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Sustainable agricultural management relies heavily on accurate soil fertility
prediction. Traditional assessment techniques are often labour-intensive, time-
consuming, and may involve hazardous chemicals. Recent advances in machine
learning (ML) and artificial intelligence (Al) offer promising alternatives by
integrating soil metrics, meteorological data, and other environmental factors
for precise and efficient fertility estimation. This study investigates the application
of ML and deep learning algorithms for soil fertility prediction. A hardware
prototype incorporating sensors and a microcontroller was developed to
capture soil parameters, including pH, temperature, humidity, moisture
content, NPK (nitrogen, phosphorus, potassium), carbon content, and organic
matter, alongside weather and climatic conditions. Real-time sensor data were
compared against predictions from ML models. Laboratory soil test results were
used as ground truth for validation. Ensemble classifiers (Random Forest, Extra
Trees) and deep learning models (Multilayer Perceptron, Long Short-Term
Memory networks) were evaluated using accuracy, Fl-score, recall, and
precision metrics. The Random Forest algorithm achieved the highest
prediction accuracy of approximately 92%, with Extra Trees and other
ensemble methods also demonstrating strong performance. The deep learning
models further enhanced predictive capabilities for crop selection, with MLP and
LSTM achieving high accuracy, recall, and F1-scores while maintaining consistent
precision. The hardware prototype’s real-time measurements closely aligned
with laboratory results, confirming the reliability of the system. The findings
highlight the potential of ML and Al-based approaches in advancing soil fertility
prediction and crop recommendation systems. By combining real-time sensor
data with predictive models, the proposed system enables rapid, reliable, and
scalable soil health assessment. This integrated approach empowers farmers to
make data-driven decisions, optimize soil fertility, and improve sustainable
agricultural practices.
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1 Introduction

Agriculture is the backbone of India’s economy, employing a
significant portion of the population and contributing substantially
to GDP. However, despite advancements in agricultural technology,
many Indian farmers continue to rely on traditional farming
methods, often overlooking modern soil analysis techniques. This
lack of awareness leads to inefficient use of fertilizers, depletion of
soil nutrients, and declining crop yields.

One of the primary challenges is the limited access to reliable
soil testing facilities, particularly in rural areas. Many farmers are
unaware of the benefits of soil testing in determining the precise
nutrient requirements of their land. As a result, they either overuse
or under use fertilizers, leading to soil degradation and reduced
long-term productivity. Moreover, the absence of proper soil health
management practices contributes to declining soil fertility, making
farming less sustainable over time. Many farmers lack the technical
knowledge to interpret soil test reports and apply recommendations
effectively. Additionally, financial constraints and skepticism
toward new technologies further hinder the widespread
implementation of soil analysis practices.

To address this issue, a comprehensive approach is needed,
involving awareness campaigns, accessible soil testing services, and
training programs for farmers. Encouraging the adoption of
modern soil analysis techniques can significantly enhance
agricultural productivity, ensure better resource utilization, and
promote sustainable farming practices in India.

Soil, fertilizers, temperature, climate, flooding, precipitation,
crops, pesticides, and herbs are few highly influential properties
on which agriculture hinges on. Farmers have inadequate statistics
on soil fertility, how to pick the right plantation to maximize the
yield in that certain area. Due to their wide range of dependence, it
is tough to predict the soil’s fertility without any vital information.
Analyzing soil fertility involves evaluating a range of parameters
that significantly influence plant growth and productivity. The PH
of the soil (1) is a measure of acidity or alkalinity, and is equally
important as it influences nutrient availability. Most crops flourish
in a pH range of 6.0 to 7.0; soil outside this range may require
changes, such as lime for acidic soils and acidifying treatments for
alkaline soils.

Soil texture (2) is one key parameter that refers to the
proportions of sand, silt, and clay, plays a vital role in defining
how well the soil retains water, drains, and supplies nutrients. For
instance, the sandy soils typically drain quickly although it may be
deficient in essential nutrients, conversely clay soils retain water
more effectively however they can suffer from poor aeration.

The amount of organic matter in the soil, that includes
decomposed plant and animal debris, is another important factor.
A high level of organic matter supports beneficial microbial activity
while strengthening the soil’s structure, water-holding capacity, and
nutrient availability. Nutrient levels (3), particularly the
concentrations of essential nutrients such as nitrogen (N),
phosphorus (P), and potassium (K), are also vital. These nutrients
are crucial for plant growth, and soil tests can guide appropriate
fertilization to address the deficiencies or imbalances.
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Cation Exchange Capacity (CEC) (4) replicates the soil’s ability
to hold and exchange positively charged ions like calcium,
magnesium, and K. Soils with high CEC are generally more fertile
as they can better retain and supply nutrients. Soil moisture is
another important factor, as it affects plant growth and nutrient
uptake. Adequate moisture is essential for optimal plant
development. Soil structure, the arrangement of soil particles into
aggregates or clumps, influences aeration, drainage, and root
penetration, impacting plant health.

Soil temperature (5) affects the seed germination, root growth,
and microbial activity. Proper temperature is crucial for
maintaining optimal conditions for the plant growth. Soil salinity,
that measures the concentration of soluble salts, can impede plant
growth by affecting water uptake and nutrient availability. This is
especially important in the arid regions or poorly drained areas.
Additionally, soil erosion (6)—the removal of the nutrient-rich
topsoil layer by wind or water—can significantly deplete soil fertility
and productivity.

Thus, to assess soil fertility, methods like soil testing provide
quantitative data on pH, nutrient levels, and other parameters,
while field observations offer visual insights into soil color, texture,
and plant health. Laboratory analyses further detail physical and
chemical properties of the soil (7). Applying balanced fertilizer in
accordance with soil test recommendations, regulating soil pH as
needed, and adding organic matter through compost, manure, or
cover crops are all ways to improve soil fertility. Erosion control
practices, such as contour ploughing or terracing, are also crucial to
prevent soil loss. By combining these strategies (8), one can create a
balanced and fertile soil environment conducive to optimal
plant growth.

Adopting sustainable agricultural practices, particularly
utilizing digital technologies such as the Internet of Things (IoT),
Artificial Intelligence (AI), and diverse Machine Learning (ML)
algorithms, to determine soil richness is an important decision to
facilitate efficient solutions and assist farmers and stakeholders in
making informed decisions. The dataset is compared to predict the
soil fertility. This study’s primary objective is to use Al to create a
model for analyzing soil fertility. The dataset is put together using
several private online datasets. Following this, these datasets are
separated into two categories: training datasets and testing datasets.
Different ML algorithms have been trained using the training
dataset, and the test dataset is utilize to identify the most effective
system. Numerous characteristics of the dataset include N, K, P,
Iron (Fe), Copper (Cu), Manganese (Mn), Zinc (Zn), Electrical
Conductivity (EC), soil’s Organic Carbon(OC), Sulphur (S), and
Boron (B).

The integration of machine learning models into mobile
applications has revolutionized soil fertility assessment, providing
farmers with instant and accessible insights. These apps analyze soil
data collected through sensors, user inputs, or satellite
imagery to generate real-time fertility reports and customized
recommendations for fertilizers and crop selection. Many mobile
platforms, such as Krishi Mitra and Soil Cares, leverage Al to guide
farmers in optimizing nutrient use and improving yield efficiency.
By eliminating the need for manual soil testing and reducing
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dependency on agricultural experts, mobile-based solutions
empower farmers, particularly those in remote areas, with data-
driven decision-making capabilities.

Governments worldwide, including India, have recognized the
potential of Al in agriculture and have launched initiatives to
promote soil health monitoring. Programs such as the Soil Health
Card Scheme integrate machine learning algorithms to analyze soil
samples and provide tailored recommendations for improving
fertility. These initiatives help policymakers and agricultural
agencies develop precision farming strategies, ensuring sustainable
soil management at a large scale. By integrating Al-driven soil
fertility prediction models into government-supported platforms,
farmers receive credible and structured guidance, improving
productivity while reducing the excessive use of fertilizers
and chemicals.

The private sector plays a crucial role in advancing machine
learning applications in agriculture by developing innovative,
scalable, and cost-effective soil testing solutions. Agritech startups
and companies such as AgroAl and Cropln leverage AI-powered
models to offer automated soil fertility assessments through cloud-
based platforms and IoT-enabled sensors. These collaborations
bring advanced technology directly to farmers, enabling precision
agriculture without requiring extensive technical expertise. By
partnering with research institutions and government bodies,
private enterprises contribute to the wider adoption of Al in
farming, ultimately leading to improved soil health management
and increased crop yields.

2 Related work

To understand how the process is organized and carried out
using different software designs, the contents of a few research
articles (9) about soil fertility prediction and moisture are briefly
summarized. In order to carry out precision agriculture, researchers
(9) conducted a study on the spatial distribution and variation
characteristics of soil fertility. Their investigation focused on
developing a basis for decision-making in evaluating the spatial
variability of soil fertility by researching Space-Fuzzy Clustering
(FC-S) based on specific fertilization of regional fertility space. To
analyze the features of soil fertility, authors employed several
techniques, including spatial mutation distribution of soil
nutrients, GIS technology, decision tree, and weighted FC-S.
Coefficient of Variation was used to determine the variability of
the attributes. Local Polynomial Interpolation, Global Polynomial
Interpolation, and ordinary Kriging approaches are used to analyses
the fertility data of discrete sampled points and produce spatial
distribution maps for available nitrogen, phosphorus, and
potassium as well as pH in the soil. While estimating the
geographical distribution of soil nutrients, Space-Fuzzy Clustering
proved to be the most effective model, followed by the Kriging
approach and local polynomial interpolation method, which
exhibited the highest precision. In contrast, the global polynomial
interpolation method showed the lowest precision.
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In this study (10) three different classification algorithms are
used namely, JRip, J48, and Naive Bayes to forecast the soil types of
Red and Black. JRip considers all attributes, while J48 only considers
the pH and EC values, building a tree based on these two attributes.
The results showed that the JRip classifier was the most efficient,
generating rules effectively and exhibiting good performance on the
soil dataset. Compared to J48 and Naive Bayes, JRip had a higher
accuracy. The entire dataset was used as the training set, and the
weighted average of the true positive rate for the JRip classifier was
found to be 0.982, indicating high accuracy. In contrast, J48 and
Naive Bayes had TP rates of 0.97 and 0.86, respectively, suggesting
lower levels of accuracy. Consequently, the JRip classifier was able
to classify the dataset with a higher degree of accuracy.

