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Mapping soil salinity
using machine learning
and remote sensing data
In semi-arid croplands
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Soil salinity significantly constrains agricultural productivity and land
sustainability, particularly in irrigated areas. While, remote sensing offers large-
scale monitoring capacity, but its accuracy depends on how effectively spectral
information is integrated with advanced modeling approaches. This study
evaluates the performance of a combined approach based on machine
learning (ML) algorithms and satellite-derived predictors for soil salinity
mapping in the Béni Amir Sub-perimeter of Tadla plain, Morocco. A total of 43
topsoil samples (0-10 cm) were collected and analyzed for electrical
conductivity (ECe) and resampled to 144 samples for model training and
testing. Predictor Variables were derived from Landsat-8 OLI data, including
salinity indices (OLI-SI, SI, SI1), intensity indices (Intl, Int2), brightness index (BI),
land degradation index (LDI), and reflectance values of selected spectral bands
(B2-B7) were standardized and transformed with PCA to address
multicollinearity. Four ML algorithms, Random Forest (RF), K-Nearest
Neighbors (KNN), Support Vector Regressor (SVR), and Multi-Layer Perceptron
(MLP) were tested. The results show that the Ece ranges from 0.84 to 10.28 dS/m
with a standard deviation of 2.29 dS/m, indicating substantial salinity variability
across the Béni Amir sub-perimeter. Individual predictors exhibited moderate
correlation with Ece (R = 0.34-0.72). Among the applied models, KNN achieved
the highest accuracy (mean coefficient of determination (R?) = 0.75 [0.73-0.771;
Root Mean Square Error (RMSE) = 0.61 dS/m). The resulting maps revealed a
consistent southwestward increase in salinity, following the regional hydraulic
flow. KNN classified 49% of the area as moderately saline, 22% as slightly saline,
and 20% as non-saline, while the strongly and extremely saline classes covered
8.4% and 0.6%, respectively. RF, SVR, and MLP showed comparable trends, with
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moderately saline areas ranging between 30-41% and strongly to extremely
saline soils below 10%. These findings demonstrated that combining satellite-
derived data with ML enables a reliable assessment of soil salinity, supporting
management of irrigated agroecosystems.

soil salinity mapping, machine learning, remote sensing, agriculture, Morocco

1 Introduction

In the era of climate change, salinization heavily affects soil
quality, especially in arid environments where water resources are
limited (1, 2). Soil salinization poses an increasing threat to
sustainable agriculture, particularly in arid and semi-arid regions
where irrigation is crucial for maintaining crop yields (3). Salinity
reduces soil fertility, impairs plant growth, and leads to significant
yield losses, posing challenges to global food security. According to
the FAO, salt-affected soils cover 424 million hectares of topsoil (0-
30 cm) and 833 million hectares of subsoil (30-100 cm), based on
73% of the land mapped so far (4). Overall, soil salinization affects
approximately 1 billion hectares of land, including over 20% of
irrigated croplands (5, 6).

In Morocco, about 16% of the croplands are affected by salinity,
resulting in a significant reduction in agricultural productivity and
posing a threat to land sustainability (7). The Tadla Plain, one of the
country’s main irrigated areas, is particularly vulnerable. Multiple
factors, including recurrent drought, groundwater overexploitation,
inefficient irrigation practices, and the use of saline water,
contribute to the accumulation of salinity (8). In addition,
inadequate drainage infrastructure accelerates secondary
salinization (9). Previous studies in the Tadla plain (10, 11), have
highlighted the role of land use in controlling salinity patterns,
emphasizing the need for accurate spatial assessments to support
management strategies.

Traditional methods for soil salinity assessment rely on field
sampling, laboratory electrical conductivity (EC) analysis, and GIS-
based interpolation (12). Nevertheless, these provide reliable point-
based measurements; they are costly, labor-intensive, and limited in
spatial and temporal coverage. Remote sensing techniques offer an
efficient alternative for large-scale monitoring (13). Landsat-8 OLI
provides free, continuous medium-resolution imagery with a long
archive and spectral bands that capture soil characteristics
influenced by salinity, making it a reliable source for monitoring
soil salinity patterns. Numerous studies (14-16) have demonstrated
the effectiveness of Landsat-8 OLI for deriving salinity indices and
mapping salt-affected soils across different agroecological regions.

