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saddle height classification
in cycling
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Background: Saddle height is an important factor in bike fitting because it
correlates with cycling efficiency and the risk of injuries. Conventional
approaches use anthropometric parameters and joint angles as references to
calculate the optimal saddle height, such as the greater trochanter height and
knee flexion angle. However, these methods fail to consider individual
dynamic differences in cycling.

Objective: This study proposed a machine learning (ML) model for calculating
saddle height based on easily measured kinematic data.

Method: In total, 16 subjects participated in riding tests at three saddle heights.
The motion capture system recorded the trajectories of markers attached to
their lower limbs. Features were calculated using the hip, knee, and ankle
joint angles. The optimal feature set was selected using forward sequential
feature selection. The accuracies of four ML models were compared using
leave-one-subject-out cross-validation.

Results: The optimal feature set contained 14 features related to the hip, knee,
and ankle joint angles. The sagittal plane knee angle was the most sensitive to
the saddle height, with a classification accuracy of 80%. The k-nearest neighbor
model had the highest accuracy of 99.79% when using all the optimal features
as inputs.

Conclusion: The proposed model compensates for the lack of consideration in
traditional methods of individual dynamic variations in cycling, providing a more
objective tool for data-driven personalization in bike fitting.
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1 Introduction

Cycling is becoming more and more popular. However, the number of overuse
injuries related to cycling has also increased. Proper bike fitting is important to reduce
the risk of injuries and increase cycling efficiency (1). Traditional bike fitting methods
rely on static measurements, empirical rules, and subjective feedback from cyclists,
which may not fully account for individual biomechanical variations or dynamic
riding conditions. Saddle height is one of the most studied variables in bike fitting
because it has a greater impact on the range of motion (ROM) of the lower limb
joints and muscles than other variables, such as handlebar height and crank length (2).
A change of 2% in saddle height can significantly alter lower limb kinematics, affecting
the extension and flexion angles of the hip and knee joints and their ROMs (3).
Changes in saddle height of more than 4% can cause changes in oxygen uptake and
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riding efficiency (2). Therefore, the lower limb joint angles are
sensitive to alterations in saddle height. Previous studies have
indicated that the saddle height should be set with a knee angle
of 25°-35° when the crank is at the bottom dead center (BDC)
(4, 5). However, static knee angles fail to match the dynamics of
joint motion, especially at the 6 o’clock crank position, where
the differences between the static and dynamic angles can reach
8.2+ 5° (6). The peak joint loading during actual pedaling can
reach two times the cyclist’s body weight, which is much higher
than that in the static situation (7). Moreover, cyclists tend to
adjust their kinematics (e.g., pelvic rotation, ankle dorsiflexion)
to compensate for suboptimal saddle heights, masking the true
biomechanical relationship in static measurements (8). The
force-length-velocity relationships of muscles vary among
cyclists and are not detectable in static measurements. Some
equations have been proposed to determine saddle height based
on anthropometric measurements and joint angles (9, 10).
However, these methods have not been verified in a diverse
group of cyclists and may not be applicable to certain
female cyclists.

In recent years, machine learning (ML) has been used in
sports science, offering data-driven insights and personalized

solutions (11). Previous studies have demonstrated the
advantages of ML in solving practical problems in biomechanics
(12, 13). Compared with motion capture systems and

instrumented sensors, ML can reduce the cost and duration
related to the evaluation of sports performance. Several studies
have applied ML to cycling, including using long-short memory
neural networks to predict heart rate (14), pulmonary oxygen
uptake (15), and cadence (16). Moreover, power output in
riding has been estimated without measurement by a gradient
boosting algorithm (17) and a tree-based model with random
forest (18). The cycling efficiency index, which reflects the
cycling state, can be predicted by artificial neural networks with
recursive feature elimination based on the lower limb joint
kinematics, power, cadence, and individual mass (19). Pedal
force is essential in assessing pedaling efficiency, but it requires
equipment to measure. A neural network model was used to
predict radial and mediolateral pedal forces based on power,
cadence, and crank angle (20). However, vertical force could not
be predicted, and the accuracy of the mediolateral force needs to
be improved. In addition, a variety of competitions can benefit
from cycling route optimization and race rank prediction using
various ML models (21).

