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Sustainable agricultural management relies heavily on accurate soil fertility

prediction. Traditional assessment techniques are often labour-intensive, time-

consuming, and may involve hazardous chemicals. Recent advances in machine

learning (ML) and artificial intelligence (AI) offer promising alternatives by

integrating soil metrics, meteorological data, and other environmental factors

for precise and efficient fertility estimation. This study investigates the application

of ML and deep learning algorithms for soil fertility prediction. A hardware

prototype incorporating sensors and a microcontroller was developed to

capture soil parameters, including pH, temperature, humidity, moisture

content, NPK (nitrogen, phosphorus, potassium), carbon content, and organic

matter, alongside weather and climatic conditions. Real-time sensor data were

compared against predictions from ML models. Laboratory soil test results were

used as ground truth for validation. Ensemble classifiers (Random Forest, Extra

Trees) and deep learning models (Multilayer Perceptron, Long Short-Term

Memory networks) were evaluated using accuracy, F1-score, recall, and

precision metrics. The Random Forest algorithm achieved the highest

prediction accuracy of approximately 92%, with Extra Trees and other

ensemble methods also demonstrating strong performance. The deep learning

models further enhanced predictive capabilities for crop selection, with MLP and

LSTM achieving high accuracy, recall, and F1-scores while maintaining consistent

precision. The hardware prototype’s real-time measurements closely aligned

with laboratory results, confirming the reliability of the system. The findings

highlight the potential of ML and AI-based approaches in advancing soil fertility

prediction and crop recommendation systems. By combining real-time sensor

data with predictive models, the proposed system enables rapid, reliable, and

scalable soil health assessment. This integrated approach empowers farmers to

make data-driven decisions, optimize soil fertility, and improve sustainable

agricultural practices.
KEYWORDS

soil fertility, machine learning, deep learning, random forest, decision tree, support
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1 Introduction

Agriculture is the backbone of India’s economy, employing a

significant portion of the population and contributing substantially

to GDP. However, despite advancements in agricultural technology,

many Indian farmers continue to rely on traditional farming

methods, often overlooking modern soil analysis techniques. This

lack of awareness leads to inefficient use of fertilizers, depletion of

soil nutrients, and declining crop yields.

One of the primary challenges is the limited access to reliable

soil testing facilities, particularly in rural areas. Many farmers are

unaware of the benefits of soil testing in determining the precise

nutrient requirements of their land. As a result, they either overuse

or under use fertilizers, leading to soil degradation and reduced

long-term productivity. Moreover, the absence of proper soil health

management practices contributes to declining soil fertility, making

farming less sustainable over time. Many farmers lack the technical

knowledge to interpret soil test reports and apply recommendations

effectively. Additionally, financial constraints and skepticism

toward new technologies further hinder the widespread

implementation of soil analysis practices.

To address this issue, a comprehensive approach is needed,

involving awareness campaigns, accessible soil testing services, and

training programs for farmers. Encouraging the adoption of

modern soil analysis techniques can significantly enhance

agricultural productivity, ensure better resource utilization, and

promote sustainable farming practices in India.

Soil, fertilizers, temperature, climate, flooding, precipitation,

crops, pesticides, and herbs are few highly influential properties

on which agriculture hinges on. Farmers have inadequate statistics

on soil fertility, how to pick the right plantation to maximize the

yield in that certain area. Due to their wide range of dependence, it

is tough to predict the soil’s fertility without any vital information.

Analyzing soil fertility involves evaluating a range of parameters

that significantly influence plant growth and productivity. The PH

of the soil (1) is a measure of acidity or alkalinity, and is equally

important as it influences nutrient availability. Most crops flourish

in a pH range of 6.0 to 7.0; soil outside this range may require

changes, such as lime for acidic soils and acidifying treatments for

alkaline soils.

Soil texture (2) is one key parameter that refers to the

proportions of sand, silt, and clay, plays a vital role in defining

how well the soil retains water, drains, and supplies nutrients. For

instance, the sandy soils typically drain quickly although it may be

deficient in essential nutrients, conversely clay soils retain water

more effectively however they can suffer from poor aeration.

The amount of organic matter in the soil, that includes

decomposed plant and animal debris, is another important factor.

A high level of organic matter supports beneficial microbial activity

while strengthening the soil’s structure, water-holding capacity, and

nutrient availability. Nutrient levels (3), particularly the

concentrations of essential nutrients such as nitrogen (N),

phosphorus (P), and potassium (K), are also vital. These nutrients

are crucial for plant growth, and soil tests can guide appropriate

fertilization to address the deficiencies or imbalances.
Frontiers in Soil Science 02
Cation Exchange Capacity (CEC) (4) replicates the soil’s ability

to hold and exchange positively charged ions like calcium,

magnesium, and K. Soils with high CEC are generally more fertile

as they can better retain and supply nutrients. Soil moisture is

another important factor, as it affects plant growth and nutrient

uptake. Adequate moisture is essential for optimal plant

development. Soil structure, the arrangement of soil particles into

aggregates or clumps, influences aeration, drainage, and root

penetration, impacting plant health.

Soil temperature (5) affects the seed germination, root growth,

and microbial activity. Proper temperature is crucial for

maintaining optimal conditions for the plant growth. Soil salinity,

that measures the concentration of soluble salts, can impede plant

growth by affecting water uptake and nutrient availability. This is

especially important in the arid regions or poorly drained areas.

Additionally, soil erosion (6)—the removal of the nutrient-rich

topsoil layer by wind or water—can significantly deplete soil fertility

and productivity.

Thus, to assess soil fertility, methods like soil testing provide

quantitative data on pH, nutrient levels, and other parameters,

while field observations offer visual insights into soil color, texture,

and plant health. Laboratory analyses further detail physical and

chemical properties of the soil (7). Applying balanced fertilizer in

accordance with soil test recommendations, regulating soil pH as

needed, and adding organic matter through compost, manure, or

cover crops are all ways to improve soil fertility. Erosion control

practices, such as contour ploughing or terracing, are also crucial to

prevent soil loss. By combining these strategies (8), one can create a

balanced and fertile soil environment conducive to optimal

plant growth.

Adopting sustainable agricultural practices, particularly

utilizing digital technologies such as the Internet of Things (IoT),

Artificial Intelligence (AI), and diverse Machine Learning (ML)

algorithms, to determine soil richness is an important decision to

facilitate efficient solutions and assist farmers and stakeholders in

making informed decisions. The dataset is compared to predict the

soil fertility. This study’s primary objective is to use AI to create a

model for analyzing soil fertility. The dataset is put together using

several private online datasets. Following this, these datasets are

separated into two categories: training datasets and testing datasets.

Different ML algorithms have been trained using the training

dataset, and the test dataset is utilize to identify the most effective

system. Numerous characteristics of the dataset include N, K, P,

Iron (Fe), Copper (Cu), Manganese (Mn), Zinc (Zn), Electrical

Conductivity (EC), soil’s Organic Carbon(OC), Sulphur (S), and

Boron (B).

The integration of machine learning models into mobile

applications has revolutionized soil fertility assessment, providing

farmers with instant and accessible insights. These apps analyze soil

data collected through sensors, user inputs, or satellite

imagery to generate real-time fertility reports and customized

recommendations for fertilizers and crop selection. Many mobile

platforms, such as Krishi Mitra and Soil Cares, leverage AI to guide

farmers in optimizing nutrient use and improving yield efficiency.

By eliminating the need for manual soil testing and reducing
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dependency on agricultural experts, mobile-based solutions

empower farmers, particularly those in remote areas, with data-

driven decision-making capabilities.

Governments worldwide, including India, have recognized the

potential of AI in agriculture and have launched initiatives to

promote soil health monitoring. Programs such as the Soil Health

Card Scheme integrate machine learning algorithms to analyze soil

samples and provide tailored recommendations for improving

fertility. These initiatives help policymakers and agricultural

agencies develop precision farming strategies, ensuring sustainable

soil management at a large scale. By integrating AI-driven soil

fertility prediction models into government-supported platforms,

farmers receive credible and structured guidance, improving

productivity while reducing the excessive use of fertilizers

and chemicals.

The private sector plays a crucial role in advancing machine

learning applications in agriculture by developing innovative,

scalable, and cost-effective soil testing solutions. Agritech startups

and companies such as AgroAI and CropIn leverage AI-powered

models to offer automated soil fertility assessments through cloud-

based platforms and IoT-enabled sensors. These collaborations

bring advanced technology directly to farmers, enabling precision

agriculture without requiring extensive technical expertise. By

partnering with research institutions and government bodies,

private enterprises contribute to the wider adoption of AI in

farming, ultimately leading to improved soil health management

and increased crop yields.
2 Related work

To understand how the process is organized and carried out

using different software designs, the contents of a few research

articles (9) about soil fertility prediction and moisture are briefly

summarized. In order to carry out precision agriculture, researchers

(9) conducted a study on the spatial distribution and variation

characteristics of soil fertility. Their investigation focused on

developing a basis for decision-making in evaluating the spatial

variability of soil fertility by researching Space-Fuzzy Clustering

(FC-S) based on specific fertilization of regional fertility space. To

analyze the features of soil fertility, authors employed several

techniques, including spatial mutation distribution of soil

nutrients, GIS technology, decision tree, and weighted FC-S.

