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The design and application of engineered biochar is crucial for removing
contaminants from soil and water,yet its development and commercialization
still depend on time- and labor-intensive experimental methods. Machine
learning (ML) offers a faster alternative, but despite its growing use in biochar
research, no review systematically covers ML-driven design of engineered
biochar for large-scale contaminant removal. This work fills that gap by
analyzing ML's role in optimizing biochar properties using pilot and industrial-
scale datal. We examine key biochar characteristics, including physical (e.g.,
surface area, pore volume), chemical (e.g., ultimate/proximate analysis,
aromatization), electrochemical (e.g., cation exchange capacity, electrical
conductivity), and functional group properties, and their optimization for
various contaminants. With special attention on three mechanistic dimensions,
this review offers the first thorough study of ML applications for designing
biochars based on pilot and industrial-scale data: ML forecasts micropore-
mesopore synergies controlling diffusion-limited adsorption of heavy metals
(Pb?*, Cd®*); surface chemistry optimization - including oxygen functional
group (-COOH, -OH); and electrochemical tuning - of redox-active sites for
contaminant transformation. The paper emphasizes how ML models—such as
Random Forest (RF) and Gradient Boosting Regression (GBR)—elucidate the
nonlinear links between pyrolysis conditions (temperature, feedstock
composition) and biochar performance. For adsorption, surface area and pore
volume are distinctly important; in redox reactions for heavy metal removal,
functional groups like C-O and C=0 play vital roles. Unlike earlier studies mostly
on the adsorption capacity of biochar, this work expands the scope to investigate
how ML can customize biochar properties for optimal contaminant removal
using interpretability tools like SHAP analysis. These instruments expose
parameters including nitrogen-to-carbon (N/C) ratios and pyrolysis
temperature in adsorption efficiency. The review also covers hybrid methods
combining ML with molecular simulations (e.g., DFT) to link mechanistic
knowledge with data-driven predictions. Emphasizing the need for
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multidisciplinary collaboration, the review finally shows future directions for ML-
driven biochar design, guiding fieldwork by pointing out shortcomings of present
techniques and opportunities for ML.

machine learning (ML), engineered biochar, environmental remediation,
adsorption, contaminants

Highlights

* ML forecasts the ideal characteristics of biochar for
removing contaminants.

* Pyrolysis temperature dominates adsorption, according to
SHAP analysis data.

* The redox reactions of heavy metals are controlled by
oxygen functional groups.

* Pore structure-adsorption synergychars are controlled by
feedstock chemistry.

* Mechanistic predictions are improved by hybrid ML-
DFT models.

1 Introduction

Soil and water pollution, a critical global environmental issue
intensified by rapid industrialization and population growth (1-3),
poses significant threats to human health, disrupts ecosystems, and
jeopardizes food safety (4, 5). Soil and water pollution remain
pressing global concerns, with increasing evidence of their impact
on ecosystems and human health. Nearly one-third of the world’s
soils are moderately to severely degraded as a result of erosion,
nutrient depletion, acidification, and contamination, and more than
80% of wastewater is discharged into the environment untreated,
according to the United Nations Environment Programme (6). The
urgent need for efficient and sustainable remediation technologies—
like biochar-based systems—is highlighted by this concerning
trend, especially when machine learning is added for targeted
performance. Sustainable remediation techniques are needed to
address these issues, and engineered carbonaceous materials like
activated carbon and biochar are showing promise as remedies.
Despite derived from the pyrolysis of biomass, they are different in
significant regards: Biochar is a versatile adsorbent that can remove
a variety of contaminants from soil and water. It is created by
pyrolyzing organic feedstocks at temperatures between 300 and
700°C. Additionally, it improves soil quality and aids in carbon
sequestration (7, 8). Because of its mineral concentration,
heterogeneous pore structure, and abundance of surface
functional groups (like ~-COOH, —OH), which boost microbial
activity, water retention, and fertility, this is the best soil
amendment (9). Because of its high adsorption capacity and
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porous structure, biochar can effectively remove both organic and
inorganic contaminants from soil and water (8, 10-12). To create a
more uniform, microporous structure with an exceptional surface
area (500-3000 m?/g), activated carbon is pyrolyzed at 600-900°C
and then physically or chemically activated (e.g., steam, KOH).
While this is ideal for the adsorption of contaminants in water
treatment, it typically results in minimal benefits for the soil and
increased production costs.

Recent studies have used several techniques including acid-base
treatment, metal compound inclusion, steam activation,
magnetization, heteroatom doping, and ball milling, which
produce different adsorption results and mechanisms, so
adjusting the properties of biochar to increase its efficacy as an
adsorbent for particular contaminants or applications (13).
However, the creation of synthetic biochar mostly depends on
trial-and-error methods, sometimes laborious and useless (14,
15). Learning patterns from large datasets without the need of
explicit programming or extensive experimentation helps machine
learning (ML) especially to model and maximize the complex and
nonlinear interactions between feedstock properties, pyrolyzed
conditions, and the resulting biochar performance. This
underlines the need of uniform evaluation criteria and the
integration of artificial intelligence and machine learning to drive
field developments.

The development of ML techniques has presented new
opportunities for environmental use prediction and optimization
of biochar performance. In view of their remarkable capacity to
analyze intricate datasets, spot patterns, and predict outcomes,
machine learning models are particularly well-suited to enhance
biochar design (16, 17). Through machine learning, research has
successfully predicted the properties and functionality of biochar,
offering crucial insights into how changes in production conditions
may affect the effectiveness of contaminant adsorption. Even though
biochar and machine learning have been the subject of numerous
recent studies, more research is still required. Most current research
concentrate on specific, usually limited aspects of this relationship,
so generating major knowledge gaps.Although Leng et al. (18) and
Lietal. (19) carried out focused reviews focusing on specific biochar
characteristics, such as pore volume, specific surface area, and
nitrogen-containing functional groups, they do not address the
general optimization of biochar for various types of pollutants or
look into the broader implications of these characteristics in
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environmental applications. For example, Wang et al. (20) carried
out a mini-review on machine learning applications in biochar
studies; however, it primarily offers a general overview without
going into great detail about the design and optimization of
engineered biochar for targeted contaminant removal. Although
they provide useful analysis of particular biochar properties, they do
not integrate the ways in which these attributes could be
systematically targeted to improve biochar’s effectiveness in
various environmental contexts. The review by Zhang et al. (21)
mostly concentrates on the use of biochar in anaerobic digestion
rather than its application in soil and water contaminant removal,
which is a crucial area for environmental remediation, similarly.
This restriction emphasizes the need of a more thorough review
covering the interaction between biochar characteristics and their
performance in contaminant removal, which will finally guide
future research and application strategies. Using these advanced
computational tools allows researchers to rapidly produce more
powerful biochar materials for environmental remediation.

In contrast to previous reviews that have mainly focused on the
application of ML to engineer biochar properties for contaminant
adsorption, this review broadens the scope to include a wider range
of biochar characteristics and critically discusses how ML can be
used not only to optimize biochar for specific contaminant removal
but also to engineer biochar with tailored properties for diverse
environmental and agricultural applications. This review
thoroughly examines the application of ML in predicting and
designing biochar properties, providing a detailed analysis of
various biochar characteristics, including physical (specific surface
area, total pore volume), chemical (ultimate/proximate analysis,
aromatization degree), and electrochemical (cation exchange
capacity, electrical conductivity, capacitance); and functional
group properties.