Notwithstanding the promising applications of ML in cycling,
there are several restrictions. The dataset of most ML models is
from professional cyclists and cycling races, limiting their
applicability to amateur cyclists. Several studies involved fewer
than 10 participants, restricting the applicability of these ML
models (16, 17, 22). In addition, current studies focus on
physiological metrics such as heart rate and oxygen uptake and
overlook biomechanical factors such as joint kinematics and
bicycle configurations.

Proper saddle height is crucial for injury prevention and
pedaling efficiency, but ML applications in cycling have not
adequately explored this aspect. The purpose of this study was
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to develop an ML model that can accurately calculate saddle
height based on lower limb joint angles during dynamic riding.
Automatically distinguishing the appropriate saddle height will
help their better
performance and reduce joint stress to avoid overuse injuries.

cyclists  optimize riding posture for

2 Methods

This study consisted of two parts, as shown in Figure 1. In the
cycling experiment part, subjects were recruited to perform riding
tests at different saddle heights. The lower limb joint angles were
calculated using Vicon Nexus 2.16. In the ML model development
part, the model with the highest accuracy was constructed after
comparing the performances of four ML models based on the
selected optimal features.

2.1 Participants

The inclusion criteria for the participants were healthy
individuals between 20 and 30 years old, with a BMI between 19
and 24 kg/m* and a height of 165-180 cm for males or 155-
175 cm for females. Furthermore, they were required to have
reported riding more than once a week for longer than 30 min
in daily life. In total, 16 amateur cyclists (10 males and 6
females, 24.64+3.19 years, BMI of 21.34+2.0 kg/mz) were
recruited who reported that they had not been diagnosed with
any musculoskeletal disease in the previous 6 months. All the
participants signed informed consent forms after being
informed about the experimental procedure and precautions.
The experiment was approved by the university’s Human

Subjects Ethics Sub-Committee (Number: HSEARS20220615001).

2.2 Experiment protocol

The subjects wore uniform, tight-fitting sportswear and their
own sneakers, with sole thicknesses not exceeding 3.5 cm. The
riding tests were conducted on a mountain bike on a smart
training platform (Tacx NEO 2T, Garmin, USA). The bike
configuration was uniform except for the saddle height, which
was set to low, moderate, and high levels. According to a
previous study, saddle heights that were 95% of an individual’s
greater trochanter height (GTH) and 105% of their GTH were
defined as low and high levels, respectively. A saddle height
between 97% and 103% of one’s GTH was defined as the
moderate level.

After warm-up exercises and test riding, the participants
performed three 2-min rides at low, moderate, and high saddle
height levels, respectively. They were given plenty of rest time
between each ride to avoid fatigue. In total, 16 reflective
markers were attached to the participants as required by the
lower limb model in the motion capture system (Vicon Motion
Analysis Inc., Oxford, UK), and were placed at the anterior and
posterior superior iliac spine, and the thigh, knee, tibia, ankle,
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[ Experiment ] [ Machine learning model ]
* Subjects: 10 males, 6 females * Feature extraction
* Riding tests: Mean, Max, Min, ROM
Max & Min crank
@ L angles, CV, RMS, SD
Oio 81 features: 3 joints x 3 plane angles x 9 statistical variables
Forward sequential
3x2min x 3 saddle heights Jeature selection
* Calculation model: Plug-in Gait lower body model
i ; Optimal feature set
* Model construction
—
- 4 models: SVM, KNN, NB, DT
| Leave-one-subject-
: =L N ' out cross validation
Marker trajectory Joint angles
* Outputs: Hip, knee, and ankle joint angles Model with highest accuracy
FIGURE 1
The framework of research. SVM, support vector machine; KNN, k-nearest neighbors; NB, Naive Bayes; DT, decision trees; ROM, range of motion;
CV, coefficient of variation; RMS, root mean square; SD, standard deviation

heel, and toes of the left and right lower limbs. The trajectories of
these markers were recorded at 250 Hz by the system. The
dynamic plug-in gait model was processed in Vicon Nexus 2.16
to calculate the kinematic results. The trajectory of the right
ankle marker (RANK), which was placed on the lateral
malleolus along an imaginary line that passed through the
transmalleolar axis, and the joint angles of the hip, knee, and
ankle of the right leg were output for further analysis.

