x

z

� �

, (2)

where x, y, and z denote landmark’s camera coordinates. The

xy-plane is perpendicular to the camera’s optical axis, the

yz-plane is parallel to the camera’s optical axis, and the zx-plane

is parallel to the floor.

Angular velocities in each plane (vxy , vyz , vzx) were derived

using Equation 3:

vxy ¼
atþ1 � at�1

2Dt
, vyz ¼

btþ1 � bt�1

2Dt
,

vzx ¼
gtþ1 � gt�1

2Dt
:

(3)

FIGURE 3

Camera positioning and coordinate system for right-handed players.

The MediaPipe coordinate system was modified such that the x and

z axes lie parallel to the floor plane and perpendicular to each other,

while the y-axis points upward, perpendicular to the

transverse plane.

TABLE 1 Participant characteristics, means+SD or N (%).

Characteristics Participants

N 34

Age (yr) 15:0+ 3:5

Height (cm) 161:2+ 9:5

Weight (kg) 51:4+ 10:1

Left-handed 8 (23.5%)

Right-handed 26 (76.5%)
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Joint angles were defined as angles between two adjacent body

segments, determined by three landmarks (e.g., points A, B, and

C, with B at the joint). Joint angle u was calculated from vectors
~BA and ~BC using Equation 4:

cos u ¼
~BA � ~BC

k ~BAk � k ~BCk
, (4)

with corresponding angular velocity computed from Equation 5:

v ¼
utþ1 � ut�1

2Dt
: (5)

2.3.7 Forward swing phase extraction
A forehand stroke consists of three distinct phases: backswing,

forward swing, and follow-through. This study focuses exclusively

on the forward swing phase, defined as the interval during which

players maximally accelerate the racket toward the ball to achieve

precise contact. Forward swing duration was extracted from a

duplicate playing-side wrist (Landmark 16) resultant velocity

time series. The series was processed using the previously applied

31st-order FIR filter again, and its second derivative was

calculated to identify inflection points. The inflection point

immediately before ball impact marked phase start time, while

the inflection point directly after impact defined its end time. All

landmark position and velocity time-series data were then

truncated based on calculated boundaries. Taking the playing-

side wrist (Landmark 16) as an example, Figure 5 displays its

position and velocity time series, with the shaded portion

representing the truncated forward swing phase. The duration of

the forward stroke phase across all players is 30:34+ 2:03

frames or 303:4+ 20:3 milliseconds.

We compared the mathematically derived start and end points

of the forward swing phase with manually annotated timepoints

obtained through frame-by-frame expert analysis (n ¼ 320). The

validation results demonstrate excellent agreement between the

two methods. Bland–Altman analysis showed that .95% of

FIGURE 4

MediaPipe landmarks.

FIGURE 5

Forward swing phase in position and velocity time series. R ¼ resultant values; x, y, z ¼ components (x: rightward, y: upward, z: toward camera). All

series are time-aligned to ball impact (vertical dashed line). Shaded area indicates the mathematically extracted forward swing phase.
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measurements fell within the limits of agreement for both start and

end time detection. Both timepoint detections exhibited excellent

reliability (ICC: 0.968 and 0.987) and strong correlations with

manual annotation (r: 0.974 and 0.988, both p , 0:001). The

mathematical method showed minimal systematic bias with

mean differences of �1:016 ms for start time and �0:278 ms for

end time. Mean relative errors were low at 3.69% and 1.46%

respectively (Table 2).

2.4 Data validation

2.4.1 Repeated measurement reliability

To compare the consistency and similarity of repeated position

time series measurements, all position time series were truncated to

a uniform duration of 0.8 s, which was slightly shorter than the

minimum stroke length observed across all participants. Two

strokes were randomly selected per player. Three metrics were

employed for consistency and similarity validation: the intraclass

correlation coefficient (ICC), normalized Dynamic Time

Warping (DTW) similarity, and cosine similarity (CS). For each

participant, these three similarity measures were computed for

their stroke pairs, and overall similarity values were calculated as

the mean across all participants.

The ICC measures reliability and consistency between repeated

measurements, calculated as: ICC ¼ MSB�MSW
MSBþ(k�1)MSW

where MSB

represents between-subjects mean square, MSW represents

within-subjects mean square, and k represents the number of

measurements per subject.

Normalized DTW similarity captures temporal alignment

between sequences with potential time warping, computed as:

SDTW ¼ 1

1þ
DTW(X, Y)

Lavg � Rdata

where Lavg represents average sequence

length and Rdata denotes data range.

Cosine similarity measures angular similarity between vectors,

defined as: Scos ¼ 1� X�Y
kXk�kYk.

Table 3 demonstrate strong measurement consistency across

different similarity metrics. Most landmarks achieved excellent

reliability (50:90) in multiple dimensions, confirming the

robustness of the motion capture model and the consistency of

skilled athletic performance.

