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Mapping soil salinity
using machine learning
and remote sensing data
in semi-arid croplands
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Mohamed Chikhaoui3, Mustapha Naimi3,
Mohammed Hssaisoune1,2,4, Mohammed El Hafyani2,
Yassine Ait Brahim1 and Lhoussaine Bouchaou1,2

1International Water Research Institute, Mohammed VI Polytechnic University (UM6P), Ben
Guerir, Morocco, 2Applied Geology and Geoenvironment Laboratory, Faculty of Sciences,
Ibnou Zohr University, Agadir, Morocco, 3Hassan II Institute of Agronomy and Veterinary Medicine,
Rabat, Morocco, 4Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
Soil salinity significantly constrains agricultural productivity and land

sustainability, particularly in irrigated areas. While, remote sensing offers large-

scale monitoring capacity, but its accuracy depends on how effectively spectral

information is integrated with advanced modeling approaches. This study

evaluates the performance of a combined approach based on machine

learning (ML) algorithms and satellite-derived predictors for soil salinity

mapping in the Béni Amir Sub-perimeter of Tadla plain, Morocco. A total of 43

topsoil samples (0–10 cm) were collected and analyzed for electrical

conductivity (ECe) and resampled to 144 samples for model training and

testing. Predictor Variables were derived from Landsat-8 OLI data, including

salinity indices (OLI-SI, SI, SI1), intensity indices (Int1, Int2), brightness index (BI),

land degradation index (LDI), and reflectance values of selected spectral bands

(B2-B7) were standardized and transformed with PCA to address

multicollinearity. Four ML algorithms, Random Forest (RF), K-Nearest

Neighbors (KNN), Support Vector Regressor (SVR), and Multi-Layer Perceptron

(MLP) were tested. The results show that the Ece ranges from 0.84 to 10.28 dS/m

with a standard deviation of 2.29 dS/m, indicating substantial salinity variability

across the Béni Amir sub-perimeter. Individual predictors exhibited moderate

correlation with Ece (R = 0.34-0.72). Among the applied models, KNN achieved

the highest accuracy (mean coefficient of determination (R²) = 0.75 [0.73-0.77];

Root Mean Square Error (RMSE) = 0.61 dS/m). The resulting maps revealed a

consistent southwestward increase in salinity, following the regional hydraulic

flow. KNN classified 49% of the area as moderately saline, 22% as slightly saline,

and 20% as non-saline, while the strongly and extremely saline classes covered

8.4% and 0.6%, respectively. RF, SVR, and MLP showed comparable trends, with
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moderately saline areas ranging between 30-41% and strongly to extremely

saline soils below 10%. These findings demonstrated that combining satellite-

derived data with ML enables a reliable assessment of soil salinity, supporting

management of irrigated agroecosystems.
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1 Introduction

In the era of climate change, salinization heavily affects soil

quality, especially in arid environments where water resources are

limited (1, 2). Soil salinization poses an increasing threat to

sustainable agriculture, particularly in arid and semi-arid regions

where irrigation is crucial for maintaining crop yields (3). Salinity

reduces soil fertility, impairs plant growth, and leads to significant

yield losses, posing challenges to global food security. According to

the FAO, salt-affected soils cover 424 million hectares of topsoil (0–

30 cm) and 833 million hectares of subsoil (30–100 cm), based on

73% of the land mapped so far (4). Overall, soil salinization affects

approximately 1 billion hectares of land, including over 20% of

irrigated croplands (5, 6).

In Morocco, about 16% of the croplands are affected by salinity,

resulting in a significant reduction in agricultural productivity and

posing a threat to land sustainability (7). The Tadla Plain, one of the

country’s main irrigated areas, is particularly vulnerable. Multiple

factors, including recurrent drought, groundwater overexploitation,

inefficient irrigation practices, and the use of saline water,

contribute to the accumulation of salinity (8). In addition,

inadequate drainage infrastructure accelerates secondary

salinization (9). Previous studies in the Tadla plain (10, 11), have

highlighted the role of land use in controlling salinity patterns,

emphasizing the need for accurate spatial assessments to support

management strategies.