This review is novel because it thoroughly examines how ML
can be used to design biochar properties other than contaminant
adsorption, providing insights into how ML could transform the
biochar manufacturing process. By combining different machine
learning algorithms and applying them to biochar research, the
review demonstrates how ML can forecast and improve particular
biochar characteristics, saving experimental time and expenses
related to conventional trial-and-error methods. This more
comprehensive viewpoint fills in important gaps in the body of
literature, which makes it an essential addition to the field.

2 Review methodology

Multiple synonyms and Boolean operators were used in a
methodical keyword search approach to guarantee thorough
coverage of pertinent material. Expanded to include related terms
such “artificial intelligence” OR “AL” “predictive modeling,”
“biochar modification,” “biochar design,” and “contaminant
removal,” the central search phrase was “machine learning” AND
“engineered biochar.” To maximize retrieval sensitivity, these terms
were combined in several ways with Boolean operators (AND, OR).
Among the example search strings were “machine learning” AND
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“biochar”; “contaminant removal”; “artificial intelligence”; “AI’;
“engineered biochar”; “predictive model”; AND “biochar
adsorption”. Limited to peer-reviewed journal publications
released between 2009 and 2024, the searches were conducted in
ScienceDirect, Web of Science, and Google Scholar. This strategy
ensured the inclusion of studies addressing both the development of
biochar materials and their optimization through machine
learning tools.

In total, 1,230 records were initially retrieved and exported to
EndNote reference management software. After removing
duplicates, 1,128 unique records remained. These were then
screened based on titles and abstracts, resulting in the exclusion
of irrelevant studies, including 324 review articles and conference
proceedings. Finally, 1114 articles met the inclusion criteria and
were analyzed in depth for this review. The full screening and
selection process is summarized in Figure 1.

The significance of machine learning in biochar engineering is
further supported by bibliometric mapping using VOSviewer
software (version 1.6.19), as shown in Figure 2. This keyword co-
occurrence map visually represents the most frequently researched
terms related to machine learning and biochar. In the map, each
node represents a keyword, with larger node sizes indicating higher
frequency of occurrence in the literature. Different colors denote
clusters of keywords that frequently appear together, revealing
thematic groupings within the research domain. The proximity
and thickness of the connecting lines between nodes reflect the
strength of co-occurrence relationships, where closely connected
nodes often appear in the same publications. This visualization

»

highlights dominant topics such as “machine learning,” “biochar
properties,” “adsorption,” and “predictive modeling,” underscoring
the growing interdisciplinary convergence between data science and

environmental material research.

3 Biochar: a solution for remediating
contaminants and its mechanism

Derived from carbon-rich materials by pyrolysis, biochar finds
extensive use in environmental applications for the removal of
pollutants from soil and water. Among these pollutants are organic
compounds, heavy metals, pesticides, and dyes as well as drenches
(22, 23). The type of feedstock, pyrolysis conditions, and the nature
of the contaminants targeted affect its efficiency in eliminating these
pollutants. Different mechanisms interacting with the pollutants—
such as complexation, electrostatic attraction, hydrogen bonding,
ion exchange, partitioning, pore filling, and precipitation—cause
biochar to be versatile in remediation (Figure 3).

By means of particular ligand interactions, biochar binds metal
ions in complexation (24). For wastewater, biochar made from
municipal sludge, for example, efficiently removes hexavalent
chromium (Cr(VI). The interaction of the metal and biochar
surface changes the form of the metal, so reducing its toxicity
(25). Likewise, in the adsorption of organic compounds, especially
antibiotics and herbicides, -7 interactions are absolutely vital (26).
These interactions made possible by biochar’s aromatic structure
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FIGURE 1
PRISMA flow diagram illustrating the screening and selection process of studies included in the review.
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A keyword co-occurrence map illustrating the most frequently researched topics in this field (generated using VOSviewer version 1.6.19).
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FIGURE 3
Various mechanism of contaminant’s adsorption on biochar.

10.3389/fs0il.2025.1623083

help to trap pollutants including penicillin and herbicides, so
preventing their contamination of the environment (27).
Particularly in the removal of charged metal ions like chromate
(28), electrostatic attraction is rather important. Depending on the
pH of the solution and the pyrolyzed temperature of the biochar,
the surface charge of biochar can draw in or repel some ions. For
example, these electrostatic forces have made cauliflower stem
biochar highly affine for chromate ions (29). The surface charge
properties of biochar change with pH; this can either raise or lower
its capacity to adsorb pollutants, particularly in acidic conditions.
Hydrogen bonding is another mechanism in charge of biochar’s
ability to adsorb drugs and personal care products among other
pollutants. Particularly the charge-assisted hydrogen bonds, these
bonds aid highly soluble and mobile pollutants in their adsorption.
A common PPCP, sulfamerazine, has shown notable efficiency in
adsorbing biochar produced from corn straw, so stressing the part
hydrogen bonds perform in environmental cleanup projects (30).
Ion exchange is cation swapping from the biochar to the
contaminant. This is particularly effective for heavy metals like
lead (Pb), where the charged surface of biochar swaps ions with
those in contaminated water (15). This process is made possible in
part by the acidic oxygen-containing functional groups on the
biochar surface—carboxyl, carbonyl, and hydroxyl groups—which
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ionize to swap with heavy metal ions or cationic organic pollutants.
In biochar, partitioning is the dispersion of pollutants across its
pores. The effectiveness of this process relies on the volatility of the
biochar; pyrolyzed temperature affects this content. Usually, high
concentration of volatile matter biochar performs better in
adsorbing pollutants including pharmaceutical compounds (31).
For instance, by means of partitioning, biochar generated from
Eucalyptus pruning wastes has shown to effectively adsorb
pharmaceutical contaminant venlafaxine (32). Another method
whereby pollutants occupy the micropores and mesopores of
biochar is pore filling. Higher pyrolyzed temperatures—which
produce more micropores—cause the specific surface area of the
biochar to rise, so increasing the adsorption capacity. Research on
biochar generated from Eucalyptus for the adsorption of
venlafaxine has exposed this mechanism is essential for the
elimination of organic pollutants (31, 32).

Lastly, the developed solid precipitates on biochar surface offer
the means of removing heavy metals from aqueous solutions. For
metals including cadmium (Cd) and lead (Pb) this approach has
shown good success (Figure 3). Large concentrations of Cd and Pb
discovered deposited on the biochar following treatment have made
biochar produced from rice straw highly successful in precipitating
and removing these metals from water (33).
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When all factors are considered, a combination of treatment
techniques interacting with a wide spectrum of pollutants
determines whether biochar can remove contaminants in soil and
water. Its adaptability and efficiency make it a great tool for
addressing environmental damage. Its uses can be changed to fit a
range of pyrolyzed conditions and feedstocks for best effects.

4 Machine learning

4.1 Overview of ML

Within artificial intelligence (AI), ML is a subset aimed at
creating models allowing computers to learn from data to
generate predictions or decisions (34). ML is a great tool for
simulating challenging processes by means of accurate predictions
free from major testing (35, 36) by modeling mathematical
relationships between inputs and outputs. This capacity
significantly reduces the load of experimental studies and the
time costs (16). While offering more scalability and flexibility, ML
gives great accuracy in creating predictions top priority over
traditional statistical methods that focus on deriving relationships
between variables. (37).