Figure 6 demonstrates a single player’s position trajectories

across multiple trials, revealing high consistency, particularly

in the dominant-side wrist’s x and y coordinates, while the

z-coordinate shows greater variability. This consistent

performance across trials reflects both the movement reliability

of professionally trained players and MediaPipe’s consistency and

similarity in repeated assessments.

2.4.2 Left-handed data validation

Left-handed video frames were horizontally flipped before

MediaPipe processing to generate coordinate data comparable

to right-handed players. Landmark position curve analysis

employed multiple statistical approaches to assess group

differences. Curves were preprocessed through cubic spline

interpolation to achieve uniform temporal resolution.

Eighteen kinematic features were extracted, including basic

statistics (mean, standard deviation, maximum, minimum,

range, median), distribution characteristics (skewness,

kurtosis), peak properties (peak count, peak maximum, peak

mean), temporal dynamics (mean velocity, maximum

acceleration, zero crossings), spectral properties (dominant

frequency, spectral centroid), and curve morphology (curve

length, area under curve). Statistical comparisons utilized

appropriate parametric or non-parametric tests based on

normality and variance assessments. Bonferroni correction

addressed multiple comparison issues. Multivariate analysis

included dimensionality reduction and clustering for pattern

recognition. Curve similarity was quantified using distance

matrices comparing intra-group vs. inter-group variations.

Results demonstrated no significant differences in resultant

position curves for all 33 landmarks between left-handed and

right-handed players (corrected p . 0:05), suggesting both

groups originated from the same population. This finding

validates the comparability of left-handed and right-handed

player data. Figure 7 illustrates the consistent resultant position

curves between groups for playing-side wrist, elbow, shoulder,

and contralateral wrist, elbow, shoulder landmarks.

2.5 Statistical analysis

The fastest and slowest strokes from each player were

paired and analyzed using two correlation approaches:

within-subject and between-subject. We chose correlation

analysis over machine learning approaches for several

reasons: (1) it provides direct, interpretable relationships

between biomechanical variables that coaches and researchers

can immediately understand and apply; (2) correlation

analysis is statistically appropriate and robust for small

sample sizes; and (3) this exploratory approach helps identify

TABLE 2 Comparison of mathematical method and manual measurement
for forward swing phase timing detection.

Statistical measure Start time End time

Sample size (n) 320 320

Mean difference (95% CI) �1.016 (�1.246, �0.785) �0.278 (�0.440, �0.116)

Limits of agreement (LoA) �5.140 to 3.109 �3.182 to 2.625

Within LoA (%) 96.2 95.3

ICC (95% CI) 0.968 (Excellent) 0.987 (Excellent)

Pearson correlation (r) 0.974 (p , 0:001) 0.988 (p , 0:001)

Spearman correlation (r) 0.958 (p , 0:001) 0.981 (p , 0:001)

MAE (frames, 1/100 s) 1.716 1.109

RMSE (frames, 1/100 s) 2.337 1.507

Mean relative error (%) 3.69 1.46

Note: Comparison between automated mathematical algorithm and manual expert

measurement for forward swing phase timing detection. CI, confidence interval; LoA,

limits of agreement (Bland–Altman analysis); ICC, intraclass correlation coefficient; MAE,

mean absolute error; RMSE, root mean square error. Negative mean differences indicate

earlier detection by the mathematical method. ICC interpretation: excellent (.0:90), good

(0.75–0.90), moderate (0.50–0.75), poor (,0:50). All correlations are statistically significant

(p , 0:001).
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which biomechanical factors are most relevant before

developing more complex predictive models.

2.5.1 Within-subject corrilation
Within-subject correlation is a statistical method used to

assess association between paired measures across multiple

occasions for each individual (40). This technique examines

whether an increase in one variable corresponds to change in

another (41). For example, it determines whether faster wrist

movement correlates with higher ball speeds.

Statistical summaries of positional and angular changes

are provided in Table 4. These kinematic parameters were

extracted across three levels: (1) Landmark parameters

including positional range (PR), mean velocity (MV), peak

velocity (PV), and impact velocity (IV), decomposed into

resultant components (subscript R) and axial components

(subscripts x, y, z); (2) Segment parameters including

angular range (AR), mean angular velocity (MAV), peak

angular velocity (PAV), and impact angular velocity (IAV),

analyzed as resultant components (subscript R) and planar

components (subscripts xy, yz, zx); (3) Joint parameters

including joint angular range (JAR), joint mean angular

velocity (JMAV), joint peak angular velocity (JPAV), and

joint impact angular velocity (JIAV), treated as scalar

TABLE 3 Consistency and similarity measures for repeated landmark position measurements: intraclass correlation coefficients (ICC), normalized DTW
similarity, and cosine similarity.