Coefficient of Variation was used to determine the variability of

the attributes. Local Polynomial Interpolation, Global Polynomial

Interpolation, and ordinary Kriging approaches are used to analyses

the fertility data of discrete sampled points and produce spatial

distribution maps for available nitrogen, phosphorus, and

potassium as well as pH in the soil. While estimating the

geographical distribution of soil nutrients, Space-Fuzzy Clustering

proved to be the most effective model, followed by the Kriging

approach and local polynomial interpolation method, which

exhibited the highest precision. In contrast, the global polynomial

interpolation method showed the lowest precision.
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In this study (10) three different classification algorithms are

used namely, JRip, J48, and Naive Bayes to forecast the soil types of

Red and Black. JRip considers all attributes, while J48 only considers

the pH and EC values, building a tree based on these two attributes.

The results showed that the JRip classifier was the most efficient,

generating rules effectively and exhibiting good performance on the

soil dataset. Compared to J48 and Naive Bayes, JRip had a higher

accuracy. The entire dataset was used as the training set, and the

weighted average of the true positive rate for the JRip classifier was

found to be 0.982, indicating high accuracy. In contrast, J48 and

Naive Bayes had TP rates of 0.97 and 0.86, respectively, suggesting

lower levels of accuracy. Consequently, the JRip classifier was able

to classify the dataset with a higher degree of accuracy.

The article (11) relates work with soil fertility and explains the

models that use Pseudo-transfer functions to predict the S-index of

the soil to identify its quality. This model could replace various

laborious experiments just by analyzing the SI index. The PTF is

used to convert the unprocessed data to user-friendly format and it

is a predictive function of certain soil properties which are very

difficult to measure. The authors nominated 15 ANN models along

with logistic regression in the methodologies section of the article.

These models were employed with around 300 data samples under

results and discussion section with 4 input attributes; R2, Root Mean

Square Error (RMSE), AIC and the RPD are determined to choose

the best models among selected.

In (12), a study was conducted utilizing 18 different Extreme

Learning Machine (ELM) models, in addition to established

predictive tools such as Multi-Linear Regression (MLR) and

Random Forest (RF), to evaluate their performance using various

metrics such as RMSE, MAE, ENS (Nash-Sutcliffe efficiency

coefficient), WI (Willmott’s Index), and ELM (Legates and

McCabe’s Index). The dataset used in the study was based on Soil

Organic Matter, which has the highest Coefficient of Variance, and

was divided into testing and training datasets. The ELM model,

which is an advanced form of AI, outperformed the RF and MLR

models with a lower RMSE score of 13.6%, while the other models

had higher values.

Soil Organic Carbon (SOC) is a crucial measure of soil quality

that directly influences soil fertility. To predict SOC levels, various

models, such as MLR, ANN, SVM, Decision Tree, cubist regression,

and RF, were developed and evaluated. The accuracy of the

prediction models was assessed using standard validation indices

such as Mean Absolute Error (MAE), RMSE, and R2 through 10-

fold Cross-Validation (CV) that was repeated five times. Among the

models tested, the RF model was found to be the most accurate,

followed by cubist regression. To make the model more accurate,

two hyperparameters were tuned to diminish the complication.
a. Ntree – to overfit even if the decision tree is huge.

b. Mtyr – This illustrates the quantity of indicators selected as

potential candidates at every node, chosen at random.
The models’ performance is achieved by adjusting their

hyperparameters using the grid search technique, along with K-
frontiersin.or
g

https://doi.org/10.3389/fsoil.2025.1652058
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Gunasekaran et al. 10.3389/fsoil.2025.1652058
fold cross-validation, where K = 12 is used to avoid biased

outcomes. The RF model was found to be the best performer,

with an R2 value of 0.68, followed by the Cubist model with an R2

value of 0.51. The Support Vector Machine (SVM), ANN, and MLR

models had lower R2 values of 0.36, 0.36, and 0.17 respectively.

The focus of this research paper (13) is to anticipate soil

characteristics and evaluate its fertility. The authors made

predictions on three soil properties namely organic Carbon, sand

content, and Calcium Carbonate Equivalent (CCE), by utilizing

scanned satellite indices and terrain indices dataset. Pearson

correlation was employed to recognize variables that were

extremely correlated (r ≥ 0.5), and these attributes were removed

until only the relevant ones were carried forward for predictive

modelling. The use of two models, Cubist and RF, resulted in

noteworthy improvements in predicting soil properties.

Furthermore, it was observed that both Cubist and RF showed an

increase in R2 values for OC, sand, and CCE, with Cubist having a

126% and 78% rise, and RF with a 110% and 54% rise for OC, 87%

and 32% for CCE, and 25% and 12% for sand. By comparing it with

the terrain indices-only model, the RMSE reduced by 34% and 27%

for OC, 25% and 12% for sand, and 39% and 19% for CCE, which

resulted in reduced estimation and mapping uncertainty. Based on

these findings, the authors concluded that Cubist is the optimal

model as it simplifies the estimation process and provides

straightforward modular level understanding of these

linear equations.

This article (14) examines several Supervised ML Algorithms,

including Decision Tree, K-Nearest Neighbor (KNN), and SVM, to

forecast soil fertility based on the macro and micro-nutrient levels

contained in their dataset. The Decision Tree algorithm was found

to be the most effective classifier, outperforming SVM and KNN,

which had lower accuracy and higher MSE. There are various

Decision Tree algorithms available, including ID3, CART

(Classification and Regression Trees), Chi-Square, and Reduction

in Variance. The C5.0 algorithm was utilized to build a perfect

model. It works by splitting the sample data according to the region

that yields the most information gain. Till the samples couldn’t split

further, they are segmented and separated as a group of objects like

an inverted tree. A fundamental advantage of C5.0 node is that it

predicts only a categorical target and not an uncertain result.

In this study (15), the model is trained using ANN classifiers

employing various activation functions and hidden nodes in the

ANN architecture. Janmejay Pant and Pushpa Pant initially

quantified soil nutrients values based on three categories (Low,

Medium, and High). They also used fast learning algorithms of deep

learning in python like Keras to classify the soil and utilized two

different meta parameters;
Fron
a. Number of Epoch – It remains fixed for all the classifiers,

b. Activation Function – Rectified Linear Unit and Hyperbolic

Tangent (Tanh).
For each of the five classification problems (Mn, B, OC, P, K),

accuracy is attained. Authors inferred from the plotted graph that

the rectified linear unit function, which is used to solve the
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classification problems, provides the best performance of soil

fertility classification, while the hyperbolic tangent (tanh)

function, which is used to solve one classification problem,

provides the best accuracy.

To forecast the soil fertility, the authors (16) mainly castoff two

parameters, soil’s pH and OC. These two variables provided more

convincing proof of spatial dependence in the random effect and

provided a way for the Empirical Best Linear Unbiased Prediction

(EBLUP) technique. It is a synthetic regression prediction of non-

sampled units that combines direct information and synthetic

regression in a linear fashion. Geostatistical techniques can be

used to examine the spatial variation of soil fertil ity

characteristics. This spatial model is used to make local

predictions as a perfect mixture of nearby data that decreases the

kriging variance and mean squared error of the forecast.

This article (17) presents a study on the development of a

fertility model using various ML techniques such as KNN, SVM,

RF-Bagging method, and DNN. The authors of the study proposed

a system where the RF-bagging method was used, which yielded an

impressive soil fertility rate score of 0.98. This score indicates that

the proposed system is highly accurate, with a score of 1 being the

highest possible accuracy. To test the bagging strategy’s accuracy

against other models, the authors developed several different

models on the same dataset, including KNN, SV regression, and

DNN. Upon analyzing the results, it was observed that the KNN

model displayed a R2 score of 0.82 for fertility prediction and 0.47

for yield prediction, while other regression models performed

poorly. Thus, it can be concluded that the RF-Bagging technique

proved to be the most effective model for this study, yielding the

best results for soil fertility rate prediction.

This paper (18) aimed to examine the soil data obtained from a

soil testing laboratory to forecast fertility based on a collected

dataset. Several ensemble ML methods, including bagging,

boosting, and stacking, are used to achieve this aim in order to

produce predictions that are more accurate, consistent, and exact.

The study evaluated ten selected attributes to classify soil fertility

classes. Several soil parameters were measured to predict soil

fertility. The findings indicate that the boosting technique using

the C5.0 algorithm produced the best results, achieving an accuracy

of 98.15%, surpassing the performance of other ensemble classifiers.

A multi-parameter fluorescence sensor called Multiplex (MX3) was

tested for its ability to predict the soil characteristics of air-dried

samples. According to the results (19), it had an overall accuracy of

0.54, 0.78, and 0.69 for the fertility classes of (nitrate) NO-3, SOM,

and Zn, respectively. Using a yellow filter produced better results,

and the index NBI_UVm was the most effective in classifying soil

fertility. Induced fluorescence directly predicted N rate with an

overall accuracy of 78%, making it practical for farmers.

Recent studies applied ML models (20) such as logistic

regression, SVM, decision trees, random forest, and KNN to

predict soil fertility using macro/micronutrients and physico-

chemical properties (pH, OC, EC). Results showed random forest

achieved the highest accuracy (99%), followed by decision trees

(98%), confirming ML’s effectiveness in cost-efficient, accurate soil

fertility prediction for precision farming.
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The study in (21) proposes advanced methods for soil health

evaluation and crop yield forecasting, including IP-EF for feature

selection, BPNN for pattern prediction, and MSDF-GIS for spatial

data integration. The model achieved high performance (precision

93%, recall 94%, F1-score 93%), demonstrating its potential to

optimize resources, enhance sustainability, and support data-

driven farming decisions.

