
EDITED BY  

Christian Maurer-Grubinger,  

University Hospital Frankfurt, Germany

REVIEWED BY  

Paolo Gaffurini,  

University of Brescia, Italy  

Datao Xu,  

Ningbo University, China

*CORRESPONDENCE  

Ming Zhang  

ming.zhang@polyu.edu.hk

RECEIVED 07 April 2025 

ACCEPTED 21 August 2025 

PUBLISHED 17 September 2025

CITATION 

Bing F, Zhang G, Wei L and Zhang M (2025) A 

machine learning approach for saddle height 

classification in cycling.  

Front. Sports Act. Living 7:1607212. 

doi: 10.3389/fspor.2025.1607212

COPYRIGHT 

© 2025 Bing, Zhang, Wei and Zhang. This is an 

open-access article distributed under the 

terms of the Creative Commons Attribution 

License (CC BY). The use, distribution or 

reproduction in other forums is permitted, 

provided the original author(s) and the 

copyright owner(s) are credited and that the 

original publication in this journal is cited, in 

accordance with accepted academic practice. 

No use, distribution or reproduction is 

permitted which does not comply with 

these terms.

A machine learning approach for 
saddle height classification 
in cycling

Fangbo Bing
1
, Guoxin Zhang

1
, Linjuan Wei

1 
and Ming Zhang

1,2*

1Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic 

University, Hong Kong SAR, China, 2Research Institute for Sports and Technology, The Hong Kong 

Polytechnic University, Hong Kong SAR, China

Background: Saddle height is an important factor in bike fitting because it 

correlates with cycling efficiency and the risk of injuries. Conventional 

approaches use anthropometric parameters and joint angles as references to 

calculate the optimal saddle height, such as the greater trochanter height and 

knee flexion angle. However, these methods fail to consider individual 

dynamic differences in cycling.

Objective: This study proposed a machine learning (ML) model for calculating 

saddle height based on easily measured kinematic data.

Method: In total, 16 subjects participated in riding tests at three saddle heights. 

The motion capture system recorded the trajectories of markers attached to 

their lower limbs. Features were calculated using the hip, knee, and ankle 

joint angles. The optimal feature set was selected using forward sequential 

feature selection. The accuracies of four ML models were compared using 

leave-one-subject-out cross-validation.

Results: The optimal feature set contained 14 features related to the hip, knee, 

and ankle joint angles. The sagittal plane knee angle was the most sensitive to 

the saddle height, with a classification accuracy of 80%. The k-nearest neighbor 

model had the highest accuracy of 99.79% when using all the optimal features 

as inputs.

Conclusion: The proposed model compensates for the lack of consideration in 

traditional methods of individual dynamic variations in cycling, providing a more 

objective tool for data-driven personalization in bike fitting.
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1 Introduction

Cycling is becoming more and more popular. However, the number of overuse 

injuries related to cycling has also increased. Proper bike fitting is important to reduce 

the risk of injuries and increase cycling efficiency (1). Traditional bike fitting methods 

rely on static measurements, empirical rules, and subjective feedback from cyclists, 

which may not fully account for individual biomechanical variations or dynamic 

riding conditions. Saddle height is one of the most studied variables in bike fitting 

because it has a greater impact on the range of motion (ROM) of the lower limb 

joints and muscles than other variables, such as handlebar height and crank length (2). 

A change of 2% in saddle height can significantly alter lower limb kinematics, affecting 

the extension and +exion angles of the hip and knee joints and their ROMs (3). 