LM ICC Normalized DTW similarity Cosine similarity

R x y z R x y z R x y z

0 0.982a 0.909a 0.978a 0.860 0.900 0.985a 0.953a 0.987a 1.000a 0.815 1.000a 0.985a

11 0.983a 0.907a 0.982a 0.849 0.941a 0.967a 0.958a 0.991a 1.000a 0.895 1.000a 0.936a

12 0.982a 0.843 0.978a 0.843 0.961a 0.988a 0.967a 0.976a 1.000a 0.874 1.000a 0.963a

13 0.895 0.886 0.939a 0.831 0.981a 0.976a 0.984a 0.992a 0.998a 0.897 0.998a 0.907a

14 0.952a 0.836 0.945a 0.866 0.989a 0.993a 0.989a 0.982a 0.999a 0.944a 0.998a 0.957a

15 0.901a 0.901a 0.918a 0.854 0.983a 0.982a 0.985a 0.991a 0.991a 0.841 0.992a 0.863

16 0.930a 0.798 0.911a 0.857 0.993a 0.995a 0.993a 0.975a 0.997a 0.963a 0.996a 0.935a

23 0.982a 0.803 0.986a 0.910a 0.782 0.976a 0.775 0.973a 1.000a 0.932a 1.000a 0.847

24 0.987a 0.712 0.984a 0.926a 0.821 0.977a 0.772 0.976a 1.000a 0.976a 1.000a 0.990a

25 0.915a 0.905a 0.893 0.817 0.976a 0.956a 0.983a 0.983a 0.996a 0.991a 0.996a 0.764

26 0.885 0.862 0.916a 0.847 0.980a 0.983a 0.975a 0.971a 0.998a 0.904a 0.999a 0.991a

27 0.796 0.863 0.738 0.763 0.966a 0.954a 0.980a 0.970a 0.992a 0.991a 0.889 0.978a

28 0.835 0.858 0.731 0.824 0.968a 0.954a 0.978a 0.969a 0.994a 0.993a 0.851 0.966a

Note: LM, landmark number; x, y, z, displacement components in camera coordinate system; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

; ICC, intraclass correlation coefficient; DTW, dynamic time warping.
aexcellent50:90.

FIGURE 6

Wrist position time series for a single participant across multiple trials. x, y, z ¼ position components (x: rightward, y: upward, z: toward the camera),

and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

. Lines of different colors represent the eight trials. All time series are aligned to ball impact (vertical dashed line).
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quantities without directional decomposition. Within-subject

correlations (rws) between kinematic parameters and ball

speeds were calculated using repeated measures correlation

analysis (Pingouin:rm corr function), following the rmcorr

methodology of Bakdash and Marusich (42) (Equation 6).

rrm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSMeasure
SSMeasure þ SSError

s

(6)

Sign of rrm (positive or negative) ¼ Sign of b

where SSMeasure represents the sum of squares for the

measure (dependent variable), SSError represents the sum

of squares for error (residual variance), and b represents

the common regression slope coefficient estimated across all

participants, estimated through analysis of covariance

(ANCOVA).

For each player, the fastest stroke was compared with the

slowest stroke to compute rws. This method aimed to identify key

factors driving differences between fastest and slowest ball speeds.

2.5.2 Between-subject corrilation
Between-subject correlation evaluates whether individuals with

higher values in one variable tend to exhibit higher values in

another across subjects (41). For example, it can assess whether

age or height correlates with ball speed. The between-subject

correlation coefficient (rbs) is calculated using Equation 7

proposed by Bland and Altman (41):

r ¼

P

mi �xi�yi �

P

mi �xi �
P

mi�yi
P

mi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

mi �xi2 �

P

mi �xið Þ2
P

mi

� �

P

mi�yi2 �

P

mi �yið Þ2
P

mi

� �

s (7)

where mi is the number of measurements for subject i (stroke

count for a given player), and �xi and �yi are the means of two

variables across multiple measurements for subject i.

3 Results

3.1 Within-subject correlation between
biomechanical kinematic characteristics
and ball speed

3.1.1 Relationship between positional range, linear

velocity of landmarks, and ball speed
The positional range and velocities (mean, peak, and at impact)

of the head, playing-side shoulder (rws = 0.51, 0.63, 0.61 for PRx,

MVx, PVx), elbow (rws = 0.63, 0.70, 0.69 for PRR, MVR, PVR),

wrist (rws = 0.60, 0.56, 0.50 for MVR, PVR, IVR), fingers, and

FIGURE 7

Average resultant position curves for left-handed (n ¼ 8, coral pink) vs. right-handed (n ¼ 26, turquoise) players, aligned to ball impact (dashed line).

TABLE 4 Summary of kinematic variables during the forward swing phase.

Summaries Descriptions

Positional/angular

range

Total absolute positional or angular change during

forward swing

Mean velocity Absolute mean linear or angular velocity during forward

swing

Peak velocity Absolute peak linear or angular velocity during forward

swing

Impact velocity Absolute linear or angular velocity at racket-ball impact
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both hips show significant positive correlations with ball speed,

particularly along the x-axis. The resultant peak and impact

velocities of the legs reveal distinct patterns: the playing-side

knee shows a weak positive correlation, while the contralateral

knee and ankle display weak to moderate negative correlations

with ball speed (Figure 8 and Table 5).