Traditional methods for soil salinity assessment rely on field

sampling, laboratory electrical conductivity (EC) analysis, and GIS-

based interpolation (12). Nevertheless, these provide reliable point-

based measurements; they are costly, labor-intensive, and limited in

spatial and temporal coverage. Remote sensing techniques offer an

efficient alternative for large-scale monitoring (13). Landsat-8 OLI

provides free, continuous medium-resolution imagery with a long

archive and spectral bands that capture soil characteristics

influenced by salinity, making it a reliable source for monitoring

soil salinity patterns. Numerous studies (14–16) have demonstrated

the effectiveness of Landsat-8 OLI for deriving salinity indices and

mapping salt-affected soils across different agroecological regions.

Recent advances in machine learning (ML) algorithms have

proven their ability to analyze complex interactions between remote

sensing variables and soil properties (17–19). Algorithms such as

Random Forest (RF), Artificial Neural Networks (ANN), and
02
Support Vector Regression (SVR) have been applied in various

agroecological areas, demonstrating accuracy in mapping soil

salinity. Wang et al. (20). compared the performance of Landsat-8

OLI and Sentinel-2 MSI in soil salinity detection using

Multivariable Linear Regression (MLR). Similarly, Aksoy et al.

(15) compared the efficiency of eXtreme Gradient Boosting

(XGBoost) and RF algorithms in estimating soil salinity using

Landsat-8 OLI based indices, environmental covariates, and EC

values. Fu et al. (21) developed and compared soil salinity indices

using RF, Support Vector Machine (SVM), and XGBoost models.

Naimi et al. (22) modeled soil salinity using spectral indices derived

from Sentinel-2 and environmental variables, evaluating K-nearest

neighbors (KNN) alongside RF, SVM, and ANN. More recently,

Thangarasu et al. (23) applied RF, ANN, and SVM using various

satellite-derived from Landsat 8/9 data as variables to map soil

salinity. However, in Morocco, and particularly in the Tadla plain,

ML-based salinity mapping remains limited, despite the growing

need for accurate and cost-effective monitoring tools.

This study investigates the integration of ML algorithms and

Landsat-8 OLI data to assess soil salinity in the Béni Amir sub-

perimeter of the Tadla plain. This paper aims to compare the

performance of four ML models (RF, SVR, ANN, and KNN) for

salinity mapping and prediction with limited data, and to generate

salinity maps to support sustainable management of irrigated areas.
2 Materials and methods

2.1 Study area and background

The current work was conducted in the Béni Amir irrigated

sub-perimeter of the Tadla Plain, covering 674 km² in central

Morocco (Figure 1). The Tadla Plain is a major hydro-

agricultural region of Central Morocco. Formerly barren and

exploited for pastoral purposes, this region has become a fertile

agricultural area following the installation of an irrigation network,

and nowadays contributing to a large proportion of national

agricultural production, up to 30% for sugar beets, 12% for

fodder, 11% for citrus fruits and olives, 10% for market

gardening, 6% for cereals and 10% for milk (11). Since the

development and commissioning of the irrigated perimeter, the

salt-affected area of agricultural lands has been steadily increasing
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(10). Irrigation water sources include both shallow groundwater

and surface water from the Oum Er Rbia River. Reported salinities

are on the order of about 3.2 g/L for groundwater and about 1.3 g/L

for the Oum Er Rbia surface water (8). In practice, some farmers

also blend surface water with groundwater at the field or parcel scale

(24), which can further vary the salinity of applied irrigation water

across the perimeter. The irrigation network in the region, managed

by the Regional Office for Agricultural Development of Tadla

(ORMVAT) and supplied by the Oum Er Rbia River, primarily

relies on surface (gravity) irrigation, which leads to considerable

water losses due to inefficient infrastructure and evaporation.

Although some farmers use sprinkler systems, a growing number

are shifting toward drip irrigation to improve water-use

efficiency (25).

The geology of the region is characterized by a vast syncline

filled with sedimentary deposits accumulated during the Cretaceous

and Tertiary eras (26).
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The pedology reveals considerable soil heterogeneity in the

Tadla Plain. Kastanozems, which cover 43% of the land, are rich

in organic matter and support soil fertility and agricultural

productivity. On the other hand, Leptosols, accounting for 32% of

the study area, contain high levels of calcium and magnesium,

which influence soil chemistry and plant growth. Nitisols-Alisols,

cover 18% of the area. Other various soil types characterize the

remaining 7% of the area (27).