With all the information collected through the survey, it has

been observed that the following (Table 1) has the best output with

excellent accuracy and vital advantages.
3 Proposed methodology

To assess the significance of the regression model, several

Goodness of Fit (GOOF) parameters are computed, including the

r-squared (R2) as shown in Equation 1, Lin’s concordance

correlation coefficient (CCC) as shown in Equation 2, and RMSE

as shown in Equation 3.
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R2   =   1  −  
sum   squared   regression   (SSR)
total   sum   of   squares   (SST)

   

=   1  −o
N
i=1(yi − ŷ i)

2

oN
i=1(yi − y)2

(1)

CCC   =  
2rspredictedsobserved

s 2
predicted + s2

observed + ( μpredicted − μobserved )
2 (2)

RMSE   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − ŷ i)
2

N

2

s
(3)

where,

yi= Actual Value,

ŷ i = Predicted Value,
y = Mean of the Actual Value,

r = correlation coefficient between variables ŷ i and yi
μpredicted    ,   μobserved   are the corresponding means

spredicted ,sobserved are the corresponding variances of ŷ i and yi
The degree of variation is described by the coefficient of

variation, whose size is measured; a coefficient of variation below

10% is regarded as having mild variability. one greater than 10%

and less than or equal to 100% is considered to have moderate

variability; and one greater than 100% is considered to have

strong variability.
3.1 Dataset collection and preprocessing

Based on the dataset (22), it’s evident that the soil is abundantly

enriched with all the necessary nutrients in quantities that surpass

their respective threshold values. Upon examining the data, it can

be concluded that the soil contains very little Cu, but adequate

amounts of Macro nutrients, along with appropriate pH and EC

levels. Additionally, the skewness values of Zn and OC indicate that

the variables’ distribution is asymmetrical, while the kurtosis values

of Cu and EC suggest that their distribution is uniform. The

Standard Deviation of K indicates that its data is distributed

throughout. The selected data is a multi-class i.e., three class

datasets, which has the following properties (Table 2).

Table 3 shows the summary of the soil fertility dataset,

including basic structure, class distribution and preprocessing

techniques applied. The dataset comprises 1980 samples with 12

features, including pH, N, P, K, EC, Zn, Fe, Cu, Mn, B, S, and

Organic Carbon. The target variable represents soil fertility

classified into three classes: Low (29%), Medium (45%), and High

(26%). As the classes were moderately imbalanced, we employed

SMOTE (Synthetic Minority Oversampling Technique) to balance

the dataset before training. All models were evaluated using

stratified 5-fold cross-validation to ensure fair representation of

each class.

The preprocessing steps involves loading the data into a panda

DataFrame, checking for and handling missing values and ensuring

each column has the correct data type. Duplicates are checked and

removed to avoid redundancy, and numerical features are scaled.
TABLE 1 Result of the proposed methods.

References
Models
used

Accuracy
- model

Benefits

(9)

Kriging,
Space-
Fuzzy
Clustering,
LPI and
GPI

Space
Fuzzy
Clustering

Fuzzy clustering is a
technique used to group
data points that exist in a
multidimensional space into
a defined number of distinct
clusters.

(10)

Naive
Bayes, JRip
and J48
(C4.5)

98.2%
JRip

It is a rule-based
classification algorithm that
offers high accuracy,
interpretable rules, and is
computationally efficient.

(11)
ANN and
LR.

ANN

It is used to understand
complex problems and alter
them according to the
situation.

(12)
RF, MLR,
ELM

ELM

It has a better generalization
performance with a faster
learning speed and is
thousands of times faster
than other conventional
methods.

(18)

K-NN,
SVM-
Linear,
Decision
Tree,
SVM-rbf

98.15%
Decision Tree

They used C5.0 (Type of
Decision Tree) as the main
Algorithm as it predicts only
a categorical target and not
an uncertain result.

(13)
RF Cubist,
ANN,
MLR, SVM

RF

RF offers greater precision
when it comes to predicting
outcomes compared to other
algorithms.
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The preprocessing steps for the dataset included several stages

to ensure data quality and consistency before model training. First,

the dataset was loaded into a Pandas DataFrame, and all missing

values were checked. Since a small number of entries had missing

values, we used mean imputation for numerical fields such as

nitrogen, phosphorus, and potassium. No categorical features

were present in the dataset. Duplicate records were removed to

prevent redundancy. All numerical features were then normalized

using the MinMaxScaler, transforming values to the range [0, 1] to

improve the convergence speed and stability of machine

learning algorithms.

In addition, we performed correlation analysis to detect

multicollinearity. Highly correlated features (correlation > 0.9)
Frontiers in Soil Science 06
were reviewed, but none were removed since all parameters (e.g.,

N, P, K, pH, OC) had known agricultural significance. No synthetic

features were added, but during model interpretation, feature

importance techniques were applied (as discussed later). This

preprocessing pipeline was consistently applied to both classical

ML models and deep learning pipelines to ensure comparability.

The observed feature rankings are consistent where N, P, K, and

pH were highlighted as the top contributors to fertility status in

Indian agro-climatic zones. However, unlike previous works that

used limited ML techniques or lab-processed datasets, our study

integrates real-time sensor data, prototype hardware, and deep

learning (LSTM, MLP) for prediction. Furthermore, our analysis

goes beyond prediction by providing field-deployable insights via

the AI-SISFMA kit and web/mobile dashboards—bridging the gap

between lab research and agricultural field utility.
3.2 Models selection

To ensure a comprehensive evaluation and identify the most

suitable algorithm for real-time soil fertility prediction, we

implemented and compared 13 diverse machine learning and

deep learning models. These algorithms were selected to represent

a broad spectrum of learning paradigms, including: Ensemble-based

models (Random Forest, XGBoost, Gradient Boosting, AdaBoost)

for their ability to handle complex feature interactions and reduce

overfitting. Linear models (Logistic Regression, Ridge Classifier) for

their interpretability and baseline comparison. Support Vector

Machines (SVM) for capturing nonlinear relationships with

kernel tricks. K-Nearest Neighbors (KNN) as a non-parametric,

distance-based method suitable for smaller datasets. Naïve Bayes for

its speed and probabilistic nature. Decision Trees for simplicity and

interpretability. Multi-Layer Perceptron (MLP) and Long Short-
TABLE 2 Data interpretations.

Nutrients/
properties

Expected
value

Mean Median Minimum Maximum
Standard
deviation

Kurtosis Skewness

N 280-560 246.74 257.00 6.00 383.00 77.39 0.11 -0.63

P 22.5-55 14.56 8.10 2.90 125.00 21.97 10.46 3.40

K 140-330 499.98 475.00 11.00 887.00 124.22 0.16 0.43

S 10-20 7.55 6.64 0.64 31.00 4.42 7.66 2.46

Zn 0.6-1.5 0.47 0.36 0.07 42.00 1.89 438.19 20.89

Fe 2.5-4.5 4.14 3.56 0.21 44.00 3.11 38.68 3.59

Cu 0.2-0.5 0.95 0.93 0.09 3.02 0.47 -0.12 0.43

Mn 2-4 8.67 8.34 0.11 31.02 4.30 1.09 0.61

B 0.46-0.67 0.59 0.41 0.06 2.82 0.57 3.92 2.13

pH 5.5-7.5 7.51 7.50 0.90 11.15 0.46 99.94 -5.11

EC 2.5-4.0 0.54 0.55 0.10 0.95 0.14 -0.46 0.10

OC 0.05-12.75 0.62 0.59 0.10 24.00 0.84 675.01 24.32
TABLE 3 Summary of the soil fertility dataset, including basic structure,
class distribution and preprocessing techniques applied.

Property Description

Total samples 1980

Number of
features

12 (N, P, K, pH, EC, OC, Zn, Fe, Cu, Mn, B, S)

Target variable Soil Fertility Class (Low, Medium, High)

Number of classes 3

Class labels
Low (29%), Medium (45%), High (26%) – indicating
moderate imbalance

Missing values Handled using mean imputation for numeric fields

Scaling method MinMaxScaler (range [0, 1])

Class balancing
method

SMOTE (Synthetic Minority Oversampling Technique)
applied before training

Cross-validation
strategy

Stratified 5-fold cross-validation for all models
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Term Memory (LSTM) (38) networks to assess deep learning

effectiveness on structured tabular data. This diversity allowed us

to benchmark performance across different algorithmic families,

minimize bias from model selection, and identify which approaches

generalize best in the context of imbalanced, real-world agricultural

datasets. Ultimately, the top-performing models were retained for

further analysis and deployment in the SISFMA system.

3.2.1 Random forest classifier
The RF Classifier is an ensemble learning algorithm that is

utilized for classification tasks. Its basic idea is to build a collection

of decision trees, each of them is trained using a different subset of

the training features and data. This method lessens overfitting and

improves precision. Because each tree concentrates on a distinct

subset of the data and characteristics, this helps to increase

generalization performance and lessen overfitting. RF Classifier

(6) can be expressed as in Equation 4:

y   =  mode     f 1(x),   f 2(x),  …,   fn(x)  f g (4)

where,

y is the predicted class label,

fi(x) is the predicted class label,

n is the total number of decision trees in the forest.

This work builds upon earlier studies on soil fertility analysis

(29) which demonstrated the benefit of ensemble classifiers in

agricultural prediction. A RF classifier can be implemented to

assign soil samples to fertility categories purely at random. It does

this without learning from the features (such as chemical

composition or texture). By comparing the performance of more

sophisticated models to this random classifier, you can assess

whether those models are genuinely useful. Ensure that

performance comparison is done using techniques like k-fold

cross-validation. This divides the dataset into training and testing

sets, and average performance is used to avoid bias. A soil fertility

classifier can be used for: Farmers can receive recommendations

based on the fertility class of soil to decide on the appropriate type

and quantity of fertilizers; Identifying areas of low fertility for

targeted interventions, preventing further degradation of the soil;

Agricultural Decision Support Systems (DSS): Incorporating

classification models into tools that guide farmers and

agronomists on sustainable land management practices.
3.2.2 ExtraTrees classifier
It comes under the supervision classifier and is an ensemble

technique that deals with selecting a random decision tree method

to design the model. Fertilizers are administered at random, and soil

samples are tested in a lab to determine the levels of soil fertility.