3.1.2 Relationship between angular range, angular
velocity of body segments, and ball speed

The resultant angular range and mean angular velocity of the

shoulder line (11–12) (rws = 0.57, 0.54 for MAVR, MAVzx) and

hip line (23–24) (rws = 0.51, 0.59 for ARR, MAVzx) show

moderate correlation with ball speed. The playing-side upper arm

(12–14) demonstrates significant positive correlations in both

angular range and angular velocities with ball speed (rws = 0.65,

0.71, 0.70 for ARxy, MAVxy, PAVxy), while the contralateral

upper arm (11–13) shows no significant relationship. In the

lower limbs, the playing-side segments (24–26, 26–28) present

weak to moderately positive correlations, whereas the

contralateral segments (23–25, 25–27) display weak to moderate

negative correlations (Figure 9, Table 6).

3.1.3 Relationship between angular range, angular
velocity of joint, and ball speed

Negative correlations with ball speed are observed for the

contralateral shoulder’s horizontal flexion-extension (rws =−0.44,

−0.62 for joint JAR and JPAV), the playing-side elbow’s flexion-

extension (rws =−0.35 for joint JPAV), and both knees’ flexion-

extension (Figure 10, Table 7).

3.2 Between-subject correlation
coefficients of age and height with ball
speed

Ball speed correlates significantly with age (rbs = 0.62),

particularly in younger participants (9.1–14.3 years, rbs = 0.68).

Height also shows positive correlations with ball speed. However,

among female adolescents (14.3–21.7 years), age shows weak

correlation (rbs = 0.17) while height shows slight negative

correlation (rbs =−0.29) with ball speed (Table 8, Figure 11).

4 Discussion

4.1 MediaPipe-based motion capture
reveals critical kinematic parameters

Our MediaPipe-based analysis revealed specific kinematic

metrics that correlate with ball speed in table tennis forehand

strokes. Ball speed increased with greater playing-side arm linear

movement at the shoulder, elbow and wrist (Figure 8 and

Table 5), as well as with enhanced rotational motion at the

playing-side upper arm, shoulder line, and hip line (Figure 9 and

Table 6). Conversely, ball speed decreased with excessive

contralateral shoulder horizontal flexion/extension and playing-

side elbow flexion-extension (Figure 10 and Table 7). These

features, derived from 33 landmarks, 19 inter-keypoint segments,

and 12 joint angles, comprehensively characterize forward stroke

mechanics in table tennis. They reveal biomechanical principles

for optimizing body segment activation to achieve peak ball speed.

Our findings align with prior studies (43, 44), confirming that

playing-side arm linear velocity and positional range directly

enhance ball speed (Figure 8). Racket speed, the direct

determinant of ball speed, originates from the upper limb’s

kinetic chain through sequential joint velocity propagation from

shoulder to wrist (4, 45). The playing-side shoulder serves as the

proximal driver, generating angular momentum that transmits

distally to the elbow and wrist (45). These results support

previous evidence linking playing-side shoulder motion to racket

speed (4, 46, 47) (Figure 10, Table 7).

The contralateral shoulder showed negative correlations

between horizontal flexion-extension range and velocity and ball

speed. This suggests that minimizing non-playing-side arm

motion relative to the torso improves stroke efficiency. Stabilizing

the contralateral shoulder through scapular muscles anchors the

upper arm during forehand strokes, enhancing whole-body

power transfer and movement consistency.

Researchers disagree about elbow angular velocity. Xiao et al.

reported positive correlations between elbow angular velocity and

ball speed (44), while Zheng et al. found no significant

correlation between playing-side elbow angular velocity and ball

speed (43). Chen et al. found that elite players had smaller elbow

flexion angles but greater elbow flexion angular velocities at

impact (48). We found weak negative correlations between

playing-side elbow angular range, angular velocities and ball

speed (rws =−0.35 to −0.17) (Table 7, Figure 10). This difference

may result from different motion phase divisions compared to

other studies. Further experiments are needed to validate

these findings.

Hip motion critically influences trunk rotation, which forms

the foundation of kinetic chain initiation. Racket speed at impact

was related to the hip axial rotation torque at the playing side

(49). While previous studies established the importance of hip

kinematics (1–3, 46), our analysis provides higher-resolution

evidence that hip positional range and velocity (particularly

along the x-axis) and inter-hip angular dynamics in the xz-plane

positively correlate with ball speed (Figures 8, 9).

Force transmission begins with lower limb engagement, where

playing-side leg activity (positive correlations) contrasts with

contralateral leg stabilization (negative correlations) (Figures 8,

9). During forward swing, weight shifts toward the playing-side

leg, positioning it closer to the rotational axis to bear load, while

the contralateral leg balances and stabilizes rotation. Knee

flexion-extension range and velocity negatively correlated with

ball speed (Figure 10), indicating that minimizing knee

movement during forward swing helps maintain efficient trunk

rotation. Excessive knee motion appears to compromise this

rotation, likely by introducing unnecessary vertical displacement

that disrupts kinetic transfer.