2.3 Dataset

The trajectory of the RANK marker was first filtered by a
zero-lag fourth-order low-pass filter with a cutoff frequency of
6 Hz. The interval between two adjacent z-coordinate maxima
was defined as a pedaling cycle. Outlier data were excluded
from the subsequent analysis. The lower limb joint angle data
were divided according to the defined pedaling cycles. The
synthetic minority oversampling technique was performed in
Python 3.10 (Python Software Foundation, USA) to balance the
number of datasets among the three groups. The number of
resampled datasets was 72,354, with 24,118 in each saddle
height category.

2.4 Feature extraction

A series of features were extracted from the joint angles,
the the
corresponding crank angle for the maximum and minimum

including maximum and minimum angles,
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angles (ranging from 0° to 360°), the root mean square (RMS)
value, mean, standard deviation (SD), coefficient of variability
(CV) (23), and the ROM (Figure 1). The hip, knee, and ankle
joints each have three joint angles, namely the sagittal plane
angle, coronal plane angle, and transverse plane angle
(Figure 2). Therefore, 81 features (nine statistical types of
features x three joints x three component angles) were extracted
in every pedaling cycle, as summarized in Table 1. The features
were normalized by their maximums. The final constructed
feature array totaled 72,354 x81. The label vector totaled
72,354 x 1, containing categories 1 (low saddle height), 2
(moderate saddle height), and 3 (high saddle height). The
totaled 72,354 x 1,

numbers from 1 to 16 that were used to label the participant to

participant number vector containing

which the features of each row belonged.

2.5 Machine learning model

Forward sequential feature selection in a wrapper fashion was
used to select the optimal feature set from all the features. This
the
incrementally adds features based on their contribution to

approach begins with no features in model and
improving the accuracy of the classification model until the
selection criteria are satisfied. The accuracy of the model was
expressed as the misclassification rate, which was the number of
misclassified samples as a percentage of the total number of
samples (24). Five-fold cross-validation was adopted. The dataset
was divided into five equally sized folds. When one fold was
used as the test set, the remaining four folds formed the

training set. The ML model was trained on the training set, and
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. 1
Sagittal plane Coronal plane  Transverse plane
FIGURE 2
Diagram of the hip, knee, and ankle joint angles

TABLE 1 Features extracted from joint angles.

Plane of Features

Elle] (S
Hip Sagittal

ehip, Max> ehip‘ Min> 0hip,maxTimingr Ghip,minTiming» Ohip, RMS>
Ohip, Mean> Ohip, sD> Ohip, V> Ohip, ROM

Coronal Bhip, Max> Bhip, Min» Bhip,maxTiming> Bhip.minTiming’
Bhip, RMs> Bhip, Means Bhip, sp> Bhip, cv> Bhip, RoM
Transverse Yhip, Max> Yhip, Min> Vhip,maxTiming> Yhip,minTiming> Yhip, RMS»
Yhip, Mean> Yhip,SD> Yhip, CV> Yhip,ROM

Knee Sagitfal Oknee, Maxs Bknee, Min» gknee,muTiming’ 6knee,minTiming>

Ocnee, RMS> Oknee, Mean> Oknee, SD> Oknee, V> Oknee, ROM

Coronal Brnee, Max> Brnee, Min» BineemaxTiming» Bknee,minTiming?
Brace, Ruis> Brnee, Mean> Brnee, 502 Brnee, cvs Brnee, ROM
Transverse Yknee, Max> Yknee, Min> Yknee,maxTiming> Yknee,minTiming>
Yknee, RMS> Yknee, Mean> Yknee, SD> Yknee, CV> Vinee, ROM
Ankle | Sagittal Bankie, Max> Gankle, Min> Bankie,maxTiming> Bankle,minTiming>
Oankle, RMS> Oankle, Mean> Oankle, SD> Oankle, CV> Bankle, ROM
Coronal Bankle, Max> Bankle, Min> Bankie;maxTiming> Bankle,minTiming>
Bankie, Rvs> Bankle, Mean> Bankle, sp> Bankte, cv> Bankle, RoM
Transverse

Yankle, Max> Yankle, Min> Yankle,maxTiming> Yankle,minTiming>
Yankle, RMS> Yankle, Mean> Yankle, SD> Yankle, CV> Yankle, ROM

CV, coefficient of variation; Max, maximum; Min, minimum; RMS, root mean square; SD,
standard deviation.

its accuracy was assessed by the test set. Five accuracy rates were
obtained as each fold was used as the test set in turn. The
average of the five accuracy rates was the final accuracy.