The climate of the study area is arid to semi-arid, with annual

precipitation ranging from 150 to 450mm (28). The dry season, which

extends from April to October, is characterized by minimal rainfall,

typically between 0 and 50 mm per month. In contrast, the rainy

season, which occurs from November to March, accounts for

approximately 70% of the total (29). Temperatures exhibit

significant seasonal variations, with a maximum of 46°C in August

and a minimum of -6°C in January, resulting in an annual average of

20°C. The yearly average evaporation is approximately 1800 mm,
FIGURE 1

Location of the Tadla Plain, Morocco (a), extent of the study area shown on a Landsat 8 RGB composite (b), and soil sampling distribution (c).
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nearly six times the annual cumulative rainfall (30). The average

altitude ranges from 350 m to 500 m, and the overall slope is less than

6°, with the lowest point located at Sidi-Driss (31).
2.2 Integrated methodology

The methodology used in this study is summarized in Figure 2.

The ground truth data were collected by sampling soil from 43

georeferenced locations between October 28 and 31, 2021, using a

stratified random sampling approach to ensure a representative

assessment of soil variability across the Béni Amir sub-perimeter.

The sampling design was informed by previous studies in the Tadla

plain, which identified significant gradients. Each sampling point

corresponded to a homogeneous 30 m × 30 m area, matching the

spatial resolution of the Landsat-8 OLI reflective bands used in this

study. Field conditions during sampling were largely post-harvest,

with minimal vegetation cover, ensuring that satellite reflectance

captured soil rather than canopy characteristics. The electrical

conductivity (ECe) of each soil sample (0–10 cm) was analyzed in

the laboratory using the saturated paste extract method, as

described by Rhoades (32). The sampled soils were classified into

five salinity classes (Supplementary Table S1 in the Supplementary

Material) in accordance with Ivushkin et al. (33). To support model

training and testing, given the limited dataset, the samples were

resampled to 144 sample instances using a controlled data

augmentation strategy detailed in Section 2.3.

Concurrently, Landsat imagery acquired on November 12, 2021

(c loud cover = 0 .11%) , downloaded f rom (ht tps : / /

earthexplorer.usgs.gov/, accessed on December, 1st 2021), and

preprocessed in QGIS 2.18.0. The image has been radiometrically

calibrated and atmospherically corrected using the Dark Object

Subtraction (DOS) (23, 34). The data was geometrically corrected to

align with the collected ground truth data, facilitating seamless

integration for comparative analysis.

Furthermore, spectral bands spanning from the visible,

including Blue (B2), Green (B3), and Red (B4), to the short-wave

infrared wavelengths, SWIR1 (B6) and SWIR2 (B7), are used as

recommended by previous studies (35, 36). Their efficiency in

identifying and mapping salt-affected soils underscores their

essential role in assessing soil degradation in both agricultural

and natural landscapes. Spectral indices were calculated, including

soil salinity indices (37, 38), intensity indices (39), brightness

indices (38), and the land degradation index (LDI) (7, 40)

(Supplementary Table S2, Supplementary Figure S1 in the

Supplementary Material).

Data preprocessing was performed in a Visual Studio Code

environment using the Python programming language, involving

the application of resampling techniques to overcome class

imbalances, scaling methods to normalize spectral and laboratory

data, and principal component analysis (PCA) to address

multicollinearity among predictor variables, and to enhance the

stability and performance of the models. The first five principal

components (PC1-PC5) were subsequently used as input variables

for all ML models. This transformation ensured that all predictors
Frontiers in Soil Science 04
were orthogonal, and representative of the main spectral variance

associated with soil salinity.

Additionally, a systematic data-splitting approach has been

applied, dividing the data into training (70%) and testing (30%)