Changes in saddle height of more than 4% can cause changes in oxygen uptake and 
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riding efficiency (2). Therefore, the lower limb joint angles are 

sensitive to alterations in saddle height. Previous studies have 

indicated that the saddle height should be set with a knee angle 

of 25°–35° when the crank is at the bottom dead center (BDC) 

(4, 5). However, static knee angles fail to match the dynamics of 

joint motion, especially at the 6 o’clock crank position, where 

the differences between the static and dynamic angles can reach 

8.2 ± 5° (6). The peak joint loading during actual pedaling can 

reach two times the cyclist’s body weight, which is much higher 

than that in the static situation (7). Moreover, cyclists tend to 

adjust their kinematics (e.g., pelvic rotation, ankle dorsi+exion) 

to compensate for suboptimal saddle heights, masking the true 

biomechanical relationship in static measurements (8). The 

force–length–velocity relationships of muscles vary among 

cyclists and are not detectable in static measurements. Some 

equations have been proposed to determine saddle height based 

on anthropometric measurements and joint angles (9, 10). 

However, these methods have not been verified in a diverse 

group of cyclists and may not be applicable to certain 

female cyclists.

In recent years, machine learning (ML) has been used in 

sports science, offering data-driven insights and personalized 

solutions (11). Previous studies have demonstrated the 

advantages of ML in solving practical problems in biomechanics 

(12, 13). Compared with motion capture systems and 

instrumented sensors, ML can reduce the cost and duration 

related to the evaluation of sports performance. Several studies 

have applied ML to cycling, including using long-short memory 

neural networks to predict heart rate (14), pulmonary oxygen 

uptake (15), and cadence (16). Moreover, power output in 

riding has been estimated without measurement by a gradient 

boosting algorithm (17) and a tree-based model with random 

forest (18). The cycling efficiency index, which re+ects the 

cycling state, can be predicted by artificial neural networks with 

recursive feature elimination based on the lower limb joint 

kinematics, power, cadence, and individual mass (19). Pedal 

force is essential in assessing pedaling efficiency, but it requires 

equipment to measure. A neural network model was used to 

predict radial and mediolateral pedal forces based on power, 

cadence, and crank angle (20). However, vertical force could not 

be predicted, and the accuracy of the mediolateral force needs to 

be improved. In addition, a variety of competitions can benefit 

from cycling route optimization and race rank prediction using 

various ML models (21).

Notwithstanding the promising applications of ML in cycling, 

there are several restrictions. The dataset of most ML models is 

from professional cyclists and cycling races, limiting their 

applicability to amateur cyclists. Several studies involved fewer 

than 10 participants, restricting the applicability of these ML 

models (16, 17, 22). In addition, current studies focus on 

physiological metrics such as heart rate and oxygen uptake and 

overlook biomechanical factors such as joint kinematics and 

bicycle configurations.

Proper saddle height is crucial for injury prevention and 

pedaling efficiency, but ML applications in cycling have not 

adequately explored this aspect. The purpose of this study was 

to develop an ML model that can accurately calculate saddle 

height based on lower limb joint angles during dynamic riding. 

Automatically distinguishing the appropriate saddle height will 

help cyclists optimize their riding posture for better 

performance and reduce joint stress to avoid overuse injuries.

2 Methods

This study consisted of two parts, as shown in Figure 1. In the 

cycling experiment part, subjects were recruited to perform riding 

tests at different saddle heights. The lower limb joint angles were 

calculated using Vicon Nexus 2.16. In the ML model development 

part, the model with the highest accuracy was constructed after 

comparing the performances of four ML models based on the 

selected optimal features.

2.1 Participants

The inclusion criteria for the participants were healthy 

individuals between 20 and 30 years old, with a BMI between 19 

and 24 kg/m2 and a height of 165–180 cm for males or 155– 

175 cm for females. Furthermore, they were required to have 

reported riding more than once a week for longer than 30 min 

in daily life. In total, 16 amateur cyclists (10 males and 6 

females, 24.64 ± 3.19 years, BMI of 21.34 ± 2.0 kg/m2) were 

recruited who reported that they had not been diagnosed with 

any musculoskeletal disease in the previous 6 months. All the 

participants signed informed consent forms after being 

informed about the experimental procedure and precautions. 