Recent advances in machine learning (ML) algorithms have
proven their ability to analyze complex interactions between remote
sensing variables and soil properties (17-19). Algorithms such as
Random Forest (RF), Artificial Neural Networks (ANN), and
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Support Vector Regression (SVR) have been applied in various
agroecological areas, demonstrating accuracy in mapping soil
salinity. Wang et al. (20). compared the performance of Landsat-8
OLI and Sentinel-2 MSI in soil salinity detection using
Multivariable Linear Regression (MLR). Similarly, Aksoy et al.
(15) compared the efficiency of eXtreme Gradient Boosting
(XGBoost) and RF algorithms in estimating soil salinity using
Landsat-8 OLI based indices, environmental covariates, and EC
values. Fu et al. (21) developed and compared soil salinity indices
using RF, Support Vector Machine (SVM), and XGBoost models.
Naimi et al. (22) modeled soil salinity using spectral indices derived
from Sentinel-2 and environmental variables, evaluating K-nearest
neighbors (KNN) alongside RF, SVM, and ANN. More recently,
Thangarasu et al. (23) applied RF, ANN, and SVM using various
satellite-derived from Landsat 8/9 data as variables to map soil
salinity. However, in Morocco, and particularly in the Tadla plain,
ML-based salinity mapping remains limited, despite the growing
need for accurate and cost-effective monitoring tools.

This study investigates the integration of ML algorithms and
Landsat-8 OLI data to assess soil salinity in the Béni Amir sub-
perimeter of the Tadla plain. This paper aims to compare the
performance of four ML models (RF, SVR, ANN, and KNN) for
salinity mapping and prediction with limited data, and to generate
salinity maps to support sustainable management of irrigated areas.

2 Materials and methods
2.1 Study area and background

The current work was conducted in the Béni Amir irrigated
sub-perimeter of the Tadla Plain, covering 674 km? in central
Morocco (Figure 1). The Tadla Plain is a major hydro-
agricultural region of Central Morocco. Formerly barren and
exploited for pastoral purposes, this region has become a fertile
agricultural area following the installation of an irrigation network,
and nowadays contributing to a large proportion of national
agricultural production, up to 30% for sugar beets, 12% for
fodder, 11% for citrus fruits and olives, 10% for market
gardening, 6% for cereals and 10% for milk (11). Since the
development and commissioning of the irrigated perimeter, the
salt-affected area of agricultural lands has been steadily increasing
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Location of the Tadla Plain, Morocco (a), extent of the study area shown on a Landsat 8 RGB composite (b), and soil sampling distribution (c).

(10). Trrigation water sources include both shallow groundwater
and surface water from the Oum Er Rbia River. Reported salinities
are on the order of about 3.2 g/L for groundwater and about 1.3 g/L
for the Oum Er Rbia surface water (8). In practice, some farmers
also blend surface water with groundwater at the field or parcel scale
(24), which can further vary the salinity of applied irrigation water
across the perimeter. The irrigation network in the region, managed
by the Regional Office for Agricultural Development of Tadla
(ORMVAT) and supplied by the Oum Er Rbia River, primarily
relies on surface (gravity) irrigation, which leads to considerable
water losses due to inefficient infrastructure and evaporation.
Although some farmers use sprinkler systems, a growing number
are shifting toward drip irrigation to improve water-use
efficiency (25).

The geology of the region is characterized by a vast syncline
filled with sedimentary deposits accumulated during the Cretaceous
and Tertiary eras (26).
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The pedology reveals considerable soil heterogeneity in the
Tadla Plain. Kastanozems, which cover 43% of the land, are rich
in organic matter and support soil fertility and agricultural
productivity. On the other hand, Leptosols, accounting for 32% of
the study area, contain high levels of calcium and magnesium,
which influence soil chemistry and plant growth. Nitisols-Alisols,
cover 18% of the area. Other various soil types characterize the
remaining 7% of the area (27).