The article (11) relates work with soil fertility and explains the
models that use Pseudo-transfer functions to predict the S-index of
the soil to identify its quality. This model could replace various
laborious experiments just by analyzing the SI index. The PTF is
used to convert the unprocessed data to user-friendly format and it
is a predictive function of certain soil properties which are very
difficult to measure. The authors nominated 15 ANN models along
with logistic regression in the methodologies section of the article.
These models were employed with around 300 data samples under
results and discussion section with 4 input attributes; R%, Root Mean
Square Error (RMSE), AIC and the RPD are determined to choose
the best models among selected.

In (12), a study was conducted utilizing 18 different Extreme
Learning Machine (ELM) models, in addition to established
predictive tools such as Multi-Linear Regression (MLR) and
Random Forest (RF), to evaluate their performance using various
metrics such as RMSE, MAE, ENS (Nash-Sutcliffe efficiency
coefficient), WI (Willmott’s Index), and ELM (Legates and
McCabe’s Index). The dataset used in the study was based on Soil
Organic Matter, which has the highest Coefficient of Variance, and
was divided into testing and training datasets. The ELM model,
which is an advanced form of Al outperformed the RF and MLR
models with a lower RMSE score of 13.6%, while the other models
had higher values.

Soil Organic Carbon (SOC) is a crucial measure of soil quality
that directly influences soil fertility. To predict SOC levels, various
models, such as MLR, ANN, SVM, Decision Tree, cubist regression,
and RF, were developed and evaluated. The accuracy of the
prediction models was assessed using standard validation indices
such as Mean Absolute Error (MAE), RMSE, and R2 through 10-
fold Cross-Validation (CV) that was repeated five times. Among the
models tested, the RF model was found to be the most accurate,
followed by cubist regression. To make the model more accurate,
two hyperparameters were tuned to diminish the complication.

a. Ntree - to overfit even if the decision tree is huge.
b. Mtyr - This illustrates the quantity of indicators selected as

potential candidates at every node, chosen at random.

The models’ performance is achieved by adjusting their
hyperparameters using the grid search technique, along with K-
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fold cross-validation, where K = 12 is used to avoid biased
outcomes. The RF model was found to be the best performer,
with an R2 value of 0.68, followed by the Cubist model with an R2
value of 0.51. The Support Vector Machine (SVM), ANN, and MLR
models had lower R2 values of 0.36, 0.36, and 0.17 respectively.

The focus of this research paper (13) is to anticipate soil
characteristics and evaluate its fertility. The authors made
predictions on three soil properties namely organic Carbon, sand
content, and Calcium Carbonate Equivalent (CCE), by utilizing
scanned satellite indices and terrain indices dataset. Pearson
correlation was employed to recognize variables that were
extremely correlated (r = 0.5), and these attributes were removed
until only the relevant ones were carried forward for predictive
modelling. The use of two models, Cubist and RF, resulted in
noteworthy improvements in predicting soil properties.
Furthermore, it was observed that both Cubist and RF showed an
increase in R2 values for OC, sand, and CCE, with Cubist having a
126% and 78% rise, and RF with a 110% and 54% rise for OC, 87%
and 32% for CCE, and 25% and 12% for sand. By comparing it with
the terrain indices-only model, the RMSE reduced by 34% and 27%
for OC, 25% and 12% for sand, and 39% and 19% for CCE, which
resulted in reduced estimation and mapping uncertainty. Based on
these findings, the authors concluded that Cubist is the optimal
model as it simplifies the estimation process and provides
straightforward modular level understanding of these
linear equations.

This article (14) examines several Supervised ML Algorithms,
including Decision Tree, K-Nearest Neighbor (KNN), and SVM, to
forecast soil fertility based on the macro and micro-nutrient levels
contained in their dataset. The Decision Tree algorithm was found
to be the most effective classifier, outperforming SVM and KNN,
which had lower accuracy and higher MSE. There are various
Decision Tree algorithms available, including ID3, CART
(Classification and Regression Trees), Chi-Square, and Reduction
in Variance. The C5.0 algorithm was utilized to build a perfect
model. It works by splitting the sample data according to the region
that yields the most information gain. Till the samples couldn’t split
further, they are segmented and separated as a group of objects like
an inverted tree. A fundamental advantage of C5.0 node is that it
predicts only a categorical target and not an uncertain result.

In this study (15), the model is trained using ANN classifiers
employing various activation functions and hidden nodes in the
ANN architecture. Janmejay Pant and Pushpa Pant initially
quantified soil nutrients values based on three categories (Low,
Medium, and High). They also used fast learning algorithms of deep
learning in python like Keras to classify the soil and utilized two
different meta parameters;

a. Number of Epoch - It remains fixed for all the classifiers,
b. Activation Function - Rectified Linear Unit and Hyperbolic
Tangent (Tanh).

For each of the five classification problems (Mn, B, OC, P, K),

accuracy is attained. Authors inferred from the plotted graph that
the rectified linear unit function, which is used to solve the
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classification problems, provides the best performance of soil
fertility classification, while the hyperbolic tangent (tanh)
function, which is used to solve one classification problem,
provides the best accuracy.

To forecast the soil fertility, the authors (16) mainly castoff two
parameters, soil’s pH and OC. These two variables provided more
convincing proof of spatial dependence in the random effect and
provided a way for the Empirical Best Linear Unbiased Prediction
(EBLUP) technique. It is a synthetic regression prediction of non-
sampled units that combines direct information and synthetic
regression in a linear fashion. Geostatistical techniques can be
used to examine the spatial variation of soil fertility
characteristics. This spatial model is used to make local
predictions as a perfect mixture of nearby data that decreases the
kriging variance and mean squared error of the forecast.

This article (17) presents a study on the development of a
fertility model using various ML techniques such as KNN, SVM,
RF-Bagging method, and DNN. The authors of the study proposed
a system where the RF-bagging method was used, which yielded an
impressive soil fertility rate score of 0.98. This score indicates that
the proposed system is highly accurate, with a score of 1 being the
highest possible accuracy. To test the bagging strategy’s accuracy
against other models, the authors developed several different
models on the same dataset, including KNN, SV regression, and
DNN. Upon analyzing the results, it was observed that the KNN
model displayed a R* score of 0.82 for fertility prediction and 0.47
for yield prediction, while other regression models performed
poorly. Thus, it can be concluded that the RF-Bagging technique
proved to be the most effective model for this study, yielding the
best results for soil fertility rate prediction.

This paper (18) aimed to examine the soil data obtained from a
soil testing laboratory to forecast fertility based on a collected
dataset. Several ensemble ML methods, including bagging,
boosting, and stacking, are used to achieve this aim in order to
produce predictions that are more accurate, consistent, and exact.
The study evaluated ten selected attributes to classify soil fertility
classes. Several soil parameters were measured to predict soil
fertility. The findings indicate that the boosting technique using
the C5.0 algorithm produced the best results, achieving an accuracy
of 98.15%, surpassing the performance of other ensemble classifiers.
A multi-parameter fluorescence sensor called Multiplex (MX3) was
tested for its ability to predict the soil characteristics of air-dried
samples. According to the results (19), it had an overall accuracy of
0.54, 0.78, and 0.69 for the fertility classes of (nitrate) NO-3, SOM,
and Zn, respectively. Using a yellow filter produced better results,
and the index NBI_UVm was the most effective in classifying soil
fertility. Induced fluorescence directly predicted N rate with an
overall accuracy of 78%, making it practical for farmers.

Recent studies applied ML models (20) such as logistic
regression, SVM, decision trees, random forest, and KNN to
predict soil fertility using macro/micronutrients and physico-
chemical properties (pH, OC, EC). Results showed random forest
achieved the highest accuracy (99%), followed by decision trees
(98%), confirming ML’s effectiveness in cost-efficient, accurate soil
fertility prediction for precision farming,

frontiersin.org


https://doi.org/10.3389/fsoil.2025.1652058
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org

Gunasekaran et al.

The study in (21) proposes advanced methods for soil health
evaluation and crop yield forecasting, including IP-EF for feature
selection, BPNN for pattern prediction, and MSDF-GIS for spatial
data integration. The model achieved high performance (precision
93%, recall 94%, Fl-score 93%), demonstrating its potential to
optimize resources, enhance sustainability, and support data-
driven farming decisions.

With all the information collected through the survey, it has
been observed that the following (Table 1) has the best output with
excellent accuracy and vital advantages.

3 Proposed methodology

To assess the significance of the regression model, several
Goodness of Fit (GOOF) parameters are computed, including the
r-squared (R?) as shown in Equation 1, Lin’s concordance
correlation coefficient (CCC) as shown in Equation 2, and RMSE
as shown in Equation 3.

TABLE 1 Result of the proposed methods.