The experiment was approved by the university’s Human 

Subjects Ethics Sub-Committee (Number: HSEARS20220615001).

2.2 Experiment protocol

The subjects wore uniform, tight-fitting sportswear and their 

own sneakers, with sole thicknesses not exceeding 3.5 cm. The 

riding tests were conducted on a mountain bike on a smart 

training platform (Tacx NEO 2T, Garmin, USA). The bike 

configuration was uniform except for the saddle height, which 

was set to low, moderate, and high levels. According to a 

previous study, saddle heights that were 95% of an individual’s 

greater trochanter height (GTH) and 105% of their GTH were 

defined as low and high levels, respectively. A saddle height 

between 97% and 103% of one’s GTH was defined as the 

moderate level.

After warm-up exercises and test riding, the participants 

performed three 2-min rides at low, moderate, and high saddle 

height levels, respectively. They were given plenty of rest time 

between each ride to avoid fatigue. In total, 16 re+ective 

markers were attached to the participants as required by the 

lower limb model in the motion capture system (Vicon Motion 

Analysis Inc., Oxford, UK), and were placed at the anterior and 

posterior superior iliac spine, and the thigh, knee, tibia, ankle, 
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heel, and toes of the left and right lower limbs. The trajectories of 

these markers were recorded at 250 Hz by the system. The 

dynamic plug-in gait model was processed in Vicon Nexus 2.16 

to calculate the kinematic results. The trajectory of the right 

ankle marker (RANK), which was placed on the lateral 

malleolus along an imaginary line that passed through the 

transmalleolar axis, and the joint angles of the hip, knee, and 

ankle of the right leg were output for further analysis.

2.3 Dataset

The trajectory of the RANK marker was first filtered by a 

zero-lag fourth-order low-pass filter with a cutoff frequency of 

6 Hz. The interval between two adjacent z-coordinate maxima 

was defined as a pedaling cycle. Outlier data were excluded 

from the subsequent analysis. The lower limb joint angle data 

were divided according to the defined pedaling cycles. The 

synthetic minority oversampling technique was performed in 

Python 3.10 (Python Software Foundation, USA) to balance the 

number of datasets among the three groups. The number of 

resampled datasets was 72,354, with 24,118 in each saddle 

height category.

2.4 Feature extraction

A series of features were extracted from the joint angles, 

including the maximum and minimum angles, the 

corresponding crank angle for the maximum and minimum 

angles (ranging from 0° to 360°), the root mean square (RMS) 

value, mean, standard deviation (SD), coefficient of variability 

(CV) (23), and the ROM (Figure 1). The hip, knee, and ankle 

joints each have three joint angles, namely the sagittal plane 

angle, coronal plane angle, and transverse plane angle 

(Figure 2). Therefore, 81 features (nine statistical types of 

features × three joints × three component angles) were extracted 

in every pedaling cycle, as summarized in Table 1. The features 

were normalized by their maximums. The final constructed 

feature array totaled 72,354 × 81. The label vector totaled 

72,354 × 1, containing categories 1 (low saddle height), 2 

(moderate saddle height), and 3 (high saddle height). The 

participant number vector totaled 72,354 × 1, containing 

numbers from 1 to 16 that were used to label the participant to 

which the features of each row belonged.

2.5 Machine learning model

Forward sequential feature selection in a wrapper fashion was 

used to select the optimal feature set from all the features. This 

approach begins with no features in the model and 

incrementally adds features based on their contribution to 

improving the accuracy of the classification model until the 

selection criteria are satisfied. The accuracy of the model was 

expressed as the misclassification rate, which was the number of 

misclassified samples as a percentage of the total number of 

samples (24). Five-fold cross-validation was adopted. The dataset 

was divided into five equally sized folds. When one fold was 

used as the test set, the remaining four folds formed the 

training set. The ML model was trained on the training set, and 

FIGURE 1 

The framework of research. SVM, support vector machine; KNN, k-nearest neighbors; NB, Naïve Bayes; DT, decision trees; ROM, range of motion; 

CV, coefficient of variation; RMS, root mean square; SD, standard deviation.
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its accuracy was assessed by the test set. Five accuracy rates were 

obtained as each fold was used as the test set in turn. The 

average of the five accuracy rates was the final accuracy.

