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The design and application of engineered biochar is crucial for removing

contaminants from soil and water,yet its development and commercialization

still depend on time- and labor-intensive experimental methods. Machine

learning (ML) offers a faster alternative, but despite its growing use in biochar

research, no review systematically covers ML-driven design of engineered

biochar for large-scale contaminant removal. This work fills that gap by

analyzing ML’s role in optimizing biochar properties using pilot and industrial-

scale datal. We examine key biochar characteristics, including physical (e.g.,

surface area, pore volume), chemical (e.g., ultimate/proximate analysis,

aromatization), electrochemical (e.g., cation exchange capacity, electrical

conductivity), and functional group properties, and their optimization for

various contaminants. With special attention on three mechanistic dimensions,

this review offers the first thorough study of ML applications for designing

biochars based on pilot and industrial-scale data: ML forecasts micropore-

mesopore synergies controlling diffusion-limited adsorption of heavy metals

(Pb²+, Cd²+); surface chemistry optimization - including oxygen functional

group (-COOH, -OH); and electrochemical tuning - of redox-active sites for

contaminant transformation. The paper emphasizes how ML models—such as

Random Forest (RF) and Gradient Boosting Regression (GBR)—elucidate the

nonlinear links between pyrolysis conditions (temperature, feedstock

composition) and biochar performance. For adsorption, surface area and pore

volume are distinctly important; in redox reactions for heavy metal removal,

functional groups like C-O and C=O play vital roles. Unlike earlier studies mostly

on the adsorption capacity of biochar, this work expands the scope to investigate

how ML can customize biochar properties for optimal contaminant removal

using interpretability tools like SHAP analysis. These instruments expose

parameters including nitrogen-to-carbon (N/C) ratios and pyrolysis

temperature in adsorption efficiency. The review also covers hybrid methods

combining ML with molecular simulations (e.g., DFT) to link mechanistic

knowledge with data-driven predictions. Emphasizing the need for
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multidisciplinary collaboration, the review finally shows future directions for ML-

driven biochar design, guiding fieldwork by pointing out shortcomings of present

techniques and opportunities for ML.
KEYWORDS

machine learning (ML), engineered biochar, environmental remediation,
adsorption, contaminants
Highlights
• ML forecasts the ideal characteristics of biochar for

removing contaminants.

• Pyrolysis temperature dominates adsorption, according to

SHAP analysis data.

• The redox reactions of heavy metals are controlled by

oxygen functional groups.

• Pore structure-adsorption synergychars are controlled by

feedstock chemistry.

• Mechanistic predictions are improved by hybrid ML-

DFT models.
1 Introduction

Soil and water pollution, a critical global environmental issue

intensified by rapid industrialization and population growth (1–3),

poses significant threats to human health, disrupts ecosystems, and

jeopardizes food safety (4, 5). Soil and water pollution remain

pressing global concerns, with increasing evidence of their impact

on ecosystems and human health. Nearly one-third of the world’s

soils are moderately to severely degraded as a result of erosion,

nutrient depletion, acidification, and contamination, and more than

80% of wastewater is discharged into the environment untreated,

according to the United Nations Environment Programme (6). The

urgent need for efficient and sustainable remediation technologies—

like biochar-based systems—is highlighted by this concerning

trend, especially when machine learning is added for targeted

performance. Sustainable remediation techniques are needed to

address these issues, and engineered carbonaceous materials like

activated carbon and biochar are showing promise as remedies.

Despite derived from the pyrolysis of biomass, they are different in

significant regards: Biochar is a versatile adsorbent that can remove

a variety of contaminants from soil and water. It is created by

pyrolyzing organic feedstocks at temperatures between 300 and

700°C. Additionally, it improves soil quality and aids in carbon

sequestration (7, 8). Because of its mineral concentration,

heterogeneous pore structure, and abundance of surface

functional groups (like −COOH, −OH), which boost microbial

activity, water retention, and fertility, this is the best soil

amendment (9). Because of its high adsorption capacity and
02
porous structure, biochar can effectively remove both organic and

inorganic contaminants from soil and water (8, 10–12). To create a

more uniform, microporous structure with an exceptional surface

area (500–3000 m²/g), activated carbon is pyrolyzed at 600–900°C

and then physically or chemically activated (e.g., steam, KOH).

While this is ideal for the adsorption of contaminants in water

treatment, it typically results in minimal benefits for the soil and

increased production costs.

Recent studies have used several techniques including acid-base

treatment, metal compound inclusion, steam activation,

magnetization, heteroatom doping, and ball milling, which

produce different adsorption results and mechanisms, so

adjusting the properties of biochar to increase its efficacy as an

adsorbent for particular contaminants or applications (13).

However, the creation of synthetic biochar mostly depends on

trial-and-error methods, sometimes laborious and useless (14,

15). Learning patterns from large datasets without the need of

explicit programming or extensive experimentation helps machine

learning (ML) especially to model and maximize the complex and

nonlinear interactions between feedstock properties, pyrolyzed

conditions, and the resulting biochar performance. This

underlines the need of uniform evaluation criteria and the

integration of artificial intelligence and machine learning to drive

field developments.

The development of ML techniques has presented new

opportunities for environmental use prediction and optimization

of biochar performance. In view of their remarkable capacity to

analyze intricate datasets, spot patterns, and predict outcomes,

machine learning models are particularly well-suited to enhance

biochar design (16, 17). Through machine learning, research has

successfully predicted the properties and functionality of biochar,

offering crucial insights into how changes in production conditions

may affect the effectiveness of contaminant adsorption. Even though

biochar and machine learning have been the subject of numerous

recent studies, more research is still required. Most current research

concentrate on specific, usually limited aspects of this relationship,

so generating major knowledge gaps.Although Leng et al. (18) and

Li et al. (19) carried out focused reviews focusing on specific biochar

characteristics, such as pore volume, specific surface area, and

nitrogen-containing functional groups, they do not address the

general optimization of biochar for various types of pollutants or

look into the broader implications of these characteristics in
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environmental applications. For example, Wang et al. (20) carried

out a mini-review on machine learning applications in biochar

studies; however, it primarily offers a general overview without

going into great detail about the design and optimization of

engineered biochar for targeted contaminant removal. Although

they provide useful analysis of particular biochar properties, they do

not integrate the ways in which these attributes could be

systematically targeted to improve biochar’s effectiveness in

various environmental contexts. The review by Zhang et al. (21)

mostly concentrates on the use of biochar in anaerobic digestion

rather than its application in soil and water contaminant removal,

which is a crucial area for environmental remediation, similarly.

This restriction emphasizes the need of a more thorough review

covering the interaction between biochar characteristics and their

performance in contaminant removal, which will finally guide

future research and application strategies. Using these advanced

computational tools allows researchers to rapidly produce more

powerful biochar materials for environmental remediation.

In contrast to previous reviews that have mainly focused on the

application of ML to engineer biochar properties for contaminant

adsorption, this review broadens the scope to include a wider range

of biochar characteristics and critically discusses how ML can be

used not only to optimize biochar for specific contaminant removal

but also to engineer biochar with tailored properties for diverse

environmental and agricultural applications. This review

thoroughly examines the application of ML in predicting and

designing biochar properties, providing a detailed analysis of

various biochar characteristics, including physical (specific surface

area, total pore volume), chemical (ultimate/proximate analysis,

aromatization degree), and electrochemical (cation exchange

capacity, electrical conductivity, capacitance); and functional

group properties.