This conventional method pollutes the environment and raises

fertilization prices. Therefore, it is essential to create a reliable

and affordable classification system for soil fertility and fertilizer

application. It is an extension of the RF algorithm, and like RF, it

builds multiple decision trees and combines their predictions to

obtain the final output. The splitting thresholds for the decision

trees are selected randomly, rather than based on a measure of

impurity such as Gini or entropy. ExtraTrees doesn’t rely on
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bootstrap sampling (random subsets of data with replacement) as

Random Forest does. It uses the whole dataset for each tree, but

adds randomness by splitting the nodes. The ExtraTrees Classifier

can be very effective in soil fertility classification tasks. Soil datasets

often include numerous features (e.g., nitrogen content, moisture,

pH levels). ExtraTrees handles high-dimensional data well by

focusing only on random subsets of features when splitting nodes.

The relationship between soil properties and fertility is often non-

linear. ExtraTrees, like other tree-based algorithms, can capture

such non-linear interactions between soil properties effectively.

ExtraTrees provide a natural way to measure feature

importance, allowing you to determine which soil characteristics

(e.g., organic matter, pH, moisture) are most predictive of fertility

levels. A real-world case study was incorporated using ExtraTrees

Classifier (23).

3.2.3 Stochastic gradient descent classifier
SGD Classifier is a type of linear classifier used for binary and

multiclass classification tasks in ML. It is a simple and efficient

algorithm that updates the model parameters iteratively, based on

the gradients of the loss function with respect to the parameters.

The Equation 5 for the SGD Classifier can be expressed as follows:

w(t + 1)   =  w(t)  −   eta   *   grad(Loss(w(t),   xi,   yi)) (5)

where,

w(t) is the weight vector at iteration t,

eta   is the learning,

grad(Loss(w(t),   xi,   yi)) is the loss function’s gradient,

Loss(w(t),   xi,   yi)) is the loss function.

In this study, the authors employed ML classifiers, including

SGD, to classify soil samples based on fertility levels. They found

that SGD Classifier, when combined with feature scaling and data

preprocessing, performed efficiently in classifying large soil datasets.

The study highlights the effectiveness of SGD in handling real-

world agricultural datasets, especially where scalability is critical.

This article demonstrates how SGD can be applied in practical soil

fertility analysis, addressing computational efficiency and accuracy

in predicting soil classes. The research emphasized using spectral

data from soil samples to improve prediction performance in

machine learning applications.

3.2.4 Support vector machine
The algorithm is widely utilized in machine learning for both

binary and multi-class classification tasks due to its effectiveness. Its

objective is to determine the hyperplane that optimally separates the

data points into distinct classes, with a focus on maximizing the

margin between the hyperplane and the nearest data points (known

as the support vectors). The equation for the SVM algorithm can be

expressed as follows in Equation 6:

y(x)   =   sgm   (wT  �   x   +   b) (6)

where,

y(x) is the predicted class label for the input sample x,

w   is the weight vector that defines the orientation of

the hyperplane,
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b is the bias term that shifts the hyperplane away from

the origin.

In this study, the researchers employed SVM (24) to classify soil

fertility levels based on both laboratory soil data and remote sensing

information. The use of SVM with an RBF kernel was highlighted

due to its ability to capture non-linear relationships in the data,

leading to high classification accuracy. The study found that SVM

outperformed other classifiers when dealing with complex and

multi-dimensional soil datasets, particularly when combined with

feature scaling and cross-validation techniques. This article

illustrates the effectiveness of SVM in soil fertility analysis,

emphasizing its potential for remote sensing applications, where

large-scale soil data can be integrated into the model. It also

underscores SVM’s strength in handling both linear and non-

linear data relationships in agricultural datasets.

3.2.5 Logistic regression
It is a popular algorithm used for binary classification tasks in

machine learning. It models the probability of a binary response

variable (i.e., the presence or absence of a certain outcome) as a

function of one or more predictor variables (i.e., features), using a

logistic or sigmoid function. The expression for logistic regression,

represented in Equation 7, can be stated in the following manner.

p(y =
1
x
) = ez (7)

where,

z   =   (wT   x  +  b), p(y = 1
x ) is the conditional probability of the

positive class (i.e., y = 1) given the input features,

x, z is a linear combination of the input features and the model

parameters (weights and bias).

In this study, Logistic Regression (25) was applied to predict soil

fertility classes based on physicochemical properties such as pH,

nitrogen, phosphorus, and organic carbon content. The authors

highlighted the interpretability of Logistic Regression and

demonstrated that the model provided reliable predictions while

identifying the most significant features influencing fertility. They

also emphasized the importance of feature scaling and cross-

validation to improve model performance and generalization.

This article illustrates the practical application of Logistic

Regression in soil fertility analysis, showing that despite its

simplicity compared to more complex models, Logistic Regression

can offer accurate and interpretable results, making it a suitable

choice for agricultural data analysis.

3.2.6 Ridge classifier
The Ridge Classifier is a form of linear classifier that shares

similarities with logistic regression. However, it utilizes L2

regularization to prevent overfitting and enhance generalization

performance. Its primary objective is to locate the linear function

that most effectively divides the data points into distinct categories,

while minimizing the sum of squared weights. The Ridge Classifier

can be considered a middle ground between the L1 regularization-

based linear SVM and the non-regularized logistic regression. It is
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especially beneficial when dealing with correlated and high-

dimensional data as L2 regularization can stabilize the weights

and decrease overfitting.

This study examined the effectiveness of regularized

classification models, including Ridge Classifier, in predicting soil

fertility levels. The research found that Ridge Classifier (26)

performed well in handling the multicollinearity present in soil

datasets and provided more stable predictions compared to non-

regularized models. The Ridge Classifier’s ability to shrink

coefficients resulted in improved generalization and interpretation

of the influential soil properties. The authors emphasized the

importance of regularization for ensuring model robustness,

particularly in agricultural datasets prone to overfitting. This

article illustrates how Ridge Classifier can be used to enhance the

organization of soil fertility, demonstrating the advantages of

regularization in agricultural data analysis.
3.2.7 KNeighbors classifier
The KNeighbors Classifier algorithm is widely utilized in

machine learning for classification tasks. This algorithm is

categorized as an instance-based or lazy learning method, which

predicts the output class of a new sample based on the majority vote

of its K-Nearest Neighbor in the training data, utilizing a specific

distance metric. The algorithm involves two primary steps: first,

computing the distance between the input sample and selecting the

K-nearest Neighbor, and second, aggregating their class labels to

make a prediction. In this study, the authors applied the KNN (27)

algorithm to predict soil fertility classes based on soil properties.

The study demonstrated that KNN achieved high accuracy in

classifying soil fertility, particularly when combined with feature

scaling and cross-validation. The authors also emphasized the

importance of selecting an appropriate “k” value to optimize the

model’s performance. The research highlighted the simplicity and

effectiveness of KNN for soil fertility prediction in precision

agriculture. This article provides a comprehensive exploration of

how KNN can be applied in real-world soil fertility analysis,

illustrating its usefulness in predicting soil health and supporting

decision-making in agriculture.
3.2.8 Gradient boosting classifier
The described classifier is an ensemble learning technique (28)

that amalgamates several weak learners to generate a robust

predictive model. The method operates by progressively including

fresh decision trees into the model, where every tree is trained to

rectify the mistakes made by the preceding one. The ultimate

forecast is derived by accumulating the projections of all the trees.

Mathematically, the prediction of the Gradient Boosting Classifier

can be represented by the following Equation 8:

F(x)   =   oM
m=1h(x)  Hm(x)     (8)

where,

F(x) is the final prediction,

h is the learning rate,
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Hm(x) is the prediction of the m th decision tree,

M is the total number of trees.

In this study, the authors employed Gradient Boosting Classifier

(29) to predict soil fertility based on soil properties. They found that

Gradient Boosting outperformed other classifiers like RF and LR,

particularly in capturing non-linear interactions between soil

properties. The model’s ability to identify the most significant

factors in soil fertility helped inform better agricultural practices

and fertilizer management strategies. The study also discussed how

hyperparameter tuning and regularization helped improve model

performance and prevent overfitting. This research highlights the

advantages of Gradient Boosting in dealing with complex

agricultural data and showcases its effectiveness in making

accurate soil fertility predictions.

3.2.9 AdaBoost
It is a boosting algorithm (30) that syndicates weak classifiers

into a strong classifier. It assigns weights to training examples based

on their classification error and trains a sequence of weak classifiers

on weighted training data. The final classification is determined by a

weighted combination of the weak classifiers. The Formula 9 for the

AdaBoost classifier is:

H(x)   =   sgm (oT
t=1atHt(x)   ) (9)

where,

Ht(x) is the final classifier,

at is the weight assigned,

T   is the number of weak classifiers.