Models
used

Accuracy
- model

References

Kriging, Fuzzy clustering is a
Space- Space techniql'le used to gmflp
©) Fuzzy Fuzz data points that exist in a
Clustering, Clustyerin multidimensional space into
LPI and 8 a defined number of distinct
GPI clusters.
. It is a rule-based
Naive classification algorithm that
Bayes, JRip = 98.2% ) 8
(10) X offers high accuracy,
and J48 JRip . .
interpretable rules, and is
(C4.5) . .
computationally efficient.
It is used to understand
) ANN and ANN complex prgblems and alter
LR. them according to the
situation.
It has a better generalization
performance with a faster
(12) RF, MLR, ELM learning speed. and is
ELM thousands of times faster
than other conventional
methods.
K-NN,
SVM They used C5.0 (Type of
X Decision Tree) as the main
Linear, 98.15% . . .
(18) . o Algorithm as it predicts only
Decision Decision Tree .
Tree a categorical target and not
SVNi—rb ¢ an uncertain result.
RE Cubist, RF oﬁrfers greater precis‘io'n
when it comes to predicting
(13) ANN, RE outcomes compared to other
MLR, SVM " P

algorithms.
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sum squared regression (SSR)

R =1 -
total sum of squares (SST)
_ 20 "
Ef\il(yl‘_z)z
2[) Gpredicted Oobserved
cCcC = pe) o A — 7 (2)
predicted observed Hpredicted — Hobserved
2SN (y. = §.)?
RMSE = 1 2::1()1’\} i) 3)

where,

y;= Actual Value,

y; = Predicted Value,

) = Mean of the Actual Value,

p = correlation coefficient between variables y; and y;

Woredicted > Mobserved @are the corresponding means

Opredicted> Oobserved a1€ the corresponding variances of y; and y;

The degree of variation is described by the coefficient of
variation, whose size is measured; a coefficient of variation below
10% is regarded as having mild variability. one greater than 10%
and less than or equal to 100% is considered to have moderate
variability; and one greater than 100% is considered to have
strong variability.

3.1 Dataset collection and preprocessing

Based on the dataset (22), it’s evident that the soil is abundantly
enriched with all the necessary nutrients in quantities that surpass
their respective threshold values. Upon examining the data, it can
be concluded that the soil contains very little Cu, but adequate
amounts of Macro nutrients, along with appropriate pH and EC
levels. Additionally, the skewness values of Zn and OC indicate that
the variables’ distribution is asymmetrical, while the kurtosis values
of Cu and EC suggest that their distribution is uniform. The
Standard Deviation of K indicates that its data is distributed
throughout. The selected data is a multi-class i.e., three class
datasets, which has the following properties (Table 2).

Table 3 shows the summary of the soil fertility dataset,
including basic structure, class distribution and preprocessing
techniques applied. The dataset comprises 1980 samples with 12
features, including pH, N, P, K, EC, Zn, Fe, Cu, Mn, B, S, and
Organic Carbon. The target variable represents soil fertility
classified into three classes: Low (29%), Medium (45%), and High
(26%). As the classes were moderately imbalanced, we employed
SMOTE (Synthetic Minority Oversampling Technique) to balance
the dataset before training. All models were evaluated using
stratified 5-fold cross-validation to ensure fair representation of
each class.

The preprocessing steps involves loading the data into a panda
DataFrame, checking for and handling missing values and ensuring
each column has the correct data type. Duplicates are checked and
removed to avoid redundancy, and numerical features are scaled.
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TABLE 2 Data interpretations.

Nutrients/

Expected

10.3389/fs0il.2025.1652058

Standard

) Median Minimum Maximum . Kurtosis Skewness

properties value deviation

N 280-560 24674 257.00 6.00 383.00 77.39 0.11 -0.63
P 22.5-55 14.56 8.10 2.90 125.00 21.97 10.46 3.40
K 140-330 499.98  475.00 11.00 887.00 124.22 0.16 043
S 10-20 7.55 6.64 0.64 31.00 442 7.66 246
Zn 0.6-1.5 047 0.36 0.07 42.00 1.89 438.19 20.89
Fe 2.5-45 4.14 3.56 0.21 44.00 3.11 38.68 3.59
Cu 0.2-0.5 0.95 0.93 0.09 3.02 047 -0.12 043
Mn 2-4 8.67 8.34 0.11 31.02 4.30 1.09 0.61
B 0.46-0.67 0.59 041 0.06 2.82 057 3.92 2.13
pH 55-7.5 751 7.50 0.90 11.15 0.46 99.94 511
EC 2.5-4.0 0.54 0.55 0.10 0.95 0.14 046 0.10
oc 0.05-12.75 0.62 0.59 0.10 24.00 0.84 675.01 24.32

TABLE 3 Summary of the soil fertility dataset, including basic structure,
class distribution and preprocessing techniques applied.

Property Description
Total samples 1980
Number of

12 (N, P, K, pH, EC, OC, Zn, Fe, Cu, Mn, B, S)
features

Target variable Soil Fertility Class (Low, Medium, High)

Number of classes | 3

Low (29%), Medium (45%), High (26%) - indicating

Class label
ass Jabels moderate imbalance

Missing values Handled using mean imputation for numeric fields

Scaling method MinMaxScaler (range [0, 1])

Class balancing
method

SMOTE (Synthetic Minority Oversampling Technique)
applied before training
Cross-validation

Stratified 5-fold cross-validation for all models
strategy

The preprocessing steps for the dataset included several stages
to ensure data quality and consistency before model training. First,
the dataset was loaded into a Pandas DataFrame, and all missing
values were checked. Since a small number of entries had missing
values, we used mean imputation for numerical fields such as
nitrogen, phosphorus, and potassium. No categorical features
were present in the dataset. Duplicate records were removed to
prevent redundancy. All numerical features were then normalized
using the MinMaxScaler, transforming values to the range [0, 1] to
improve the convergence speed and stability of machine
learning algorithms.

In addition, we performed correlation analysis to detect
multicollinearity. Highly correlated features (correlation > 0.9)
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were reviewed, but none were removed since all parameters (e.g.,
N, P, K, pH, OC) had known agricultural significance. No synthetic
features were added, but during model interpretation, feature
importance techniques were applied (as discussed later). This
preprocessing pipeline was consistently applied to both classical
ML models and deep learning pipelines to ensure comparability.

The observed feature rankings are consistent where N, P, K, and
pH were highlighted as the top contributors to fertility status in
Indian agro-climatic zones. However, unlike previous works that
used limited ML techniques or lab-processed datasets, our study
integrates real-time sensor data, prototype hardware, and deep
learning (LSTM, MLP) for prediction. Furthermore, our analysis
goes beyond prediction by providing field-deployable insights via
the AI-SISFMA kit and web/mobile dashboards—bridging the gap
between lab research and agricultural field utility.

3.2 Models selection

To ensure a comprehensive evaluation and identify the most
suitable algorithm for real-time soil fertility prediction, we
implemented and compared 13 diverse machine learning and
deep learning models. These algorithms were selected to represent
a broad spectrum of learning paradigms, including: Ensemble-based
models (Random Forest, XGBoost, Gradient Boosting, AdaBoost)
for their ability to handle complex feature interactions and reduce
overfitting. Linear models (Logistic Regression, Ridge Classifier) for
their interpretability and baseline comparison. Support Vector
Machines (SVM) for capturing nonlinear relationships with
kernel tricks. K-Nearest Neighbors (KNN) as a non-parametric,
distance-based method suitable for smaller datasets. Naive Bayes for
its speed and probabilistic nature. Decision Trees for simplicity and
interpretability. Multi-Layer Perceptron (MLP) and Long Short-
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Term Memory (LSTM) (38) networks to assess deep learning
effectiveness on structured tabular data. This diversity allowed us
to benchmark performance across different algorithmic families,
minimize bias from model selection, and identify which approaches
generalize best in the context of imbalanced, real-world agricultural
datasets. Ultimately, the top-performing models were retained for
further analysis and deployment in the SISFMA system.

3.2.1 Random forest classifier

The RF Classifier is an ensemble learning algorithm that is
utilized for classification tasks. Its basic idea is to build a collection
of decision trees, each of them is trained using a different subset of
the training features and data. This method lessens overfitting and
improves precision. Because each tree concentrates on a distinct
subset of the data and characteristics, this helps to increase
generalization performance and lessen overfitting. RF Classifier
(6) can be expressed as in Equation 4:

y = mode { fl(x), f2(x), ..., fu(x) } (4)

where,

y is the predicted class label,

fi(x) is the predicted class label,

n is the total number of decision trees in the forest.

This work builds upon earlier studies on soil fertility analysis
(29) which demonstrated the benefit of ensemble classifiers in
agricultural prediction. A RF classifier can be implemented to
assign soil samples to fertility categories purely at random. It does
this without learning from the features (such as chemical
composition or texture). By comparing the performance of more
sophisticated models to this random classifier, you can assess
whether those models are genuinely useful. Ensure that
performance comparison is done using techniques like k-fold
cross-validation. This divides the dataset into training and testing
sets, and average performance is used to avoid bias. A soil fertility
classifier can be used for: Farmers can receive recommendations
based on the fertility class of soil to decide on the appropriate type
and quantity of fertilizers; Identifying areas of low fertility for
targeted interventions, preventing further degradation of the soil;
Agricultural Decision Support Systems (DSS): Incorporating
classification models into tools that guide farmers and
agronomists on sustainable land management practices.

3.2.2 ExtraTrees classifier

It comes under the supervision classifier and is an ensemble
technique that deals with selecting a random decision tree method
to design the model. Fertilizers are administered at random, and soil
samples are tested in a lab to determine the levels of soil fertility.
This conventional method pollutes the environment and raises
fertilization prices. Therefore, it is essential to create a reliable
and affordable classification system for soil fertility and fertilizer
application. It is an extension of the RF algorithm, and like RF, it
builds multiple decision trees and combines their predictions to
obtain the final output. The splitting thresholds for the decision
trees are selected randomly, rather than based on a measure of
impurity such as Gini or entropy. ExtraTrees doesn’t rely on
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bootstrap sampling (random subsets of data with replacement) as
Random Forest does. It uses the whole dataset for each tree, but
adds randomness by splitting the nodes. The ExtraTrees Classifier
can be very effective in soil fertility classification tasks. Soil datasets
often include numerous features (e.g., nitrogen content, moisture,
pH levels). ExtraTrees handles high-dimensional data well by
focusing only on random subsets of features when splitting nodes.
The relationship between soil properties and fertility is often non-
linear. ExtraTrees, like other tree-based algorithms, can capture
such non-linear interactions between soil properties effectively.
ExtraTrees provide a natural way to measure feature
importance, allowing you to determine which soil characteristics
(e.g., organic matter, pH, moisture) are most predictive of fertility
levels. A real-world case study was incorporated using ExtraTrees
Classifier (23).