As shown in Figure 4, ML techniques applied in this field include
supervised, unsupervised, semi-supervised, and reinforcement
learning methods (38, 39). For example, following training models
with labelled data, supervised learning separates further into
classification and regression tasks (40). Unsupervised learning
stresses on clustering and analysis of unlabeled datasets while semi-
supervised learning combines both approaches. In biochar research,

10.3389/fs0il.2025.1623083

for example, supervised learning can be used with known
experimental data to classify feedstock types depending on their
physicochemical properties or predictability of adsorption capacity
for specific heavy metals. Here we often apply models such as Random
Forest or Support Vector Machines. Conversely, unsupervised
learning deals with unlabeled data such that the model finds hidden
patterns or groupings free from predefined categories. Cluster
adsorption efficiencies across many biochar samples can be utilized
for natural groupings based on performance or to find relationships
between feedstock properties and adsorption behavior for biochar
using unsupervised learning. Many times used in such research are k-
means or hierarchical clustering techniques. Reinforcement learning
guides models to maximize results by means of interaction with their
surroundings (41).

Although recent developments show that deep learning (DL)
models and hybrid systems offer significant advantages in capturing
complex feature interactions and uncovering hidden patterns, they
often function as “black boxes (42),” so providing limited insight on
how particular predictions are made despite their promise in
analyzing huge datasets. GBR and RF still rule the literature due
to their great performance in handling non-linear, high-
dimensional datasets. Moreover, applying features learnt in one
environment to several problem domains helps to increase model
adaptation (43). Particularly in domains like image processing and
speech recognition, DL technology is developing rapidly.

A class of feedforward artificial neural networks, Multilayer
Perceptrons (MLPs) have shown great predictive accuracy for
modeling adsorption capacity and biochar surface properties. In
the 2022 Da et al. study, a two-layer MLP outperformed SVR, RF,
and linear models in estimating uranium adsorption, so obtaining

Reinforc-
ement ML

Machine
Learning

Supervised

supervised
ML

FIGURE 4
Types of ML algortihms.
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R* = 0.99 and RMSE = 3.75. When the relationship between input
features (e.g., feedstock composition, pyrolysis conditions) and
output targets (e.g., surface area, O/C ratio) is highly non-linear
and not easily captured by conventional tree-based methods, MLPs
are especially useful.

Furthermore under increasing investigation in materials science
for microstructural pattern analysis or spectroscopic data related to
biochar surfaces are convolutional neural networks (CNNs), widely
used in image analysis. Although they are not yet widely used in
biochar research, CNNs have potential in analyzing graphical input
data such as SEM images or adsorption isotherms, which are
typically underused in conventional machine learning pipelines.

Moreover shown to be better than both ANN and standalone
ML models in some predictive tasks are hybrid models including
Adaptive Neuro-Fuzzy Inference Systems (ANFIS). For example,
Abdi et al. (44) estimated the electrical conductivity of compost
improved by biochar-enhanced R* = 0. 999, RMSE = 0.002) with
better accuracy of ANFIS over ANN. Particularly useful when both
high accuracy and rule-based insight are sought for is ANFIS, which
blends the learning capacity of neural networks with the
interpretability of fuzzy logic.

Future research should also consider ensemble learning
frameworks such stacking (meta-modeling) and bagging into
account to aggregate predictions from several base learners to
improve robustness and generalization especially when dealing
with heterogeneous datasets derived from different feedstocks and
experimental settings.This review of ML ideas and advancements
emphasizes its applicability in domains including environmental
science and biochar research, where it helps to forecast results and
maximize procedures, so promoting more sustainable practices.

4.2 Evaluation metrics for ML models

The accuracy and effectiveness of the regression models can be
evaluated by using the coefficient of determination (R?), the mean
squared error (MSE), and the root mean squared error (RMSE) (45)
variables. The coefficient of determination, also known as R?, is a
statistical measure that can range from 0 to 1 and is used to
determine the percentage of variation that can be attributed to
the model. R* values that are higher and closer to 1 point indicate
that the model is a better fit to the data. According to Henseler et al.
(46), values that fall between 0.25 and 0.75 are categorized as
moderate, values that fall below 0.25 are regarded as weak, and
regression models that obtain an R* value of 0.75 are regarded as
being rather predictive. Other than R2, MSE is a measurement of
the average squared difference between the values that were actually
observed and those that were projected; RMSE is the square root of
MSE. The root mean square error (RMSE) is useful because it
highlights the impact of significant data errors.

Due to the fact that they provide an insightful analysis of the
predictive capacity of the model as well as the degree of prediction
errors, R* and RMSE were utilized the majority of the time when
evaluating the models (45).
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5 ML for predicting and designing
biochar properties

With desired properties, ML is progressively a useful tool in
biochar research (19, 47). By differentiating the complex interactions
among biochar properties, manufacturing techniques, and
performance (48), machine learning models significantly help in
this field. When predictive ML models including biochar material
design incorporate optimization techniques instead of the traditional
trial-and-error method, ML drastically lowers laboratory effort, cost,
and time (19). Simulating biochar features (49) has effectively
predicted performance depending on many factors by means of
regression and other supervised learning techniques. Ultimately,
including machine learning (ML) into biochar research is inspiring
innovation, enabling more environmentally friendly and efficient
biochar production, and so extending its applications in
agricultural and environmental spheres. Its capacity to maximize
biochar production methods by means of particularly bibliometric
approaches highlights even more its potential (50).

Furthermore, ML is revolutionary for predicting the properties
of biochar by screening biomass and creating pyrolyzing conditions
(35). Yargicoglu et al. (51) state that the feedstock and production
method affect the physical, chemical, and electrochemical
characteristics of biochar. Consequently, whereas input
parameters could include biomass characteristics such as
proximal composition and elemental composition of feedstock,
volatile matter, ash, fixed carbon, and moisture content, pyrolyzed
conditions include pyrolytic temperature, retention time, and
heating rate; hence, in our review article, various physical,
chemical, and electrochemical properties are taken as output or
predicted parameters. Table 1 summarizes the uses of several
supervised learning systems for the prediction of physical,
chemical, and electrochemical characteristics of biochar.

5.1 Physical properties

5.1.1 Specific surface area

The main factor influencing biochar’s effectiveness as a carbon
material in a variety of applications, such as energy storage, CO,
and H, adsorption, catalysis, and contaminant removal, is its
specific surface area (58, 59). Liang et al. (60) declared biochar to
be an effective material for the adsorption of contaminants due to its
high specific surface area. Although, Leng et al. (52) consider the
production of biochar with a preferred specific surface area to be a
difficult endeavor. Thus, the authors develop a ML model to predict
and optimize the specific surface area of biochar made from maize,
rice, and sawdust, using pyrolysis condition (temperature), biomass
composition (Ash, fixed carbon, moisture, volatiles), biomass
elemental composition (C content, H content, O content, N
content), biomass biochemical composition (cellulose,
hemicellulose and lignin content), and activation conditions
(activation temperature, heating rate and residence time as input
variables. It’s important to note that both the diversity of biomass
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TABLE 1 Various supervised ML models for predicting biochar physical, chemical and electrochemical features.