3.2.10 Fuzzy c-means
It is a clustering algorithm that assigns each data point a

membership grade for each cluster, allowing it to handle

uncertain or overlapping data. It iteratively updates the cluster

centers and membership grades until convergence. The Formula 10

for fuzzy c-means is:

J   =oN
i=1oC

j=1w(i, j)
m (x(i) − μ(j))2 (10)

w(i, j) =oC
k=1

(x(i) − μ(j))

(x(i)  −  m(k))(
2

(m−1))
−1 (11)

μ(j) = o
N
i=1w(i, j)

mx(i)

oN
i=1w(i, j)

m (12)

where,

J (Equation 11) is the objective function to be minimized,

w(i, j) (Equation 11) is the membership grade of data point

i in cluster j,

m is a weighting exponent,

x(i) is the ith data point,

μ (j) (Equation 12) is the centroid of cluster j,

N is the number of data points,

C is the number of clusters.
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3.2.11 Decision tree classifier
The algorithm utilized in machine learning is known as a

decision tree model. This model is structured as a tree, which

contains various decisions and their potential outcomes. The

algorithm partitions data recursively according to the values of

features, and at each split, it selects the feature that offers the most

information gain. The Equation 13 for the decision tree classifier is:

H(x)   =   argmax   (oT
t=1½yi   =   c�   p(i     x)     )j (13)

where H(x) is the predicted class for input x, c is the class label,

yi is the i-th training instance, N is the number of instances, and p(i |

x) is the probability of the instance i given input x.

3.2.12 The perceptron
It is a binary classification algorithm that learns a linear decision

boundary to separate data points. It computes the weighted sum of

input features and applies a threshold function to make a

prediction. The weights and bias are updated based on the

classification error at each iteration. Equation 14 for the

perceptron is:

H(x)   =   sign(w · x   +   b) (14)

where H(x) = the predicted class for input x, w = the weight

vector, ‘·’ denotes the dot product and b is the bias term. The

Perceptron model (31–33) can be trained using labelled soil data to

classify soil samples based on fertility levels. Key soil parameters

such as pH, nutrient levels (N, P,K), organic matter, and texture can

serve as inputs, while the fertility category (e.g., low, medium, high)

is the output. The Perceptron adjusts its weights to learn the

relationship between input features and soil fertility status,

allowing for the prediction of soil fertility for new, unseen data.

3.2.13 K-means
The given content describes an unsupervised clustering

technique that separates n data points into k clusters. Initially, k

centroids are randomly selected, and each data point is assigned to

the closest centroid. Then, the centroid of each cluster is

recalculated by taking the mean of the points in that cluster. The

algorithm continuously updates the cluster assignments and

centroids until it reaches convergence. The ultimate outcome is k

clusters that group together the data points with similar distances to

their respective centroid.

K-means (34) can group soil samples into clusters based on

their chemical and physical properties. This helps researchers

identify patterns in soil fertility across different regions, guiding

crop selection and soil management practices. For instance,

clustering can reveal zones that are nutrient-rich versus those that

are nutrient-poor. In precision agriculture, K-means is used to

delineate management zones in a field based on fertility indicators

like nitrogen, phosphorus, or organic carbon content. These clusters

enable more targeted interventions, such as adjusting fertilizer

application rates to specific areas rather than treating the entire

field uniformly. The technique allows for spatial mapping of soil
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variability, offering insights into soil fertility distribution. These

clusters are used to create soil maps that visually represent the

variation of soil characteristics (35, 36) within a specific area,

helping optimize land management decisions. Soil datasets often

include many overlapping variables. K-means simplifies the

interpretation by clustering similar data points together, making

it easier to identify distinct soil types or conditions that influence

plant growth.
3.3 Deep learning algorithms

The proposed work also predicts the type of crop that can be

grown in the given area. The prediction is done using deep

learning techniques.

3.3.1 Multi-layer perceptron
MLPs (37) are particularly well-suited for tabular data where

features (e.g., soil type, pH, temperature) are independent but still

collectively influence the output. Unlike CNNs (used for images) or

RNNs (used for sequences), MLPs effectively model relationships in

structured data. Crop recommendation is a non-linear problem

where features interact in complex ways (e.g., high pH combined

with low temperature favors one crop but not another). MLP,

with its hidden layers and activation functions, can learn

such relationships.

Unlike image data where spatial relationships are important

(handled by CNNs), or sequential data where order matters

(handled by RNNs), MLPs treat each input feature independently,

making them ideal for datasets like this. The following are the layers

inside the MLP.
3.3.1.1 Input layer

The input layer takes in all the features from the dataset, such as

soil type, temperature, humidity, and other relevant parameters.

This layer acts as a gateway to feed structured/tabular data into the

neural network. Each feature is assigned to a neuron, and no

processing occurs here—it simply passes the raw data to the

next layer.
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3.3.1.2 Hidden layers

Hidden layers are the heart of the MLP, where the model learns

relationships and patterns in the data.
a. First Hidden Layer: This layer begins to extract underlying

relationships between the features. For example, it may

combine the temperature and humidity features to

understand how they jointly influence crop suitability.

ReLU (Rectified Linear Unit) activation is applied to

ensure the model can capture complex, non-linear

relationships in the data.

b. Second Hidden Layer: This layer refines the patterns

learned from the first hidden layer. For instance, it might

distinguish between crops that thrive in wet soils versus

those suited for dry conditions. The smaller number of

neurons compared to the first layer ensures the model

p r o g r e s s i v e l y s imp l ifi e s a nd n a r r ow s down

important patterns.

c. Third Hidden Layer: The model further condenses the

extracted information, focusing only on the most critical

features and relationships that help differentiate between

crop recommendations.
3.3.1.3 Dropout layers

Dropout is a regularization technique added after some hidden

layers to prevent overfitting. It temporarily deactivates a random

subset of neurons during training, forcing the model to rely on a

broader set of features rather than memorizing the training data.

This improves the model’s generalizability to unseen data.

3.3.1.4 Output layer

The final layer provides the predicted probabilities for each class

(crop type). A softmax activation function is used here, ensuring the

output represents probabilities across all possible crops. The crop

with the highest probability is chosen as the recommendation.

Table 4 shows the architecture of the MLPmodel. It consisted of

an input layer with 12 neurons (corresponding to the 12 features),

followed by three hidden layers with 64, 32, and 16 neurons

respectively. The activation function used in all hidden layers was

ReLU, and Dropout of 0.3 was applied after each hidden layer to

prevent overfitting. The output layer used a Softmax activation

function for multi-class classification. The model was trained using

the Adam optimizer with a learning rate of 0.001, a batch size of 32,

and for 50 epochs. Categorical cross-entropy was used as the loss

function. Early stopping with a patience of 5 epochs was applied

based on validation loss.

3.3.2 Long short-term memory
A robust neural network architecture integrates several key

components to enhance its performance and versatility. A

Bidirectional LSTM captures patterns from both past and future

contexts, enabling richer feature representation, while a Stacked

LSTM deepens the ability to learn complex temporal patterns

within sequences. Dense layers (MLP) further refine these
TABLE 4 Architecture of the multi-layer perceptron (MLP) model.

Layer
name

Number of
neurons

Activation
function

Dropout
rate

Input Layer 12 (one per feature) – –

Hidden
Layer 1

64 ReLU 0.3

Hidden
Layer 2

32 ReLU 0.3

Hidden
Layer 3

16 ReLU 0.3

Output
Layer

6 (number of crops) Softmax –
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sequential features , transforming them into compact

representations suitable for classification tasks. Dropout is

employed to mitigate overfitting by randomly deactivating

neurons during training, ensuring a more generalized model.

Finally, a Softmax layer converts the network’s outputs into a

probability distribution, facilitating effective multi-class

classification. LSTMs excel at learning sequential patterns, long-

term dependencies, and temporal relationships in data, addressing

challenges that static models like MLPs cannot handle effectively on

their own. While LSTMs capture the sequential features, MLPs play

a complementary role by transforming these features and

facilitating classification. This combination adds flexibility to the

model and enables the learning of non-linear decision boundaries,

enhancing overall performance.

Table 5 shows the architecture of LSTM model. The hybrid

model used a Bidirectional LSTM layer with 64 units, followed by a

Dropout layer (0.2) and two Dense layers with 32 and 16 neurons
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respectively. The final output layer used Softmax activation for

multi-class classification. This model was also trained using Adam

optimizer with a learning rate of 0.001, a batch size of 64, and for 50

epochs. The model was validated using an 80:10:10 split (train:val:

test) and monitored using early stopping.

3.3.3 Training strategies and overfitting control
During the training of deep learning models (MLP and LSTM),

early stopping was implemented to prevent overfitting. The training

process was monitored using validation loss, and training was

halted if no improvement was observed for 5 consecutive epochs.

A fixed learning rate of 0.001 was used throughout training;

learning rate scheduling techniques were not applied in this study

to keep the training process consistent across models. Since the

dataset consists of structured tabular data, data augmentation

techniques were not applicable and were therefore not used.
3.4 Experimental analysis using ML
algorithms

3.4.1 Hyperparameter tuning
The potential of the Ensemble models is also enhanced to the

maximum possible extent by utilizing the ‘RandomizedSearchCV’

function, which is a part of the ‘model_selection’ module in the

‘scikit’ library. This function performs a search through the given

hyperparameters distribution to identify the optimal values for the

model. In addition, a 7-fold cross-validation scheme (cv=7) is used

to improve the accuracy of the model. After fitting the training data

into the model, the best parameters are extracted from the results

obtained from the Randomized Search to ensure the model is fine-

tuned to its highest potential.

3.4.2 Evaluation metrics and results
With the fully optimized Random Tree model, it has been

concluded that prediction of soil fertility is possible with a splendid

maximum accuracy of 92.42%. Along with the highest accuracy

model, added the other model’s accuracy, precision, and recall

values (Table 6). The percentage of correct predictions out of all

predictions. Higher accuracy indicates better performance. The RF

classifier has the highest accuracy (92.42%). Precision is the

proportion of positive predictions that are actually correct.

ExtraTrees Classifier has the highest precision (78.23% and good

at identifying true positives without many false positives. A higher

F1 score indicates a better balance between precision and recall.