This review is novel because it thoroughly examines how ML

can be used to design biochar properties other than contaminant

adsorption, providing insights into how ML could transform the

biochar manufacturing process. By combining different machine

learning algorithms and applying them to biochar research, the

review demonstrates how ML can forecast and improve particular

biochar characteristics, saving experimental time and expenses

related to conventional trial-and-error methods. This more

comprehensive viewpoint fills in important gaps in the body of

literature, which makes it an essential addition to the field.
2 Review methodology

Multiple synonyms and Boolean operators were used in a

methodical keyword search approach to guarantee thorough

coverage of pertinent material. Expanded to include related terms

such “artificial intelligence” OR “AI,” “predictive modeling,”

“biochar modification,” “biochar design,” and “contaminant

removal,” the central search phrase was “machine learning” AND

“engineered biochar.” To maximize retrieval sensitivity, these terms

were combined in several ways with Boolean operators (AND, OR).

Among the example search strings were “machine learning” AND
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“biochar”; “contaminant removal”; “artificial intelligence”; “AI”;

“engineered biochar”; “predictive model”; AND “biochar

adsorption”. Limited to peer-reviewed journal publications

released between 2009 and 2024, the searches were conducted in

ScienceDirect, Web of Science, and Google Scholar. This strategy

ensured the inclusion of studies addressing both the development of

biochar materials and their optimization through machine

learning tools.

In total, 1,230 records were initially retrieved and exported to

EndNote reference management software. After removing

duplicates, 1,128 unique records remained. These were then

screened based on titles and abstracts, resulting in the exclusion

of irrelevant studies, including 324 review articles and conference

proceedings. Finally, 1114 articles met the inclusion criteria and

were analyzed in depth for this review. The full screening and

selection process is summarized in Figure 1.

The significance of machine learning in biochar engineering is

further supported by bibliometric mapping using VOSviewer

software (version 1.6.19), as shown in Figure 2. This keyword co-

occurrence map visually represents the most frequently researched

terms related to machine learning and biochar. In the map, each

node represents a keyword, with larger node sizes indicating higher

frequency of occurrence in the literature. Different colors denote

clusters of keywords that frequently appear together, revealing

thematic groupings within the research domain. The proximity

and thickness of the connecting lines between nodes reflect the

strength of co-occurrence relationships, where closely connected

nodes often appear in the same publications. This visualization

highlights dominant topics such as “machine learning,” “biochar

properties,” “adsorption,” and “predictive modeling,” underscoring

the growing interdisciplinary convergence between data science and

environmental material research.
3 Biochar: a solution for remediating
contaminants and its mechanism

Derived from carbon-rich materials by pyrolysis, biochar finds

extensive use in environmental applications for the removal of

pollutants from soil and water. Among these pollutants are organic

compounds, heavy metals, pesticides, and dyes as well as drenches

(22, 23). The type of feedstock, pyrolysis conditions, and the nature

of the contaminants targeted affect its efficiency in eliminating these

pollutants. Different mechanisms interacting with the pollutants—

such as complexation, electrostatic attraction, hydrogen bonding,

ion exchange, partitioning, pore filling, and precipitation—cause

biochar to be versatile in remediation (Figure 3).

By means of particular ligand interactions, biochar binds metal

ions in complexation (24). For wastewater, biochar made from

municipal sludge, for example, efficiently removes hexavalent

chromium (Cr(VI). The interaction of the metal and biochar

surface changes the form of the metal, so reducing its toxicity

(25). Likewise, in the adsorption of organic compounds, especially

antibiotics and herbicides, p-p interactions are absolutely vital (26).

These interactions made possible by biochar’s aromatic structure
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FIGURE 2

A keyword co-occurrence map illustrating the most frequently researched topics in this field (generated using VOSviewer version 1.6.19).
FIGURE 1

PRISMA flow diagram illustrating the screening and selection process of studies included in the review.
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help to trap pollutants including penicillin and herbicides, so

preventing their contamination of the environment (27).

Particularly in the removal of charged metal ions like chromate

(28), electrostatic attraction is rather important. Depending on the

pH of the solution and the pyrolyzed temperature of the biochar,

the surface charge of biochar can draw in or repel some ions. For

example, these electrostatic forces have made cauliflower stem

biochar highly affine for chromate ions (29). The surface charge

properties of biochar change with pH; this can either raise or lower

its capacity to adsorb pollutants, particularly in acidic conditions.

Hydrogen bonding is another mechanism in charge of biochar’s

ability to adsorb drugs and personal care products among other

pollutants. Particularly the charge-assisted hydrogen bonds, these

bonds aid highly soluble and mobile pollutants in their adsorption.

A common PPCP, sulfamerazine, has shown notable efficiency in

adsorbing biochar produced from corn straw, so stressing the part

hydrogen bonds perform in environmental cleanup projects (30).

Ion exchange is cation swapping from the biochar to the

contaminant. This is particularly effective for heavy metals like

lead (Pb), where the charged surface of biochar swaps ions with

those in contaminated water (15). This process is made possible in

part by the acidic oxygen-containing functional groups on the

biochar surface—carboxyl, carbonyl, and hydroxyl groups—which
Frontiers in Soil Science 05
ionize to swap with heavy metal ions or cationic organic pollutants.

In biochar, partitioning is the dispersion of pollutants across its

pores. The effectiveness of this process relies on the volatility of the

biochar; pyrolyzed temperature affects this content. Usually, high

concentration of volatile matter biochar performs better in

adsorbing pollutants including pharmaceutical compounds (31).

For instance, by means of partitioning, biochar generated from

Eucalyptus pruning wastes has shown to effectively adsorb

pharmaceutical contaminant venlafaxine (32). Another method

whereby pollutants occupy the micropores and mesopores of

biochar is pore filling. Higher pyrolyzed temperatures—which

produce more micropores—cause the specific surface area of the

biochar to rise, so increasing the adsorption capacity. Research on

biochar generated from Eucalyptus for the adsorption of

venlafaxine has exposed this mechanism is essential for the

elimination of organic pollutants (31, 32).

Lastly, the developed solid precipitates on biochar surface offer

the means of removing heavy metals from aqueous solutions. For

metals including cadmium (Cd) and lead (Pb) this approach has

shown good success (Figure 3). Large concentrations of Cd and Pb

discovered deposited on the biochar following treatment have made

biochar produced from rice straw highly successful in precipitating

and removing these metals from water (33).
FIGURE 3

Various mechanism of contaminant’s adsorption on biochar.
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When all factors are considered, a combination of treatment

techniques interacting with a wide spectrum of pollutants

determines whether biochar can remove contaminants in soil and

water. Its adaptability and efficiency make it a great tool for

addressing environmental damage. Its uses can be changed to fit a

range of pyrolyzed conditions and feedstocks for best effects.
4 Machine learning

4.1 Overview of ML

Within artificial intelligence (AI), ML is a subset aimed at

creating models allowing computers to learn from data to

generate predictions or decisions (34). ML is a great tool for

simulating challenging processes by means of accurate predictions

free from major testing (35, 36) by modeling mathematical

relationships between inputs and outputs. This capacity

significantly reduces the load of experimental studies and the

time costs (16). While offering more scalability and flexibility, ML

gives great accuracy in creating predictions top priority over

traditional statistical methods that focus on deriving relationships

between variables. (37).