subsets, with 20 (folds) runs using different random seeds to assess

model stability. It is worth noting that the resampling method was

applied only to the training subset. The testing subset was left

untouched to validate the models’ performance. The ML model’s

performance was evaluated using three metrics: the coefficient of

determination (R2), Mean Absolute Error (MAE), and Root Mean

Square Error (RMSE). In each iteration, the metrics were calculated

to determine the models’ performance and stability. Additionally,

95% Confidence Intervals (CI) for R² were also estimated to

quantify the uncertainty of the models (41, 42). Additionally,

statistical differences among models were evaluated using the

Friedman test (43, 44), followed by the Nemenyi post-hoc test for

pairwise comparisons (45). Once validated, the four ML models

with median performance metrics were deployed to generate soil

salinity maps, enabling a comparative spatial assessment of their

predictive performance and providing valuable insights for

sustainable land management.
2.3 Data resampling

Given the limited sample size characteristic of field campaigns in

data-scarce regions, machine learning models are highly susceptible

to overfitting and learning the noise in the data rather than the actual

insights regarding the target variable. To mitigate this risk and

enhance model robustness, a data augmentation strategy employing

bootstrapping with noise is used (46). This technique involves

resampling the original training data samples with replacement

(bootstrapping), where the target variable (ECe) belongs to different

intervals. Next, a small amount of random noise drawn from a

Gaussian distribution was injected into the data. According to Aksoy

et al. (15), the use of random oversampling techniques enables the

model to learn a more generalizable function of the target variable,

rather than memorizing individual data points.
2.4 Data standardization

The dataset was normalized using a standard-scaling method

(Equation 1). The standardized values were subsequently rescaled to

the interval of (–1, 1) to enhance numerical stability and facilitate

the convergence of ML models, as recommended in previous

studies (47, 48).

xscaled =
xi − xmean

s
(1)

where xscaled   is the scaled variable, xi is the i
th sample variable,

xmean is the average value, and s is the standard deviation. The

mean and standard deviation of the training set were computed

before the resampling phase, and were used on the resampled

training subset, as well as the testing subset.
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2.5 Multicollinearity correction

Among the variables used, most spectral bands and indices are

inherently correlated, and such multicollinearity can distort

regression coefficients, inflate variance, and reduce the stability of

predictive models (49). PCA addresses this issue by transforming the
Frontiers in Soil Science 05
original set of correlated variables into a smaller number of

orthogonal (uncorrelated) principal components, each representing

a linear combination of the original features (50). In our case, we

retained enough components to preserve up to 99% of the variance in

the data, resulting in five non-collinear components that capture

nearly all the information in the original data. This transformation
FIGURE 2

Flowchart detailing the workflow for soil salinity mapping, from data acquisition to map generation.
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not only enhances model stability and predictive performance but

also mitigates the risk of overfitting that may arise when highly

collinear predictors are used in ML algorithms (49).
2.6 Machine learning

The algorithms used in this research fall into the category of

supervised ML algorithms. The ground truth corresponding to the

samples was provided as input to the model during the calibration

phase. Four ML models were implemented: KNN, SVR, RF, and

MLP. In addition to being widely used in literature, these models

use a learning approach to identify hidden patterns in the data and

correlate the input and output variables (22, 51).

2.6.1 K-nearest neighbors
The KNN algorithm is designed for classification problems

where the class of the sample is determined based on the majority

class of its n closest neighbors (52, 53). The number of neighbors is

the main parameter in this algorithm (54). In the case of regression,

the average values of the closest neighbors are taken as

the prediction.

2.6.2 Support vector regressor
Similarly, SVM is dedicated to classification tasks; however, its

regression version, SVR, attempts to discover a hyperplane

optimally fitting the data points in a continuous space (55). The

input variables are mapped into a high-dimensional space of

features, and the hyperplane is found that maximizes the distance

between the hyperplane and the nearest data points while

minimizing the error of prediction (56).
2.6.3 Random forest
RF algorithm consists of several decision trees, each of which is

trained on a random subset of the data, and computing the outcome

(57). The outputs are then aggregated into a final output value (33,

58). The RF classifier takes the majority votes of the trees’

predictions, unlike the regression version, which tends to average

the trees ’ predictions and assigns the average to the

predicted instance.

2.6.4 Multi-layer perceptron
MLP is a type of Artificial Neural Networks (ANNs) used for

function approximation, pattern recognition, and classification

tasks (59). They are known for their ability to capture complex

relationships in data by learning through multiple computation

layers (60).

Furthermore, although each model has different parameters, it

is optimal to determine the best hyperparameters for training the

models. For this purpose, we employed a random-search technique

(23, 61). This later enabled us to examine the performance of the

models under the influence of various sets of hyperparameters.

Additionally, it is noteworthy that we launched hyperparameter

tuning under a range of random seeds to eliminate the bias
Frontiers in Soil Science 06
introduced by randomness. Table 1 lists the different parameter

sets for each algorithm, along with the optimal parameters in

each case.
2.7 Evaluation metrics

To validate the performance of the models, three evaluation

metrics were used, namely: R2,MAE, and RMSE, as described by

Equations 2–4, respectively.