Gradient Boosting Classifier has the highest F1 score (70.92%). The

Gradient Boosting Classifier has the highest recall (71.26%), and

identifies the true positives.

Later comes the comparison, through a bar graph, of the

Accuracy, precision, and Recall score calculated applying the

equation no: (15), (16) and (17), respectively of all the algorithms

in a detailed manner.

Accuracy   =  
Number   of   correct   predictions
Total   number   of   true   positives  

(15)
TABLE 5 Architecture of the LSTM model.

Layer
name

Units/
neurons

Activation
function

Dropout
rate

Input Layer Sequence Input – –

Bidirectional
LSTM

64
tanh (default in
LSTM)

0.2

Dense Layer 1 32 ReLU –

Dense Layer 2 16 ReLU –

Output Layer 6 (crop classes) Softmax –
TABLE 6 Prediction results of ML models.

Parameters Accuracy Precision
F1
score

Recall
score

RF 92.42% 76.88% 65.82% 65.24%

ExtraTrees
Classifier

91.67% 78.23% 70.48% 68.88%

SGD Classifier 90.91% 60.60% 62.12% 63.75%

Ada-Boost
Classifier

90.15% 77.81% 76.00% 74.71%

SVM 89.77% 60.04% 61.40% 62.94%

KNeighbors
Classifier

87.88% 58.84% 60.20% 61.62%

Ridge Classifier 88.26% 59.29% 60.37% 61.88%

Decision Tree 87.50% 77.51% 77.47% 77.45%

Logistic Regression 85.61% 58.76% 59.34% 60.02%

Gradient Boosting
Classifier

85.23% 70.63% 70.92% 71.26%

Perceptron 81.82% 68.40% 63.32% 61.98%

GaussianNB 54.17% 49.01% 41.39% 56.32%

K-means 50.00% 33.64% 32.31% 35.00%
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Precisionscore =  
TP

TP   +   FP  
  (16)

Recall   Score   =  
TP

TP   +FN
  (17)

Accuracy [depicted Figure 1] can be defined as the fraction of

predictions the model got right and the agreement between a

measured value and an accepted value. It can be calculated by

dividing the number of correct predictions by Total number of true

positives (TP).

Precision [shown in Figure 2] can be estimated by dividing TP

by the sum of TP and the sum of false positives (FP) predictions.

Recall [refer Figure 3] can be calculated by dividing TP by the

sum of TP and total number of false negatives (FN).

Furthermore, it is possible to calculate the values of TP, Total

number of True Negatives (TN), FP and FN using the Confusion

Matrix (Table 7) obtained.
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While RF exhibited the highest overall accuracy (92.4%), its F1-

score was lower compared to Gradient Boosting and XGBoost due

to class imbalance effects. The latter models achieved better recall

and F1-scores, especially for minority classes (Low and High

fertility). This highlights that accuracy alone is not sufficient to

assess performance in imbalanced classification tasks. Therefore,

models were further compared using macro-average F1-scores and

confusion matrices to assess class-wise prediction capability.

Among all models evaluated, RF and XGBoost outperformed

others due to their robustness against overfitting, ability to handle

nonlinear feature interactions, and inherent feature selection

mechanisms. XGBoost, in particular, benefits from boosting weak

learners and optimizing loss with regularization, which explains its

superior F1-score and Recall across fertility classes. In contrast,

models like SVM and Logistic Regression struggled to model

nonlinear relationships present in the dataset.
FIGURE 2

Precision graph obtained using ML algorithms.
FIGURE 1

Accuracy graph obtained using ML algorithms.
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3.4.3 Implementation With MLP
The Confusion matrix in Figure 4 shows that the most

predictions align with the actual labels, as evidenced by the high

values along the diagonal. For example, all instances of potato

(20) and most instances of grapes (20/21) are correctly

classified. However, there are a few misclassifications: 1 instance

of grapes is classified as pomegranate, 1 mango as mulberry,
Frontiers in Soil Science 13
2 mulberries as ragi, and 1 pomegranate as grapes. This

indicates that while the model performs well overall, there is

slight confusion between certain classes, which might be

addressed by improving feature differentiation or fine-tuning the

model further.

The confusion matrix for MLP shows accurate predictions for

“Medium” and “High” classes, but noticeable confusion between
FIGURE 3

Recall graph obtained using ML algorithms.
TABLE 7 Confusion Matrix obtained using ML algorithms (22).

ML
algorithms

Confusion matrix
ML
algorithms

Confusion matrix

RF Perceptron

Extra Trees
Classifier

GaussianNB

(Continued)
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“Low” and “Medium,” reflecting class overlap. This justifies the

lower recall and F1-score for the “Low” class.

To ensure robust training and evaluation of the deep learning

models, the dataset was split into three subsets: 80% for training,

10% for validation, and 10% for testing. The split was performed

randomly but ensured class stratification to maintain the original

distribution of soil fertility classes. The validation set was used for

hyperparameter tuning and early stopping to prevent overfitting,

while the final model performance was reported on the hold-out test
Frontiers in Soil Science 14
set. Additionally, we averaged the performance over multiple

random seeds to ensure consistency.

The classification report (Figure 5) shows that the model

achieves an overall accuracy of 96%, with high precision, recall,

and F1-scores across all classes. Mulberry, pomegranate, and potato

have perfect precision and recall, indicating no false positives or

false negatives for these classes. Grapes and mango also perform

well with slightly lower scores, while ragi has the lowest precision

(91%), suggesting some false positives for this class. Both macro and
TABLE 7 Continued

ML
algorithms

Confusion matrix
ML
algorithms

Confusion matrix

SGD Classifier K-means

Ada-Boost
Classifier
FIGURE 4

Confusion matrix for MLP model.
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weighted averages for all metrics are consistently at 96%, indicating

balanced performance regardless of class distribution. Overall, the

model is robust and well-generalized, with minor room for

improvement in ragi’s classification.

The training and validation performance plots in Figure 6

indicate that the model learns effectively on the training data, as

shown by the steadily decreasing training loss and increasing training

accuracy, which stabilizes near 1.0. However, the validation loss

initially decreases but then starts increasing, while the validation

accuracy plateaus below the training accuracy, highlighting

overfitting. This suggests that while the model performs well on the

training data, its generalization to unseen data deteriorates over time.

The confusion matrix in Figure 7 shows that majority of

predictions are correct, as indicated by the dominant diagonal

values. For instance, all mulberry (21), most grapes (23/24),

pomegranate (21/22), potato (22/23), and ragi (16/17) instances are

correctly classified. However, some misclassifications are observed: 1

grape is classified as ragi, 1 mango as grape, 1 pomegranate as mango,

and 1 potato as ragi. These misclassifications suggest that while the
Frontiers in Soil Science 15
model generally performs well, certain class boundaries might

overlap, which could be addressed by refining the model or

incorporating additional distinguishing features.

The classification report (Figure 8) indicates that the model

performs exceptionally well, achieving an overall accuracy of 97%

with high precision, recall, and F1-scores across most classes.

Classes such as mulberry and pomegranate show near-perfect

performance, while ragi has the lowest precision (89%), indicating

some false positives for this class. Despite minor variations, the

weighted average metrics confirm consistent performance, with the

model handling class imbalances effectively. Overall, the model is

highly reliable, but slight improvements could be made for specific

classes like ragi to enhance precision.

The graphs (Figure 9) show the accuracy and loss trends of the

Hybrid model (MLP with LSTM) over 50 epochs. The accuracy

curve (left) indicates steady improvement in both training and

validation accuracy, with the model reaching near convergence after

approximately 20 epochs. Training and validation accuracy closely

align, suggesting minimal overfitting and a well-generalized model.
FIGURE 6

Accuracy, loss vs epochs curve for MLP model.
FIGURE 5

Performance metrics for MLP model.
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FIGURE 8

Performance metrics for hybrid model (MLP WITH LSTM).
FIGURE 9

Accuracy, loss vs epochs curve for hybrid model (MLP WITH LSTM).
FIGURE 7

Confusion matrix for hybrid model (MLP WITH LSTM).
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The loss curve (right) shows a rapid decrease in both training and

validation loss during the initial epochs, eventually stabilizing as the

model learns. The validation loss aligns well with training loss,

further confirming the absence of significant overfitting. Overall,

the model demonstrates effective training and generalization with

consistent performance.

The comparison of metrics from Figure 10—Accuracy,

Precision, F1-Score, and Recall—between the MLP (Multi-Layer

Perceptron) and MLP with LSTM models reveals the

following observations:
Fron
a. Accuracy: The MLP with LSTM model achieves a higher

accuracy of 0.970 compared to the MLPmodel’s accuracy of

0.960. This indicates that the LSTM augmentation improves

the overall performance in terms of correctly classifying

the data.

b. Precision: Both models achieve the same Precision value of

0.960, indicating that the models are equally effective at

minimizing false positives.

c. F1-Score: The MLP with LSTMmodel achieves a higher F1-

Score of 0.970, compared to 0.958 for the MLP model. This

improvement suggests that the MLP with LSTM strikes a

better balance between precision and recall.

d. Recall: The MLP with LSTM model achieves a Recall of

0.968, outperforming the MLP model, which has a recall of

0.958. This improvement implies that the MLP with LSTM

is more effective at identifying all relevant instances,

reducing false negatives.
The inclusion of the LSTM layer in the MLP architecture results

in noticeable improvements in Accuracy, F1-Score, and Recall,

while maintaining the same Precision as the standard MLP

model. This highlights the superior performance of the MLP with

LSTM model in tasks that require better generalization and recall
tiers in Soil Science 17
capabilities, particularly for datasets where sequential dependencies

play a role.