Predictive performance

R? (Train/Test)

RMSE (Train/Test)

Findings

Reference

Corn husk, rice Pyrolysis condition (temperature), Biomass composition | Specific GBR 68 1.00/1.69 0.91/39.65 ML successfully Leng et al. (52)
husk, sawdust (Ash, fixed carbon, moisture, volatiles), Biomass surface area = RF 68 0.99/0.85 14.90/51.85 predicted and optimized

elemental composition (C content, H content, O the biochar specific

content, N content), Biomass biochemical composition surface area

(cellulose content, hemicellulose content and lignin

content), Activation conditions (activation temperature,

heating rate and residence time)
Agro, softwood and Pyrolysis condition (temperature), biomass composition | Specific DT 292 0.61/NT* 7.01/NI* RF performed better Hai et al. (45)
hardwood, marine (ash, fixed carbon, moisture, volatiles), biomass surface area | KNN 292 0.55/NT* 9.15/NT* than DT and KNN
waste, macroalgae elemental composition (C content, H content, O RF 292 0.80/NI* 4.32/NI*

content, S content, N content), biomass biochemical

composition (cellulose content, hemicellulose content

and lignin content), activation conditions (activation

temperature, heating rate and residence time)
Bran, corn stalk, husk, Pyrolysis condition (temperature), Biomass composition | Specific GBR 169 0.99/0.92 0.02/46.53 GBR model generated Lietal. (19)
peanut shell, rice sawdust, (Ash, volatiles), Activation conditions (activation surface area = RF 169 0.94/0.91 31.48/48.78 more accurate
and straw stalk temperature, heating rate and residence time) predictions compared to

the RF model

Corn husks, corn cobs, rice Biomass composition (Ash, fixed carbon, moisture, Specific GBDT 258 0.95/0.93 0.70/216.9 GBDT presented the Li et al. (53)
straw, sugarcane bagasse, volatiles), surface area = RF 258 0.93/0.77 0.89/413.2 better prediction
wheat straw, and Biomass elemental composition (C content, H content, XGB 258 0.95/0.92 0.84/239.3 accuracy and
wood waste O content, N content), generalization ability

Biomass biochemical composition (cellulose content, than the RF and XGB.

hemicellulose content and lignin content),

Activation conditions (activation temperature, heating

rate and residence time)
Bamboo chips, bagasse, Biomass type, pyrolysis condition (temperature), Specific GBDT 258 0.98/0.87 32.31/57.32 XGB performed Zhou et al. (54)
corn stover bark, coconut Biomass composition (ash, fixed carbon, volatiles), surface area | RF 258 0.97/0.81 31.90/52.14 significantly for
shells, corn stover, digestate, = Biomass elemental composition (C content, H content, XGB 258 0.96/0.92 32.11/45.21 predicting specific
food waste digestate, O content, N content), surface area for
municipal biosolid waste, Activation conditions (activation temperature, heating the biochar
pine chips, palm kernel rate and residence time)
shells, rice husk rice straw,
swine manure, soybean oil
cake, walnut shells,
yak manure
Bran, corn stalk, husk, Pyrolysis condition (temperature), Biomass composition | Total GBR 152 0.99/0.91 0.01/0.06 GBR models trained in Lietal. (19)
peanut shell, rice sawdust, (Ash, fixed carbon, moisture, volatiles), Biomass pore RF 152 0.96/0.90 0.04/0.06 this work have better
and straw stalk elemental composition (C content, H content, N volume performance

content, O content, S content)

compared with
RF models

(Continued)
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Corn husks, corn cobs, rice  Biomass composition (Ash, fixed carbon, moisture, Total GBDT 258 0.91/0.83 0.22/216.9 GBDT presented the Li et al. (53)
straw, sugarcane bagasse, volatiles), pore RF 258 0.90/0.77 0.26/413.2 better prediction
wheat straw, and Biomass elemental composition (C content, H content, volume XGB 258 0.90/0.86 0.20/239.3 accuracy and
wood waste N content, O content), generalization ability
Biomass biochemical composition (cellulose content, than the RF and XGB.
hemicellulose content and lignin content),
Activation conditions (activation temperature, heating
rate and residence time)
Agricultural and forestry Biomass composition (Ash, fixed carbon), Cation GBR 353 0.94/0.74 2.14/3.44 GBR outperformed RF Shen et al. (17)
wastes, sewage sludge Biomass elemental composition (molar concentrations exchange
and algae of C, H, O, N as well as wt % of C, H, O, N). Biochar capacity
physical characteristics (particle size, surface area, ash
yield, atomic ratio), Biochar chemical feature (pH)
Cooked rice, coco peat, Biomass elemental composition (Wt % (C/N)), Electrical RF 353 0.80/0.82 4.27/2.39 ANFIS provided a more | Abdi et al. (44)
vegetable residues (cabbage, composting time, conductivity =~ ANN 198 NI¥/0.925 NI*/0.073 accurate prediction in
squash, lettuce) fresh inlet air rate ANFIS 198 NI*/0.999 NI*/0.002 comparison with ANN
Mango seed husk Activation conditions (activation time, activation Capacitance | DT NI* 0.94/NT* 18.08/NT* MLP provided insight Wickramaarachchi
temperature), Biochar physical condition MLP NI* 0.99/NT* 4.1/NI* on designing carbon et al. (55)
(specific surface area, pore volume, average pore SVR NI* 0.98/NT* 4.5/NI* materials for developing
diameter and current density) carbon-based electrodes
for energy storage
Aloe vera, banana peel Activation conditions (activator type, activation time, Capacitance = ANN 9 0.31/0.20 78.96/102.40 Extreme gradient Yang et al. (56)
wastes, bean dergs, cotton, activation temperature), Biochar physical condition DT 9 0.98/0.97 13.42/15.00 boosting had best
corncob, corn husk, Chinese = (specific surface area), Biomass elemental composition RF 9 0.89/0.56 32.71/67.95 prediction effect on the
oil palm kernel shell, (Wt % of C/O, C/N). XGB 9 0.99/0.98 6.32/12.37 electrical capacity
cauliflower, Camellia of biochar
oliefera shell, fermented
rice, garlic skin, human hair
lotus leaf, lotus seedpods,
parasol fluff, pine tree
powder, pine cone, Perilla
frutescens, potato waste, rice
straw, spruce, sakura petals,
tobacco rods, waste coffee
grounds, and willow catkins
Corn straw Biomass composition (Ash, fixed carbon, mass ratio of Capacitance = ETR 157 0.99/0.92 NI* GBR performed better Sun et al. (57)
urea-to-biochar, mass ratio of potassium-to-biochar in GBR 157 0.93/0.90 NI* than ETR and RF.
the potassium activator), RF 157 0.99/0.93 NI*
Biomass elemental composition (C content, H content,
O content, N content),
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Activation conditions (activation temperature, activation

time, and heating rate)

Pyrolysis condition (temperature), Biomass composition

(Ash, fixed carbon, moisture, volatiles),

Corn husk, rice

husk, sawdust

Biomass elemental composition (C content, H content,

O content, N content),

Biomass biochemical composition (cellulose content,

hemicellulose content and lignin content),

Activation conditions (activation temperature, heating

rate and residence time)

Biomass elemental composition (Wt % of C content, H

Coffee grounds, Chipboard,

sewage sludge

content, S content, N content), pyrolysis conditions

(temperature, heating rate and residence time)

Not informed.