Support vector machine (SVM), k-nearest neighbors (KNN),
(NB), (DT)
commonly used in classification and prediction tasks (25). The

naive Bayes and decision trees models are

accuracy of the four models was examined using leave-one-
subject-out cross-validation (LOSOCV) based on the obtained
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optimal feature set (24). Similarly, each subject’s data were used
as the test set in turn, and the remaining data from the 15
subjects were the training set. The performance of each ML
model was assessed by the average accuracy from the 16 tests.
The loss function was the lowest misclassification cost. Bayesian
optimization was used.

2.6 Statistical analysis

The sample size of 16 was calculated using G*Power 3.1.9.7
(Universitat Disseldorf, Diisseldorf, Germany) based on a
significance level of 0.05, statistical power of 0.8, and a medium
effect size of 0.34 using the within-factor F-test with three
repeated measures. Since the data did not meet the hypothesis
of the normal distribution test and the assumption of the
homogeneity of variance, the statistical differences in features
between the three groups of saddle heights were assessed using
the Friedman test with a significance level of a<0.05. A post-
hoc pairwise comparison using the Wilcoxon signed-rank test
with Bonferroni correction was conducted if significance was
found in the Friedman test.

The classification accuracy rate based on a single feature in the
optimal feature set was calculated by the ML model to characterize
the contribution of each feature to the final performance of the
model. The correlations between the individual features in the
optimal set were measured using Pearson’s correlation
coefficient, r, which was defined as a strong (|r| > 0.7), moderate
(0.5<|r] <0.7), low (0.3<]|r|<0.5), or negligible correlation
(|r] < 0.3) (26). The above analysis process, including processing

the experimental data, dataset construction, feature extraction,
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calculation of model accuracy, and statistical analysis, was
conducted in MATLAB R2024a (MathWorks Inc.,, Natick,
Massachusetts, USA).

3 Results
3.1 Optimal feature set

In total, 14 features were selected from 81 features to form the
optimal set, including three ankle joint features (B, sp>
YankleRMs> Yanklesp)> four hip joint features (6hipsp, Bhipmean>
Bhipsp>  Yhiprums)> and seven knee joint features (6kneeMaxs
OkneeMean> OkneeRange> BineeMean> Bknee,SD> Yknee,Mean> Ykneesp)- Lhe
selected features presented at least one set of statistical
differences between the three saddle height levels, as shown in
Figure 3. The most notable changes were in 6ipeeMax> Oknee,Mean>
Oknee,Range> aDd Bypeesp (P <0.001) as the saddle height increased.
BrneeMean Was only statistically different between the low and
high saddle height levels (p <0.001). The classification accuracy
of the saddle height levels based on one feature suggested a
contribution of the selected feature to the final accuracy
(Figure 4). 6gneeMean and GkneeMmax achieved the highest accuracy
rates of 80.19% and 79.58%, respectively. The top five features
with the highest accuracy rankings were all related to knee joint
angle. The bottom three features with the lowest accuracy
rankings were By sps BhipMean> a1d bhipsp, with accuracy rates
around 35%.

Most of the correlation coefficients between features in the
optimal feature set were less than 0.5, meaning that most of the
features had a low or negligible correlation with each other
(Figure 5). Strong correlations existed between B,,4.sp and
Yankle;sp (7=0.86), Yanuesp and Yojprys (r=0.80), Biuesp and
Yhiprus (=0.77), and Bknee,Max and Opee Mean (7 =0.77).

3.2 Comparison of machine learning
models

The classification accuracies at each saddle height level and
the averaged accuracies were compared among the SVM, KNN,
NB, and DT models (Figure 6). The KNN model achieved
the highest average accuracy of 99.79% and outperformed the
other three models. It also performed the best in the
classification of each saddle height level with an accuracy of
99.96% for the low level, 99.52% for the moderate level, and
99.89% for the high level. The DT model was a bit inferior to
the KNN model, with an average accuracy of 96.81%, which
was higher than that of the SVM and NB models. The DT
model had the lowest classification accuracy for the moderate
level (93.16%) and the highest for the low level (99.47%).
The average accuracy of the SVM model was 93.10%. The NB
model had the lowest average accuracy (81.18%) among the
four models, especially for the moderate level, with the
accuracy of only 59.91%.
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4 Discussion