As shown in Figure 4, ML techniques applied in this field include

supervised, unsupervised, semi-supervised, and reinforcement

learning methods (38, 39). For example, following training models

with labelled data, supervised learning separates further into

classification and regression tasks (40). Unsupervised learning

stresses on clustering and analysis of unlabeled datasets while semi-

supervised learning combines both approaches. In biochar research,
Frontiers in Soil Science 06
for example, supervised learning can be used with known

experimental data to classify feedstock types depending on their

physicochemical properties or predictability of adsorption capacity

for specific heavy metals. Here we often apply models such as Random

Forest or Support Vector Machines. Conversely, unsupervised

learning deals with unlabeled data such that the model finds hidden

patterns or groupings free from predefined categories. Cluster

adsorption efficiencies across many biochar samples can be utilized

for natural groupings based on performance or to find relationships

between feedstock properties and adsorption behavior for biochar

using unsupervised learning. Many times used in such research are k-

means or hierarchical clustering techniques. Reinforcement learning

guides models to maximize results by means of interaction with their

surroundings (41).

Although recent developments show that deep learning (DL)

models and hybrid systems offer significant advantages in capturing

complex feature interactions and uncovering hidden patterns, they

often function as “black boxes (42),” so providing limited insight on

how particular predictions are made despite their promise in

analyzing huge datasets. GBR and RF still rule the literature due

to their great performance in handling non-linear, high-

dimensional datasets. Moreover, applying features learnt in one

environment to several problem domains helps to increase model

adaptation (43). Particularly in domains like image processing and

speech recognition, DL technology is developing rapidly.

A class of feedforward artificial neural networks, Multilayer

Perceptrons (MLPs) have shown great predictive accuracy for

modeling adsorption capacity and biochar surface properties. In

the 2022 Da et al. study, a two-layer MLP outperformed SVR, RF,

and linear models in estimating uranium adsorption, so obtaining
FIGURE 4

Types of ML algortihms.
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R² ≈ 0.99 and RMSE = 3.75. When the relationship between input

features (e.g., feedstock composition, pyrolysis conditions) and

output targets (e.g., surface area, O/C ratio) is highly non-linear

and not easily captured by conventional tree-based methods, MLPs

are especially useful.

Furthermore under increasing investigation in materials science

for microstructural pattern analysis or spectroscopic data related to

biochar surfaces are convolutional neural networks (CNNs), widely

used in image analysis. Although they are not yet widely used in

biochar research, CNNs have potential in analyzing graphical input

data such as SEM images or adsorption isotherms, which are

typically underused in conventional machine learning pipelines.

Moreover shown to be better than both ANN and standalone

ML models in some predictive tasks are hybrid models including

Adaptive Neuro-Fuzzy Inference Systems (ANFIS). For example,

Abdi et al. (44) estimated the electrical conductivity of compost

improved by biochar-enhanced R² = 0. 999, RMSE = 0.002) with

better accuracy of ANFIS over ANN. Particularly useful when both

high accuracy and rule-based insight are sought for is ANFIS, which

blends the learning capacity of neural networks with the

interpretability of fuzzy logic.

Future research should also consider ensemble learning

frameworks such stacking (meta-modeling) and bagging into

account to aggregate predictions from several base learners to

improve robustness and generalization especially when dealing

with heterogeneous datasets derived from different feedstocks and

experimental settings.This review of ML ideas and advancements

emphasizes its applicability in domains including environmental

science and biochar research, where it helps to forecast results and

maximize procedures, so promoting more sustainable practices.
4.2 Evaluation metrics for ML models

The accuracy and effectiveness of the regression models can be

evaluated by using the coefficient of determination (R2), the mean

squared error (MSE), and the root mean squared error (RMSE) (45)

variables. The coefficient of determination, also known as R2, is a

statistical measure that can range from 0 to 1 and is used to

determine the percentage of variation that can be attributed to

the model. R2 values that are higher and closer to 1 point indicate

that the model is a better fit to the data. According to Henseler et al.

(46), values that fall between 0.25 and 0.75 are categorized as

moderate, values that fall below 0.25 are regarded as weak, and

regression models that obtain an R2 value of 0.75 are regarded as

being rather predictive. Other than R2, MSE is a measurement of

the average squared difference between the values that were actually

observed and those that were projected; RMSE is the square root of

MSE. The root mean square error (RMSE) is useful because it

highlights the impact of significant data errors.

Due to the fact that they provide an insightful analysis of the

predictive capacity of the model as well as the degree of prediction

errors, R2 and RMSE were utilized the majority of the time when

evaluating the models (45).
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5 ML for predicting and designing
biochar properties

With desired properties, ML is progressively a useful tool in

biochar research (19, 47). By differentiating the complex interactions

among biochar properties, manufacturing techniques, and

performance (48), machine learning models significantly help in

this field. When predictive ML models including biochar material

design incorporate optimization techniques instead of the traditional

trial-and-error method, ML drastically lowers laboratory effort, cost,

and time (19). Simulating biochar features (49) has effectively

predicted performance depending on many factors by means of

regression and other supervised learning techniques. Ultimately,

including machine learning (ML) into biochar research is inspiring

innovation, enabling more environmentally friendly and efficient

biochar production, and so extending its applications in

agricultural and environmental spheres. Its capacity to maximize

biochar production methods by means of particularly bibliometric

approaches highlights even more its potential (50).

Furthermore, ML is revolutionary for predicting the properties

of biochar by screening biomass and creating pyrolyzing conditions

(35). Yargicoglu et al. (51) state that the feedstock and production

method affect the physical, chemical, and electrochemical

characteristics of biochar. Consequently, whereas input

parameters could include biomass characteristics such as

proximal composition and elemental composition of feedstock,

volatile matter, ash, fixed carbon, and moisture content, pyrolyzed

conditions include pyrolytic temperature, retention time, and

heating rate; hence, in our review article, various physical,

chemical, and electrochemical properties are taken as output or

predicted parameters. Table 1 summarizes the uses of several

supervised learning systems for the prediction of physical,

chemical, and electrochemical characteristics of biochar.
5.1 Physical properties

5.1.1 Specific surface area
The main factor influencing biochar’s effectiveness as a carbon

material in a variety of applications, such as energy storage, CO2

and H2 adsorption, catalysis, and contaminant removal, is its

specific surface area (58, 59). Liang et al. (60) declared biochar to

be an effective material for the adsorption of contaminants due to its

high specific surface area. Although, Leng et al. (52) consider the

production of biochar with a preferred specific surface area to be a

difficult endeavor. Thus, the authors develop a ML model to predict

and optimize the specific surface area of biochar made from maize,

rice, and sawdust, using pyrolysis condition (temperature), biomass

composition (Ash, fixed carbon, moisture, volatiles), biomass

elemental composition (C content, H content, O content, N

content), biomass biochemical composition (cellulose,

hemicellulose and lignin content), and activation conditions

(activation temperature, heating rate and residence time as input

variables. It’s important to note that both the diversity of biomass
frontiersin.org
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TABLE 1 Various supervised ML models for predicting biochar physical, chemical and electrochemical features.