3.2.3 Stochastic gradient descent classifier

SGD Classifier is a type of linear classifier used for binary and
multiclass classification tasks in ML. It is a simple and efficient
algorithm that updates the model parameters iteratively, based on
the gradients of the loss function with respect to the parameters.
The Equation 5 for the SGD Classifier can be expressed as follows:

w(t+1) = w(t) — eta » grad(Loss(w(t), xi, yi)) (5)

where,

w(t) is the weight vector at iteration t,

eta is the learning,

grad(Loss(w(t), xi, yi)) is the loss function’s gradient,

Loss(w(t), xi, yi)) is the loss function.

In this study, the authors employed ML classifiers, including
SGD, to classify soil samples based on fertility levels. They found
that SGD Classifier, when combined with feature scaling and data
preprocessing, performed efficiently in classifying large soil datasets.
The study highlights the effectiveness of SGD in handling real-
world agricultural datasets, especially where scalability is critical.
This article demonstrates how SGD can be applied in practical soil
fertility analysis, addressing computational efficiency and accuracy
in predicting soil classes. The research emphasized using spectral
data from soil samples to improve prediction performance in
machine learning applications.

3.2.4 Support vector machine

The algorithm is widely utilized in machine learning for both
binary and multi-class classification tasks due to its effectiveness. Its
objective is to determine the hyperplane that optimally separates the
data points into distinct classes, with a focus on maximizing the
margin between the hyperplane and the nearest data points (known
as the support vectors). The equation for the SVM algorithm can be
expressed as follows in Equation 6:

y(x) = sgm (WI' X x + b) (6)

where,

y(x) is the predicted class label for the input sample x,

w is the weight vector that defines the orientation of
the hyperplane,
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b is the bias term that shifts the hyperplane away from
the origin.

In this study, the researchers employed SVM (24) to classify soil
fertility levels based on both laboratory soil data and remote sensing
information. The use of SVM with an RBF kernel was highlighted
due to its ability to capture non-linear relationships in the data,
leading to high classification accuracy. The study found that SVM
outperformed other classifiers when dealing with complex and
multi-dimensional soil datasets, particularly when combined with
feature scaling and cross-validation techniques. This article
illustrates the effectiveness of SVM in soil fertility analysis,
emphasizing its potential for remote sensing applications, where
large-scale soil data can be integrated into the model. It also
underscores SVM’s strength in handling both linear and non-
linear data relationships in agricultural datasets.

3.2.5 Logistic regression

It is a popular algorithm used for binary classification tasks in
machine learning. It models the probability of a binary response
variable (ie., the presence or absence of a certain outcome) as a
function of one or more predictor variables (i.e., features), using a
logistic or sigmoid function. The expression for logistic regression,
represented in Equation 7, can be stated in the following manner.

=)= )

where,

z = (wh x +b),ply= 1) is the conditional probability of the
positive class (i.e., y = 1) given the input features,

X, z is a linear combination of the input features and the model
parameters (weights and bias).

In this study, Logistic Regression (25) was applied to predict soil
fertility classes based on physicochemical properties such as pH,
nitrogen, phosphorus, and organic carbon content. The authors
highlighted the interpretability of Logistic Regression and
demonstrated that the model provided reliable predictions while
identifying the most significant features influencing fertility. They
also emphasized the importance of feature scaling and cross-
validation to improve model performance and generalization.
This article illustrates the practical application of Logistic
Regression in soil fertility analysis, showing that despite its
simplicity compared to more complex models, Logistic Regression
can offer accurate and interpretable results, making it a suitable
choice for agricultural data analysis.

3.2.6 Ridge classifier

The Ridge Classifier is a form of linear classifier that shares
similarities with logistic regression. However, it utilizes L2
regularization to prevent overfitting and enhance generalization
performance. Its primary objective is to locate the linear function
that most effectively divides the data points into distinct categories,
while minimizing the sum of squared weights. The Ridge Classifier
can be considered a middle ground between the L1 regularization-
based linear SVM and the non-regularized logistic regression. It is
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especially beneficial when dealing with correlated and high-
dimensional data as L2 regularization can stabilize the weights
and decrease overfitting.

This study examined the effectiveness of regularized
classification models, including Ridge Classifier, in predicting soil
fertility levels. The research found that Ridge Classifier (26)
performed well in handling the multicollinearity present in soil
datasets and provided more stable predictions compared to non-
regularized models. The Ridge Classifier’s ability to shrink
coefficients resulted in improved generalization and interpretation
of the influential soil properties. The authors emphasized the
importance of regularization for ensuring model robustness,
particularly in agricultural datasets prone to overfitting. This
article illustrates how Ridge Classifier can be used to enhance the
organization of soil fertility, demonstrating the advantages of
regularization in agricultural data analysis.

3.2.7 KNeighbors classifier

The KNeighbors Classifier algorithm is widely utilized in
machine learning for classification tasks. This algorithm is
categorized as an instance-based or lazy learning method, which
predicts the output class of a new sample based on the majority vote
of its K-Nearest Neighbor in the training data, utilizing a specific
distance metric. The algorithm involves two primary steps: first,
computing the distance between the input sample and selecting the
K-nearest Neighbor, and second, aggregating their class labels to
make a prediction. In this study, the authors applied the KNN (27)
algorithm to predict soil fertility classes based on soil properties.
The study demonstrated that KNN achieved high accuracy in
classifying soil fertility, particularly when combined with feature
scaling and cross-validation. The authors also emphasized the
importance of selecting an appropriate “k” value to optimize the
model’s performance. The research highlighted the simplicity and
effectiveness of KNN for soil fertility prediction in precision
agriculture. This article provides a comprehensive exploration of
how KNN can be applied in real-world soil fertility analysis,
illustrating its usefulness in predicting soil health and supporting
decision-making in agriculture.

3.2.8 Gradient boosting classifier

The described classifier is an ensemble learning technique (28)
that amalgamates several weak learners to generate a robust
predictive model. The method operates by progressively including
fresh decision trees into the model, where every tree is trained to
rectify the mistakes made by the preceding one. The ultimate
forecast is derived by accumulating the projections of all the trees.
Mathematically, the prediction of the Gradient Boosting Classifier
can be represented by the following Equation 8:

F(x) = ) Hy(x) )

where,
F(x) is the final prediction,
7 is the learning rate,
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H,,(x) is the prediction of the m th decision tree,

M is the total number of trees.

In this study, the authors employed Gradient Boosting Classifier
(29) to predict soil fertility based on soil properties. They found that
Gradient Boosting outperformed other classifiers like RF and LR,
particularly in capturing non-linear interactions between soil
properties. The model’s ability to identify the most significant
factors in soil fertility helped inform better agricultural practices
and fertilizer management strategies. The study also discussed how
hyperparameter tuning and regularization helped improve model
performance and prevent overfitting. This research highlights the
advantages of Gradient Boosting in dealing with complex
agricultural data and showecases its effectiveness in making
accurate soil fertility predictions.

3.2.9 AdaBoost

It is a boosting algorithm (30) that syndicates weak classifiers
into a strong classifier. It assigns weights to training examples based
on their classification error and trains a sequence of weak classifiers
on weighted training data. The final classification is determined by a
weighted combination of the weak classifiers. The Formula 9 for the
AdaBoost classifier is:

Hx) = sgm (XL 04H,(x) ) ©)

where,

H,(x) is the final classifier,

o, is the weight assigned,

T is the number of weak classifiers.

3.2.10 Fuzzy c-means

It is a clustering algorithm that assigns each data point a
membership grade for each cluster, allowing it to handle
uncertain or overlapping data. It iteratively updates the cluster
centers and membership grades until convergence. The Formula 10
for fuzzy c-means is:

] = SN S () - () (o)
N c (x(i) — ()

ose  GO-uG) 11

wi(i ]) Ek—l (x(i) - Iu(k))(m) an

) - Ziaw(i)"x() 12

=20 a2

where,

J (Equation 11) is the objective function to be minimized,
w(i,j) (Equation 11) is the membership grade of data point
iin cluster j,

m is a weighting exponent,

x(i) is the i™ data point,

1 () (Equation 12) is the centroid of cluster j,

N is the number of data points,

C is the number of clusters.
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3.2.11 Decision tree classifier

The algorithm utilized in machine learning is known as a
decision tree model. This model is structured as a tree, which
contains various decisions and their potential outcomes. The
algorithm partitions data recursively according to the values of
features, and at each split, it selects the feature that offers the most
information gain. The Equation 13 for the decision tree classifier is:

H(x) = argmax (EtT:l[yi = ¢ pi|x) ) (13)

where H(x) is the predicted class for input x, c is the class label,
yi is the i-th training instance, N is the number of instances, and p(i |
x) is the probability of the instance i given input x.

3.2.12 The perceptron

It is a binary classification algorithm that learns a linear decision
boundary to separate data points. It computes the weighted sum of
input features and applies a threshold function to make a
prediction. The weights and bias are updated based on the
classification error at each iteration. Equation 14 for the
perceptron is:

H(x) = sign(w-x + b) (14)

where H(x) = the predicted class for input x, w = the weight
vector, “’ denotes the dot product and b is the bias term. The
Perceptron model (31-33) can be trained using labelled soil data to
classify soil samples based on fertility levels. Key soil parameters
such as pH, nutrient levels (N, P,K), organic matter, and texture can
serve as inputs, while the fertility category (e.g., low, medium, high)
is the output. The Perceptron adjusts its weights to learn the
relationship between input features and soil fertility status,

allowing for the prediction of soil fertility for new, unseen data.