Previous table tennis kinematic studies used keypoint

positions and linear velocities (43), body segment angles and
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angular velocities (1, 3, 49, 50), and joint angles and angular

velocities (1–3, 48, 50). These metrics included mean values

(2), peak values (2, 48), and kinematic or racket movement

characteristics at impact (2, 43, 48, 49). We comprehensively

applied these metrics within the MediaPipe lightweight

framework and provided more intuitive analysis of these

kinematic features and their relationships with ball speed.

Players with extensive professional training not only

generate high-speed balls but also maintain excellent body

movement stability and consistency (1, 3, 49, 50). This

stability is crucial for continuous, stable, high-speed striking in

high-level competition.

Beyond individual performance assessment, MediaPipe-based

analysis enables population-level insights into developmental trends.

Between-subject correlations reveal that female players’ forehand

speed increases with age and height before 14.3 years but plateaus

after 14.3 years (Table 8, Figure 11). This analysis provides valuable

guidance for athletes at different developmental stages. For example,

young players from pre-adolescence to early adolescence should

balance fundamental technical training with strength and speed

development to improve ball velocity and enhance attacking

capabilities. In contrast, during middle to late adolescence, players

must prioritize technical, tactical, psychological, and fitness factors

over reliance on physical growth to advance performance.

FIGURE 8

Heatmap visualization of within-subject correlation between landmark kinematics and ball speed in the camera coordinate system, where the x-axis

points right, y-axis points up and z-axis points toward the camera (Figure 3). The resultant value represents the square root of the sum of squared

components from the x, y, and z axes. Colored circles indicate significant correlations, with red representing positive correlations and blue

representing negative correlations. Numbers indicate anatomical landmarks.
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TABLE 5 Within-subject correlation coefficients (rws) between landmark kinematic variables (positional range and velocities) and ball speed.

LM Positional range (PR) Mean velocity (MV) Peak velocity (PV) Impact velocity (IV)

R x y z R x y z R x y z R x y z

0 0.47b 0.52b �0.06 0.30 0.53b 0.62b 0.02 0.48b 0.38a 0.56b 0.20 0.22 0.42a 0.46b �0.04 0.22

11 0.21 0.08 �0.07 0.21 0.35a 0.15 0.09 0.40a 0.27 0.14 0.44b 0.24 0.24 �0.05 �0.04 0.22

12 0.50b 0.51b 0.17 �0.03 0.45b 0.63b 0.28 0.01 0.51b 0.61b 0.30 �0.27 0.39a 0.46b 0.22 0.11

13 0.12 �0.30 �0.04 0.18 0.25 �0.23 0.14 0.38a �0.05 0.26 0.01 0.03 0.11 �0.43a �0.17 0.22

14 0.63b 0.59b 0.23 �0.15 0.70b 0.68b 0.35a �0.10 0.69b 0.65b 0.23 �0.10 0.50b 0.44b 0.27 �0.10

15 0.12 �0.41a 0.11 0.12 0.30 �0.30 0.21 0.25 0.05 0.33 0.12 0.02 0.16 �0.36a 0.02 0.16

16 0.46b 0.52b 0.06 �0.21 0.60b 0.64b 0.22 �0.16 0.56b 0.55b 0.17 0.12 0.50b 0.46b 0.20 �0.10

17 0.15 �0.40a 0.15 0.13 0.32 �0.29 0.24 0.25 0.07 0.36a 0.14 0.02 0.18 �0.36a 0.07 0.16

18 0.43a 0.49b 0.04 �0.21 0.56b 0.61b 0.19 �0.15 0.53b 0.52b 0.15 0.13 0.49b 0.45b 0.17 �0.09

19 0.16 �0.40a 0.17 0.13 0.34a �0.28 0.25 0.25 0.10 0.36a 0.16 0.04 0.19 �0.35a 0.10 0.16

20 0.41a 0.48b 0.02 �0.19 0.57b 0.62b 0.17 �0.15 0.53b 0.52b 0.13 0.13 0.50b 0.46b 0.18 �0.04

21 0.13 �0.41a 0.13 0.13 0.32 �0.30 0.22 0.25 0.07 0.33 0.13 0.03 0.17 �0.36a 0.05 0.16

22 0.45b 0.51b 0.05 �0.21 0.59b 0.63b 0.21 �0.16 0.55b 0.54b 0.16 0.11 0.50b 0.46b 0.20 �0.07

23 0.49b 0.51b �0.19 0.36a 0.49b 0.59b �0.14 0.49b 0.38a 0.50b �0.13 0.14 0.38a 0.37a 0.03 0.32

24 0.49b 0.51b �0.32 0.37a 0.48b 0.60b �0.22 0.48b 0.40a 0.50b �0.06 0.16 0.38a 0.38a �0.10 0.32

25 �0.04 �0.14 �0.08 0.27 �0.36a �0.04 �0.02 0.34a �0.36a �0.24 �0.22 �0.23 �0.33 �0.35a �0.11 0.05