Feedstocks Input parameters Target ML Data Predictive performance Findings Reference

SE (Train/Test)

39.65
/51.85

ML successfully
predicted and optimized
the biochar specific
surface area

Leng et al. (52)

NI*
NI*
NI*

RF performed better
than DT and KNN

Hai et al. (45)

46.53
/48.78

GBR model generated
more accurate
predictions compared to
the RF model

Li et al. (19)

216.9
413.2
239.3

GBDT presented the
better prediction
accuracy and
generalization ability
than the RF and XGB.

Li et al. (53)

/57.32
/52.14
/45.21

XGB performed
significantly for
predicting specific
surface area for
the biochar

Zhou et al. (54)

0.06
0.06

GBR models trained in
this work have better
performance
compared with
RF models

Li et al. (19)

(Continued)
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(output) algorithms size
R2 (Train/Test) RM

Corn husk, rice
husk, sawdust

Pyrolysis condition (temperature), Biomass composition
(Ash, fixed carbon, moisture, volatiles), Biomass
elemental composition (C content, H content, O
content, N content), Biomass biochemical composition
(cellulose content, hemicellulose content and lignin
content), Activation conditions (activation temperature,
heating rate and residence time)

Specific
surface area

GBR
RF

68
68

1.00/1.69
0.99/0.85

0.91
14.9

Agro, softwood and
hardwood, marine
waste, macroalgae

Pyrolysis condition (temperature), biomass composition
(ash, fixed carbon, moisture, volatiles), biomass
elemental composition (C content, H content, O
content, S content, N content), biomass biochemical
composition (cellulose content, hemicellulose content
and lignin content), activation conditions (activation
temperature, heating rate and residence time)

Specific
surface area

DT
KNN
RF

292
292
292

0.61/NI*
0.55/NI*
0.80/NI*

7.01
9.15
4.32

Bran, corn stalk, husk,
peanut shell, rice sawdust,
and straw stalk

Pyrolysis condition (temperature), Biomass composition
(Ash, volatiles), Activation conditions (activation
temperature, heating rate and residence time)

Specific
surface area

GBR
RF

169
169

0.99/0.92
0.94/0.91

0.02
31.4

Corn husks, corn cobs, rice
straw, sugarcane bagasse,
wheat straw, and
wood waste

Biomass composition (Ash, fixed carbon, moisture,
volatiles),
Biomass elemental composition (C content, H content,
O content, N content),
Biomass biochemical composition (cellulose content,
hemicellulose content and lignin content),
Activation conditions (activation temperature, heating
rate and residence time)

Specific
surface area

GBDT
RF
XGB

258
258
258

0.95/0.93
0.93/0.77
0.95/0.92

0.70
0.89
0.84

Bamboo chips, bagasse,
corn stover bark, coconut
shells, corn stover, digestate,
food waste digestate,
municipal biosolid waste,
pine chips, palm kernel
shells, rice husk rice straw,
swine manure, soybean oil
cake, walnut shells,
yak manure

Biomass type, pyrolysis condition (temperature),
Biomass composition (ash, fixed carbon, volatiles),
Biomass elemental composition (C content, H content,
O content, N content),
Activation conditions (activation temperature, heating
rate and residence time)

Specific
surface area

GBDT
RF
XGB

258
258
258

0.98/0.87
0.97/0.81
0.96/0.92

32.3
31.9
32.1

Bran, corn stalk, husk,
peanut shell, rice sawdust,
and straw stalk

Pyrolysis condition (temperature), Biomass composition
(Ash, fixed carbon, moisture, volatiles), Biomass
elemental composition (C content, H content, N
content, O content, S content)

Total
pore
volume

GBR
RF

152
152

0.99/0.91
0.96/0.90

0.01
0.04
/
0

/
/
/

/
8

/
/
/

1
0
1

/
/
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TABLE 1 Continued

Feedstocks Input parameters Target ML Data Predictive performance Findings Reference

MSE (Train/Test)

.22/216.9

.26/413.2

.20/239.3

GBDT presented the
better prediction
accuracy and
generalization ability
than the RF and XGB.

Li et al. (53)

.14/3.44 GBR outperformed RF Shen et al. (17)

.27/2.39
I*/0.073
I*/0.002

ANFIS provided a more
accurate prediction in
comparison with ANN

Abdi et al. (44)

8.08/NI*
.1/NI*
.5/NI*

MLP provided insight
on designing carbon
materials for developing
carbon-based electrodes
for energy storage

Wickramaarachchi
et al. (55)

8.96/102.40
3.42/15.00
2.71/67.95
.32/12.37

Extreme gradient
boosting had best
prediction effect on the
electrical capacity
of biochar

Yang et al. (56)

I*
I*
I*

GBR performed better
than ETR and RF.

Sun et al. (57)

(Continued)
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9

(output) algorithms size
R2 (Train/Test) R

Corn husks, corn cobs, rice
straw, sugarcane bagasse,
wheat straw, and
wood waste

Biomass composition (Ash, fixed carbon, moisture,
volatiles),
Biomass elemental composition (C content, H content,
N content, O content),
Biomass biochemical composition (cellulose content,
hemicellulose content and lignin content),
Activation conditions (activation temperature, heating
rate and residence time)

Total
pore
volume

GBDT
RF
XGB

258
258
258

0.91/0.83
0.90/0.77
0.90/0.86

0
0
0

Agricultural and forestry
wastes, sewage sludge
and algae

Biomass composition (Ash, fixed carbon),
Biomass elemental composition (molar concentrations
of C, H, O, N as well as wt % of C, H, O, N). Biochar
physical characteristics (particle size, surface area, ash
yield, atomic ratio), Biochar chemical feature (pH)

Cation
exchange
capacity

GBR 353 0.94/0.74 2

Cooked rice, coco peat,
vegetable residues (cabbage,
squash, lettuce)

Biomass elemental composition (Wt % (C/N)),
composting time,
fresh inlet air rate

Electrical
conductivity

RF
ANN
ANFIS

353
198
198

0.80/0.82
NI*/0.925
NI*/0.999

4
N
N

Mango seed husk Activation conditions (activation time, activation
temperature), Biochar physical condition
(specific surface area, pore volume, average pore
diameter and current density)

Capacitance DT
MLP
SVR

NI*
NI*
NI*

0.94/NI*
0.99/NI*
0.98/NI*

1
4
4

Aloe vera, banana peel
wastes, bean dergs, cotton,
corncob, corn husk, Chinese
oil palm kernel shell,
cauliflower, Camellia
oliefera shell, fermented
rice, garlic skin, human hair
lotus leaf, lotus seedpods,
parasol fluff, pine tree
powder, pine cone, Perilla
frutescens, potato waste, rice
straw, spruce, sakura petals,
tobacco rods, waste coffee
grounds, and willow catkins

Activation conditions (activator type, activation time,
activation temperature), Biochar physical condition
(specific surface area), Biomass elemental composition
(Wt % of C/O, C/N).