*_
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species and the complex biochemical composition within the same
type lead to distinct pyrolysis product properties when processing
wood, bark, or leaves individually or together (61). The prediction
of specific surface area was evaluated using RF and GBR models on
68 data sets, with 20% testing and 80% training for avoiding the
overfitting of the trained model. The GBR and RF models predicted
biochar’s specific surface area with R* (1.00, 0.99, respectively) and
RMSE (0.91, 14.90, respectively) (Table 2). When R? and RMSE
values are considered, the RMSE of the GBR model is noticeably
smaller than that of the RF model. Therefore, the GBR model’s
predictions are more accurate in relation to the actual values, thus
indicating its superior performance in comparison to the RF model.
Furthermore, ash and temperature are the two most important
factors in predicting the specific surface area of biochar because ash
has a significantly negative effect on the surface area of biochar,
especially when the ash content is less than 2%; this negative impact
is primarily due to pore formation during pyrolysis, which is closely
related to the release of volatile matter. Higher ash concentration
usually clogs many pores, so reducing the total specific surface area
(72). Apart from the ash content, the pyrolysis temperature is quite
crucial for the prediction of specific surface area of biochar in such a
way that increasing temperature facilitates the conversion of
amorphous carbon to crystalline carbons, so removing more
volatiles and producing cracks in biochar. These cracks create
sparse regions, fostering the development of more pores and
resulting in a significant increase in specific surface area.

Using ML algorithms—including linear regression (LR), support
vector machines (SVM), random forests (RF), and multilayer
perceptron neural networks (MLP-NN)—Da et al. (73) predicted
uranium adsorption behavior on biochar. According to their findings,
not the chemical composition but rather the specific surface area (SA)
of biochar determines uranium adsorption (73). Though several
factors affect uranium adsorption on biochar, their respective effects
differ rather significantly. Da et al. found, using permutation feature
importance with the two-layer MLP model, specific surface area as
the most important physical characteristic, in line with conventional
adsorption theories. Their work evaluated important biochar
properties including specific surface area (SA), total pore volume
(Vrror), average pore diameter (Dav), oxygen-to- carbon ratio (O/C),
and carbon content (C). Adsorption capacity is much raised by
increasing the specific surface area beyond 300 m?*/g; increases
beyond 800 m?/g have less effect on uranium adsorption.

Jiang et al. (74) used a whole approach combining K-fold cross-
valuation, Optuna, machine learning, and SHAP analysis to
investigate elements impacting ciprofloxin (CIP) adsorption by
biochar. The CIP adsorption capacity of biochar and its specific
surface area were found to have a positive correlation in the study. A
specific surface area of approximately 915.6 m?®/g marked a
threshold above which adsorption capacity increased significantly.
This finding aligns with the understanding that a larger surface area
provides more adsorption sites, enhancing the biochar’s ability to
retain pollutants. It is important to note that the surface area
contributed a mere 2% to the adsorption efficiency of six heavy
metals when analyzed comprehensively across the 353 datasets
from the adsorption processes (75), as depicted in Figure 5.
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TABLE 2 Biochar application for remediation of contaminants in water and soil.

Materials

Feedstock

Penicillin

Pyrolysis

temperature
e

Contaminants

Application
dose (g/L
or Kg)

Removal
capacity (g/Kg
or L)

Adsorption
efficiency
(%)

Mechanism involved

References

AFRB i . 800 Penicillin 80 ‘Water 44.05 93.32 T- T interactions Wang et al. (27)
fermentation residue
Microal id
MB 1crt‘>a g,ae reside 600 Pb 150 ‘Water 154.5 74.40 Ton exchange Yang et al. (62)
(Spirulina sp.)
EB Eucalyptus 500 Venlafaxine 2.8 Wastewater 2.65 >99 Partitioning, pore filling Puga et al. (32)
M-BC Maize straw 900 Perfluorobutyric acid 50 ‘Wastewater 2.54 >91 Partitioning Liu et al. (63)
CSB Corn straw 300 Sulfamerazine 0.05 Water NI* >99 Hydrogen bonding Li et al. (19)
ZVI@SBC Municipal sludge 450 Cr 1.5 Wastewater 150.83 NI* Complexation Yang (25)
lexation, hand:
PBC-450 Cauliflower stem 450 Cr 5 ‘Wastewater 64.10 NI* Comp 'exa ron X Chanda
Electrostatic attraction et al. (29)
Electrostatic attraction, Girk:
SCB Sugarcane bagasse 500 Fluoride 0.183 Water NI* 86.20 e l_‘os atic attraction riar
ion exchange etal. (11)
238.12 for C d Mustaph:
SBEB Stem bark of Eucalyptus 650 Cr, Pb 0.12 Water or & an NI* Electrostatic attraction ustapha
175.02 for Pb et al. (64)
EWB Eucalyptus wood waste 450 Anthracene 0.4 Water NI* 98.41 Hydrogen bonding Tlyas et al. (65)
Acetaminophen. 6499 for Varela
B7 Corn cob 700 . p ’ 1 Wastewater | acetaminophen, 26.62 NI* Pore filling
amoxicillin o et al. (66)
for amoxicillin
2,4- Vi
inayagam
VI-BC Vateria indica fruits 200 Dichlorophenoxyacetic 0.3 Waterbodies NI* 91.67 T- T interactions et a.ly (§7)
acid '
Electrostatic attractions, - Lu and
FS-PNBC Fish scale and pine needle 600 Ciprofloxacin 60 Water 27.97 NI* . e r(,)s atic attractions, T n tan
interactions, Hydrogen bonding Zhao (68)
62.45 for Cd, 167.49
RSBC700 Rice straw 700 Cd, Pb 1 Wastewater (;:)r b NI* Precipitation Liu et al. (33)
To-B, Ri-B, Tobacco stem, Rice husk, X 3.07 (To-B), 2.42 (Ri- Electrostatic
750 Cd 20 Soil NI* W t al. (69
Ru-B Rubber wood o! B), 3.22 (Ru-B) attractions, precipitation ang etal. (69)
i . . Tomin
RSS Reed straw 800 Methylene violet dye 1 Water 92.6 NI* Hydrogen bonding, Pore filling etal. (70)
Electrostatic attractions, TT- T
Egyptian di al; Tchek
HTBC &P 1an. oum paim 500 Methyl orange dye 0.01-0.07 Water 264.922 NI* interactions, Hydrogen bonding, cuexa
fruit shells etal (71)

*= Not informed.

Pore filling
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More studies regarding ML algorithms for predicting biochar’s
specific surface area are summarized in Table 2.