26 0.28 0.31 �0.10 0.04 0.29 0.38a 0.08 0.16 0.27 0.27 �0.04 0.17 0.24 0.33 �0.14 0.00

27 �0.28 �0.16 �0.37a �0.16 �0.40a �0.09 �0.32 �0.17 �0.45b �0.26 �0.37a �0.30 �0.42a �0.23 �0.47b �0.17

28 0.26 0.44b �0.11 0.14 0.26 0.49b �0.11 0.20 0.27 0.41a �0.03 0.28 0.17 0.31 �0.13 0.05

29 �0.28 �0.20 �0.37a �0.15 �0.41a �0.14 �0.31 �0.17 �0.45b �0.27 �0.37a �0.30 �0.41a �0.21 �0.43a �0.14

30 0.27 0.38a �0.08 0.13 0.27 0.42a �0.07 0.20 0.26 0.42a �0.04 0.28 0.18 0.28 �0.10 0.05

31 �0.17 �0.23 �0.33 �0.09 �0.24 �0.20 �0.30 �0.08 �0.21 �0.33a �0.15 �0.11 �0.25 �0.26 �0.43b �0.11

32 0.30 0.49b �0.21 0.11 0.31 0.52b �0.18 0.16 0.21 0.41a �0.11 0.19 0.21 0.50b �0.13 0.09

x, y, z are displacement components in the camera coordinate system: x-axis points right, y-axis points up, and z-axis points toward the camera (Figure 3), R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

. “LM” refers to Landmark (Figure 4). ap , 0:05. bp , 0:01.
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4.2 MediaPipe-based table tennis analysis
solution

MediaPipe is an open-source framework created by Google that

provides cross-platform machine learning solutions for real-time

perception tasks including human pose tracking, body keypoint

detection, hand tracking, facial analysis, face detection, object

detection, and augmented reality applications. The framework offers

superior computational efficiency with lower latency and cross-

platform compatibility across Linux, macOS, Windows, Android,

and iOS platforms, making it highly suitable for practical

applications (12). Its vision-based approach eliminates dependency

on specialized hardware, enabling flexible deployment with

consumer-grade cameras while maintaining computational

efficiency. The system tracks 33 anatomical landmarks across

consecutive frames to model temporal kinematics of human motion,

effectively balancing accuracy with low computational overhead.

Researchers investigated MediaPipe’s reliability by comparing it

with widely recognized accurate optoelectronic systems (e.g., VICON

and Qualisys). Hii et al. used MediaPipe 3D for gait analysis and

reported good to excellent agreement across spatiotemporal

parameters, with good (ICC(2,1) .0:75) to excellent (ICC(2,1)

.0:90) agreement in all temporal gait parameters except right-to-left

leg transition time (ICC(2,1) .0:50), attributed to the very short

FIGURE 9

Heatmap visualization of within-subject correlation between segment kinematics and ball speed. The human skeleton model displays correlations for

different kinematic components across three planar projections (xy, yz, and zx-plane) in the camera coordinate system, where the x-axis points right,

y-axis points up, and z-axis points toward the camera (Figure 3). The resultant value represents the combined magnitude of these components.

Colored lines indicate significant correlations, with red representing positive correlations and blue representing negative correlations. Numbers

indicate anatomical landmarks.
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TABLE 6 Within-subject correlation coefficients (rws) between segment kinematic variables (angular range and velocities) and ball speed.

Segment Angular range (AR) Mean angular velocity (MAV) Peak angular velocity (PAV) Impact angular velocity (IAV)

R xy yz zx R xy yz zx R xy yz zx R xy yz zx

2–9 0.46b 0.38a �0.06 0.16 0.48b 0.52b 0.13 0.53b 0.32 0.27 �0.22 0.40a 0.34a 0.30 �0.06 0.40a

5–10 0.52b 0.46b 0.08 0.25 0.60b 0.54b 0.35a 0.56b 0.41a 0.42a �0.12 0.43a 0.32 0.32 0.05 0.32

7–8 0.49b 0.25 �0.29 0.39a 0.33 0.28 0.37a 0.58b 0.13 0.26 �0.03 0.29 0.31 0.28 0.19 0.44b

11–12 0.41a 0.46b 0.36a 0.33 0.57b 0.36a 0.48b 0.54b 0.45b 0.32 0.44b 0.15 0.37a 0.38a 0.32 0.27

23–24 0.51b 0.06 0.16 0.47b 0.43b �0.05 0.30 0.59b 0.24 0.09 �0.02 0.37a 0.41a �0.09 0.23 0.39a

11–13 �0.15 �0.20 �0.12 �0.16 �0.20 �0.24 0.00 �0.19 �0.24 �0.08 �0.07 �0.24 �0.19 �0.37a 0.01 �0.25

12–14 0.55b 0.65b 0.14 0.05 0.52b 0.71b 0.39a 0.38a 0.36a 0.70b 0.29 0.25 0.46b 0.46b 0.28 0.31

13–15 �0.03 �0.14 0.15 �0.16 0.27 0.05 0.36a �0.01 0.04 �0.04 0.17 0.07 0.09 �0.13 0.33 �0.17