All models, including both traditional machine learning (e.g.,

Random Forest, XGBoost) and deep learning architectures (MLP,

LSTM), were evaluated using Stratified K-Fold Cross-Validation

with K = 5. This ensured that the distribution of fertility classes

(Low, Medium, High) was preserved across all folds. For each

model, the training and evaluation were repeated five times, and the

reported performance metrics (Accuracy, Precision, Recall, F1-

score) represent the average across the five folds. For deep

learning models, the cross-validation process was repeated with

new weight initializations for each fold to avoid data leakage and

overfitting. This approach ensured robustness and generalizability

of the results.

To assess the significance of model performance differences, a one-

way ANOVA test was conducted on F1-scores obtained across five

cross-validation folds for each model. The resulting p-value (< 0.05)

indicates that the differences in F1-scores are statistically significant.

Post-hoc Tukey’s HSD test revealed that XGBoost and Gradient

Boosting significantly outperformed SVM and Logistic Regression.
4 SISFMA hardware testbed

A hardware prototype Artificial Intelligence based Smart

Innovative Soil Fertility Monitoring Aid (AI-SISFMA) presented

in Figure 11 has been made to analyze the fertility of the soil. The

prototype features are as follows (a) It measures the equal

distribution of fertilizer in irrigation land, (b) Fertilizer level

intimation in the soil to the farmer, if it is below the required

level, (c) Field officer suggestions for fertilizer level intimation via

Mobile Application(d) Moisture level indicator to provide equal

amount of water distribution (e) Mobile Application Development -

Input from farmer, AI based Suggestion Window.
FIGURE 10

Comparison of MLP and MLP with LSTM.
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Table 8 lists the hardware specifications of AI-SISFMA IoT kit. The

prototype comprises moisture sensor (RKI-4669) for measuring the

moisture level in the soil, NPK sensor for measuring nitrogen,

phosphorus and potassium level in the soil, and aeration using
Frontiers in Soil Science 18
MIJ03 sensor. Arduino microcontroller (ATmega32u4) to collect the

sensed soil nutrients level, pH sensor (SKU: 235871) for measuring the

pH level in the soil, Wifi module (ESP2866), GSM module (TOM-

24112) and prototype android app for getting suggestions from

agricultural field officer. In addition to the above sensors the farmer

has the option to capture the image of his/her land to check the soil

color and contamination. The NPK sensor senses the soil fertility level

and if it is less than the threshold level, the farmer contacts the AFO

using user friendly AI-SISFMA mobile application for suggestions

regarding the amount of fertilizer to be mixed up with soil for crop

farming. The data from the prototype kit and the captured image are

processed by the AI based recommendation model available with the

AFO. AFO verifies and suggests the best optimal solutions for the

farmer in terms of fertilizer usage, moisture level and pH level to be

maintained and the types of crops that can be grown on their land. This

suggestion improves the better yield of a particular crop, reduces the

conventional mode of soil nutrients measurement, and increases the

farmer’s income.

The Figure 12 illustrates the casing of SISFMA kit with two

views: a front view and an isometric view. The isometric view

provides a 3D perspective of the casing, showing the spatial

arrangement of components inside the device. This view helps to

understand how different components like the MCU, power board,

and pH sensor module are housed within the enclosure and how

they are positioned relative to one another.

The device is likely built to be deployed in the field, possibly in

precision agriculture or soil fertility assessments, to measure soil

properties directly and give farmers or researchers data that can be

used for decision-making. If this device is indeed used for soil

analysis, its design reflects a typical modular structure, where

different sensors (like pH or moisture sensors) and processing

units (MCU or Arduino) are incorporated into a robust casing

for outdoor use.
TABLE 8 Hardware specification of AI-SISFMA IoT kit.

S.
No.

Component
Model/
part

number
Functionality

1
Microcontroller
Unit (MCU)

Arduino
Leonardo
(ATmega32u4)

Central control unit for data
acquisition and communication

2
Soil Moisture
Sensor

RKI-4669
Measures volumetric water
content in the soil

3 NPK Sensor
5V RS485
(JXBS-3001-
NPK-RS)

Measures N, P and K levels in
the soil

4 pH Sensor SKU: 235871 Measures soil pH level

5 Aeration Sensor MIJ03
Detects aeration/oxygen levels in
the soil

6 Wi-Fi Module ESP8266
Enables wireless data
transmission

7 GSM Module TOM-24112
Sends SMS alerts/notifications to
farmers or connects with mobile
networks

8
Mobile
Application
(Android)

AI-SISFMA
App

User interface for farmers;
collects inputs and displays AI-
generated suggestions

9
Camera Input
(optional)

Smartphone-
integrated

Captures field images for visual
soil condition assessment

10 Casing
Custom-built
Enclosure

Houses all internal components;
designed for field deployment
FIGURE 11

AI-SISFMA IoT kit.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1652058
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Gunasekaran et al. 10.3389/fsoil.2025.1652058
FIGURE 12

SISFMA kit casing.
FIGURE 13

Workflow diagram SISFMA [Smart innovative soil fertility monitoring aid].
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Figure 13 depicts the work flow diagram of the SISFMA kit. The

following are the step-by-step work involved in SISFMA.
4.1 Data collection by farmer

The farmer uses the SISFMA kit to measure key soil properties

such as N, P, K, pH, moisture, and aeration levels. These properties

are essential for determining soil fertility. Along with measuring

physical and chemical properties, the farmer captures soil images

using the SISFMA mobile application. These images could be used

for visual assessment of soil quality and structure.
4.2 Data transmission

The collected data (both measured values and images) are sent

to an entity referred to as AFO (possibly Agricultural Field Officer

or Agricul ture Fer t i l i ty Opt imizer) v ia the SISFMA

mobile application.
4.3 Data input into AI models

The AFO inputs the received measured values of nitrogen,

phosphorus, potassium, pH, moisture, and aeration into SISFMA

web application model A. This model likely uses numerical analysis

to assess the soil fertility based on standard soil test data. The

captured soil images are input into SISFMA web application model

B. This model might use image processing or AI-based visual analysis

(such as machine learning or computer vision) to assess additional

soil characteristics, such as texture, color, or contamination.
4.4 Running AI models: run both models

The AFO runs both Model A and Model B of the SISFMA

application. Each model analyzes the data based on different inputs

(numerical vs. image-based analysis), and produces an assessment

of the soil’s condition and fertility.
4.5 Comparison of results for optimal
solution

The AFO compares the results from both models (A and B).

This comparison helps in arriving at the best optimal solution,

combining the numerical and visual data analysis for a

comprehensive understanding of soil health.

Based on the analysis, the AFO provides recommendations and

suggestions via the SISFMA mobile application. These

recommendations may cover: Optimal NPK levels for

fertilization; pH adjustments if the soil is too acidic or alkaline;

moisture and aeration levels to ensure proper soil structure and

hydration; other soil properties like soil color (which could indicate
Frontiers in Soil Science 20
organic matter or contamination); fertilizer amounts and types to

be distributed based on the fertility assessment.

This ML-based system appears to be designed for

precision agriculture.

The enhancement in soil fertility management by providing

tailored recommendations based on both measurable soil

parameters and visual analysis is accomplished. It helps farmers

optimize fertilizer use, thereby improving crop yields and

promoting sustainable farming practices by reducing overuse of

chemicals. The key advantages include automated Analysis, dual

data approach and real time support. The SISFMA system simplifies

soil analysis, making it easier for farmers to get accurate

recommendations without requiring extensive technical

knowledge. By combining numerical soil properties and image-

based data, the system provides a more thorough analysis. The

mobile and web-based platforms ensure that farmers receive quick

and actionable feedback on soil management strategies.
5 Experimental results

The real time extraction of soil sample from Brahmapuram

location is shown in Figure 14.

For experimental verification, the soil samples were collected

from different locations in Vellore district and are presented

in Table 9.
5.1 Real time soil fertility prediction

The soil-1A (Figure 15A) has low nutrient levels, particularly

nitrogen and phosphorus. It could benefit from fertilizer

supplementation. Its pH is suitable for a wide variety of crops, but

nutrient amendments are needed. The soil-2A (Figure 15B) is

nutrient-rich and has excellent moisture retention. It should be

suitable for crops requiring high nutrient levels, but drainage might

need to be improved due to high moisture. The soil-3A (Figure 15C)

figure is moderately fertile but lacks phosphorus. Suitable for a wide

range of crops, but phosphorus amendments may be necessary to

improve yield. The soil-4A (Figure 15D) is with a poor nutrient

profile with very low nitrogen, phosphorus, and potassium. This soil

would need significant fertilization to support plant growth. The soil-

5A (Figure 15E) is with Neutral pH, but nutrient-deficient, especially

in potassium. Fertilizer application is essential before planting. The

soil-6A (Figure 15F) is highly acidic and nutrient-poor, requiring

both pH adjustment and significant nutrient supplementation. The

soil-7A (Figure 15G) is with low fertility with a slightly alkaline pH,

which is suitable for certain crops like legumes then it needs nutrient

enhancements for optimal growth. The soil-8A (Figure 15H) is

moderately fertile but needs more phosphorus and potassium. It’s

slightly acidic, which can be tolerated by most crops. The soil-9A

(Figure 15I) has moderate nitrogen but lacks phosphorus and

potassium. High moisture may need management depending on

the crop. The soil-10A (Figure 15J) has a balanced nutrient profile

with moderate amounts of nitrogen, phosphorus, and potassium.
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In Soil Sample - 2A (Figure 16A) the pH measured using the

SISFMA kit and predicted results closely match the lab results. For

Potassium, the lab results are slightly lower than both the SISFMA

predictions and the kit. A similar trend is observed for Phosphorus,

with the lab results being slightly lower across all methods.