An improper saddle height can lead to knee strain, lower back
pain, and reduced power output (2, 27). Conventional methods of
optimizing saddle height have predominantly relied on static
anthropometric indices, such as leg length (28). However, these
methods exhibit significant limitations because they neglect the
dynamic interactions within the lower limb kinematic chain and
interindividual heterogeneity in biomechanical responses, which
lead to different definitions of the optimal saddle height. For
instance, a study demonstrated that the knee joint angles of only
37% of subjects were within the recommended range of 25°-35°
when using the 109% inseam method to set the saddle height
(29). Static and dynamic knee angles were found to be
significantly different by approximately 8° at the BDC position
(4). Such
inadequacy of static models in capturing real-time cycling
Despite the
measurements, the required equipment and techniques are not

contradictions underscore the methodological

kinematics. growing acceptance of dynamic
always available, especially for daily training and outdoor
cycling. An ML model was developed in this study to classify
the saddle height level based on features extracted from the
This
compensates for the limitations of existing ML models in bike

dynamically measured angles of lower limb joints.

fitting, as most models focus on predictions of a cyclist’s
physiological parameters and competition performance.

The statistical analysis of features revealed statistically
significant variations in lower limb joint angles in three
dimensions across the three saddle height levels (Figure 3).
These multiplanar kinematic changes corroborate previous
findings that a reduction in saddle height increases ankle
dorsiflexion, flexion and abduction of the knee, and flexion of
the hip, while the ROMs of three lower limb joints also decrease
(30-32). Furthermore, the most significant variation has been
observed in the flexion-extension knee joint angle features
because the knee joint angle has the largest ROM in the sagittal
plane. This was confirmed in a previous study, as there were
more significant changes in knee flexion angle and its ROM
than in ankle and hip joints during cycling with varied saddle
heights in both cyclists and triathletes (30). A 5% increase in
saddle height caused a 25% increase in the ROM of the knee
flexion angle (33). This explains our results, as the mean,
maximum, and range values of the sagittal plane knee angle
varied most significantly at different saddle heights. A previous
study also showed a notable increase in the ROM of the ankle
dorsiflexion angle from 27° to 41° as saddle height increased
(33). However, our optimal feature set only included the RMS
and SD values associated with the abduction-adduction and
inversion-eversion ankle angles. This discrepancy may result
from the fact that we used Pyro Platform shoes with front and
rear heel constraints in the experiment, whereas they used
common commercial cycling shoes. In addition, the mean of the
abduction-adduction angle and the RMS of the external-
internal rotation angle of the hip joint were included in the
optimal feature set. The changes in joint kinematics in the
transverse and coronal planes revealed by ML analysis may
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FIGURE 3
Statistical results of the selected features for the low, moderate, and high saddle heights.

provide new insights for future research, since most cycling studies

have focused on the sagittal plane (34, 35).

The fact that the highest classification accuracy was based on a
single knee flexion angle feature emphasizes the influence of

Frontiers in Sports and Active Living

saddle height on knee kinematics (Figure 4). A lower saddle
height resulted in a decreased sagittal plane angle and decreased
ROM of the knee and further induced a greater knee extension
moment rather than an abduction moment (31). Furthermore,
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the abduction angle of the knee did not show significant changes
in our study when the saddle height increased by less than 5%. The
knee extension moment is an indicator of knee joint loading since
it exhibits the same changing behavior at various saddle heights
as the tibiofemoral compressive force (36). The SD values of the
adduction/abduction and internal/external rotation angles of
the knee in the optimal feature set increased at a higher saddle
height, while their means declined. This may indicate that a
high saddle height exacerbated oscillations and instability in the
lower limbs. Therefore, saddle height adjustment is very
important to prevent injuries to the knee joint.