14–16 �0.13 �0.08 �0.18 0.10 0.20 �0.23 0.15 0.16 0.14 �0.02 0.08 0.33 0.18 0.04 0.12 0.27

15–19 0.34a 0.01 0.42a 0.38a 0.44b 0.30 0.45b �0.02 0.43b 0.40a 0.50b 0.07 0.35a 0.42a 0.40a 0.02

16–20 �0.38a �0.15 �0.44b 0.10 �0.18 �0.17 �0.36a 0.19 �0.34a �0.34a �0.52b 0.12 0.03 0.19 �0.34a 0.02

11–23 0.16 0.05 0.15 0.38a 0.16 0.37a 0.31 0.13 0.03 0.22 0.15 0.03 0.18 0.10 0.14 0.18

12–24 0.33 0.47b �0.35a 0.27 �0.35a 0.59b 0.08 �0.34a �0.30 0.52b �0.11 �0.30 �0.41a 0.46b 0.08 �0.41a

23–25 �0.24 �0.33 �0.12 �0.45b �0.42a �0.22 0.03 �0.07 �0.46b �0.27 �0.31 �0.37a �0.35a �0.54b �0.25 �0.27

24–26 0.23 0.19 0.03 0.32 0.40a 0.25 0.25 0.39a 0.21 0.27 0.00 0.19 0.40a 0.21 �0.07 0.39a

25–27 �0.29 �0.36a �0.26 �0.13 �0.32 �0.21 �0.14 �0.18 �0.38a �0.36a �0.33 �0.28 �0.40a �0.29 �0.25 �0.21

26–28 0.05 �0.03 �0.33 0.43a 0.37a 0.05 0.38a 0.46b 0.41a 0.08 0.09 0.41a 0.27 0.02 0.05 0.31

29–31 0.13 0.17 0.15 0.16 0.41a 0.30 0.26 0.28 0.38a 0.22 0.38a 0.20 0.11 0.07 0.04 0.12

30–32 0.34a 0.18 �0.09 0.41a 0.29 0.21 0.00 0.46b 0.25 0.18 �0.12 0.34a 0.24 0.15 0.10 0.33

Segment denotes the anatomical connection between two MediaPipe landmarks (Figure 4). R represents the resultant angular value (position or velocity), with xy, yz, and zx as planar components relative to the camera coordinate system (Figure 3): the xy-plane

(perpendicular to the optical axis), yz-plane (parallel to the optical axis), and zx-plane (parallel to the floor). ap , 0:05. bp , 0:01.
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duration (0.20 s) (51). Roggio et al. appliedMediaPipe to obtain 3D joint

angles (shoulder adduction, hip adduction) from250 healthy volunteers,

confirming high reliability of ML-driven posture analysis (ICC 0.67–

0.95), with hip adduction showing the highest ICC (0.95) and knee

valgus showing the lowest (0.67) (52). Latreche et al. compared 3D

measurements with goniometer and digital inclinometer results,

finding MediaPipe shoulder motion measurements all showed ICC

.0:81: shoulder abduction ICC ¼ 0.968, adduction ¼ 0.99, extension

¼ 0.99, flexion ¼ 0.992, indicating excellent reliability. Mean

differences were �0:01� compared to goniometer and �0:36�

compared to digital inclinometer, with 95% limits of agreement

confirming good validity (53).

Despite questions about MediaPipe 3D measurement

accuracy, particularly at specific angles or during occlusion

(13), MediaPipe 2D measurements have proven accurate and

reliable (10, 54). Hamilton et al. compared MediaPipe 2D joint

angles and range of motion with 3D motion capture systems

(Qualisys), finding mean CV below 10% and CC ¼ 0.95,

demonstrating MediaPipe 2D accuracy (54). Some researchers

compute 3D coordinates through post-processing of 2D

measurements using multiple cameras (14, 55). Ceriola et al.

used two cameras to acquire 2D keypoints and estimated 3D

coordinates through stereo triangulation, reporting minimum

absolute errors of (3:1�+ 1:8�) and (3:5�+ 1:9�) for hip joints

and (4:0�+ 3:7�) and (4:8�+ 4:3�) for knee joints (55). We

did not map MediaPipe’s camera-based 3D coordinates to

anatomical coordinate systems but preserved the original

coordinates. This approach retains MediaPipe’s relatively

accurate x and y values, while z-axis depth variations do not

affect accuracy in the plane perpendicular to the camera axis

(xy-plane).

4.3 Limitations and future works

The study has several limitations. First, despite including 8–

10 forehand strokes per player, only the fastest and slowest

strokes were paired to calculate within-subject correlation

coefficients. Elite participants exhibited highly consistent stroke

patterns, leaving minimal variations in body motions and ball

speeds. Measurement errors occasionally blurred speed

distinctions, misclassifying fast strokes as slow and vice versa.