5.1.2 Total pore volume

ML offers enormous potential for engineering biochar materials
with large pore volumes. In this regard, Li et al. (19) used GBR and
RF to improve pyrolysis conditions and biomass mixing ratios for
designer biochar. In that scenario, six kinds of biomass (bran, maize
stalk, husk, peanut shell, rice sawdust, and straw stalk) were used to
predict the total pore volume of biochar using the best ML models.
As a result, in this study, 80% of the dataset was selected at random
to train GBR and RF models, with the remaining 20% used for
testing. The higher the R* and the lower the RMSE, the more
accurate the prediction and performance of the trained model. In
this sense, GBR predicted biochar total pore volume more
accurately without overfitting (R> = 0.99 and RMSE = 0.01) than
RF (R® = 0.96 and RMSE = 0.04). Among various input parameters
(pyrolysis condition (temperature), biomass composition (ash, fixed
carbon, moisture, and volatiles), and biomass elemental
composition (C content, H content, N content, O content, and S
content), temperature is almost linearly and positively related to
total pore volume in the temperature range of 350-800°C; however,
temperatures less than 350°C have little effect on pore volume, and
temperatures greater than 800°C may lead to no increase in pore
volume. The release of volatile compounds from the surface of
biomass particles causes the creation of pores. Higher temperatures
improve volatilization and may lead to the creation of additional
pores on biochar (19).

Jiang et al. (74) revealed a strong positive correlation between
pore volume and adsorption capacity of ciprofloxacin (CIP). When
pore volume surpasses 0.1 cm®/g, a significant majority of SHAP
values become positive, indicating a substantial contribution of pore
volume to the adsorption process. This aligns with the established
understanding that increased pore volume equates to a greater

Vi

pH,y4.8%
T7.0%

Solution properties @ Initial C_/C,

@ Metal properties @ Biochar properties
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10.3389/fs0il.2025.1623083

number of accessible adsorption sites (76), thereby enhancing the
overall adsorption capacity of the biochar for contaminants.

6 Chemical and electrochemical
properties

6.1 Ultimate/proximate analysis

Various ML techniques have been successfully employed to
predict the properties of biochar, including its C, H, N, O, fixed
carbon (FC), volatile matter (VM), and ash content (77). Typically,
biochar is composed primarily of carbon, which constitutes 65 to 90
wt%, along with smaller amounts of hydrogen, oxygen, ash, and
trace elements of nitrogen and sulfur (78).

The two-layer MLP model’s permutation feature importance
method was used to evaluate the impact of different input factors on
uranium adsorption capacity. Figure 5 shows that, of the chemical
properties of biochar, carbon content was the second most
important factor influencing uranium adsorption (73).
Additionally, within the 20-50% range, there was a negative
correlation between the adsorption capacity and the mass
percentage of total carbon (C, wt%). The correlation steadily
stabilized outside of this range. According to Zhu et al. (75), the
carbon content contributed 10% to the properties of biochars,
underscoring the importance of carbon content for the adsorption
of heavy metals (Figure 5).

According to Jaftari et al. (79), biochar materials have recently
drawn a lot of interest as economical and environmentally friendly
adsorbents because of their capacity to effectively remove dangerous
new contaminants (like fungicides, herbicides, and
pharmaceuticals) that endanger aquatic life and human health in
aquatic ecosystems. Ten tree-based machine learning models were
created as part of their study with the goal of precisely forecasting
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The relative importance of input variables on the adsorption efficiency using RF model (75).
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the ability of biochar materials to adsorb emerging contaminants
(ECs) from water. With the highest test coefficient of determination
(0.9433) and the lowest mean absolute error (4.95 mg/g), the
CatBoost model outperformed all other models in the ML model
evaluations. The Shapley Additive Explanations (SHAP) analysis
revealed that the adsorbent composition, which included N/C, C%,
H/C, O/C, (O+N)/C, and ash, significantly influenced (35%) model
predictions for the adsorption capacity of fungicides,
pharmaceuticals, and herbicides.

6.2 Aromatization degree of biochar

The H/C and O/C ratios of biochar act as markers of its
carbonization, aromaticity, and maturity levels. The substantial
amount of C in biochar indicates the predominance of aromatic
structure following carbonization. Reduced ratios indicate a more
complete dehydration process and significant aromatic condensation
during biomass (80) pyrolyzed. Comparably, the O/C ratio shows the
surface hydrophilicity of biochar; a high ratio denotes great surface
hydrophilicity (81). These H/C and O/C ratios typically drop with
increasing pyrolysis temperature, indicating increased aromaticity
and stability, lowered polarity, and hence, more hydrophobicity. Low
H/C and O/C ratios also confirm more consistent biochar; an O/C
ratio less than 0.2 indicates great stability (82). The atomic ratios of
O/C, H/C, and (O + N)/C are calculated to evaluate aromaticity,
polarity, and longevity of biochar (83). Using PCC and SHAP
analyses, Song et al. (84) investigated the main relationships in
biochar between ten input variables and the H/C, N/C, and O/C
ratios. With a PCC=-0.8 the results showed a strong negative
correlation between the H/C and O/C ratios of biochar and
temperature. Other factors showing PCC values < 0.2, implying a
rather small influence were VM, FC, and AC. Supported by SHAP
value analysis, these findings revealed that the H/C and O/C ratios
depend critically on pyrolyzed temperature. Rising pyrolysis
temperature reduces the H/C and O/C ratios, so indicating
enhanced aromaticity in the biochar. Higher pyrolysis temperatures
thus improve biochar aromaticity, most likely due to increased
dehydration, decarboxylation, and demethylation reactions in the
biomass at higher temperatures, so producing more complete biochar
development reactions (85, 86). On the other hand, the N/C ratio of
biochar had a rather strong positive correlation with temperature.
The SHAP value analysis confirmed this link even more by stressing
pyrolysis temperature as a main determinant of the N/C ratio. The N/
C ratio likewise rises as the pyrolyze temperature rises. Mostly derived
from proteins, N in biomass changes during pyrolysis into gaseous,
liquid, and solid forms. N mostly exists in biochar as N-C and N-H
bonds with low migration potential. About thirty percent of N stays
in the biochar even at 900°C, the pyrolyze temperature. Considering
the conservation of C, H, O, and N elements in biochar, the rise in the
N/C ratio with higher pyrolysis temperatures results from the
nitrogen’s resistance to migration.

The H/C and (O + N)/C molar ratios explained an 11%
involvement to the properties of biochars in the research carried
out by Zhu et al. (75), so emphasizing the relevance of oxygen-
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containing functional groups and aromatic structures in the
adsorption process of heavy metals (Figure 5). This implies that the
presence of these functional groups increases the capacity of the
biochar to interact with and bind heavy metal ions, so improving its
adsorbent efficiency. The interaction of these ratios suggests that the
adsorption capacity of biochar depends critically on both its
structural and chemical composition. A multilayer perceptron
artificial neural network (MLP ANN) model (R* = 0.99, RMSE =
3.75) outperformed support vector regression (SVR), random forest
(RF), and linear regression models in predicting uranium adsorption
capacity on biochar, Da et al. (73). They also discovered that changing
the structural characteristics of biochar, especially the oxygen-to—
carbon (O/C) ratio, might increase its adsorbing capacity for
radioactive uranium. Their data indicate that the most important
chemical feature influencing uranium adsorption is the O/C ratio.
Research already in publication supports that raising the O/C ratio
and building the micro- and mesoporous structure of biochar will
greatly increase its uranium adsorption capacity (87). Furthermore
shown by a positive correlation between uranium adsorption capacity
and the O/C ratio was the importance of oxygen-containing
functional groups in improving adsorption.