The climate of the study area is arid to semi-arid, with annual
precipitation ranging from 150 to 450 mm (28). The dry season, which
extends from April to October, is characterized by minimal rainfall,
typically between 0 and 50 mm per month. In contrast, the rainy
season, which occurs from November to March, accounts for
approximately 70% of the total (29). Temperatures exhibit
significant seasonal variations, with a maximum of 46°C in August
and a minimum of -6°C in January, resulting in an annual average of
20°C. The yearly average evaporation is approximately 1800 mm,

frontiersin.org


https://doi.org/10.3389/fsoil.2025.1653400
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org

Chaaou et al.

nearly six times the annual cumulative rainfall (30). The average
altitude ranges from 350 m to 500 m, and the overall slope is less than
6°, with the lowest point located at Sidi-Driss (31).

2.2 Integrated methodology

The methodology used in this study is summarized in Figure 2.
The ground truth data were collected by sampling soil from 43
georeferenced locations between October 28 and 31, 2021, using a
stratified random sampling approach to ensure a representative
assessment of soil variability across the Beni Amir sub-perimeter.
The sampling design was informed by previous studies in the Tadla
plain, which identified significant gradients. Each sampling point
corresponded to a homogeneous 30 m x 30 m area, matching the
spatial resolution of the Landsat-8 OLI reflective bands used in this
study. Field conditions during sampling were largely post-harvest,
with minimal vegetation cover, ensuring that satellite reflectance
captured soil rather than canopy characteristics. The electrical
conductivity (ECe) of each soil sample (0-10 cm) was analyzed in
the laboratory using the saturated paste extract method, as
described by Rhoades (32). The sampled soils were classified into
five salinity classes (Supplementary Table S1 in the Supplementary
Material) in accordance with Ivushkin et al. (33). To support model
training and testing, given the limited dataset, the samples were
resampled to 144 sample instances using a controlled data
augmentation strategy detailed in Section 2.3.

Concurrently, Landsat imagery acquired on November 12, 2021
0.11%), downloaded from (https://
earthexplorer.usgs.gov/, accessed on December, Ist 2021), and

(cloud cover =

preprocessed in QGIS 2.18.0. The image has been radiometrically
calibrated and atmospherically corrected using the Dark Object
Subtraction (DOS) (23, 34). The data was geometrically corrected to
align with the collected ground truth data, facilitating seamless
integration for comparative analysis.

Furthermore, spectral bands spanning from the visible,
including Blue (B2), Green (B3), and Red (B4), to the short-wave
infrared wavelengths, SWIR1 (B6) and SWIR2 (B7), are used as
recommended by previous studies (35, 36). Their efficiency in
identifying and mapping salt-affected soils underscores their
essential role in assessing soil degradation in both agricultural
and natural landscapes. Spectral indices were calculated, including
soil salinity indices (37, 38), intensity indices (39), brightness
indices (38), and the land degradation index (LDI) (7, 40)
(Supplementary Table S2, Supplementary Figure S1 in the
Supplementary Material).

Data preprocessing was performed in a Visual Studio Code
environment using the Python programming language, involving
the application of resampling techniques to overcome class
imbalances, scaling methods to normalize spectral and laboratory
data, and principal component analysis (PCA) to address
multicollinearity among predictor variables, and to enhance the
stability and performance of the models. The first five principal
components (PC1-PC5) were subsequently used as input variables
for all ML models. This transformation ensured that all predictors
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were orthogonal, and representative of the main spectral variance
associated with soil salinity.

Additionally, a systematic data-splitting approach has been
applied, dividing the data into training (70%) and testing (30%)
subsets, with 20 (folds) runs using different random seeds to assess
model stability. It is worth noting that the resampling method was
applied only to the training subset. The testing subset was left
untouched to validate the models’ performance. The ML model’s
performance was evaluated using three metrics: the coefficient of
determination (R2), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE). In each iteration, the metrics were calculated
to determine the models’ performance and stability. Additionally,
95% Confidence Intervals (CI) for R*> were also estimated to
quantify the uncertainty of the models (41, 42). Additionally,
statistical differences among models were evaluated using the
Friedman test (43, 44), followed by the Nemenyi post-hoc test for
pairwise comparisons (45). Once validated, the four ML models
with median performance metrics were deployed to generate soil
salinity maps, enabling a comparative spatial assessment of their
predictive performance and providing valuable insights for
sustainable land management.