Prioritizing extreme-speed strokes mitigated overlap effects but

reduced statistical power. Two solutions could resolve this

issue: (1) integrating high-speed cameras for precise

measurements, albeit at the cost of practicality, or (2)

recruiting lower-skilled players, who inherently display broader

ball speed variations. Future work will refine the ball speed

measurement model for higher precision, expand the

participant pool to include diverse skill levels.

Second, this study recruited female provincial athletes, which

limits the generalizability of findings to other populations. For

example, male athletes may display different kinematic

characteristics due to variations in movement patterns and skill

levels. Future research should include mixed-gender cohorts or

FIGURE 10

Heatmap visualization of within-subject correlation between joint kinematics and ball speed. The “J” prefix in parameter abbreviations denotes joint-

related measurements. Each joint is defined by three landmarks, with the middle landmark representing the joint position. Joints and their adjacent

segments are color-coded, with red representing positive correlations and blue representing negative correlations. Numbers indicate

anatomical landmarks.

TABLE 7 Within-subject correlation coefficients (rws) between joint
kinematic variables (angular range and velocities) and ball speed.

Joint
angle

Angular
range
(JAR)

Mean
angular
velocity
(JMAV)

Peak
angular
velocity
(JPAV)

Impact
angular
velocity
(JIAV)

11-12-14 0.02 �0.23 �0.03 0.22

12-11-13 �0.44b �0.35a �0.62b �0.21

12-14-16 �0.32 �0.17 �0.35a �0.33

11-13-15 �0.03 0.42a 0.01 0.05

14-16-20 �0.07 �0.11 0.06 0.12

13-15-19 0.26 0.16 0.31 0.37a

12-24-26 0.14 0.21 0.39a �0.00

11-23-25 �0.28 �0.32 �0.26 �0.44b

24-26-28 �0.26 �0.13 �0.32 �0.05

23-25-27 �0.34a �0.07 �0.47b �0.28

25-27-31 0.13 0.15 0.06 0.25

26-28-32 �0.07 �0.00 0.03 �0.18

Joint angles are calculated using three consecutive landmarks (Figure 4), with the middle

keypoint defining the joint center. ap , 0:05. bp , 0:01.
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develop population-specific feature models for different

demographics, including gender, age, and training level.

Real-time systems offer greater value for technical diagnosis.

However, implementing real-time solutions requires addressing

several technical challenges: (1) Action segmentation: Deep

learning models must classify continuous time-series data into

discrete stroke types (e.g., forehand strokes, backhand strokes,

forehand chops, and backhand chops). (2) Success/failure

classification: The system must distinguish successful shots from

faults by analyzing ball trajectories and automatically detecting

net contacts or boundary violations. (3) Automated ball speed

measurement: Current ball trajectory calibration relies on

manually annotated video coordinates. Real-time automation

requires machine learning approaches, such as Ji et al.’s

framework (56), which integrates VOCUS-based image

segmentation, LGP+Adaboost classification for smear detection,

and dynamic ROI optimization to address environmental noise,

motion blur, and computational delays. (4) Accurate racket-ball

impact timing is essential for movement phase segmentation.

Machine learning models must automatically detect trajectory

discontinuities to precisely calibrate impact moments based on

ball flight path changes. (5) Player movement tracking: Players

move rapidly during rallies, causing partial occlusion or frame

exit. Wide-angle lenses expand the field of view, while advanced

deep learning algorithms can reduce occlusion effects.

5 Conclusions

This study scanned 33 skeletal landmarks, 19 segments, and 12

joints using MediaPipe to identify kinematic features linked to ball

speed in table tennis forehand strokes. These features may enable

lightweight technical evaluation. Ball speed increased with greater

playing-side arm linear movement at the shoulder, elbow and

wrist, as well as with enhanced rotational motion at the playing-

side upper arm, shoulder line, and hip line. Conversely, ball

speed decreased with excessive contralateral shoulder horizontal

flexion/extension and playing-side elbow flexion-extension. These

kinematic patterns comprehensively characterize forward stroke

mechanics, providing critical metrics for technical assessment

and improvement. MediaPipe demonstrated robust performance,

showing high consistency during repetitive motions. Its low-cost,

cross-platform compatibility, high computational efficiency,

minimal hardware dependency, and open-source nature position

TABLE 8 Between-subject correlation matrix showing relationships among age, height, and ball speed across age groups.

Participant characteristics Total (9.1–21.7 yr) ,14:3 yr .14:3 yr

Age Height BS Age Height BS Age Height BS

Age – 0.61a 0.62a – 0.87a 0.68a – −0.14 0.17

Height 0.61a – 0.55a 0.87a – 0.63a −0.14 – −0.29

BS 0.62a 0.55a – 0.68a 0.63a – 0.17 −0.29 –

BS, ball speed.
ap , 0:01.

FIGURE 11

Ball speed distribution by age group. Black dots represent individual player means, colored lines show 95% confidence intervals, and rbs denotes the

between-subject correlation coefficient.
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it as a promising tool for real-time biomechanical analysis in table

tennis training systems.
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