Capacitance ANN
DT
RF
XGB

9
9
9
9

0.31/0.20
0.98/0.97
0.89/0.56
0.99/0.98

7
1
3
6

Corn straw Biomass composition (Ash, fixed carbon, mass ratio of
urea-to-biochar, mass ratio of potassium-to-biochar in
the potassium activator),
Biomass elemental composition (C content, H content,
O content, N content),

Capacitance ETR
GBR
RF

157
157
157

0.99/0.92
0.93/0.90
0.99/0.93

N
N
N
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species and the complex biochemical composition within the same

type lead to distinct pyrolysis product properties when processing

wood, bark, or leaves individually or together (61). The prediction

of specific surface area was evaluated using RF and GBR models on

68 data sets, with 20% testing and 80% training for avoiding the

overfitting of the trained model. The GBR and RF models predicted

biochar’s specific surface area with R2 (1.00, 0.99, respectively) and

RMSE (0.91, 14.90, respectively) (Table 2). When R2 and RMSE

values are considered, the RMSE of the GBR model is noticeably

smaller than that of the RF model. Therefore, the GBR model’s

predictions are more accurate in relation to the actual values, thus

indicating its superior performance in comparison to the RF model.

Furthermore, ash and temperature are the two most important

factors in predicting the specific surface area of biochar because ash

has a significantly negative effect on the surface area of biochar,

especially when the ash content is less than 2%; this negative impact

is primarily due to pore formation during pyrolysis, which is closely

related to the release of volatile matter. Higher ash concentration

usually clogs many pores, so reducing the total specific surface area

(72). Apart from the ash content, the pyrolysis temperature is quite

crucial for the prediction of specific surface area of biochar in such a

way that increasing temperature facilitates the conversion of

amorphous carbon to crystalline carbons, so removing more

volatiles and producing cracks in biochar. These cracks create

sparse regions, fostering the development of more pores and

resulting in a significant increase in specific surface area.

Using ML algorithms—including linear regression (LR), support

vector machines (SVM), random forests (RF), and multilayer

perceptron neural networks (MLP-NN)—Da et al. (73) predicted

uranium adsorption behavior on biochar. According to their findings,

not the chemical composition but rather the specific surface area (SA)

of biochar determines uranium adsorption (73). Though several

factors affect uranium adsorption on biochar, their respective effects

differ rather significantly. Da et al. found, using permutation feature

importance with the two-layer MLP model, specific surface area as

the most important physical characteristic, in line with conventional

adsorption theories. Their work evaluated important biochar

properties including specific surface area (SA), total pore volume

(VTot), average pore diameter (Dav), oxygen-to– carbon ratio (O/C),

and carbon content (C). Adsorption capacity is much raised by

increasing the specific surface area beyond 300 m²/g; increases

beyond 800 m²/g have less effect on uranium adsorption.

Jiang et al. (74) used a whole approach combining K-fold cross-

valuation, Optuna, machine learning, and SHAP analysis to

investigate elements impacting ciprofloxin (CIP) adsorption by

biochar. The CIP adsorption capacity of biochar and its specific

surface area were found to have a positive correlation in the study. A

specific surface area of approximately 915.6 m²/g marked a

threshold above which adsorption capacity increased significantly.

This finding aligns with the understanding that a larger surface area

provides more adsorption sites, enhancing the biochar’s ability to

retain pollutants. It is important to note that the surface area

contributed a mere 2% to the adsorption efficiency of six heavy

metals when analyzed comprehensively across the 353 datasets

from the adsorption processes (75), as depicted in Figure 5.
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TABLE 2 Biochar application for remediation of contaminants in water and soil.

Pyrolysis Application Removal Adsorption
efficiency

(%)
Mechanism involved References

93.32 p- p interactions Wang et al. (27)

74.40 Ion exchange Yang et al. (62)

>99 Partitioning, pore filling Puga et al. (32)

>91 Partitioning Liu et al. (63)

>99 Hydrogen bonding Li et al. (19)

NI* Complexation Yang (25)

NI*
Complexation,

Electrostatic attraction
Chanda
et al. (29)

86.20
Electrostatic attraction,

ion exchange
Girkar

et al. (11)

NI* Electrostatic attraction
Mustapha
et al. (64)

98.41 Hydrogen bonding Ilyas et al. (65)

NI* Pore filling
Varela

et al. (66)

91.67 p- p interactions
Vinayagam
et al. (67)

NI*
Electrostatic attractions, p- p

interactions, Hydrogen bonding
Lu and

Zhao (68)

NI* Precipitation Liu et al. (33)

NI*
Electrostatic

attractions, precipitation
Wang et al. (69)

NI* Hydrogen bonding, Pore filling
Tomin

et al. (70)

NI*
Electrostatic attractions, p- p

interactions, Hydrogen bonding,
Pore filling

Tcheka
et al. (71)
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Materials Feedstock temperature
(°C)

Contaminants dose (g/L
or Kg)

Medium capacity (g/Kg
or L)

AFRB
Penicillin

fermentation residue
800 Penicillin 80 Water 44.05

MB
Microalgae reside
(Spirulina sp.)

600 Pb 150 Water 154.5

EB Eucalyptus 500 Venlafaxine 2.8 Wastewater 2.65

M-BC Maize straw 900 Perfluorobutyric acid 50 Wastewater 2.54

CSB Corn straw 300 Sulfamerazine 0.05 Water NI*

ZVI@SBC Municipal sludge 450 Cr 1.5 Wastewater 150.83

PBC-450 Cauliflower stem 450 Cr 5 Wastewater 64.10

SCB Sugarcane bagasse 500 Fluoride 0.183 Water NI*

SBEB Stem bark of Eucalyptus 650 Cr, Pb 0.12 Water
238.12 for Cr and
175.02 for Pb

EWB Eucalyptus wood waste 450 Anthracene 0.4 Water NI*

B7 Corn cob 700
Acetaminophen,

amoxicillin
1 Wastewater

64.99 for
acetaminophen, 26.62

for amoxicillin

VI-BC Vateria indica fruits 200
2,4-

Dichlorophenoxyacetic
acid

0.3 Waterbodies NI*

FS-PNBC Fish scale and pine needle 600 Ciprofloxacin 60 Water 27.97

RSBC700 Rice straw 700 Cd, Pb 1 Wastewater
62.45 for Cd, 167.49

for Pb

To-B, Ri-B,
Ru-B

Tobacco stem, Rice husk,
Rubber wood

750 Cd 20 Soil
3.07 (To-B), 2.42 (Ri-

B), 3.22 (Ru-B)

RSS Reed straw 800 Methylene violet dye 1 Water 92.6

HTBC
Egyptian doum palm

fruit shells
500 Methyl orange dye 0.01-0.07 Water 264.922

*= Not informed.
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More studies regarding ML algorithms for predicting biochar’s

specific surface area are summarized in Table 2.

5.1.2 Total pore volume
ML offers enormous potential for engineering biochar materials

with large pore volumes. In this regard, Li et al. (19) used GBR and

RF to improve pyrolysis conditions and biomass mixing ratios for

designer biochar. In that scenario, six kinds of biomass (bran, maize

stalk, husk, peanut shell, rice sawdust, and straw stalk) were used to

predict the total pore volume of biochar using the best ML models.