The KNN model showed superior performance in saddle
height classification compared to the other three ML models
(Figure 6). all the models
limitation: reduced accuracy in classifying the moderate saddle

However, shared a common
height level compared to the high and low levels. The NB model
displayed particularly low accuracy of 59.91% for moderate
heights. This may be related to the model’s assumption of
feature independence, but latent correlations always exist in
human biomechanical datasets. Another critical reason is that
the joint angles displayed more pronounced variations at
extreme saddle heights. Cyclists may naturally exhibit greater
movement variability when riding at moderate height deviations
from their preferred position, as the biomechanical constraints

Frontiers in Sports and Active Living

are less severe than at extreme heights. This adaptive behavior
increases intraclass variation for moderate conditions. The
moderate height condition (97%-103% of GTH) encompassed a
wider range of saddle heights compared to the singular high
(105% GTH) and low (95% GTH) conditions. This introduced
greater variance in joint angles and could reduce the model’s
ability to identify consistent patterns for classification. Moreover,
the use of the synthetic minority oversampling technique
increased the data volume for the high and low saddle height
groups while maintaining the original sample size for the
moderate height group, which created an imbalance in data
dispersion. The high/low saddle heights showed a lower
numerical variance compared to the moderate group, making
their classification comparatively easier. Despite the dataset only
including lower limb joint angle features, the low correlation
coefficients shown in Figure 5 indicated that feature selection
successfully isolated complementary and non-redundant
predictors. However, strong correlations were found between a
subset of features. While multicollinearity may have distorted
the interpretability of the model, its impact was mitigated by
two factors. First, most features exhibited low correlations,
preserving the diversity of input information. Second, the top-
performing KNN model is non-parametric and relies on

distance metrics rather than coefficient weights, reducing
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FIGURE 5

The correlation coefficients between the features in the optimal feature set.

sensitivity to inter-feature dependencies (37). In addition, the
effects of saddle height on knee extension moments, oxygen
uptake, and cycling efficiency have been identified (31, 38).
Including more metrics, such as pedal force and power output,
may enhance the model’s sensitivity to subtle saddle
height differences.

It is difficult to compare the accuracy rates of our model with
other studies because we could not find similar ML models that
identified saddle heights during dynamic cycling. However, the
developed KNN model in this study achieved a high accuracy of
99.79%, which already demonstrated its superiority and the
effectiveness of the approach. Several ML models have been
developed to recognize cycling parameters such as cadence (16)
and pedaling profiles (39) with high accuracies of more than
95%. Their data were acquired by inertial measurement units
(IMUs). It has been reported that IMU measurement of joint
angles has a lower error rate per pedaling cycle (40). Therefore,
IMUs can be used instead of motion capture systems to measure
joint angles in future studies, enabling real-world outdoor
cycling experiments.

By utilizing lower limb joint angle features as inputs, the
developed model achieved high saddle height classification

accuracy, providing a more objective and personalized approach

Frontiers in Sports and Active Living

by considering the dynamic effects in cycling. However, this
study still has the following limitations. First, the recruited
cyclists were not stratified by gender, age, or skill level, which
could potentially affect the generalizability of the model. Gender
disparity has been demonstrated in previous studies (41, 42), but
it was in this

neglected study. Due to differences in

anthropometry, such as leg length and segment mass
distribution, men and women may have different joint angles
at the same saddle height. This may increase the dispersion of
the original data used to train the model and subsequently
affect the classification accuracy of the model. Second, the
data were collected by a motion capture system and there is a
discrepancy between cycling in the lab and actual outdoor
cycling. Third, each feature in the optimal set was selected
and verified, but some pairs of features still exhibited strong
correlations. Future studies should classify participants based
on their gender and cycling skills and use portable sensors,
such as IMUs, to collect data during outdoor cycling (43).
The accuracy and universality of the ML model can be
improved by incorporating more kinematic and kinetic
variables. Various ML models should be constructed for bike
fitting for other configurations and cycling disciplines (e.g.,

road cycling vs. mountain biking).
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FIGURE 6
Comparison of the classification accuracies of four machine learning models. NB, Naive Bayes; SVM, support vector machine; DT, decision tree; KNN,
k-nearest neighbors.

5 Conclusion

This study developed a KNN machine learning model that had
high accuracy when identifying saddle height levels using lower
limb joint angle features. The four evaluated ML models showed
lower accuracy for the moderate saddle height level compared to
the low and high levels. The redundancy of the inputs and the
correlations between the features were reduced by screening
the optimal feature set. The sagittal plane knee joint angle
was the variable most sensitive to saddle height, with a
classification accuracy of 80.19% based on this feature. When
the ankle and hip joint angles were included, the classification
accuracy was improved to 99.79%. This approach highlights the
potential for leveraging data-driven tools in cycling to provide
personalized bike fitting and objective recommendations.
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