3.2.13 K-means

The given content describes an unsupervised clustering
technique that separates n data points into k clusters. Initially, k
centroids are randomly selected, and each data point is assigned to
the closest centroid. Then, the centroid of each cluster is
recalculated by taking the mean of the points in that cluster. The
algorithm continuously updates the cluster assignments and
centroids until it reaches convergence. The ultimate outcome is k
clusters that group together the data points with similar distances to
their respective centroid.

K-means (34) can group soil samples into clusters based on
their chemical and physical properties. This helps researchers
identify patterns in soil fertility across different regions, guiding
crop selection and soil management practices. For instance,
clustering can reveal zones that are nutrient-rich versus those that
are nutrient-poor. In precision agriculture, K-means is used to
delineate management zones in a field based on fertility indicators
like nitrogen, phosphorus, or organic carbon content. These clusters
enable more targeted interventions, such as adjusting fertilizer
application rates to specific areas rather than treating the entire
field uniformly. The technique allows for spatial mapping of soil
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TABLE 4 Architecture of the multi-layer perceptron (MLP) model. 3.3.1.2 Hidden layers
Hidden layers are the heart of the MLP, where the model learns
Lael ML D2 e - g seu lationships and patterns in the data.
name neurons function rate re P P
Input Layer 12 (one per feature) | - - a. First Hidden Layer: This layer begins to extract underlying
Hidden o ReLU s relationships between the features. For example, it may
Layer 1 combine the temperature and humidity features to
Hidden understand how they jointly influence crop suitability.
Layer 2 32 RelU 0 ReLU (Rectified Linear Unit) activation is applied to
Hidden y Ly s ensu.re tl?e I.nodel can capture complex, non-linear
Layer 3 relationships in the data.
Output b. Second Hidden Layer: This layer refines the patterns
Layer 6 (number of crops) Softmax - learned from the first hidden layer. For instance, it might
distinguish between crops that thrive in wet soils versus
those suited for dry conditions. The smaller number of
neurons compared to the first layer ensures the model
variability, oﬁering insights into soil fertility distribution. These progressively simpliﬁes and narrows down
clusters are used to create soil maps that visually represent the important patterns.
variation of soil characteristics (35, 36) within a specific area, c. Third Hidden Layer: The model further condenses the
helping optimize land management decisions. Soil datasets often extracted information, focusing only on the most critical
include many overlapping variables. K-means simplifies the features and relationships that help differentiate between
interpretation by clustering similar data points together, making crop recommendations.

it easier to identify distinct soil types or conditions that influence
plant growth.

3.3.1.3 Dropout layers
Dropout is a regularization technique added after some hidden

3.3 Deep learning algorithms layers to prevent overfitting. It temporarily deactivates a random

subset of neurons during training, forcing the model to rely on a

The proposed work also predicts the type of crop that can be  proader set of features rather than memorizing the training data.

grown in the given area. The prediction is done using deep  pjg improves the model’s generalizability to unseen data.

learning techniques.
3.3.1.4 Output layer

3.3.1 Multi-layer perceptron The final layer provides the predicted probabilities for each class

MLPs (37) are particularly well-suited for tabular data where
features (e.g., soil type, pH, temperature) are independent but still

(crop type). A softmax activation function is used here, ensuring the
output represents probabilities across all possible crops. The crop

with the highest probability is chosen as the recommendation.
RNNs (used for sequences), MLPs effectively model relationships in Table 4 shows the architecture of the MLP model. It consisted of
structured data. Crop recommendation is a non-linear problem

collectively influence the output. Unlike CNNs (used for images) or

an input layer with 12 neurons (corresponding to the 12 features),

where features interact in complex ways (e.g., high pH combined  f,j1owed by three hidden layers with 64, 32, and 16 neurons

with low temperature favors one crop but not another). MLP, respectively. The activation function used in all hidden layers was

with its hidden layers and activation functions, can learn ReLU, and Dropout of 0.3 was applied after each hidden layer to

such relationships. prevent overfitting. The output layer used a Softmax activation

Unlike image data where spatial relationships are important  ypction for multi-class classification. The model was trained using
(handled by CNNs), or sequential data where order matters
(handled by RNNs), MLPs treat each input feature independently,
making them ideal for datasets like this. The following are the layers

inside the MLP.

the Adam optimizer with a learning rate of 0.001, a batch size of 32,
and for 50 epochs. Categorical cross-entropy was used as the loss
function. Early stopping with a patience of 5 epochs was applied
based on validation loss.

3.3.1.1 Input layer 3.3.2 Long short-term memory

The input layer takes in all the features from the dataset, such as A robust neural network architecture integrates several key
soil type, temperature, humidity, and other relevant parameters. =~ components to enhance its performance and versatility. A
This layer acts as a gateway to feed structured/tabular data into the ~ Bidirectional LSTM captures patterns from both past and future
neural network. Each feature is assigned to a neuron, and no  contexts, enabling richer feature representation, while a Stacked
processing occurs here—it simply passes the raw data to the LSTM deepens the ability to learn complex temporal patterns
next layer. within sequences. Dense layers (MLP) further refine these
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TABLE 5 Architecture of the LSTM model.

Units/ Activation Dropout
neurons function rate

Input Layer Sequence Input - -

Bidirectional 4 tanh (default in 02

LSTM LSTM) ’

Dense Layer 1 32 ReLU -

Dense Layer 2 16 ReLU -

Output Layer 6 (crop classes) Softmax -

TABLE 6 Prediction results of ML models.

o Recall
Parameters Accuracy Precision
score

RF 92.42% 76.88% 65.82% | 65.24%
ExtraTrees
Classifier 91.67% 78.23% 70.48% | 68.88%
SGD Classifier 90.91% 60.60% 62.12%  63.75%
Ada-Boost
L a f? o8 90.15% 77.81% 76.00%  74.71%

assiner
SVM 89.77% 60.04% 61.40%  62.94%
KNeighb
a EI,gﬁ ors 87.88% 58.84% 6020% | 61.62%

assiner
Ridge Classifier 88.26% 59.29% 60.37%  61.88%
Decision Tree 87.50% 77.51% 77.47% 77.45%
Logistic Regression | 85.61% 58.76% 59.34% 60.02%
Gradient Boosting
Classifier 85.23% 70.63% 70.92% | 71.26%
Perceptron 81.82% 68.40% 63.32% 61.98%
GaussianNB 54.17% 49.01% 4139% | 56.32%
K-means 50.00% 33.64% 3231%  35.00%

sequential features, transforming them into compact
representations suitable for classification tasks. Dropout is
employed to mitigate overfitting by randomly deactivating
neurons during training, ensuring a more generalized model.
Finally, a Softmax layer converts the network’s outputs into a
probability distribution, facilitating effective multi-class
classification. LSTMs excel at learning sequential patterns, long-
term dependencies, and temporal relationships in data, addressing
challenges that static models like MLPs cannot handle effectively on
their own. While LSTMs capture the sequential features, MLPs play
a complementary role by transforming these features and
facilitating classification. This combination adds flexibility to the
model and enables the learning of non-linear decision boundaries,
enhancing overall performance.

Table 5 shows the architecture of LSTM model. The hybrid
model used a Bidirectional LSTM layer with 64 units, followed by a
Dropout layer (0.2) and two Dense layers with 32 and 16 neurons

Frontiers in Soil Science

11

10.3389/fs0il.2025.1652058

respectively. The final output layer used Softmax activation for
multi-class classification. This model was also trained using Adam
optimizer with a learning rate of 0.001, a batch size of 64, and for 50
epochs. The model was validated using an 80:10:10 split (train:val:
test) and monitored using early stopping.

3.3.3 Training strategies and overfitting control
During the training of deep learning models (MLP and LSTM),
early stopping was implemented to prevent overfitting. The training
process was monitored using validation loss, and training was
halted if no improvement was observed for 5 consecutive epochs.
A fixed learning rate of 0.001 was used throughout training;
learning rate scheduling techniques were not applied in this study
to keep the training process consistent across models. Since the
dataset consists of structured tabular data, data augmentation
techniques were not applicable and were therefore not used.

3.4 Experimental analysis using ML
algorithms

3.4.1 Hyperparameter tuning

The potential of the Ensemble models is also enhanced to the
maximum possible extent by utilizing the ‘RandomizedSearchCV’
function, which is a part of the ‘model_selection’ module in the
‘scikit” library. This function performs a search through the given
hyperparameters distribution to identify the optimal values for the
model. In addition, a 7-fold cross-validation scheme (cv=7) is used
to improve the accuracy of the model. After fitting the training data
into the model, the best parameters are extracted from the results
obtained from the Randomized Search to ensure the model is fine-
tuned to its highest potential.

3.4.2 Evaluation metrics and results

With the fully optimized Random Tree model, it has been
concluded that prediction of soil fertility is possible with a splendid
maximum accuracy of 92.42%. Along with the highest accuracy
model, added the other model’s accuracy, precision, and recall
values (Table 6). The percentage of correct predictions out of all
predictions. Higher accuracy indicates better performance. The RF
classifier has the highest accuracy (92.42%). Precision is the
proportion of positive predictions that are actually correct.
ExtraTrees Classifier has the highest precision (78.23% and good
at identifying true positives without many false positives. A higher
F1 score indicates a better balance between precision and recall.
Gradient Boosting Classifier has the highest F1 score (70.92%). The
Gradient Boosting Classifier has the highest recall (71.26%), and
identifies the true positives.

Later comes the comparison, through a bar graph, of the
Accuracy, precision, and Recall score calculated applying the
equation no: (15), (16) and (17), respectively of all the algorithms
in a detailed manner.