Support vector machine (SVM), k-nearest neighbors (KNN), 

naïve Bayes (NB), and decision trees (DT) models are 

commonly used in classification and prediction tasks (25). The 

accuracy of the four models was examined using leave-one- 

subject-out cross-validation (LOSOCV) based on the obtained 

optimal feature set (24). Similarly, each subject’s data were used 

as the test set in turn, and the remaining data from the 15 

subjects were the training set. The performance of each ML 

model was assessed by the average accuracy from the 16 tests. 

The loss function was the lowest misclassification cost. Bayesian 

optimization was used.

2.6 Statistical analysis

The sample size of 16 was calculated using G*Power 3.1.9.7 

(Universität Düsseldorf, Düsseldorf, Germany) based on a 

significance level of 0.05, statistical power of 0.8, and a medium 

effect size of 0.34 using the within-factor F-test with three 

repeated measures. Since the data did not meet the hypothesis 

of the normal distribution test and the assumption of the 

homogeneity of variance, the statistical differences in features 

between the three groups of saddle heights were assessed using 

the Friedman test with a significance level of α < 0.05. A post- 

hoc pairwise comparison using the Wilcoxon signed-rank test 

with Bonferroni correction was conducted if significance was 

found in the Friedman test.

The classification accuracy rate based on a single feature in the 

optimal feature set was calculated by the ML model to characterize 

the contribution of each feature to the final performance of the 

model. The correlations between the individual features in the 

optimal set were measured using Pearson’s correlation 

coefficient, r, which was defined as a strong (|r| ≥ 0.7), moderate 

(0.5 ≤ |r| < 0.7), low (0.3 ≤ |r| < 0.5), or negligible correlation 

(|r| < 0.3) (26). The above analysis process, including processing 

the experimental data, dataset construction, feature extraction, 

TABLE 1 Features extracted from joint angles.

Joint Plane of 
angle

Features

Hip Sagittal uhip, Max , uhip, Min , uhip,maxTiming , uhip,minTiming , uhip, RMS , 

uhip, Mean , uhip, SD , uhip, CV , uhip, ROM

Coronal bhip, Max , bhip, Min , bhip,maxTiming , bhip,minTiming, 

bhip, RMS , bhip, Mean , bhip, SD , bhip, CV , bhip, ROM

Transverse ghip, Max , ghip, Min , ghip,maxTiming , ghip,minTiming, ghip, RMS, 

ghip, Mean , ghip,SD , ghip, CV , ghip,ROM

Knee Sagittal uknee, Max , uknee, Min , uknee,maxTiming , uknee,minTiming , 

uknee, RMS, uknee, Mean , uknee, SD , uknee, CV , uknee, ROM

Coronal bknee, Max , bknee, Min , bknee,maxTiming , bknee,minTiming, 

bknee, RMS , bknee, Mean , bknee, SD , bknee, CV , bknee, ROM

Transverse gknee, Max , gknee, Min , gknee,maxTiming, gknee,minTiming , 

gknee, RMS , gknee, Mean , gknee, SD , gknee, CV , gknee, ROM

Ankle Sagittal uankle, Max , uankle, Min , uankle,maxTiming, uankle,minTiming, 

uankle, RMS , uankle, Mean , uankle, SD , uankle, CV , uankle, ROM

Coronal bankle, Max , bankle, Min , bankle,maxTiming , bankle,minTiming , 

bankle, RMS , bankle, Mean , bankle, SD , bankle, CV , bankle, ROM

Transverse gankle, Max, gankle, Min , gankle,maxTiming , gankle,minTiming , 

gankle, RMS, gankle, Mean , gankle, SD , gankle, CV , gankle, ROM

CV, coefficient of variation; Max, maximum; Min, minimum; RMS, root mean square; SD, 

standard deviation.