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − y)2

(2)

MAE =
1
no

n

i=1
❘ yi − by i ❘   (3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
(on

n=1(yi − ŷ i)
2

r
(4)

Where yi is the observed value, ŷ i is the predicted value, y  is the

mean value, and n s the number of samples in the testing dataset.
3 Results

3.1 Descriptive statistics of ECe and
predictor correlations

The statistical analysis parameters for the target variable (ECe)

and independent variables are illustrated in Figure 3. The ECe

values in the study area ranged from 0.84 to 10.28 dS/m, with a

standard deviation (Std) of 2.29 dS/m, reflecting considerable

variation in soil salinity levels. Spatially, high EC values were
TABLE 1 Search space and the best hyperparameters.

Model Parameter sets Best parameters

KNN • n_neighbors [3,5,7,9,11] • n_neighbors: 8

SVR

• C: np.logspace(-2, 2, 10)
• epsilon: np.linspace(0.01, 0.5, 5)
• kernel: [“linear”, “poly”, “rbf”]
• degree: [2, 3, 4]
• gamma: [‘scale’, ‘auto’]

• C: 1.0325
• epsilon: 0.1237
• kernel: “rbf”
• degree: 3,
• gamma: “scale”

RF

• n_estimators: [100, 200, 300, 500]
• max_depth: [5, 10, 15, None]
• min_samples_split: [2, 5, 10]
• min_samples_leaf: [1, 2, 4]
• max_features: [“sqrt”, “log2”, None]
• bootstrap: [True]
• max_samples: [0.8, 0.9, 1.0]

• n_estimators: 500
• max_depth: 5
• min_samples_split: 2
• min_samples_leaf: 1
• max_features: ‘sqrt’
• bootstrap: True
• max_samples: 0.9

MLP

• hidden_layer_sizes: [(50), (100),
(200), (100, 50), (200, 100)]
• activation: [“relu”, “tanh”]
• solver: [“adam”, “lbfgs”]
• alpha: [0.0001, 0.001, 0.01, 0.1]
• learning_rate: [“constant”,
“adaptive”]

• hidden_layer_sizes:
(100,50)
• activation: “relu”
• solver: “adam”

• alpha: 0.001
• learning_rate:
“adaptive”
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concentrated downstream (southwest), while lower values were

observed towards the northeast region.

Derived spectral bands and indices varied between 0 and 1.5.

Among them, LDI and OLI showed the greatest variability, with a

Std of 0.28 and 0.09, respectively. Meanwhile, other variables

exhibited lower variability, with a Std ranging between 0.01

and 0.06.

The correlation matrix (Figure 4) revealed a strong positive

relationship between the target variable EC and OLI and LDI, as

well as bands 7 and 6, indicating their potential relevance to salinity

variability. Conversely, BI and Int2 showed weak correlation with

ECe, suggesting limited direct predictive value. However, several

predictors exhibited strong intercorrelations, particularly Int1 with

SI, SI1, B4, B3, B2, B7, and B6, indicating substantial

multicollinearity among the spectral variables.

Given these interrelationships, PCA was applied to standardized

predictors, transforming the original 13 correlated variables into

orthogonal principal components (PCs). The loading pattern

(Supplementary Figure S2a) indicates that PC1 carries broadly

uniform positive contributions across predictors, PC2 is dominated

by BI (≈0.75), PC3 by OLI-SI/LDI/OLI (≈0.58–0.59), PC4 by B6

(≈0.53) with a negative OLI contribution (≈−0.41), and PC5 by LDI

(≈0.70) with a negative OLI contribution (≈−0.60). The scree and

cumulative variance plots (Supplementary Figure S2–c) indicate that

PC1–PC5 account for approximately 99% of the total variance.
3.2 Models performance

Model training was performed using 70% (80 samples) of the

dataset, with the remaining 30% (11 samples) reserved for testing. A
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comparison of the predicted and measured ECe values revealed that

the models exhibit comparable performances during the training

phase (Figure 5, Table 2). As previously mentioned, the models that

yielded median scores were retained for performance

representation. The KNN model yielded the lowest accuracy (R²

= 0.91), while the RF, SVR, and MLP models achieved the highest

accuracy (R² = 0.99). Overall, the predicted values generally aligned

well with the measured ECe values, indicating satisfactory model

training (Figure 6).