Number of correct predictions

Accuracy = (15)

Total number of true positives
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FIGURE 1
Accuracy graph obtained using ML algorithms.
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Precision graph obtained using ML algorithms.
Precisi TP (16) While RF exhibited the highest overall accuracy (92.4%), its F1-
recisSioNgpre = . .
TP + FP score was lower compared to Gradient Boosting and XGBoost due
Recall Score TP 17) to class imbalance effects. The latter models achieved better recall
TP +FEN

Accuracy [depicted Figure 1] can be defined as the fraction of
predictions the model got right and the agreement between a
measured value and an accepted value. It can be calculated by
dividing the number of correct predictions by Total number of true
positives (TP).

Precision [shown in Figure 2] can be estimated by dividing TP
by the sum of TP and the sum of false positives (FP) predictions.

Recall [refer Figure 3] can be calculated by dividing TP by the
sum of TP and total number of false negatives (FN).

Furthermore, it is possible to calculate the values of TP, Total
number of True Negatives (TN), FP and FN using the Confusion
Matrix (Table 7) obtained.
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and Fl-scores, especially for minority classes (Low and High
fertility). This highlights that accuracy alone is not sufficient to
assess performance in imbalanced classification tasks. Therefore,
models were further compared using macro-average F1-scores and
confusion matrices to assess class-wise prediction capability.

Among all models evaluated, RF and XGBoost outperformed
others due to their robustness against overfitting, ability to handle
nonlinear feature interactions, and inherent feature selection
mechanisms. XGBoost, in particular, benefits from boosting weak
learners and optimizing loss with regularization, which explains its
superior Fl-score and Recall across fertility classes. In contrast,
models like SVM and Logistic Regression struggled to model
nonlinear relationships present in the dataset.
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FIGURE 3
Recall graph obtained using ML algorithms.

3.4.3 Implementation With MLP 2 mulberries as ragi, and 1 pomegranate as grapes. This
The Confusion matrix in Figure 4 shows that the most indicates that while the model performs well overall, there is

predictions align with the actual labels, as evidenced by the high ~ slight confusion between certain classes, which might be
values along the diagonal. For example, all instances of potato  addressed by improving feature differentiation or fine-tuning the

(20) and most instances of grapes (20/21) are correctly — model further.

classified. However, there are a few misclassifications: 1 instance The confusion matrix for MLP shows accurate predictions for

of grapes is classified as pomegranate, 1 mango as mulberry, “Medium” and “High” classes, but noticeable confusion between

TABLE 7 Confusion Matrix obtained using ML algorithms (22).

ML . . ML

Confusion matrix Confusion matrix

algorithms algorithms

80
80
T o
= P 8 €0
v v
RF I Perceptron 5
0 40
20 20
0 0
0 1 2
Predicted label Predicted label
120 120
100 100
80 80
o T
g 3
Extra Trees v L . [ L
i e GaussianNB -
Classifier
40 40
20 20
0 0
0 1k 2
Predicted label Predicted label
(Continued)
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TABLE 7 Continued

ML

algorithms Confusion matrix

120

100

Tue label

SGD Classifier

1
Predicted label

120

100

Ada-Boost
Classifier

Tue label

Predicted label

“Low” and “Medium,” reflecting class overlap. This justifies the
lower recall and F1-score for the “Low” class.

To ensure robust training and evaluation of the deep learning
models, the dataset was split into three subsets: 80% for training,
10% for validation, and 10% for testing. The split was performed
randomly but ensured class stratification to maintain the original
distribution of soil fertility classes. The validation set was used for
hyperparameter tuning and early stopping to prevent overfitting,
while the final model performance was reported on the hold-out test

10.3389/fs0il.2025.1652058

ML

algorithms Confusion matrix

Tue label

K-means

0 1 2
Predicted label

set. Additionally, we averaged the performance over multiple
random seeds to ensure consistency.

The classification report (Figure 5) shows that the model
achieves an overall accuracy of 96%, with high precision, recall,
and F1-scores across all classes. Mulberry, pomegranate, and potato
have perfect precision and recall, indicating no false positives or
false negatives for these classes. Grapes and mango also perform
well with slightly lower scores, while ragi has the lowest precision
(91%), suggesting some false positives for this class. Both macro and

Confusion Matrix
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FIGURE 4
Confusion matrix for MLP model.
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FIGURE 5
Performance metrics for MLP model.

weighted averages for all metrics are consistently at 96%, indicating
balanced performance regardless of class distribution. Overall, the
model is robust and well-generalized, with minor room for
improvement in ragi’s classification.

The training and validation performance plots in
indicate that the model learns effectively on the training data, as
shown by the steadily decreasing training loss and increasing training
accuracy, which stabilizes near 1.0. However, the validation loss
initially decreases but then starts increasing, while the validation
accuracy plateaus below the training accuracy, highlighting
overfitting. This suggests that while the model performs well on the
training data, its generalization to unseen data deteriorates over time.

The confusion matrix in shows that majority of
predictions are correct, as indicated by the dominant diagonal
values. For instance, all mulberry (21), most grapes (23/24),
pomegranate (21/22), potato (22/23), and ragi (16/17) instances are
correctly classified. However, some misclassifications are observed: 1
grape is classified as ragi, 1 mango as grape, 1 pomegranate as mango,
and 1 potato as ragi. These misclassifications suggest that while the

Loss Curve

—— Training Loss
—— Validation Loss

Loss

0.75 A

0 10 20 30 40 50
Epochs

FIGURE 6
Accuracy, loss vs epochs curve for MLP model.
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model generally performs well, certain class boundaries might
overlap, which could be addressed by refining the model or
incorporating additional distinguishing features.

) indicates that the model
performs exceptionally well, achieving an overall accuracy of 97%

The classification report (

with high precision, recall, and Fl-scores across most classes.
Classes such as mulberry and pomegranate show near-perfect
performance, while ragi has the lowest precision (89%), indicating
some false positives for this class. Despite minor variations, the
weighted average metrics confirm consistent performance, with the
model handling class imbalances effectively. Overall, the model is
highly reliable, but slight improvements could be made for specific
classes like ragi to enhance precision.

The graphs ( ) show the accuracy and loss trends of the
Hybrid model (MLP with LSTM) over 50 epochs. The accuracy
curve (left) indicates steady improvement in both training and
validation accuracy, with the model reaching near convergence after
approximately 20 epochs. Training and validation accuracy closely
align, suggesting minimal overfitting and a well-generalized model.

Accuracy Curve
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FIGURE 7
Confusion matrix for hybrid model (MLP WITH LSTM).

Classification Report:

precision recall fl-score support

grapes 0.96 0.96 0.96 24
mango 0.94 0.94 0.94 18
mulberry 1.00 1.00 1.00 21
pomegranate 1.00 0.95 0.98 22
potato 1.00 0.96 0.98 23

ragi 0.89 1.00 0.94 16
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macro avg 0.97
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FIGURE 8
Performance metrics for hybrid model (MLP WITH LSTM)
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FIGURE 9
Accuracy, loss vs epochs curve for hybrid model (MLP WITH LSTM)
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Comparison of Metrics for MLP and MLP with LSTM

Values
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FIGURE 10
Comparison of MLP and MLP with LSTM.

The loss curve (right) shows a rapid decrease in both training and
validation loss during the initial epochs, eventually stabilizing as the
model learns. The validation loss aligns well with training loss,
further confirming the absence of significant overfitting. Overall,
the model demonstrates effective training and generalization with
consistent performance.

The comparison of metrics from Figure 10—Accuracy,
Precision, F1-Score, and Recall—between the MLP (Multi-Layer
Perceptron) and MLP with LSTM models reveals the
following observations:

a. Accuracy: The MLP with LSTM model achieves a higher
accuracy of 0.970 compared to the MLP model’s accuracy of
0.960. This indicates that the LSTM augmentation improves
the overall performance in terms of correctly classifying
the data.

. Precision: Both models achieve the same Precision value of
0.960, indicating that the models are equally effective at
minimizing false positives.

. F1-Score: The MLP with LSTM model achieves a higher F1-
Score of 0.970, compared to 0.958 for the MLP model. This
improvement suggests that the MLP with LSTM strikes a
better balance between precision and recall.

. Recall: The MLP with LSTM model achieves a Recall of
0.968, outperforming the MLP model, which has a recall of
0.958. This improvement implies that the MLP with LSTM
is more effective at identifying all relevant instances,
reducing false negatives.

The inclusion of the LSTM layer in the MLP architecture results
in noticeable improvements in Accuracy, F1-Score, and Recall,
while maintaining the same Precision as the standard MLP
model. This highlights the superior performance of the MLP with
LSTM model in tasks that require better generalization and recall
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capabilities, particularly for datasets where sequential dependencies
play a role.

All models, including both traditional machine learning (e.g.,
Random Forest, XGBoost) and deep learning architectures (MLP,
LSTM), were evaluated using Stratified K-Fold Cross-Validation
with K = 5. This ensured that the distribution of fertility classes
(Low, Medium, High) was preserved across all folds. For each
model, the training and evaluation were repeated five times, and the
reported performance metrics (Accuracy, Precision, Recall, F1-
score) represent the average across the five folds. For deep
learning models, the cross-validation process was repeated with
new weight initializations for each fold to avoid data leakage and
overfitting. This approach ensured robustness and generalizability
of the results.

To assess the significance of model performance differences, a one-
way ANOVA test was conducted on Fl-scores obtained across five
cross-validation folds for each model. The resulting p-value (< 0.05)
indicates that the differences in F1-scores are statistically significant.
Post-hoc Tukey’s HSD test revealed that XGBoost and Gradient
Boosting significantly outperformed SVM and Logistic Regression.

4 SISFMA hardware testbed

A hardware prototype Artificial Intelligence based Smart
Innovative Soil Fertility Monitoring Aid (AI-SISFMA) presented
in Figure 11 has been made to analyze the fertility of the soil. The
prototype features are as follows (a) It measures the equal
distribution of fertilizer in irrigation land, (b) Fertilizer level
intimation in the soil to the farmer, if it is below the required
level, (c) Field officer suggestions for fertilizer level intimation via
Mobile Application(d) Moisture level indicator to provide equal
amount of water distribution (e) Mobile Application Development -
Input from farmer, Al based Suggestion Window.
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FIGURE 11
Al-SISFMA loT kit.