FIGURE 2 

Diagram of the hip, knee, and ankle joint angles.
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calculation of model accuracy, and statistical analysis, was 

conducted in MATLAB R2024a (MathWorks Inc., Natick, 

Massachusetts, USA).

3 Results

3.1 Optimal feature set

In total, 14 features were selected from 81 features to form the 

optimal set, including three ankle joint features (bankle, SD, 

gankle,RMS, gankle,SD), four hip joint features (uhip,SD, bhip,Mean, 

bhip,SD, ghip,RMS), and seven knee joint features (uknee,Max, 

uknee,Mean, uknee,Range, bknee,Mean, bknee,SD, gknee,Mean, gknee SD). The 

selected features presented at least one set of statistical 

differences between the three saddle height levels, as shown in 

Figure 3. The most notable changes were in uknee,Max, uknee,Mean, 

uknee,Range, and bknee,SD (p < 0.001) as the saddle height increased. 

bknee,Mean was only statistically different between the low and 

high saddle height levels (p < 0.001). The classification accuracy 

of the saddle height levels based on one feature suggested a 

contribution of the selected feature to the final accuracy 

(Figure 4). uknee,Mean and uknee,Max achieved the highest accuracy 

rates of 80.19% and 79.58%, respectively. The top five features 

with the highest accuracy rankings were all related to knee joint 

angle. The bottom three features with the lowest accuracy 

rankings were bhip,SD, bhip,Mean, and uhip,SD, with accuracy rates 

around 35%.

Most of the correlation coefficients between features in the 

optimal feature set were less than 0.5, meaning that most of the 

features had a low or negligible correlation with each other 

(Figure 5). Strong correlations existed between bankle,SD and 

gankle,SD (r = 0.86), gankle,SD and ghip,RMS (r = 0.80), bankle,SD and 

ghip,RMS (r = 0.77), and uknee,Max and uknee,Mean (r = 0.77).

3.2 Comparison of machine learning 
models

The classification accuracies at each saddle height level and 

the averaged accuracies were compared among the SVM, KNN, 

NB, and DT models (Figure 6). The KNN model achieved 

the highest average accuracy of 99.79% and outperformed the 

other three models. It also performed the best in the 

classification of each saddle height level with an accuracy of 

99.96% for the low level, 99.52% for the moderate level, and 

99.89% for the high level. The DT model was a bit inferior to 

the KNN model, with an average accuracy of 96.81%, which 

was higher than that of the SVM and NB models. The DT 

model had the lowest classification accuracy for the moderate 

level (93.16%) and the highest for the low level (99.47%). 

The average accuracy of the SVM model was 93.10%. The NB 

model had the lowest average accuracy (81.18%) among the 

four models, especially for the moderate level, with the 

accuracy of only 59.91%.

4 Discussion

An improper saddle height can lead to knee strain, lower back 

pain, and reduced power output (2, 27). Conventional methods of 

optimizing saddle height have predominantly relied on static 

anthropometric indices, such as leg length (28). However, these 

methods exhibit significant limitations because they neglect the 

dynamic interactions within the lower limb kinematic chain and 

interindividual heterogeneity in biomechanical responses, which 

lead to different definitions of the optimal saddle height. For 

instance, a study demonstrated that the knee joint angles of only 

37% of subjects were within the recommended range of 25°–35° 

when using the 109% inseam method to set the saddle height 

(29). Static and dynamic knee angles were found to be 

significantly different by approximately 8° at the BDC position 

(4). Such contradictions underscore the methodological 

inadequacy of static models in capturing real-time cycling 

kinematics. Despite the growing acceptance of dynamic 

measurements, the required equipment and techniques are not 

always available, especially for daily training and outdoor 

cycling. An ML model was developed in this study to classify 

the saddle height level based on features extracted from the 

dynamically measured angles of lower limb joints. This 

compensates for the limitations of existing ML models in bike 

fitting, as most models focus on predictions of a cyclist’s 

physiological parameters and competition performance.