These revelations can be used to design and engineer biochar
with ideal characteristics for maximum contaminant removal from
soil and water, so offering a useful approach for environmental
remedial projects.

6.3 Cation exchange capacity

Biochar’s cation exchange capacity is the ability of it to help
cations in solution to migrate. Cation exchange capacity (17) is
notably and favorably correlated with functional groups including
O/C and (O+N)/C, which provide active sites for cation exchange
with heavy metals). This correlation has been established as one of
the principal adsorption mechanisms facilitating the removal of
heavy metals (Cd, Cu, Pb etc.) from aqueous solutions.
Consequently, cation exchange capacity ranked second feature in
importance, following heavy metal adsorption capacity (17).
Furthermore, predicting biochar’s properties, such as cation
exchange capacity, leads to realizing the down-to-earth
application of biochar for adsorbing contaminants. Therefore,
Shen et al. (17) utilized biomass based on agricultural and
forestry wastes, sewage sludge, and algae and predicted the cation
exchange capacity using GBR and RF. The authors applied
supervised ML models (GBR model: train; R? = 0.94, RMSE =
2.14; test; R = 0.74, RMSE = 3.44, whereas RF model: train; R* =
0.80, RMSE = 4.27; test; R* = 0.82, RMSE = 2.39) to optimize the
biochar cation exchange capacity in biomass pyrolysis using 353
data points with 80% training and 20% testing data. Results
indicated that the GBR performed better than the RF.

Using ML approaches, Zhu et al. (75) modeled the adsorption
behavior of six heavy metals—Pb, Cd, Ni, As, Cu, and Zn)—on 44
different kinds of biochar. Using a dataset totaling 353 adsorption
studies, they especially used ANN and RF models. With a R* value of
0.973 rather than 0.948 for the ANN, their findings showed that the
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RF model outperformed the ANN model with a greater accuracy.
With 54% of the observed variation taken into account, the study
revealed that CEC turned out as one of the most important biochar
properties in determining adsorption efficiency (Figure 5). This
emphasizes the important part CEC plays in the adsorption process
since it influences the general chemical interactions between the
metal ions and biochar as well as cation retention. The type of surface
functional groups and the mineral composition of the biochars
determine the great correlation between CEC and adsorption
efficiency. Furthermore connected to the higher contributions of
CEC could be the presence of ion-exchange contents (such as K¥,
Na', Ca*", and Mg™") and different surface functional groups (88).
These elements improve the CEC, hence biochars with higher CEC
are more efficient in heavy metal adsorbing. The results of their
research imply that maximizing the CEC of biochars could be a main
focus for enhancing their performance as adsorbents in applications
related to water and wastewater treatment.

6.4 Electrical conductivity

Although biochar is clearly important for energy generation,
conversion, and storage—mostly because of its remarkable electrical
conductivity—there is still a dearth of predictive research on this
fundamental characteristic. Because of its unique properties
including electrical conductivity, which makes it appropriate for
many uses including Li/Na ion batteries, supercapacitors, H,
storage, and O, electro-catalysis, biochar plays a key role in
energy production, conversion and storage (89, 90). The literature
regarding the prediction of biochar’s electrical conductivity is scarce
therefore, first time Abdi et al. (44) predicted the electrical
conductivity of compost (Cooked rice, coco peat, residues of
vegetables such as cabbage, squash, lettuce) with biochar additive
in in-vessel composting machine by ANN and ANFIS. The
statistical results of ANN and ANFIS models for predicting
electrical conductivity revealed that ANFIS provided more
accurate prediction than ANN with highest R* value (0.999) and
the lowest value of RMSE (0.002) (Table 1). However, this
represents an initial foray rather than a comprehensive
understanding. Critical gaps persist in elucidating the electron
transfer pathways within biochar matrices, particularly regarding
the influence of feedstock type, pyrolysis conditions, and surface
chemistry. Future research should prioritize mechanistic studies
integrating advanced spectroscopic techniques and computational
modeling to unravel these processes. Furthermore, extending
predictive modeling efforts over several biochar varieties and
functionalization techniques will hasten the customized design of
biochars best fit for particular electrochemical uses.

6.5 Capacitance
Advancement of renewable energy depends most on biochar, a

novel kind of energy storage acting as a supercapacitor (91). The
energy storing capacity of supercapacitors is mostly determined by
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the electrode material. In this sense, the carbon-based raw material
shows to be the ideal precursor because of its cheap character and
great conductivity (92). Biochar-based electrode materials derived
from biomass resources have rather strong capacitance storage
properties (93). ML is essential in producing predictions using
biochar-related input parameters if one wants to maximize the
capacitance of electrodes based on biochar for supercapacitors. In
this regard, Wickramaarachchi et al. (55) carbonized carbon and
subsequently chemically activated it with KOH using biowaste
comprising mango seed fiber to produce sustainable
supercapacitor material. Furthermore projected using ML models
including DT, MLP, and SVR was the energy storage performance
of the produced activated carbon samples. These models made use
of input parameters comprising biochar physical conditions
(specific surface area, pore volume, average pore diameter, and
current density), activation conditions (activation time, activation
temperature), and specific surface area. With its maximum R* value
(0.99) and lowest RMSE value (4.1), the statistical analysis of several
machine learning models used to forecast capacitance showed that
MLP produced a more accurate prediction than DT and SVR.
Table 1 lists more research on ML techniques for biochar
capacitance prediction.

6.6 Functional groups

Surface properties of biochar, such N-containing functional
groups (94), which offer active sites for heavy metal adsorption
via covalent solid bonding, chelation, electrostatic attraction, and
hydrogen bonding (95) define its performance in terms of
contaminant adsorption. Regarding the relevance of functional
groups in biochar studies, Palansooriya et al. (96) said that the N-
containing functional group in biochar ranked first among twenty
variables including a specific surface area that considerably
influences the immobilization of heavy metal by biochar in soil.
Leng et al. (52) thus projected and optimized the N content of
biochar made from corn husk, rice husk, and sawdust using
machine learning models and showed GBR outperformed RF
with the maximum train R2 value (0.90) and the lowest train
RMSE value (0.38).

Zhu et al. (97) designed two ML models with varying material
property emphasis. Along with reaction conditions including
solution pH (pHsol), temperature (T), and initial concentration
(C0), the first model—Model BP—used basic properties (BP) of
biochar (BC) and iron-impregnated biochar (Fe-BC), including
carbon content (C), oxygen-to—carbon ratio (O/C), iron content
(Fe), and specific surface area (SBET). By contrast, the second
model, Model SF, included non-polar carbon (NPC), C-O, and
C=0 groups instead of just C and O/C by including detailed surface
functionalities (SF) of BC and Fe-BC. With a R* of 0.889 and an
RMSE of 13.8 mg/g in the test group, the results showed that Model
BP based on fundamental surface properties and reaction
conditions could forecast the removal capacity for aqueous
chromium (VI) (Cr(VI)). This good predictive performance
shows how well surface chemical information obtained from XPS
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data is used. Moreover, the predictive accuracy was much enhanced
by including relative proportions of surface functional groups into
Model SF, so stressing the important part these groups play in
predicting the removal capacity of BC and Fe-BC for Cr(VI).