Table 8 lists the hardware specifications of AI-SISFMA IoT kit. The
prototype comprises moisture sensor (RKI-4669) for measuring the
moisture level in the soil, NPK sensor for measuring nitrogen,
phosphorus and potassium level in the soil, and aeration using

TABLE 8 Hardware specification of Al-SISFMA loT kit.

Model/
Component part Functionality
number
Ardui
Microcontroller rauino Central control unit for data
! Unit (MCU) Leonardo acquisition and communication
(ATmega32u4) 4
Soil Moisture Measures volumetric water
2 RKI-4669 . R
Sensor content in the soil
5V RS485 M N. P and K levels i
3 NPK Sensor (JXBS-3001- casures I, Fand & fevels
the soil
NPK-RS)
4 pH Sensor SKU: 235871 Measures soil pH level
D i levels i
5 Aeration Sensor MIJ03 etect‘s aeration/oxygen levels in
the soil
Enables wirel
6 Wi-Fi Module ESP8266 nables wireless data
transmission
Sends SMS alerts/notifications to
7 GSM Module TOM-24112 farmers or connects with mobile
networks
Mobile ' ALSISEMA User intfzrface for falimers;
8 Application A collects inputs and displays AI-
(Android) PP generated suggestions
9 Camera Input Smartphone- Captures field images for visual
(optional) integrated soil condition assessment
. Custom-built Houses all internal components;
10 Casing

Enclosure designed for field deployment
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MIJ03 sensor. Arduino microcontroller (ATmega32u4) to collect the
sensed soil nutrients level, pH sensor (SKU: 235871) for measuring the
pH level in the soil, Wifi module (ESP2866), GSM module (TOM-
24112) and prototype android app for getting suggestions from
agricultural field officer. In addition to the above sensors the farmer
has the option to capture the image of his/her land to check the soil
color and contamination. The NPK sensor senses the soil fertility level
and if it is less than the threshold level, the farmer contacts the AFO
using user friendly AI-SISFMA mobile application for suggestions
regarding the amount of fertilizer to be mixed up with soil for crop
farming. The data from the prototype kit and the captured image are
processed by the AI based recommendation model available with the
AFO. AFO verifies and suggests the best optimal solutions for the
farmer in terms of fertilizer usage, moisture level and pH level to be
maintained and the types of crops that can be grown on their land. This
suggestion improves the better yield of a particular crop, reduces the
conventional mode of soil nutrients measurement, and increases the
farmer’s income.

The Figure 12 illustrates the casing of SISFMA kit with two
views: a front view and an isometric view. The isometric view
provides a 3D perspective of the casing, showing the spatial
arrangement of components inside the device. This view helps to
understand how different components like the MCU, power board,
and pH sensor module are housed within the enclosure and how
they are positioned relative to one another.

The device is likely built to be deployed in the field, possibly in
precision agriculture or soil fertility assessments, to measure soil
properties directly and give farmers or researchers data that can be
used for decision-making. If this device is indeed used for soil
analysis, its design reflects a typical modular structure, where
different sensors (like pH or moisture sensors) and processing
units (MCU or Arduino) are incorporated into a robust casing
for outdoor use.
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FIGURE 12
SISFMA kit casing.
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FIGURE 13
Workflow diagram SISFMA [Smart innovative soil fertility monitoring aid].
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Figure 13 depicts the work flow diagram of the SISFMA kit. The
following are the step-by-step work involved in SISFMA.

4.1 Data collection by farmer

The farmer uses the SISFMA kit to measure key soil properties
such as N, P, K, pH, moisture, and aeration levels. These properties
are essential for determining soil fertility. Along with measuring
physical and chemical properties, the farmer captures soil images
using the SISEMA mobile application. These images could be used
for visual assessment of soil quality and structure.

4.2 Data transmission

The collected data (both measured values and images) are sent
to an entity referred to as AFO (possibly Agricultural Field Officer
or Agriculture Fertility Optimizer) via the SISFMA
mobile application.

4.3 Data input into Al models

The AFO inputs the received measured values of nitrogen,
phosphorus, potassium, pH, moisture, and aeration into SISFMA
web application model A. This model likely uses numerical analysis
to assess the soil fertility based on standard soil test data. The
captured soil images are input into SISFMA web application model
B. This model might use image processing or Al-based visual analysis
(such as machine learning or computer vision) to assess additional
soil characteristics, such as texture, color, or contamination.

4.4 Running Al models: run both models

The AFO runs both Model A and Model B of the SISFMA
application. Each model analyzes the data based on different inputs
(numerical vs. image-based analysis), and produces an assessment
of the soil’s condition and fertility.

4.5 Comparison of results for optimal
solution

The AFO compares the results from both models (A and B).
This comparison helps in arriving at the best optimal solution,
combining the numerical and visual data analysis for a
comprehensive understanding of soil health.

Based on the analysis, the AFO provides recommendations and
suggestions via the SISFMA mobile application. These
recommendations may cover: Optimal NPK levels for
fertilization; pH adjustments if the soil is too acidic or alkaline;
moisture and aeration levels to ensure proper soil structure and
hydration; other soil properties like soil color (which could indicate
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organic matter or contamination); fertilizer amounts and types to
be distributed based on the fertility assessment.

This ML-based system appears to be designed for
precision agriculture.

The enhancement in soil fertility management by providing
tailored recommendations based on both measurable soil
parameters and visual analysis is accomplished. It helps farmers
optimize fertilizer use, thereby improving crop yields and
promoting sustainable farming practices by reducing overuse of
chemicals. The key advantages include automated Analysis, dual
data approach and real time support. The SISFMA system simplifies
soil analysis, making it easier for farmers to get accurate
recommendations without requiring extensive technical
knowledge. By combining numerical soil properties and image-
based data, the system provides a more thorough analysis. The
mobile and web-based platforms ensure that farmers receive quick
and actionable feedback on soil management strategies.

5 Experimental results

The real time extraction of soil sample from Brahmapuram
location is shown in Figure 14.

For experimental verification, the soil samples were collected
from different locations in Vellore district and are presented
in Table 9.

5.1 Real time soil fertility prediction

The soil-1A (Figure 15A) has low nutrient levels, particularly
nitrogen and phosphorus. It could benefit from fertilizer
supplementation. Its pH is suitable for a wide variety of crops, but
nutrient amendments are needed. The soil-2A (Figure 15B) is
nutrient-rich and has excellent moisture retention. It should be
suitable for crops requiring high nutrient levels, but drainage might
need to be improved due to high moisture. The soil-3A (Figure 15C)
figure is moderately fertile but lacks phosphorus. Suitable for a wide
range of crops, but phosphorus amendments may be necessary to
improve yield. The soil-4A (Figure 15D) is with a poor nutrient
profile with very low nitrogen, phosphorus, and potassium. This soil
would need significant fertilization to support plant growth. The soil-
5A (Figure 15E) is with Neutral pH, but nutrient-deficient, especially
in potassium. Fertilizer application is essential before planting. The
soil-6A (Figure 15F) is highly acidic and nutrient-poor, requiring
both pH adjustment and significant nutrient supplementation. The
soil-7A (Figure 15G) is with low fertility with a slightly alkaline pH,
which is suitable for certain crops like legumes then it needs nutrient
enhancements for optimal growth. The soil-8A (Figure 15H) is
moderately fertile but needs more phosphorus and potassium. It’s
slightly acidic, which can be tolerated by most crops. The soil-9A
(Figure 15I) has moderate nitrogen but lacks phosphorus and
potassium. High moisture may need management depending on
the crop. The soil-10A (Figure 15]) has a balanced nutrient profile
with moderate amounts of nitrogen, phosphorus, and potassium.
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FIGURE 14
Real time soil extraction from Brahmapuram.

In Soil Sample - 2A (Figure 16A) the pH measured using the
SISFMA kit and predicted results closely match the lab results. For
Potassium, the lab results are slightly lower than both the SISFMA
predictions and the kit. A similar trend is observed for Phosphorus,
with the lab results being slightly lower across all methods.
However, for Nitrogen, the lab results are significantly higher
compared to both the SISFMA predictions and the kit.

In Soil Sample - 3A (Figure 16B) the lab results for pH are
higher compared to both the SISFMA predictions and the kit. In the
case of Potassium, the SISFMA kit underestimates the values, while
the predicted results are much closer to the lab measurements. For

TABLE 9 Soil samples from different location in Vellore district.

Name of . . Soil
: Latitude Longitude

the village 9 samples
Brahmapuram N 12° 57’ 56.9808” E 79° 10’ 13.3428” 1A
Seyur-Location- »
1 12.964369944545766 79.18399579633203’E = 2A
Seyur-Location- N
N 12.971615655226024, = 79.1840567485389”E 3A
Pallikuppam-1 12.99159011803117 79.15624670957743"E = 4A
Pallikuppam-2
Thoppu bus 12.995392522492862 79.14751855324333”E = 5A
stand
Periyapudur »

d 12.997220619763706 79.14122010674224’E = 6A
roat
Katpadi 12°58°07.9"N 79°11’52.3"E 7A
Mettukulam-

ettukutam 12.998515158687782  79.13632327034453  8A
Location-1
Mettukulam-

R 12.998936611535093 79.13601309557316 9A
Location-2
meettukulam-
X 12.999728882020749 79.13527095293843 10a

location-3
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Phosphorus, the lab results exceed those obtained by both the
SISFMA predictions and the kit. However, Nitrogen levels are
consistent across all methods, showing minimal variation between
the SISFMA predictions, the kit, and the lab results.