2.3 Data resampling

Given the limited sample size characteristic of field campaigns in
data-scarce regions, machine learning models are highly susceptible
to overfitting and learning the noise in the data rather than the actual
insights regarding the target variable. To mitigate this risk and
enhance model robustness, a data augmentation strategy employing
bootstrapping with noise is used (46). This technique involves
resampling the original training data samples with replacement
(bootstrapping), where the target variable (ECe) belongs to different
intervals. Next, a small amount of random noise drawn from a
Gaussian distribution was injected into the data. According to Aksoy
et al. (15), the use of random oversampling techniques enables the
model to learn a more generalizable function of the target variable,
rather than memorizing individual data points.

2.4 Data standardization

The dataset was normalized using a standard-scaling method
(Equation 1). The standardized values were subsequently rescaled to
the interval of (-1, 1) to enhance numerical stability and facilitate
the convergence of ML models, as recommended in previous
studies (47, 48).

Xi = Xmean

Xscaled = o (1)

where X,.4 is the scaled variable, x; is the i sample variable,
Xmean 18 the average value, and o is the standard deviation. The
mean and standard deviation of the training set were computed
before the resampling phase, and were used on the resampled
training subset, as well as the testing subset.
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2.5 Multicollinearity correction

Among the variables used, most spectral bands and indices are
inherently correlated, and such multicollinearity can distort
regression coefficients, inflate variance, and reduce the stability of
predictive models (49). PCA addresses this issue by transforming the
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original set of correlated variables into a smaller number of
orthogonal (uncorrelated) principal components, each representing

05

a linear combination of the original features (50). In our case, we
retained enough components to preserve up to 99% of the variance in
the data, resulting in five non-collinear components that capture
nearly all the information in the original data. This transformation
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not only enhances model stability and predictive performance but
also mitigates the risk of overfitting that may arise when highly
collinear predictors are used in ML algorithms (49).

2.6 Machine learning

The algorithms used in this research fall into the category of
supervised ML algorithms. The ground truth corresponding to the
samples was provided as input to the model during the calibration
phase. Four ML models were implemented: KNN, SVR, RF, and
MLP. In addition to being widely used in literature, these models
use a learning approach to identify hidden patterns in the data and
correlate the input and output variables (22, 51).

2.6.1 K-nearest neighbors

The KNN algorithm is designed for classification problems
where the class of the sample is determined based on the majority
class of its n closest neighbors (52, 53). The number of neighbors is
the main parameter in this algorithm (54). In the case of regression,
the average values of the closest neighbors are taken as
the prediction.

2.6.2 Support vector regressor

Similarly, SVM is dedicated to classification tasks; however, its
regression version, SVR, attempts to discover a hyperplane
optimally fitting the data points in a continuous space (55). The
input variables are mapped into a high-dimensional space of
features, and the hyperplane is found that maximizes the distance
between the hyperplane and the nearest data points while
minimizing the error of prediction (56).

2.6.3 Random forest

RF algorithm consists of several decision trees, each of which is
trained on a random subset of the data, and computing the outcome
(57). The outputs are then aggregated into a final output value (33,
58). The RF classifier takes the majority votes of the trees’
predictions, unlike the regression version, which tends to average
the trees’ predictions and assigns the average to the
predicted instance.

2.6.4 Multi-layer perceptron

MLP is a type of Artificial Neural Networks (ANNs) used for
function approximation, pattern recognition, and classification
tasks (59). They are known for their ability to capture complex
relationships in data by learning through multiple computation
layers (60).

Furthermore, although each model has different parameters, it
is optimal to determine the best hyperparameters for training the
models. For this purpose, we employed a random-search technique
(23, 61). This later enabled us to examine the performance of the
models under the influence of various sets of hyperparameters.
Additionally, it is noteworthy that we launched hyperparameter
tuning under a range of random seeds to eliminate the bias
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introduced by randomness. Table 1 lists the different parameter
sets for each algorithm, along with the optimal parameters in
each case.

2.7 Evaluation metrics

To validate the performance of the models, three evaluation
metrics were used, namely: RZ,MAE, and RMSE, as described by
Equations 2-4, respectively.

n ~\2
RE=1- Ei:l(yi =¥ 2)

2?:1()’:‘ _Z)z

1 n =N
MAE:ZEizllyi—yil 3)

RMSE =/ %(E:ﬂ(yi -7 (4)

Where y; is the observed value, y; is the predicted value, ) is the
mean value, and 7 s the number of samples in the testing dataset.