However, during the testing phase, performance differences

become more evident (Table 3). The RF and MLP models

resulted in relatively low accuracy (R² = 0.53; RMSE = 0.75 dS/m;

and R² = 0.45; RMSE = 0.90 dS/m, respectively), failing to generalize

to the independent test dataset, indicating overfitting, especially in

the case of MLP. In contrast, the SVR model exhibited moderate

predictive accuracy, with an R2 of 0.59 and an RMSE of 0.62 dS/m,

suggesting slight overfitting (Figure 7). On the other hand, KNN

achieved the best results, with an R2 score of 0.76 and an RMSE of

0.40 dS/m.

Although the overall results are relatively low (except for KNN),

the models still follow the general pattern of EC variation and

predict the peaks and troughs observed in the measured data

(Figure 8). Additionally, sudden variations in EC lead to

predictions that overshoot or undershoot the target value; these

examples occur around the third (sudden decrease), fourth (sharp

increase), and fifth peaks. These peaks were not reproduced by any

of the models, with a greater overestimation and underestimation in

MLP and RF, respectively. On the much smoother datapoints, the

models tend to closely follow the EC data, with KNN producing the

best visual results (8th to 12th datapoints). At the same time, MLP

and SVR exhibit erratic behavior (9th-12th datapoints). Generally,
FIGURE 3

Boxplots of descriptive statistics for ECe and predictor variables, including spectral bands and indices.
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the chart shows that while all models effectively capture the

temporal dynamics of EC, MLP and SVR exhibit significant

instability. In contrast, KNN provides the most visually consistent

predictions with the observed measurements.

To strengthen the comparative evaluation of the tested models,

additional statistical analyses were performed. First, the 95% CI for R²

was calculated to assess the variability and robustness of model

performance (Table 4). Based on results from k-fold experiments

with a 20-fold split (Figure 9), the KNN model achieved the highest

predictive accuracy, with a mean R² of 0.75 (95% CI: 0.73–0.77).

Conversely, the MLP recorded the lowest performance (mean R² =

0.45, CI: 0.42–0.52). To assess whether differences among models were

statistically significant, a Friedman test was conducted, yielding a c²(3)
statistic of 22.90 and a p-value of 0.0 (<0.05), confirming substantial

differences in performance rankings. A subsequent Nemenyi post-hoc

test revealed that the performances of RF, SVR, and MLP were

statistically comparable (p > 0.05), with SVR and MLP being

marginally different (p=0.04). In contrast, KNN differed significantly

from the other models (p < 0.05) (Table 4). These findings reinforce the

conclusion that KNN indeed performs best among the models used for

soil salinity in the study area.
3.3 Spatial salinity distribution

The maps generated (Figure 10) show a progressive increase in

soil salinity from upstream to downstream (southwest). The spatial
Frontiers in Soil Science 08
analysis of soil salinity classes shows distinct predictive behaviors

under different ML models (Figure 11). The KNN classified the

most significant portion of areas as moderately saline (49%) and

showed a substantial share in non-saline soils (20%), but also

produced the highest proportion of strongly saline (8.4%) and

extremely saline (0.6%) areas. SVR and RF yielded comparable

distributions, with moderately saline classes covering 41% and 32%

of the regions, respectively, while strongly saline soils represented

6% (SVR) and 10% (RF), and extremely saline areas remained

limited (1% and 0.8%). In contrast, MLP predicted the highest

proportion of slightly saline soils (48.5%) and a similar share of

moderately saline areas (30%), with only 1.4% being strongly saline.

Overall, while KNN provided the most balanced and accurate

classification, MLP and RF emphasized slightly to moderately

saline conditions, and SVR maintained intermediate estimates

across classes.
4 Discussion

Remote sensing combined with ML has been applied

extensively for soil salinity assessment in diverse environments.

Ivushkin et al. (33) reported that CART achieved a higher accuracy

(70%) than SVM and RF using thermal data. Ge et al. (62)

demonstrated the strong predictive ability of the gradient

boosting regression tree (GBRT) with Sentinel-2 MSI and

environmental covariates(R2 = 0.88; RMSE = 6.33 dS/m). Kaplan
FIGURE 4

Correlation matrix among ECe and predictor variables, including spectral bands and indices.
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et al. (63) found that the instance-based learning with parameter k

(IBK) outperformed RF and linear regression in arid regions. In

Morocco, numerous studies have explored the mapping of salt-

affected soils using spectral indices and statistical models. Lhissou,
Frontiers in Soil Science 09
et al. (64) obtained R² = 0.90 in the Tadla plain by combining

satellite data with field EC measurements. El hafyani et al. (65) and

Rafik et al. (66) reported high predictive power in the Tafilalt plain

through regression-based approaches. Ait Lahssaine et al. (67)
FIGURE 5

Comparison between measured and predicted EC values for the training dataset using for machine learning models: KNN, RF, SVR, and MLP.
TABLE 2 Evaluation of metrics for the train set.