In Soil Sample - 5A (Figure 16C), the predicted results
overestimate pH compared to both the lab results and the
SISFMA Kkit, which are closely aligned. For Potassium, the
SISEMA kit shows significantly higher values than both the lab
results and predictions. Regarding Phosphorus, the predictions are
higher than the lab results, with the SISFMA kit providing the
lowest measurements. In the case of Nitrogen, the lab results
indicate higher nitrogen content compared to both the
predictions and the SISFMA Kkit.

Nitrogen values tend to be the most consistent across all
methods, particularly in sample 3A. In contrast, Potassium and
pH exhibit noticeable variation between methods, with the SISFMA
kit often differing from the lab results. Overall, the SISFMA kit
generally shows closer alignment with lab results in some cases,
although the predicted values also demonstrate reliability
depending on the parameter being measured.

The MAE, RMSE, and Percentage Deviation (Table 10) for key
soil parameters (pH, N, P, K) across four sample sets was calculated.
The maximum observed deviation is 13.26%, and the highest RMSE
recorded is 3.72 mg/kg (Figure 16A Soil Sample- 3A). These results
demonstrate that SISFMA’s predicted outputs are closely aligned
with laboratory results, affirming the system’s reliability for field-
level applications. Table 11.shows the error rates for each parameter
(N, P, K, pH) measured by the kit vs lab standard.

5.2 Feature importance and key soil
indicators

The insights from feature importance analysis have been directly
integrated into the SISFMA system to enhance crop advisory services.
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A Soil -1A

F Soil-6A

B Soil-2A:

itrogen: 69 mg/kg
Phosphorous: 25 mg/kg
Potassium: 35 mg/kg
oisture Percentage:86.90%
H: 6.00

C Soil-3A:

Nitrogen: 47 mg/kg
17 mg/kg

Potassium: 23 mg/kg

Phosphorous:

Moisture Percentage:71.55%
pH: 6.00

D Soil-4A

E Soil-5A

Nitrogen: 74 mg/kg
Phosphorous: 26 mg/kg
Potassium: 37 mg/kg
Moisture Percentage

pH: 6.00

FIGURE 15

J  Soil-10A

Nitrogen: 32 mg/kg
Phosphorous: 15 mg/kg

Potassium: 22 mg/kg

Moisture Percentage:51.03%
pH: 6.00

Soil Sample outputs (A) Soil 1A, (B) Soil 2A, (C) Soil 3A, (D) Soil 4A, (E) Soil 5A, (F) Soil 6A, (G)Soil 7A, (H)Soil 8A, (1) Soil 9A, (J) Soil 10A.

For instance, soils identified with low N and P levels were mapped to
legume and pulse-based cropping recommendations, as these crops
enrich nitrogen content naturally. Similarly, low pH (acidic soil)
predictions triggered recommendations for lime application and
pH-tolerant crops. This data-informed mapping improves both
fertility correction and crop suitability, enabling sustainable
practices. Notably, fields with high OC but low macronutrients were
recommended compost-supplemented cereals or oilseeds. This
demonstrates how predictive parameters influence both fertilizer
dosing and crop decision support.

Feature importance analysis using the Gini index from the RF
model (Table 12) revealed that N, P, K, and pH are the most
influential features in determining soil fertility class. This aligns

Frontiers in Soil Science

with standard agronomic understanding, as macronutrients and pH
strongly influence crop productivity. Secondary elements like OC
and EC also contributed meaningfully, while micronutrients like Zn
and Fe showed lower predictive power.

6 SISFMA mobile application

The diagram (Figure 17) appears to illustrate the workflow of a
mobile application named SISFMA designed for managing soil
health and providing recommendations to farmers and field officers.

A breakdown of the key components and interactions are
given below:
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FIGURE 16
(A) Soil Sample- 2A. (B) Soil Sample-3A. (C) Soil Sample-5A. (D) Soil Sample-8A.

1. Mobile App Interfaces consists of Farmer Dashboard, Field

Officer Dashboard and Admin Dashboard. Farmer
Dashboard allows farmers to interact with the system,
receive suggestions, and input their soil data. Field Officer
Dashboard is designed for agricultural field officers to log in
and manage data, provide recommendations, and interact
with farmers. Admin Dashboard manages the overall
system, with access to both farmer and field officer data.
Our approach aligns with the mobile-based soil monitoring
systems reported previously (39), extending their
functionality with real-time machine learning predictions.
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2. Registration and Login Dashboard: Both farmers and field

officers are required to register and then log in to access the
app’s services. Once logged in, farmers and officers are
linked to different workflows: Farmers provide soil data
(NPK levels, moisture, pH values) that is processed and
stored. Field Officers can Access the same data to make
recommendations and provide advice to farmers.

. Data Flow: After login, farmers input the measured values

which are stored in a farmers’ database. The field officers
access these values, analyze them, and provide tailored
recommendations. Based on the soil data, farmers receive
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TABLE 10 Evaluation of SISFMA predictions against laboratory
measurements for four representative soil samples (2A, 3A, 5A, 8A)
shown in Figures 16A-D.

Percentage deviation

MAE RMSE
(V]

Figure 16A Soil Sample-

158 | 188 5.76%
24
Figure 16B Soil Sample-
igure 165 Soil Sample- ) ;01 555 13.26%
3A
Figure 16C Soil Sample-
igure 16C Soil Sample- ) o045 9.05%
5A
Figure 16D Soil Sample-
on 110 | 124 12.01%

TABLE 11 Error rates for each parameter (N, P, K, pH) measured by the
kit vs lab standard.

10.3389/fs0il.2025.1652058

TABLE 12 Feature importance analysis.

N 0.215
P 0.188
K 0.173
pH 0.146
OoC 0.103
EC 0.079
Zn 0.054
Fe 0.042

Officers Database that contains records of the officers
interacting with the system. Agricultural Activities
Database that stores information related to farming
practices and recommendations provided by field officers.
. Outputs: Based on the data collected (NPK, moisture, pH
levels), field officers offer personalized recommendations to
farmers. Automated or officer-provided suggestions to
improve soil health and optimize agricultural practices
are delivered through the app as depicted in Figure 18.

6 Conclusion

Numerous machine learning algorithms have been employed to
analyze soil fertility, that offers a sustainable and efficient alternative

S

Recommendations
from Field Officer

I ﬁl

NPK, Moisture,
pH values
(measured)

-

Login

NPK, Moisture,
pH level Values

Armers
Database

Suggestions to
Farmers

activities

Parameter MAE (mg/kg) RMSE (mg/kg) % Deviation

N 2.00 265 4.7%

P 2.00 243 8.6%

K 3.00 3.60 6.9%

pH 0.30 0.38 5.2%
automated suggestions or advice from field officers through
the app.

4. Databases: There are three databases maintained. Farmers
Database that stores data related to individual farmers,
including their soil measurements. Agricultural Field

SISHMA ( é i ~°
Mobile App Registration
Farmer @1
Dashboard u M
Field Officer Resistrati
Dashboard egistration
Dashboard R"
FIGURE 17

SISFMA multilingual mobile application dashboard.

Frontiers in Soil Science

m Database
S Field Officers
Database

24 frontiersin.org


https://doi.org/10.3389/fsoil.2025.1652058
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org

Gunasekaran et al.

10.3389/fs0il.2025.1652058

Soil S | FO Name Recommended Crop :
Ol am e
D et a i I Sp <' SISHMA Kit No.: 12345 Wheat i
— @ s | Fertilizer Combination 1 :
Soil Test Details H . H ""@"‘ "‘@“‘ ”@"‘
Sulphur 0 ’
) . . — ’ 44.5% ' 30.0% ' 25.5%
Iron . 0 ' ’
Boron . 0 . . ek Fertilizer Combination 2 :
g el |
E e . 0 . FEh 100 ' 42.0% ' 33.0% ' 25.0%
@ Zinc . 0 . Soil Moisture: 35% ,
|| ormiemanre: g

FIGURE 18
Screenshots of SISFMA mobile application developed.

to traditional, labor-intensive methods. However, only a handful of
these models have demonstrated notable accuracy. By integrating
different sensors such as (NPK, pH and moisture), the
environmental variables and meteorological data are collected and
incorporating ML algorithm farmers are assisted in optimizing soil
management. Initially, linear classifier models are utilized including
Perceptron, Ridge Classifier, Linear Regression, SGD Classifier, and
Logistic Regression. Despite achieving accuracies above 75%, these
models failed to impress. The search is expanded for a superior
model and explored ensemble models in the ‘scikit’ Library such as
Extra trees, RF, Gradient Boosting, and Ada Boosting. Additionally,
we experimented with clustering methods like Kmeans
(unsupervised), and K-NN (supervised), all of which resulted in
precision below 50%. Finally, Decision Trees, GaussianNB, and
Support Vector Machine are also employed in the analysis. Among
the models tested, the Random Forest algorithm achieved the
highest accuracy (92%), highlighting its effectiveness in soil
fertility prediction. Moreover, the inclusion of the LSTM layer in
the MLP architecture for predicting crops results in noticeable
improvements in Accuracy, F1-Score, and Recall, while maintaining
the same Precision as the standard MLP model. This highlights the
superior performance of the MLP with LSTM model in tasks that
require better generalization and recall capabilities, particularly for
datasets where sequential dependencies play a role. In summary,
this work significantly advances the use of Al and ML in agriculture,
making it a crucial step toward more sustainable and precise
farming practices. The integration of hardware readings with
machine learning models plays a crucial role in enhancing
predictive accuracy and ensuring reliable decision-making. Real-
time sensor data can help minimize excessive use of fertilizers,
pesticides, and water, promoting environmentally friendly farming
practices. Accurate predictions enable better decision-making

Frontiers in Soil Science

regarding irrigation, disease prevention, and yield estimation,
ultimately leading to increased productivity and profitability for
farmers. By reducing chemical overuse, the system supports
sustainable agriculture, preserving soil health and reducing
pollution. By seamlessly combining hardware-driven insights with
machine learning capabilities, the system enhances efficiency,
sustainability, and economic viability, making it a valuable tool
for modern precision agriculture.
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