3 Results

3.1 Descriptive statistics of ECe and
predictor correlations

The statistical analysis parameters for the target variable (ECe)
and independent variables are illustrated in Figure 3. The ECe
values in the study area ranged from 0.84 to 10.28 dS/m, with a
standard deviation (Std) of 2.29 dS/m, reflecting considerable
variation in soil salinity levels. Spatially, high EC values were

TABLE 1 Search space and the best hyperparameters.

Model Parameter sets Best parameters
KNN « n_neighbors [3,5,7,9,11] o n_neighbors: 8

« C: nplogspace(-2, 2, 10) o C:1.0325

« epsilon: np.linspace(0.01, 0.5, 5) o epsilon: 0.1237
SVR o kernel: [“linear”, “poly”, “rbf’] « kernel: “rbf”

o degree: [2, 3, 4] o degree: 3,

e gamma: [‘scale’, ‘auto’] o gamma: “scale”

« n_estimators: [100, 200, 300, 500] « n_estimators: 500

« max_depth: [5, 10, 15, None] o max_depth: 5

« min_samples_split: [2, 5, 10] o min_samples_split: 2
RF o min_samples_leaf: [1, 2, 4] o min_samples_leaf: 1

« max_features: [“sqrt”, “log2”, None] o max_features: ‘sqrt’

« bootstrap: [True] o bootstrap: True

« max_samples: [0.8, 0.9, 1.0] o max_samples: 0.9

« hidden_layer_sizes: [(50), (100), o hidden_layer_sizes:

(200), (100, 50), (200, 100)] (100,50)

« activation: [“relu”, “tanh”] o activation: “relu”
MLP « solver: [“adam”, “Ibfgs”] o solver: “adam”

« alpha: [0.0001, 0.001, 0.01, 0.1] o alpha: 0.001

o learning rate: [“constant”, o learning_rate:

“adaptive”] “adaptive”
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Boxplots of descriptive statistics for ECe and predictor variables, including spectral bands and indices.

concentrated downstream (southwest), while lower values were
observed towards the northeast region.

Derived spectral bands and indices varied between 0 and 1.5.
Among them, LDI and OLI showed the greatest variability, with a
Std of 0.28 and 0.09, respectively. Meanwhile, other variables
exhibited lower variability, with a Std ranging between 0.01
and 0.06.

The correlation matrix (Figure 4) revealed a strong positive
relationship between the target variable EC and OLI and LDI, as
well as bands 7 and 6, indicating their potential relevance to salinity
variability. Conversely, BI and Int2 showed weak correlation with
ECe, suggesting limited direct predictive value. However, several
predictors exhibited strong intercorrelations, particularly Intl with
SI, SI1, B4, B3, B2, B7, and B6, indicating substantial
multicollinearity among the spectral variables.

Given these interrelationships, PCA was applied to standardized
predictors, transforming the original 13 correlated variables into
orthogonal principal components (PCs). The loading pattern
(Supplementary Figure S2a) indicates that PCl carries broadly
uniform positive contributions across predictors, PC2 is dominated
by BI (=0.75), PC3 by OLI-SI/LDI/OLI (=0.58-0.59), PC4 by B6
(=0.53) with a negative OLI contribution (=-0.41), and PC5 by LDI
(=0.70) with a negative OLI contribution (=—0.60). The scree and
cumulative variance plots (Supplementary Figure S2—c) indicate that
PC1-PC5 account for approximately 99% of the total variance.

3.2 Models performance

Model training was performed using 70% (80 samples) of the
dataset, with the remaining 30% (11 samples) reserved for testing. A
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comparison of the predicted and measured ECe values revealed that
the models exhibit comparable performances during the training
phase (Figure 5, Table 2). As previously mentioned, the models that
yielded median scores were retained for performance
representation. The KNN model yielded the lowest accuracy (R*
= 0.91), while the RF, SVR, and MLP models achieved the highest
accuracy (R* = 0.99). Overall, the predicted values generally aligned
well with the measured ECe values, indicating satisfactory model
training (Figure 6).

