

OPEN ACCESS

EDITED BY
José Rocco.

Aeronautics Institute of Technology, (ITA), Brazil

REVIEWED BY

Rene Gonçalves,

Instituto Tecnológico de Aeronáutica, Brazil

*CORRESPONDENCE

Reza Hedayati,

⊠ rezahedayati@gmail.com

RECEIVED 17 June 2025
ACCEPTED 13 August 2025
PUBLISHED 23 September 2025

CITATION

Hedayati R, Holynska M, Tharakan TJ, Grande AM, Kour P and Safri SNA (2025) Editorial: Next generation of materials for space applications.

Front. Space Technol. 6:1648634. doi: 10.3389/frspt.2025.1648634

COPYRIGHT

© 2025 Hedayati, Holynska, Tharakan, Grande, Kour and Safri. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Next generation of materials for space applications

Reza Hedayati¹*, Malgorzata Holynska², T. John Tharakan³, Antonio Mattia Grande⁴, Paramjit Kour⁵ and Syafiqah Nur Azrie Safri⁶

¹Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran, ²European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands, ³Liquid Propulsion Systems Centre, Thiruvananthapuram, India, ⁴Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy, ⁵Department of Computer Science and IT, University of Jammu, Jammu, India, ⁶Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Serdang, Selangor Darul Ehsan, Malaysia

KEYWORDS

lunar, moon, international space station, mars, MICP, concrete

Editorial on the Research Topic

Next generation of materials for space applications

The next-generation of materials for space applications must meet several requirements including extended durability, radiation resistance, light weight, and high strength. Moreover, the goal is to develop more sustainable and demisable materials (Hedayati and Stulova, 2023a; Hedayati and Stulova, 2023b). Current challenges also include the growing performance requirements of space missions, long-term on-ground storage and the impact of specific lunar/planetary environmental factors such as the presence of regolith.

This Research Topic, with five articles submitted, explores the latest advances in materials selection and synthesis for space applications.

The study by Ichimura and Yamashiki analyzed and assessed the status of essential life support elements (air, water, and food) and wellbeing elements (clothing, hygiene, and healthcare) on the International Space Station. The authors' results showed that resupply missions involve not only gas tanks and water bags but also a significant number of spare items for maintenance of recovery systems. They discovered that each resupply mission is inefficient as resupplies account for only 0.21% of the total launch mass. The researchers stated that as humans explore the Moon and beyond, frequent resupplies will become impractical due to higher launch costs and longer delivery times, and they proposed developing technologies to realize a sustainable human presence in space.

The review article by Pernigoni and Grande provided an overview of the most significant innovations in the field of materials for space applications, along with the related advantages and challenges. After introducing the main environmental factors in space and their potential risks and effects on materials, the authors proceeded with the description of novel materials for space applications, subdivided into polymers, metals, semiconductors, composites, and mixtures. Innovations in manufacturing techniques and *in situ* resource utilization were also briefly discussed.

Gupta et al. explored the feasibility of using Microbially Induced Calcite Precipitation (MICP) to repair damaged sintered lunar bricks. Their systematic approach revealed that while initial damage significantly compromised the mechanical properties of these bricks,

Hedayati et al. 10.3389/frspt.2025.1648634

subsequent repairs using a MICP-based slurry resulted in a meaningful recovery of their compressive strength.

Instead of heavy metals, Tarikuzzaman et al. proposed using waste human hair as a building material in space due to its high tensile strength and availability during long-term missions. They measured the workability, compressive strength, and porosity of concrete with different hair compositions. Increased workability and porosity were observed with increased hair concentrations. Compressive strength slightly decreased with increased hair concentration.

Due to their good thermal conductivity and thermal shock resistance, ultra-high temperature ceramics such as zirconium diboride (ZrB2) have been investigated as promising materials to be used in reusable thermal protection systems. Meanwhile, radiation exposure in space can degrade the properties of these materials, especially during prolonged missions. In another interesting contribution, Rønning and Tang studied the interaction of electron radiation, which can be found in the outer Van Allen belt, with ZrB2. They investigated the response of the thermo-optical properties of ZrB2 to increasing electron radiation fluences. The ZrB2 samples were characterized by their microstructure, thermal conductivity, coefficient of thermal expansion (CTE), emittance, absorptivity, and surface roughness before and after irradiation.

We would like to express our appreciation to the authors, the reviewers, and the Editorial office of Frontiers in Space Technologies, all of whom contributed greatly to this Research Topic. We hope that the articles published here will open new avenues in the field of novel materials for space applications.

Author contributions

RH: Validation, Supervision, Writing – review and editing, Conceptualization, Writing – original draft. MH: Writing – original draft, Writing – review and editing, Supervision, Conceptualization. JT: Writing – original draft, Writing – review and editing, Investigation, Conceptualization. AG: Investigation, Writing – review and editing, Supervision,

References

Hedayati, R., and Stulova, V. (2023a). 3D Printing for Space habitats: requirements, challenges, and recent advances. *Aerospace* 10 (7), 653. doi:10.3390/aerospace10070653

Methodology, Writing – original draft. PK: Writing – original draft, Writing – review and editing, Methodology, Supervision. SS: Writing – review and editing, Writing – original draft, Methodology.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Hedayati, R., and Stulova, V. (2023b). 3D printing of habitats on mars: effects of low temperature and pressure. *Materials* 16 (14), 5175. doi:10.3390/ma16145175