The statistical analysis of features revealed statistically 

significant variations in lower limb joint angles in three 

dimensions across the three saddle height levels (Figure 3). 

These multiplanar kinematic changes corroborate previous 

findings that a reduction in saddle height increases ankle 

dorsi+exion, +exion and abduction of the knee, and +exion of 

the hip, while the ROMs of three lower limb joints also decrease 

(30–32). Furthermore, the most significant variation has been 

observed in the +exion-extension knee joint angle features 

because the knee joint angle has the largest ROM in the sagittal 

plane. This was confirmed in a previous study, as there were 

more significant changes in knee +exion angle and its ROM 

than in ankle and hip joints during cycling with varied saddle 

heights in both cyclists and triathletes (30). A 5% increase in 

saddle height caused a 25% increase in the ROM of the knee 

+exion angle (33). This explains our results, as the mean, 

maximum, and range values of the sagittal plane knee angle 

varied most significantly at different saddle heights. A previous 

study also showed a notable increase in the ROM of the ankle 

dorsi+exion angle from 27° to 41° as saddle height increased 

(33). However, our optimal feature set only included the RMS 

and SD values associated with the abduction–adduction and 

inversion-eversion ankle angles. This discrepancy may result 

from the fact that we used Pyro Platform shoes with front and 

rear heel constraints in the experiment, whereas they used 

common commercial cycling shoes. In addition, the mean of the 

abduction–adduction angle and the RMS of the external– 

internal rotation angle of the hip joint were included in the 

optimal feature set. The changes in joint kinematics in the 

transverse and coronal planes revealed by ML analysis may 
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provide new insights for future research, since most cycling studies 

have focused on the sagittal plane (34, 35).

The fact that the highest classification accuracy was based on a 

single knee +exion angle feature emphasizes the in+uence of 

saddle height on knee kinematics (Figure 4). A lower saddle 

height resulted in a decreased sagittal plane angle and decreased 

ROM of the knee and further induced a greater knee extension 

moment rather than an abduction moment (31). Furthermore, 

FIGURE 3 

Statistical results of the selected features for the low, moderate, and high saddle heights.
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the abduction angle of the knee did not show significant changes 

in our study when the saddle height increased by less than 5%. The 

knee extension moment is an indicator of knee joint loading since 

it exhibits the same changing behavior at various saddle heights 

as the tibiofemoral compressive force (36). The SD values of the 

adduction/abduction and internal/external rotation angles of 

the knee in the optimal feature set increased at a higher saddle 

height, while their means declined. This may indicate that a 

high saddle height exacerbated oscillations and instability in the 

lower limbs. Therefore, saddle height adjustment is very 

important to prevent injuries to the knee joint.