RMSE MAE R2

Mean Std Median CI (95%) Mean Std Median CI (95%) Mean Std Median CI (95%)

LB UP LB UP LB UP

KNN 0.41 0.09 0.43 0.11 0.45 0.25 0.04 0.25 0.23 0.27 0.91 0.038 0.91 0.90 0.93

RF 0.12 0.02 0.11 0.11 0.13 0.07 0.01 0.07 0.07 0.08 0.99 0.003 0.99 0.98 0.99

SVR 0.08 0.07 0.12 0.10 0.15 0.08 0.04 0.08 0.09 0.11 0.98 0.004 0.99 0.98 0.99

MLP 0.07 0.06 0.10 0.04 0.12 0.04 0.03 0.04 0.02 0.006 0.99 0.07 0.99 0.98 0.99
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documented increasing salinization in Rheris oases between

between1990 and 2022. These studies illustrate the value of

remote sensing but generally rely on limited predictor sets.

This study contributes by integrating multiple variables within an

ML framework to assess soil salinity in the Béni Amir sub-perimeter.

Correlation analysis (Figure 4) revealed the strongest associations

between Ece and OLI-SI and LDI, followed by SWIR-related bands

(B7, B6), whereas BI and Int2 show weak relationships. The original

predictors were then summarized into orthogonal principal

components (Supplementary Figure S2a) to mitigate collinearity

while retaining salinity-related variance. Consequently, interpretation

emphasizes how salinity information is captured by the leading PCs

rather than by any single raw predictor, with the strongest Ece

associations concentrated in the first components.
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Among the tested models, KNN demonstrated the highest

predictive accuracy (mean R² = 0.75; RMSE = 0.61 dS/m). The

SVR exhibits competitive performance (mean R2 = 0.59; RMSE =

0.62 dS/m). MLP and RF performed similarly, with an R2 of 0.47

and 0.54 and RMSEs of 0.90 and 0.75 dS/m, respectively.

Confidence-interval analysis further corroborated the superiority

and robustness of KNN, as evidenced by its narrow R² interval

(± 0.03 around the mean).

The salinity maps exhibit a transparent gradient, with elevated

EC concentrated downstream (southwest) and lower values in the

upstream (northeast). This pattern follows the regional hydraulic

flow as reported by El Harti et al. (8). Furthermore, the spatial

distribution of soil salinity in sub-perimeter of Béni Amir is further

reinforced by topographic effects promoting solute accumulation in
FIGURE 6

Comparison of observed EC with model predictions acoss 80 training observations.
TABLE 3 Evaluation of metrics for the test set.

RMSE MAE R2

Mean Std Median CI (95%) Mean Std Median CI (95%) Mean Std Median CI (95%)

LB UP LB UP LB UP

KNN 0.61 0.06 0.61 0.58 0.64 0.49 0.06 0.50 0.46 0.52 0.75 0.04 0.76 0.73 0.77

RF 0.75 0.12 0.75 0.72 0.81 0.61 0.10 0.61 0.58 0.65 0.54 0.08 0.53 0.51 0.57

SVR 0.62 0.15 0.62 0.60 0.73 0.52 0.11 0.50 0.47 0.57 0.59 0.09 0.59 0.55 0.63

MLP 0.90 0.14 0.90 0.83 0.96 0.71 0.11 0.71 0.58 065 0.47 0.10 0.45 0.42 0.52
frontier
sin.org

https://doi.org/10.3389/fsoil.2025.1653400
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Chaaou et al. 10.3389/fsoil.2025.1653400
low-lying areas (68), land cover dynamics influencing salt inputs

and leaching (11), and climatic conditions enhancing evaporite

concentration during dry periods (10).

Although all models reproduced the main gradient, KNN

yielded the most spatially coherent predictions with realistic

transitions between classes. Considering both predictive accuracy

and spatial plausibility, the KNN-derived map is the most reliable

product for operational decision-making in Béni Amir.