However, for Nitrogen, the lab results are significantly higher

compared to both the SISFMA predictions and the kit.

In Soil Sample - 3A (Figure 16B) the lab results for pH are

higher compared to both the SISFMA predictions and the kit. In the

case of Potassium, the SISFMA kit underestimates the values, while

the predicted results are much closer to the lab measurements. For
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Phosphorus, the lab results exceed those obtained by both the

SISFMA predictions and the kit. However, Nitrogen levels are

consistent across all methods, showing minimal variation between

the SISFMA predictions, the kit, and the lab results.

In Soil Sample - 5A (Figure 16C), the predicted results

overestimate pH compared to both the lab results and the

SISFMA kit, which are closely aligned. For Potassium, the

SISFMA kit shows significantly higher values than both the lab

results and predictions. Regarding Phosphorus, the predictions are

higher than the lab results, with the SISFMA kit providing the

lowest measurements. In the case of Nitrogen, the lab results

indicate higher nitrogen content compared to both the

predictions and the SISFMA kit.

Nitrogen values tend to be the most consistent across all

methods, particularly in sample 3A. In contrast, Potassium and

pH exhibit noticeable variation between methods, with the SISFMA

kit often differing from the lab results. Overall, the SISFMA kit

generally shows closer alignment with lab results in some cases,

although the predicted values also demonstrate reliability

depending on the parameter being measured.

The MAE, RMSE, and Percentage Deviation (Table 10) for key

soil parameters (pH, N, P, K) across four sample sets was calculated.

The maximum observed deviation is 13.26%, and the highest RMSE

recorded is 3.72 mg/kg (Figure 16A Soil Sample- 3A). These results

demonstrate that SISFMA’s predicted outputs are closely aligned

with laboratory results, affirming the system’s reliability for field-

level applications. Table 11.shows the error rates for each parameter

(N, P, K, pH) measured by the kit vs lab standard.
5.2 Feature importance and key soil
indicators

The insights from feature importance analysis have been directly

integrated into the SISFMA system to enhance crop advisory services.
FIGURE 14

Real time soil extraction from Brahmapuram.
TABLE 9 Soil samples from different location in Vellore district.

Name of
the village

Latitude Longitude
Soil
samples

Brahmapuram N 12° 57’ 56.9808” E 79° 10’ 13.3428” 1A

Seyur-Location-
1

12.964369944545766 79.18399579633203”E 2A

Seyur-Location-
2

12.971615655226024, 79.1840567485389”E 3A

Pallikuppam-1 12.99159011803117 79.15624670957743”E 4A

Pallikuppam-2
Thoppu bus
stand

12.995392522492862 79.14751855324333”E 5A

Periyapudur
road

12.997220619763706 79.14122010674224”E 6A

Katpadi 12°58’07.9”N 79°11’52.3”E 7A

Mettukulam-
Location-1

12.998515158687782 79.13632327034453 8A

Mettukulam-
Location-2

12.998936611535093 79.13601309557316 9A

meettukulam-
location-3

12.999728882020749 79.13527095293843 10a
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For instance, soils identified with low N and P levels were mapped to

legume and pulse-based cropping recommendations, as these crops

enrich nitrogen content naturally. Similarly, low pH (acidic soil)

predictions triggered recommendations for lime application and

pH-tolerant crops. This data-informed mapping improves both

fertility correction and crop suitability, enabling sustainable

practices. Notably, fields with high OC but low macronutrients were

recommended compost-supplemented cereals or oilseeds. This

demonstrates how predictive parameters influence both fertilizer

dosing and crop decision support.

Feature importance analysis using the Gini index from the RF

model (Table 12) revealed that N, P, K, and pH are the most

influential features in determining soil fertility class. This aligns
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with standard agronomic understanding, as macronutrients and pH

strongly influence crop productivity. Secondary elements like OC

and EC also contributed meaningfully, while micronutrients like Zn

and Fe showed lower predictive power.
6 SISFMA mobile application

The diagram (Figure 17) appears to illustrate the workflow of a

mobile application named SISFMA designed for managing soil

health and providing recommendations to farmers and field officers.

A breakdown of the key components and interactions are

given below:
FIGURE 15

Soil Sample outputs (A) Soil 1A, (B) Soil 2A, (C) Soil 3A, (D) Soil 4A, (E) Soil 5A, (F) Soil 6A, (G)Soil 7A, (H)Soil 8A, (I) Soil 9A, (J) Soil 10A.
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1. Mobile App Interfaces consists of Farmer Dashboard, Field

Officer Dashboard and Admin Dashboard. Farmer

Dashboard allows farmers to interact with the system,

receive suggestions, and input their soil data. Field Officer

Dashboard is designed for agricultural field officers to log in

and manage data, provide recommendations, and interact

with farmers. Admin Dashboard manages the overall

system, with access to both farmer and field officer data.

Our approach aligns with the mobile-based soil monitoring

systems reported previously (39), extending their

functionality with real-time machine learning predictions.
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2. Registration and Login Dashboard: Both farmers and field

officers are required to register and then log in to access the

app’s services. Once logged in, farmers and officers are

linked to different workflows: Farmers provide soil data

(NPK levels, moisture, pH values) that is processed and

stored. Field Officers can Access the same data to make

recommendations and provide advice to farmers.

3. Data Flow: After login, farmers input the measured values

which are stored in a farmers’ database. The field officers

access these values, analyze them, and provide tailored

recommendations. Based on the soil data, farmers receive
FIGURE 16

(A) Soil Sample- 2A. (B) Soil Sample-3A. (C) Soil Sample-5A. (D) Soil Sample-8A.
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automated suggestions or advice from field officers through

the app.

4. Databases: There are three databases maintained. Farmers

Database that stores data related to individual farmers,

including their soil measurements. Agricultural Field
tiers in Soil Science 24
Officers Database that contains records of the officers

interacting with the system. Agricultural Activities

Database that stores information related to farming

practices and recommendations provided by field officers.

5. Outputs: Based on the data collected (NPK, moisture, pH

levels), field officers offer personalized recommendations to

farmers. Automated or officer-provided suggestions to

improve soil health and optimize agricultural practices

are delivered through the app as depicted in Figure 18.
6 Conclusion

Numerous machine learning algorithms have been employed to

analyze soil fertility, that offers a sustainable and efficient alternative
FIGURE 17

SISFMA multilingual mobile application dashboard.
TABLE 10 Evaluation of SISFMA predictions against laboratory
measurements for four representative soil samples (2A, 3A, 5A, 8A)
shown in Figures 16A-D.

Figure MAE RMSE
Percentage deviation

(%)

Figure 16A Soil Sample-
2A

1.58 1.88 5.76%

Figure 16B Soil Sample-
3A

2.78 3.72 13.26%

Figure 16C Soil Sample-
5A

2.85 3.51 9.05%

Figure 16D Soil Sample-
8A

1.10 1.24 12.01%
TABLE 11 Error rates for each parameter (N, P, K, pH) measured by the
kit vs lab standard.

Parameter MAE (mg/kg) RMSE (mg/kg) % Deviation

N 2.00 2.65 4.7%

P 2.00 2.43 8.6%

K 3.00 3.60 6.9%

pH 0.30 0.38 5.2%
TABLE 12 Feature importance analysis.

Feature Importance score (RF)

N 0.215

P 0.188

K 0.173

pH 0.146

OC 0.103

EC 0.079

Zn 0.054

Fe 0.042
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to traditional, labor-intensive methods. However, only a handful of

these models have demonstrated notable accuracy. By integrating

different sensors such as (NPK, pH and moisture), the

environmental variables and meteorological data are collected and

incorporating ML algorithm farmers are assisted in optimizing soil

management. Initially, linear classifier models are utilized including

Perceptron, Ridge Classifier, Linear Regression, SGD Classifier, and

Logistic Regression. Despite achieving accuracies above 75%, these

models failed to impress. The search is expanded for a superior

model and explored ensemble models in the ‘scikit’ Library such as

Extra trees, RF, Gradient Boosting, and Ada Boosting. Additionally,

we experimented with clustering methods like Kmeans

(unsupervised), and K-NN (supervised), all of which resulted in

precision below 50%. Finally, Decision Trees, GaussianNB, and

Support Vector Machine are also employed in the analysis. Among

the models tested, the Random Forest algorithm achieved the

highest accuracy (92%), highlighting its effectiveness in soil

fertility prediction. Moreover, the inclusion of the LSTM layer in

the MLP architecture for predicting crops results in noticeable

improvements in Accuracy, F1-Score, and Recall, while maintaining

the same Precision as the standard MLP model. This highlights the

superior performance of the MLP with LSTM model in tasks that

require better generalization and recall capabilities, particularly for

datasets where sequential dependencies play a role. In summary,

this work significantly advances the use of AI and ML in agriculture,

making it a crucial step toward more sustainable and precise

farming practices. The integration of hardware readings with

machine learning models plays a crucial role in enhancing

predictive accuracy and ensuring reliable decision-making. Real-

time sensor data can help minimize excessive use of fertilizers,

pesticides, and water, promoting environmentally friendly farming

practices. Accurate predictions enable better decision-making
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regarding irrigation, disease prevention, and yield estimation,

ultimately leading to increased productivity and profitability for

farmers. By reducing chemical overuse, the system supports

sustainable agriculture, preserving soil health and reducing

pollution. By seamlessly combining hardware-driven insights with

machine learning capabilities, the system enhances efficiency,

sustainability, and economic viability, making it a valuable tool

for modern precision agriculture.
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