The KNN model showed superior performance in saddle 

height classification compared to the other three ML models 

(Figure 6). However, all the models shared a common 

limitation: reduced accuracy in classifying the moderate saddle 

height level compared to the high and low levels. The NB model 

displayed particularly low accuracy of 59.91% for moderate 

heights. This may be related to the model’s assumption of 

feature independence, but latent correlations always exist in 

human biomechanical datasets. Another critical reason is that 

the joint angles displayed more pronounced variations at 

extreme saddle heights. Cyclists may naturally exhibit greater 

movement variability when riding at moderate height deviations 

from their preferred position, as the biomechanical constraints 

are less severe than at extreme heights. This adaptive behavior 

increases intraclass variation for moderate conditions. The 

moderate height condition (97%–103% of GTH) encompassed a 

wider range of saddle heights compared to the singular high 

(105% GTH) and low (95% GTH) conditions. This introduced 

greater variance in joint angles and could reduce the model’s 

ability to identify consistent patterns for classification. Moreover, 

the use of the synthetic minority oversampling technique 

increased the data volume for the high and low saddle height 

groups while maintaining the original sample size for the 

moderate height group, which created an imbalance in data 

dispersion. The high/low saddle heights showed a lower 

numerical variance compared to the moderate group, making 

their classification comparatively easier. Despite the dataset only 

including lower limb joint angle features, the low correlation 

coefficients shown in Figure 5 indicated that feature selection 

successfully isolated complementary and non-redundant 

predictors. However, strong correlations were found between a 

subset of features. While multicollinearity may have distorted 

the interpretability of the model, its impact was mitigated by 

two factors. First, most features exhibited low correlations, 

preserving the diversity of input information. Second, the top- 

performing KNN model is non-parametric and relies on 

distance metrics rather than coefficient weights, reducing 

FIGURE 4 

Classification accuracies based on individually selected features.
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sensitivity to inter-feature dependencies (37). In addition, the 

effects of saddle height on knee extension moments, oxygen 

uptake, and cycling efficiency have been identified (31, 38). 

Including more metrics, such as pedal force and power output, 

may enhance the model’s sensitivity to subtle saddle 

height differences.

It is difficult to compare the accuracy rates of our model with 

other studies because we could not find similar ML models that 

identified saddle heights during dynamic cycling. However, the 

developed KNN model in this study achieved a high accuracy of 

99.79%, which already demonstrated its superiority and the 

effectiveness of the approach. Several ML models have been 

developed to recognize cycling parameters such as cadence (16) 

and pedaling profiles (39) with high accuracies of more than 

95%. Their data were acquired by inertial measurement units 

(IMUs). It has been reported that IMU measurement of joint 

angles has a lower error rate per pedaling cycle (40). Therefore, 

IMUs can be used instead of motion capture systems to measure 

joint angles in future studies, enabling real-world outdoor 

cycling experiments.

By utilizing lower limb joint angle features as inputs, the 

developed model achieved high saddle height classification 

accuracy, providing a more objective and personalized approach 

by considering the dynamic effects in cycling. However, this 

study still has the following limitations. First, the recruited 

cyclists were not stratified by gender, age, or skill level, which 

could potentially affect the generalizability of the model. Gender 

disparity has been demonstrated in previous studies (41, 42), but 

it was neglected in this study. Due to differences in 

anthropometry, such as leg length and segment mass 

distribution, men and women may have different joint angles 

at the same saddle height. This may increase the dispersion of 

the original data used to train the model and subsequently 

affect the classification accuracy of the model. Second, the 

data were collected by a motion capture system and there is a 

discrepancy between cycling in the lab and actual outdoor 

cycling. Third, each feature in the optimal set was selected 

and verified, but some pairs of features still exhibited strong 

correlations. Future studies should classify participants based 

on their gender and cycling skills and use portable sensors, 

such as IMUs, to collect data during outdoor cycling (43). 

The accuracy and universality of the ML model can be 

improved by incorporating more kinematic and kinetic 

variables. Various ML models should be constructed for bike 

fitting for other configurations and cycling disciplines (e.g., 

road cycling vs. mountain biking).

FIGURE 5 

The correlation coefficients between the features in the optimal feature set.
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5 Conclusion

This study developed a KNN machine learning model that had 

high accuracy when identifying saddle height levels using lower 

limb joint angle features. The four evaluated ML models showed 

lower accuracy for the moderate saddle height level compared to 

the low and high levels. The redundancy of the inputs and the 

correlations between the features were reduced by screening 

the optimal feature set. The sagittal plane knee joint angle 

was the variable most sensitive to saddle height, with a 

classification accuracy of 80.19% based on this feature. When 

the ankle and hip joint angles were included, the classification 

accuracy was improved to 99.79%. This approach highlights the 

potential for leveraging data-driven tools in cycling to provide 

personalized bike fitting and objective recommendations.
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