However, during the testing phase, performance differences
become more evident (Table 3). The RF and MLP models
resulted in relatively low accuracy (R* = 0.53; RMSE = 0.75 dS/m;
and R? = 0.45; RMSE = 0.90 dS/m, respectively), failing to generalize
to the independent test dataset, indicating overfitting, especially in
the case of MLP. In contrast, the SVR model exhibited moderate
predictive accuracy, with an R? 0f 0.59 and an RMSE of 0.62 dS/m,
suggesting slight overfitting (Figure 7). On the other hand, KNN
achieved the best results, with an R? score of 0.76 and an RMSE of
0.40 dS/m.

Although the overall results are relatively low (except for KNN),
the models still follow the general pattern of EC variation and
predict the peaks and troughs observed in the measured data
(Figure 8). Additionally, sudden variations in EC lead to
predictions that overshoot or undershoot the target value; these
examples occur around the third (sudden decrease), fourth (sharp
increase), and fifth peaks. These peaks were not reproduced by any
of the models, with a greater overestimation and underestimation in
MLP and RF, respectively. On the much smoother datapoints, the
models tend to closely follow the EC data, with KNN producing the
best visual results (8th to 12th datapoints). At the same time, MLP
and SVR exhibit erratic behavior (9th-12th datapoints). Generally,
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FIGURE 4

Correlation matrix among ECe and predictor variables, including spectral bands and indices.

the chart shows that while all models effectively capture the
temporal dynamics of EC, MLP and SVR exhibit significant
instability. In contrast, KNN provides the most visually consistent
predictions with the observed measurements.

To strengthen the comparative evaluation of the tested models,
additional statistical analyses were performed. First, the 95% CI for R*
was calculated to assess the variability and robustness of model
performance (Table 4). Based on results from k-fold experiments
with a 20-fold split (Figure 9), the KNN model achieved the highest
predictive accuracy, with a mean R* of 0.75 (95% CL 0.73-0.77).
Conversely, the MLP recorded the lowest performance (mean R* =
0.45, CI: 0.42-0.52). To assess whether differences among models were
statistically significant, a Friedman test was conducted, yielding a *(3)
statistic of 22.90 and a p-value of 0.0 (<0.05), confirming substantial
differences in performance rankings. A subsequent Nemenyi post-hoc
test revealed that the performances of RF, SVR, and MLP were
statistically comparable (p > 0.05), with SVR and MLP being
marginally different (p=0.04). In contrast, KNN differed significantly
from the other models (p < 0.05) (Table 4). These findings reinforce the
conclusion that KNN indeed performs best among the models used for
soil salinity in the study area.

3.3 Spatial salinity distribution

The maps generated (Figure 10) show a progressive increase in
soil salinity from upstream to downstream (southwest). The spatial
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analysis of soil salinity classes shows distinct predictive behaviors
under different ML models (Figure 11). The KNN classified the
most significant portion of areas as moderately saline (49%) and
showed a substantial share in non-saline soils (20%), but also
produced the highest proportion of strongly saline (8.4%) and
extremely saline (0.6%) areas. SVR and RF yielded comparable
distributions, with moderately saline classes covering 41% and 32%
of the regions, respectively, while strongly saline soils represented
6% (SVR) and 10% (RF), and extremely saline areas remained
limited (1% and 0.8%). In contrast, MLP predicted the highest
proportion of slightly saline soils (48.5%) and a similar share of
moderately saline areas (30%), with only 1.4% being strongly saline.
Overall, while KNN provided the most balanced and accurate
classification, MLP and RF emphasized slightly to moderately
saline conditions, and SVR maintained intermediate estimates
across classes.

4 Discussion

Remote sensing combined with ML has been applied
extensively for soil salinity assessment in diverse environments.
Ivushkin et al. (33) reported that CART achieved a higher accuracy
(70%) than SVM and RF using thermal data. Ge et al. (62)
demonstrated the strong predictive ability of the gradient
boosting regression tree (GBRT) with Sentinel-2 MSI and
environmental covariates(R* = 0.88; RMSE = 6.33 dS/m). Kaplan

frontiersin.org


https://doi.org/10.3389/fsoil.2025.1653400
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org

Chaaou et al.