As a result, in this study, 80% of the dataset was selected at random

to train GBR and RF models, with the remaining 20% used for

testing. The higher the R2 and the lower the RMSE, the more

accurate the prediction and performance of the trained model. In

this sense, GBR predicted biochar total pore volume more

accurately without overfitting (R2 = 0.99 and RMSE = 0.01) than

RF (R2 = 0.96 and RMSE = 0.04). Among various input parameters

(pyrolysis condition (temperature), biomass composition (ash, fixed

carbon, moisture, and volatiles), and biomass elemental

composition (C content, H content, N content, O content, and S

content), temperature is almost linearly and positively related to

total pore volume in the temperature range of 350–800°C; however,

temperatures less than 350°C have little effect on pore volume, and

temperatures greater than 800°C may lead to no increase in pore

volume. The release of volatile compounds from the surface of

biomass particles causes the creation of pores. Higher temperatures

improve volatilization and may lead to the creation of additional

pores on biochar (19).

Jiang et al. (74) revealed a strong positive correlation between

pore volume and adsorption capacity of ciprofloxacin (CIP). When

pore volume surpasses 0.1 cm³/g, a significant majority of SHAP

values become positive, indicating a substantial contribution of pore

volume to the adsorption process. This aligns with the established

understanding that increased pore volume equates to a greater
Frontiers in Soil Science 12
number of accessible adsorption sites (76), thereby enhancing the

overall adsorption capacity of the biochar for contaminants.
6 Chemical and electrochemical
properties

6.1 Ultimate/proximate analysis

Various ML techniques have been successfully employed to

predict the properties of biochar, including its C, H, N, O, fixed

carbon (FC), volatile matter (VM), and ash content (77). Typically,

biochar is composed primarily of carbon, which constitutes 65 to 90

wt%, along with smaller amounts of hydrogen, oxygen, ash, and

trace elements of nitrogen and sulfur (78).

The two-layer MLP model’s permutation feature importance

method was used to evaluate the impact of different input factors on

uranium adsorption capacity. Figure 5 shows that, of the chemical

properties of biochar, carbon content was the second most

important factor influencing uranium adsorption (73).

Additionally, within the 20–50% range, there was a negative

correlation between the adsorption capacity and the mass

percentage of total carbon (C, wt%). The correlation steadily

stabilized outside of this range. According to Zhu et al. (75), the

carbon content contributed 10% to the properties of biochars,

underscoring the importance of carbon content for the adsorption

of heavy metals (Figure 5).

According to Jaffari et al. (79), biochar materials have recently

drawn a lot of interest as economical and environmentally friendly

adsorbents because of their capacity to effectively remove dangerous

new contaminants ( l ike fung ic ides , herb ic ides , and

pharmaceuticals) that endanger aquatic life and human health in

aquatic ecosystems. Ten tree-based machine learning models were

created as part of their study with the goal of precisely forecasting
FIGURE 5

The relative importance of input variables on the adsorption efficiency using RF model (75).
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the ability of biochar materials to adsorb emerging contaminants

(ECs) from water. With the highest test coefficient of determination

(0.9433) and the lowest mean absolute error (4.95 mg/g), the

CatBoost model outperformed all other models in the ML model

evaluations. The Shapley Additive Explanations (SHAP) analysis

revealed that the adsorbent composition, which included N/C, C%,

H/C, O/C, (O+N)/C, and ash, significantly influenced (35%) model

predictions for the adsorption capacity of fungicides,

pharmaceuticals, and herbicides.
6.2 Aromatization degree of biochar

The H/C and O/C ratios of biochar act as markers of its

carbonization, aromaticity, and maturity levels. The substantial

amount of C in biochar indicates the predominance of aromatic

structure following carbonization. Reduced ratios indicate a more

complete dehydration process and significant aromatic condensation

during biomass (80) pyrolyzed. Comparably, the O/C ratio shows the

surface hydrophilicity of biochar; a high ratio denotes great surface

hydrophilicity (81). These H/C and O/C ratios typically drop with

increasing pyrolysis temperature, indicating increased aromaticity

and stability, lowered polarity, and hence, more hydrophobicity. Low

H/C and O/C ratios also confirm more consistent biochar; an O/C

ratio less than 0.2 indicates great stability (82). The atomic ratios of

O/C, H/C, and (O + N)/C are calculated to evaluate aromaticity,

polarity, and longevity of biochar (83). Using PCC and SHAP

analyses, Song et al. (84) investigated the main relationships in

biochar between ten input variables and the H/C, N/C, and O/C

ratios. With a PCC=-0.8 the results showed a strong negative

correlation between the H/C and O/C ratios of biochar and

temperature. Other factors showing PCC values ≤ 0.2, implying a

rather small influence were VM, FC, and AC. Supported by SHAP

value analysis, these findings revealed that the H/C and O/C ratios

depend critically on pyrolyzed temperature. Rising pyrolysis

temperature reduces the H/C and O/C ratios, so indicating

enhanced aromaticity in the biochar. Higher pyrolysis temperatures

thus improve biochar aromaticity, most likely due to increased

dehydration, decarboxylation, and demethylation reactions in the

biomass at higher temperatures, so producing more complete biochar

development reactions (85, 86). On the other hand, the N/C ratio of

biochar had a rather strong positive correlation with temperature.

The SHAP value analysis confirmed this link even more by stressing

pyrolysis temperature as a main determinant of the N/C ratio. The N/

C ratio likewise rises as the pyrolyze temperature rises. Mostly derived

from proteins, N in biomass changes during pyrolysis into gaseous,

liquid, and solid forms. N mostly exists in biochar as N-C and N-H

bonds with low migration potential. About thirty percent of N stays

in the biochar even at 900°C, the pyrolyze temperature. Considering

the conservation of C, H, O, and N elements in biochar, the rise in the

N/C ratio with higher pyrolysis temperatures results from the

nitrogen’s resistance to migration.

The H/C and (O + N)/C molar ratios explained an 11%

involvement to the properties of biochars in the research carried

out by Zhu et al. (75), so emphasizing the relevance of oxygen-
Frontiers in Soil Science 13
containing functional groups and aromatic structures in the

adsorption process of heavy metals (Figure 5). This implies that the

presence of these functional groups increases the capacity of the

biochar to interact with and bind heavy metal ions, so improving its

adsorbent efficiency. The interaction of these ratios suggests that the

adsorption capacity of biochar depends critically on both its

structural and chemical composition. A multilayer perceptron

artificial neural network (MLP ANN) model (R² ≈ 0.99, RMSE =

3.75) outperformed support vector regression (SVR), random forest

(RF), and linear regression models in predicting uranium adsorption

capacity on biochar, Da et al. (73). They also discovered that changing

the structural characteristics of biochar, especially the oxygen-to—

carbon (O/C) ratio, might increase its adsorbing capacity for

radioactive uranium. Their data indicate that the most important

chemical feature influencing uranium adsorption is the O/C ratio.

Research already in publication supports that raising the O/C ratio

and building the micro- and mesoporous structure of biochar will

greatly increase its uranium adsorption capacity (87). Furthermore

shown by a positive correlation between uranium adsorption capacity

and the O/C ratio was the importance of oxygen-containing

functional groups in improving adsorption.