Operational guidance based on the KNNmap targets interventions

by salinity class. For strongly and extremely saline soils, actions include

drainage rehabilitation, controlled leaching, and shifting to salt-tolerant

crops or intercropping; gypsum application is advised for sodicity. In

moderately saline soils, preventive strategies involve selecting

moderately tolerant cultivars, using intercropping, pressurized

irrigation with leaching, and routine EC monitoring. For low-salinity

soils, maintaining optimized irrigation, periodic testing, and balanced
Frontiers in Soil Science 11
fertilization are recommended. The implementation prioritizes KNN-

identified hotspots, conducting field verification before making

significant investments, thereby offering a robust, site-specific

framework for salinity management.

While several studies have highlighted the strong performance

of tree-based and ensemble learners, our results indicate that KNN

achieved the highest predictive accuracy for soil salinity in this

context. This contrasts with reports where RF excelled, for example

Haq et al. (17) in Punjab Province, Pakistan (R² of 0.94; RMSE of

1.89) and with findings that favored RF over ANN and SVM in

environmental applications (23). Ensemble methods such as

AdaBoost and XGBoost have also shown promise for salinity

prediction (69, 70), particularly with multisource integration.

Nonetheless, the superior performance of KNN in our study

suggests that instance-based learning can be highly competitive

when local neighborhood structure is informative.
FIGURE 7

Comparison between measured and predicted EC values for the testing dataset using for machine learning models: KNN, RF, SVR, and MLP.
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Overall, algorithm selection materially influences both predictive

accuracy and the spatial depiction of salinity. Integration of remote

sensing with ML, supported by PCA-based predictor representation,

improved mapping precision in Béni Amir and enabled robust hotspot

identification. The KNN-derived map provides the most reliable basis

for management, informing prioritized drainage upgrades, calibrated

leaching, irrigation-water quality management, and the deployment of

salt-tolerant cultivars and intercropping systems in areas with high

salinity concentrations.

Although ML combined with satellite data proved effective for

salinity prediction, several challenges remain. Model performance is

sensitive to the selection of input variables, necessitating careful

calibration with field ECe data. Importantly, the relatively limited

field dataset (n = 43) constrains model generalization, as most ML

algorithms require larger samples to capture spatial variability and can

increase the risk of overfitting, potentially degrading performance when

extrapolated to new conditions. Advances in sensor technology

necessitate a more comprehensive assessment of optimal spectral

bands and index combinations. Incorporating additional
Frontiers in Soil Science 12
environmental parameters such as land use, climate, topography, and

soil properties could improve robustness. Future research should also

include quantitative uncertainty assessments (e.g., sensitivity analyses)

to enhance model reliability and evaluate the approach’s transferability

to other irrigated systems. Beyond data-driven models, future

directions should explore physics-informed neural networks

(PINNs). In their simplest form, PINNs can be implemented as

multilayer perceptrons with modified loss functions that enforce

known physical constraints (e.g., mass balance, salinity transport

relationships), thereby improving plausibility and stability under data

scarcity and expanding generalizability across regions and seasons.
5 Conclusion

Soil salinization is a significant contributor to land degradation in

arid and semi-arid regions. This study demonstrated the effectiveness of

ML for predicting soil salinity in the Béni Amir sub-perimeter of the

Tadla Plain. The KNN achieved the highest accuracy (mean R² = 0.75;

RMSE = 0.61 dS/m), while the SVR and RF performed competitively.

On the other hand, theMLP performed least effectively. Predicted maps

revealed a downstream accumulation of salinity, primarily due to saline

irrigation water, inadequate drainage, and intensive farming practices.

These findings highlight the potential of ML models, combined

with satellite-derived predictors, to provide reliable and scalable

tools for monitoring soil salinity in irrigated agroecosystems. The

proposed framework offers valuable support for sustainable land

management and irrigation planning. Future research is needed on

drivers and the approach, integrating socio-economic drivers, and

assessing the cost-effectiveness of land reclamation strategies.
TABLE 4 Nemenyi post-hoc test p-values for pairwise model
comparisons.

Models KNN RF SVR MLP

KNN 1 0 0.007 0

RF 0 1 0.005 0.455

SVR 0 0.005 1 0.255

MLP 0 0.454 0.255 1
FIGURE 8

Comparison of observed EC with model predictions acoss 11 testing observations.
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FIGURE 10

Soil salinity maps generated using KNN (a), SVR (b), RF (c), and MLP (d).
FIGURE 9

R2 performance across 20-fold cross-validation on the test splits for four regression models predicting EC.
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