10.3389/fs0il.2025.1653400

KNN

@ Datapoints R2 = 0.91
—— Best fit line

10

Predicted EC (dS/m)

4 6 8 10

Measured EC (dS/m)

SVR

@ Datapoints R2 = 0.99
—— Best fit line

10

Predicted EC (dS/m)

a 6 8 10
Measured EC (dS/m)

FIGURE 5
Comparison between measured and predicted EC values for the training

et al. (63) found that the instance-based learning with parameter k
(IBK) outperformed RF and linear regression in arid regions. In
Morocco, numerous studies have explored the mapping of salt-
affected soils using spectral indices and statistical models. Lhissou,

TABLE 2 Evaluation of metrics for the train set.

RF

@ Datapoints R2 = 0.99
—— Best fit line

10

Predicted EC (dS/m)

4
Measured EC (dS/m)

10

MLP

® Datapoints R2 = 0.99
—— Best fit line

104

Predicted EC (dS/m)

4 6
Measured EC (dS/m)

8 10

dataset using for machine learning models: KNN, RF, SVR, and MLP.

et al. (64) obtained R* = 0.90 in the Tadla plain by combining
satellite data with field EC measurements. El hafyani et al. (65) and
Rafik et al. (66) reported high predictive power in the Tafilalt plain
through regression-based approaches. Ait Lahssaine et al. (67)

MAE R2

Std Median CI(95%) Mean Std Median CI(95%) Mean Std Median CI (95%)

LB UP LB UP LB UP

KNN | 0.41 009 | 043 011 | 045 025 004 | 025 023 027 091 0038 091 090 | 093
RF 0.12 002 | 011 011 013 007 001 | 007 007 008 099 0.003 | 0.99 098 099
SVR | 0.08 007 | 012 010 015 008 004 | 008 009 011 098 0.004 | 0.99 098 099
MLP | 0.07 006 | 0.10 004 012 004 003 | 0.04 002 | 0006 099 007 099 098 | 099
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Comparison of observed EC with model predictions acoss 80 training observations.

documented increasing salinization in Rheris oases between
between1990 and 2022. These studies illustrate the value of
remote sensing but generally rely on limited predictor sets.

This study contributes by integrating multiple variables within an
ML framework to assess soil salinity in the Béni Amir sub-perimeter.
Correlation analysis (Figure 4) revealed the strongest associations
between Ece and OLI-SI and LD, followed by SWIR-related bands
(B7, B6), whereas BI and Int2 show weak relationships. The original
predictors were then summarized into orthogonal principal
components (Supplementary Figure S2a) to mitigate collinearity
while retaining salinity-related variance. Consequently, interpretation
emphasizes how salinity information is captured by the leading PCs
rather than by any single raw predictor, with the strongest Ece
associations concentrated in the first components.

TABLE 3 Evaluation of metrics for the test set.

Among the tested models, KNN demonstrated the highest
predictive accuracy (mean R* = 0.75; RMSE = 0.61 dS/m). The
SVR exhibits competitive performance (mean R* = 0.59; RMSE =
0.62 dS/m). MLP and RF performed similarly, with an R? of 0.47
and 0.54 and RMSEs of 0.90 and 0.75 dS/m, respectively.
Confidence-interval analysis further corroborated the superiority
and robustness of KNN, as evidenced by its narrow R* interval
(£ 0.03 around the mean).

The salinity maps exhibit a transparent gradient, with elevated
EC concentrated downstream (southwest) and lower values in the
upstream (northeast). This pattern follows the regional hydraulic
flow as reported by El Harti et al. (8). Furthermore, the spatial
distribution of soil salinity in sub-perimeter of Béni Amir is further
reinforced by topographic effects promoting solute accumulation in

RMSE MAE
Mean Std Median CI(95%) Mean Std Median CI (95%) Std  Median CI (95%)
LB UP LB UP LB UP
KNN | 0.61 006 | 061 058 | 064 049 0.06 | 050 046 | 052 075 004 076 073 | 077
RF 0.75 012 075 072 | 081 | 06l 010 | 061 058 065 054 008 | 053 051 | 057
SVR | 0.62 015  0.62 060 | 073 052 011 | 050 047 057 | 059 0.09 059 055 | 0.63
MLP  0.90 014 090 083 | 096 | 071 011 | 071 058 065 047 0.10 045 042 0.52
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Comparison between measured and predicted EC values for the testing dataset using for machine learning models: KNN, RF, SVR, and MLP.

low-lying areas (68), land cover dynamics influencing salt inputs
and leaching (11), and climatic conditions enhancing evaporite
concentration during dry periods (10).