These revelations can be used to design and engineer biochar

with ideal characteristics for maximum contaminant removal from

soil and water, so offering a useful approach for environmental

remedial projects.
6.3 Cation exchange capacity

Biochar’s cation exchange capacity is the ability of it to help

cations in solution to migrate. Cation exchange capacity (17) is

notably and favorably correlated with functional groups including

O/C and (O+N)/C, which provide active sites for cation exchange

with heavy metals). This correlation has been established as one of

the principal adsorption mechanisms facilitating the removal of

heavy metals (Cd, Cu, Pb etc.) from aqueous solutions.

Consequently, cation exchange capacity ranked second feature in

importance, following heavy metal adsorption capacity (17).

Furthermore, predicting biochar’s properties, such as cation

exchange capacity, leads to realizing the down-to-earth

application of biochar for adsorbing contaminants. Therefore,

Shen et al. (17) utilized biomass based on agricultural and

forestry wastes, sewage sludge, and algae and predicted the cation

exchange capacity using GBR and RF. The authors applied

supervised ML models (GBR model: train; R2 = 0.94, RMSE =

2.14; test; R2 = 0.74, RMSE = 3.44, whereas RF model: train; R2 =

0.80, RMSE = 4.27; test; R2 = 0.82, RMSE = 2.39) to optimize the

biochar cation exchange capacity in biomass pyrolysis using 353

data points with 80% training and 20% testing data. Results

indicated that the GBR performed better than the RF.

Using ML approaches, Zhu et al. (75) modeled the adsorption

behavior of six heavy metals—Pb, Cd, Ni, As, Cu, and Zn)—on 44

different kinds of biochar. Using a dataset totaling 353 adsorption

studies, they especially used ANN and RF models. With a R² value of

0.973 rather than 0.948 for the ANN, their findings showed that the
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RF model outperformed the ANN model with a greater accuracy.

With 54% of the observed variation taken into account, the study

revealed that CEC turned out as one of the most important biochar

properties in determining adsorption efficiency (Figure 5). This

emphasizes the important part CEC plays in the adsorption process

since it influences the general chemical interactions between the

metal ions and biochar as well as cation retention. The type of surface

functional groups and the mineral composition of the biochars

determine the great correlation between CEC and adsorption

efficiency. Furthermore connected to the higher contributions of

CEC could be the presence of ion-exchange contents (such as K+,

Na+, Ca2+, and Mg2+) and different surface functional groups (88).

These elements improve the CEC, hence biochars with higher CEC

are more efficient in heavy metal adsorbing. The results of their

research imply that maximizing the CEC of biochars could be a main

focus for enhancing their performance as adsorbents in applications

related to water and wastewater treatment.
6.4 Electrical conductivity

Although biochar is clearly important for energy generation,

conversion, and storage—mostly because of its remarkable electrical

conductivity—there is still a dearth of predictive research on this

fundamental characteristic. Because of its unique properties

including electrical conductivity, which makes it appropriate for

many uses including Li/Na ion batteries, supercapacitors, H2

storage, and O2 electro-catalysis, biochar plays a key role in

energy production, conversion and storage (89, 90). The literature

regarding the prediction of biochar’s electrical conductivity is scarce

therefore, first time Abdi et al. (44) predicted the electrical

conductivity of compost (Cooked rice, coco peat, residues of

vegetables such as cabbage, squash, lettuce) with biochar additive

in in-vessel composting machine by ANN and ANFIS. The

statistical results of ANN and ANFIS models for predicting

electrical conductivity revealed that ANFIS provided more

accurate prediction than ANN with highest R2 value (0.999) and

the lowest value of RMSE (0.002) (Table 1). However, this

represents an initial foray rather than a comprehensive

understanding. Critical gaps persist in elucidating the electron

transfer pathways within biochar matrices, particularly regarding

the influence of feedstock type, pyrolysis conditions, and surface

chemistry. Future research should prioritize mechanistic studies

integrating advanced spectroscopic techniques and computational

modeling to unravel these processes. Furthermore, extending

predictive modeling efforts over several biochar varieties and

functionalization techniques will hasten the customized design of

biochars best fit for particular electrochemical uses.
6.5 Capacitance

Advancement of renewable energy depends most on biochar, a

novel kind of energy storage acting as a supercapacitor (91). The

energy storing capacity of supercapacitors is mostly determined by
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the electrode material. In this sense, the carbon-based raw material

shows to be the ideal precursor because of its cheap character and

great conductivity (92). Biochar-based electrode materials derived

from biomass resources have rather strong capacitance storage

properties (93). ML is essential in producing predictions using

biochar-related input parameters if one wants to maximize the

capacitance of electrodes based on biochar for supercapacitors. In

this regard, Wickramaarachchi et al. (55) carbonized carbon and

subsequently chemically activated it with KOH using biowaste

compris ing mango seed fiber to produce sustainable

supercapacitor material. Furthermore projected using ML models

including DT, MLP, and SVR was the energy storage performance

of the produced activated carbon samples. These models made use

of input parameters comprising biochar physical conditions

(specific surface area, pore volume, average pore diameter, and

current density), activation conditions (activation time, activation

temperature), and specific surface area. With its maximum R2 value

(0.99) and lowest RMSE value (4.1), the statistical analysis of several

machine learning models used to forecast capacitance showed that

MLP produced a more accurate prediction than DT and SVR.

Table 1 lists more research on ML techniques for biochar

capacitance prediction.
6.6 Functional groups

Surface properties of biochar, such N-containing functional

groups (94), which offer active sites for heavy metal adsorption

via covalent solid bonding, chelation, electrostatic attraction, and

hydrogen bonding (95) define its performance in terms of

contaminant adsorption. Regarding the relevance of functional

groups in biochar studies, Palansooriya et al. (96) said that the N-

containing functional group in biochar ranked first among twenty

variables including a specific surface area that considerably

influences the immobilization of heavy metal by biochar in soil.

Leng et al. (52) thus projected and optimized the N content of

biochar made from corn husk, rice husk, and sawdust using

machine learning models and showed GBR outperformed RF

with the maximum train R2 value (0.90) and the lowest train

RMSE value (0.38).

Zhu et al. (97) designed two ML models with varying material

property emphasis. Along with reaction conditions including

solution pH (pHsol), temperature (T), and initial concentration

(C0), the first model—Model BP—used basic properties (BP) of

biochar (BC) and iron-impregnated biochar (Fe-BC), including

carbon content (C), oxygen-to—carbon ratio (O/C), iron content

(Fe), and specific surface area (SBET). By contrast, the second

model, Model SF, included non-polar carbon (NPC), C-O, and

C=O groups instead of just C and O/C by including detailed surface

functionalities (SF) of BC and Fe-BC. With a R² of 0.889 and an

RMSE of 13.8 mg/g in the test group, the results showed that Model

BP based on fundamental surface properties and reaction

conditions could forecast the removal capacity for aqueous

chromium (VI) (Cr(VI)). This good predictive performance

shows how well surface chemical information obtained from XPS
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data is used. Moreover, the predictive accuracy was much enhanced

by including relative proportions of surface functional groups into

Model SF, so stressing the important part these groups play in

predicting the removal capacity of BC and Fe-BC for Cr(VI).