Although all models reproduced the main gradient, KNN
yielded the most spatially coherent predictions with realistic
transitions between classes. Considering both predictive accuracy
and spatial plausibility, the KNN-derived map is the most reliable
product for operational decision-making in Béni Amir.

Operational guidance based on the KNN map targets interventions
by salinity class. For strongly and extremely saline soils, actions include
drainage rehabilitation, controlled leaching, and shifting to salt-tolerant
crops or intercropping; gypsum application is advised for sodicity. In
moderately saline soils, preventive strategies involve selecting
moderately tolerant cultivars, using intercropping, pressurized
irrigation with leaching, and routine EC monitoring. For low-salinity
soils, maintaining optimized irrigation, periodic testing, and balanced
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fertilization are recommended. The implementation prioritizes KNN-
identified hotspots, conducting field verification before making
significant investments, thereby offering a robust, site-specific
framework for salinity management.

While several studies have highlighted the strong performance
of tree-based and ensemble learners, our results indicate that KNN
achieved the highest predictive accuracy for soil salinity in this
context. This contrasts with reports where RF excelled, for example
Hagq et al. (17) in Punjab Province, Pakistan (R* of 0.94; RMSE of
1.89) and with findings that favored RF over ANN and SVM in
environmental applications (23). Ensemble methods such as
AdaBoost and XGBoost have also shown promise for salinity
prediction (69, 70), particularly with multisource integration.
Nonetheless, the superior performance of KNN in our study
suggests that instance-based learning can be highly competitive
when local neighborhood structure is informative.
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Overall, algorithm selection materially influences both predictive
accuracy and the spatial depiction of salinity. Integration of remote
sensing with ML, supported by PCA-based predictor representation,
improved mapping precision in Béni Amir and enabled robust hotspot
identification. The KNN-derived map provides the most reliable basis
for management, informing prioritized drainage upgrades, calibrated
leaching, irrigation-water quality management, and the deployment of
salt-tolerant cultivars and intercropping systems in areas with high
salinity concentrations.

Although ML combined with satellite data proved effective for
salinity prediction, several challenges remain. Model performance is
sensitive to the selection of input variables, necessitating careful
calibration with field ECe data. Importantly, the relatively limited
field dataset (n = 43) constrains model generalization, as most ML
algorithms require larger samples to capture spatial variability and can
increase the risk of overfitting, potentially degrading performance when
extrapolated to new conditions. Advances in sensor technology
necessitate a more comprehensive assessment of optimal spectral
bands and index combinations. Incorporating additional

TABLE 4 Nemenyi post-hoc test p-values for pairwise model
comparisons.

Models KNN RF SVR MLP
KNN 1 0 0.007 0

RF 0 1 0.005 0.455
SVR 0 0.005 1 0.255
MLP 0 0.454 0.255 1
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environmental parameters such as land use, climate, topography, and
soil properties could improve robustness. Future research should also
include quantitative uncertainty assessments (e.g., sensitivity analyses)
to enhance model reliability and evaluate the approach’s transferability
to other irrigated systems. Beyond data-driven models, future
directions should explore physics-informed neural networks
(PINNs). In their simplest form, PINNs can be implemented as
multilayer perceptrons with modified loss functions that enforce
known physical constraints (e.g., mass balance, salinity transport
relationships), thereby improving plausibility and stability under data
scarcity and expanding generalizability across regions and seasons.

5 Conclusion

Soil salinization is a significant contributor to land degradation in
arid and semi-arid regions. This study demonstrated the effectiveness of
ML for predicting soil salinity in the Béni Amir sub-perimeter of the
Tadla Plain. The KNN achieved the highest accuracy (mean R* = 0.75;
RMSE = 0.61 dS/m), while the SVR and RF performed competitively.
On the other hand, the MLP performed least effectively. Predicted maps
revealed a downstream accumulation of salinity, primarily due to saline
irrigation water, inadequate drainage, and intensive farming practices.

These findings highlight the potential of ML models, combined
with satellite-derived predictors, to provide reliable and scalable
tools for monitoring soil salinity in irrigated agroecosystems. The
proposed framework offers valuable support for sustainable land
management and irrigation planning. Future research is needed on
drivers and the approach, integrating socio-economic drivers, and
assessing the cost-effectiveness of land reclamation strategies.
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