Since oxygen-containing groups such C-O and C=O on the

biochar surface help to both reduce and adsorption of Cr(VI), the

O/C ratio was found in Model BP to be the most important element

influencing Cr(VI) removal capacity. The effect of iron

impregnation on the relative proportions of C-O and C=O was

also investigated; in Model SF C-O had a greater relative

importance than C=O. Supported by the recorded consumption

of C-O groups in biochar following Cr(VI) removal, the presence of

C-O groups acts as electron donors, so helping to reduce Cr(VI) to

Cr(III). As electron donors, functional groups including C-OH,

-COOH, and -OH significantly help to lower Cr(VI) to Cr(III) (98).

Furthermore noted to help lower Cr(VI) to Cr(III) were oxygen-

based functional groups including C-OH (99). Redox cycles formed

by C-O groups in Fe-BC couple with C=O or iron species to further

reduce Cr(VI). Nevertheless, the ideal ratio of C-O (i.e., from ~ 29%

to ~ 38%) for the effective elimination of aqueous Cr(VI) has yet to

be exactly determined; hence, more experimental and theoretical

study is needed to validate these conclusions (100).

The greater significance of C-O compared to C=O in biochar for

removing Cr(VI), can be attributed to its higher reduction potential

(101). The impact of C-O and C=O on Cr(VI) removal capacity

varies. The partial dependence plot (PDP) for C=O illustrates a

direct increase in Cr(VI) removal efficiency as the C=O content rises

until it reaches about 25%, after which the removal efficiency

declines. In acidic conditions, carbonyl or carboxylic groups

(C=O) can be protonated, enabling them to either electrostatically

attract the negatively charged Cr(VI) species or interact with oxygen

in HCrO4- and Cr2O7
2- through hydrogen bonding (102). However,

the electron-deficient nature of C=O groups makes themmore likely

to accept electrons, potentially diminishing the biochar’s redox

reaction efficiency for converting Cr(VI) to Cr(III) and reducing

its Cr(VI) removal capacity (103). The reduction of Cr(VI) is

primarily attributed to reductive moieties in biochar, with oxygen-

containing functional groups such as –OH and COC serving as

relatively weak electron donors in neutral and alkaline conditions

(103). However, stronger electron donors, such as persistent free

radicals (PFRs) detected in biochar, are hypothesized to be

associated with the favorable reduction of Cr(VI) (103).

Particularly for ECs, the SHAP analysis in Jaffari et al. (79)

underlines the major impact of the nitrogen-to– carbon (N/C) ratio

on the adsorption performance of biochar. On the biochar surface,

nitrogen-containing functional groups including amines (-NH2),

imines (=NH), and other -NHx species are absolutely important

for contaminant binding. By means of both covalent and ionic

interactions with pollutants, these groups improve adsorption

efficiency. Often via electron sharing or donor-acceptor

mechanisms, covalent bonding results from nitrogen groups

forming strong chemical bonds with reactive functional groups on

contaminants. Stable complexes can be produced, for instance, by

lone pair electrons on nitrogen atoms interacting with electrophilic

sites on organic molecules or heavy metals. By electrostatic forces,
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protonated nitrogen groups (-NH3
+) draw negatively charged

pollutants , so faci l i tating adsorption through charge

complementarity. Different functional groups on the surface of

biochar enhance its reactivity and affinity for different pollutants,

so enabling more successful binding of pollutants (104). Higher

adsorption capacity does not always match, though, an increasing N/

C ratio. At quite high nitrogen contents, the expected adsorption

capacity falls. This could be the result of competitive effects whereby

too nitrogen-containing groups—from hydrolysis of proteins and

nucleic acids or synthesis of nitrogen-homogeneous compounds

during pyrolysis (105)—form a hydrophilic water film barrier on the

biochar surface. This barrier limits adsorption by blocking access to

internal pores and active sites. Furthermore, highly packed nitrogen

groups might change surface chemistry negatively or fight for

binding sites.

Richer datasets for future ML models will help them to better

differentiate among nitrogen functional groups and clarify their

different binding mechanisms. Maximizing the adsorption capacity

and specificity of biochar by optimizing the balance and types of

nitrogen groups together with building suitable porosity and surface

functionalities will help to improve its environmental

remedial capacity.
7 Improving model interpretability by
cooperative interdisciplinary work

Many times involving intricate algorithms that might limit

interpretability, ML models applied in biochar design can impede

useful implementation. This gap can be closed with cooperative

frameworks that aggressively involve environmental scientists in

tandem with data scientists. Environmental experts provide

important new perspectives on biochar processes, contaminant

behavior, and system dynamics so facilitating more significant

interpretation of model outputs. Such collaborations can take the

form of iterative processes whereby co-management of model

development, validation, and interpretation guarantees models are

both operationally relevant and scientifically strong. Standardizing

data sharing, model explanations, and cross-disciplinary

communication will help to improve these initiatives even more.

Emphasizing these partnerships not only increases model

transparency but also helps stakeholders to build trust, so

accelerating the application of ML-optimized biochar technologies

in practical environmental remediation.
8 Conclusion and future perspective

This review evaluates the strengths and constraints of present

methods as well as the transforming possibilities of ML in

advancing engineered biochar for contaminant remediation. By

means of analysis of complicated interactions between feedstock

composition, pyrolysis conditions, and activation techniques, the

strong evidence in the literature shows that ML can efficiently
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maximize biochar properties—such as surface area, pore structure,

and functional groups. Particularly ensemble and deep learning

methods, ML models have shown great ability to lower

experimental trial-and-error, so accelerating the design of high-

performance biochars for intended pollution reduction.

Important flaws still exist in the field, though. Although ML

glows in predictive modeling and pattern recognition, it sometimes

lacks mechanical interpretability, which makes it challenging to

fully understand why particular biochar modifications produce

better adsorption. Many studies also depend on small or

inconsistent datasets, so restricting model generalizability under

different environmental conditions. Furthermore, dynamic real-

world events like changing water chemistry or long-term biochar

aging—which greatly affect remedial efficacy—are not easily

explained by ML by itself.

Overcoming these constraints requires hybrid methods

combining basic science with ML. Combining molecular-scale

simulations (e.g., DFT) with ML could clarify atomic-level

interactions between biochar surfaces and contaminants, so

bridging the gap between data-driven predictions and mechanistic

knowledge. By tying expected performance to observable chemical

changes, pairing ML with advanced spectroscopy—e.g., in situ

FTIR, XPS—may help to validate model outputs. Furthermore,

including kinetic and thermodynamic ideas into ML models might

improve their field-scale applicability and time-dependent

adsorption behavior prediction capability.

There is still a great knowledge vacuum about how biochar

features affect microbial populations that help to degrade pollutants.

Future research should give ML models including microbiological

data top priority in order to maximize biochar for sustaining

beneficial microbial activity as well as for adsorption. Ultimately,

even if ML-driven biochar generation shows potential to lower

carbon emissions, its actual environmental impact has to be

carefully evaluated using life-cycle studies included into

modeling processes.

Through multidisciplinary collaboration—merging ML with

chemistry, microbiology, and environmental engineering—the

next generation of biochar design can achieve both precision and

sustainability, so releasing its full potential for worldwide

remediation activities.
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