Since oxygen-containing groups such C-O and C=0O on the
biochar surface help to both reduce and adsorption of Cr(VI), the
O/C ratio was found in Model BP to be the most important element
influencing Cr(VI) removal capacity. The effect of iron
impregnation on the relative proportions of C-O and C=0 was
also investigated; in Model SF C-O had a greater relative
importance than C=0. Supported by the recorded consumption
of C-O groups in biochar following Cr(VI) removal, the presence of
C-O groups acts as electron donors, so helping to reduce Cr(VI) to
Cr(III). As electron donors, functional groups including C-OH,
-COOH, and -OH significantly help to lower Cr(VI) to Cr(III) (98).
Furthermore noted to help lower Cr(VI) to Cr(III) were oxygen-
based functional groups including C-OH (99). Redox cycles formed
by C-O groups in Fe-BC couple with C=0 or iron species to further
reduce Cr(VI). Nevertheless, the ideal ratio of C-O (i.e., from ~ 29%
to ~ 38%) for the effective elimination of aqueous Cr(VI) has yet to
be exactly determined; hence, more experimental and theoretical
study is needed to validate these conclusions (100).

The greater significance of C-O compared to C=0 in biochar for
removing Cr(VT), can be attributed to its higher reduction potential
(101). The impact of C-O and C=0 on Cr(VI) removal capacity
varies. The partial dependence plot (PDP) for C=0 illustrates a
direct increase in Cr(VI) removal efficiency as the C=0 content rises
until it reaches about 25%, after which the removal efficiency
declines. In acidic conditions, carbonyl or carboxylic groups
(C=0) can be protonated, enabling them to either electrostatically
attract the negatively charged Cr(VI) species or interact with oxygen
in HCrO,4- and Cr,0,> through hydrogen bonding (102). However,
the electron-deficient nature of C=0O groups makes them more likely
to accept electrons, potentially diminishing the biochar’s redox
reaction efficiency for converting Cr(VI) to Cr(IlI) and reducing
its Cr(VI) removal capacity (103). The reduction of Cr(VI) is
primarily attributed to reductive moieties in biochar, with oxygen-
containing functional groups such as -OH and COC serving as
relatively weak electron donors in neutral and alkaline conditions
(103). However, stronger electron donors, such as persistent free
radicals (PFRs) detected in biochar, are hypothesized to be
associated with the favorable reduction of Cr(VI) (103).

Particularly for ECs, the SHAP analysis in Jaffari et al. (79)
underlines the major impact of the nitrogen-to- carbon (N/C) ratio
on the adsorption performance of biochar. On the biochar surface,
nitrogen-containing functional groups including amines (-NH,),
imines (=NH), and other -NHx species are absolutely important
for contaminant binding. By means of both covalent and ionic
interactions with pollutants, these groups improve adsorption
efficiency. Often via electron sharing or donor-acceptor
mechanisms, covalent bonding results from nitrogen groups
forming strong chemical bonds with reactive functional groups on
contaminants. Stable complexes can be produced, for instance, by
lone pair electrons on nitrogen atoms interacting with electrophilic
sites on organic molecules or heavy metals. By electrostatic forces,
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protonated nitrogen groups (-NH;") draw negatively charged
pollutants, so facilitating adsorption through charge
complementarity. Different functional groups on the surface of
biochar enhance its reactivity and affinity for different pollutants,
so enabling more successful binding of pollutants (104). Higher
adsorption capacity does not always match, though, an increasing N/
C ratio. At quite high nitrogen contents, the expected adsorption
capacity falls. This could be the result of competitive effects whereby
too nitrogen-containing groups—from hydrolysis of proteins and
nucleic acids or synthesis of nitrogen-homogeneous compounds
during pyrolysis (105)—form a hydrophilic water film barrier on the
biochar surface. This barrier limits adsorption by blocking access to
internal pores and active sites. Furthermore, highly packed nitrogen
groups might change surface chemistry negatively or fight for
binding sites.

Richer datasets for future ML models will help them to better
differentiate among nitrogen functional groups and clarify their
different binding mechanisms. Maximizing the adsorption capacity
and specificity of biochar by optimizing the balance and types of
nitrogen groups together with building suitable porosity and surface
functionalities will help to improve its environmental
remedial capacity.

7 Improving model interpretability by
cooperative interdisciplinary work

Many times involving intricate algorithms that might limit
interpretability, ML models applied in biochar design can impede
useful implementation. This gap can be closed with cooperative
frameworks that aggressively involve environmental scientists in
tandem with data scientists. Environmental experts provide
important new perspectives on biochar processes, contaminant
behavior, and system dynamics so facilitating more significant
interpretation of model outputs. Such collaborations can take the
form of iterative processes whereby co-management of model
development, validation, and interpretation guarantees models are
both operationally relevant and scientifically strong. Standardizing
data sharing, model explanations, and cross-disciplinary
communication will help to improve these initiatives even more.
Emphasizing these partnerships not only increases model
transparency but also helps stakeholders to build trust, so
accelerating the application of ML-optimized biochar technologies
in practical environmental remediation.

8 Conclusion and future perspective

This review evaluates the strengths and constraints of present
methods as well as the transforming possibilities of ML in
advancing engineered biochar for contaminant remediation. By
means of analysis of complicated interactions between feedstock
composition, pyrolysis conditions, and activation techniques, the
strong evidence in the literature shows that ML can efficiently

frontiersin.org


https://doi.org/10.3389/fsoil.2025.1623083
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org

Ge et al.

maximize biochar properties—such as surface area, pore structure,
and functional groups. Particularly ensemble and deep learning
methods, ML models have shown great ability to lower
experimental trial-and-error, so accelerating the design of high-
performance biochars for intended pollution reduction.

Important flaws still exist in the field, though. Although ML
glows in predictive modeling and pattern recognition, it sometimes
lacks mechanical interpretability, which makes it challenging to
fully understand why particular biochar modifications produce
better adsorption. Many studies also depend on small or
inconsistent datasets, so restricting model generalizability under
different environmental conditions. Furthermore, dynamic real-
world events like changing water chemistry or long-term biochar
aging—which greatly affect remedial efficacy—are not easily
explained by ML by itself.

Overcoming these constraints requires hybrid methods
combining basic science with ML. Combining molecular-scale
simulations (e.g., DFT) with ML could clarify atomic-level
interactions between biochar surfaces and contaminants, so
bridging the gap between data-driven predictions and mechanistic
knowledge. By tying expected performance to observable chemical
changes, pairing ML with advanced spectroscopy—e.g., in situ
FTIR, XPS—may help to validate model outputs. Furthermore,
including kinetic and thermodynamic ideas into ML models might
improve their field-scale applicability and time-dependent
adsorption behavior prediction capability.

There is still a great knowledge vacuum about how biochar
features affect microbial populations that help to degrade pollutants.
Future research should give ML models including microbiological
data top priority in order to maximize biochar for sustaining
beneficial microbial activity as well as for adsorption. Ultimately,
even if ML-driven biochar generation shows potential to lower
carbon emissions, its actual environmental impact has to be
carefully evaluated using life-cycle studies included into
modeling processes.

Through multidisciplinary collaboration—merging ML with
chemistry, microbiology, and environmental engineering—the
next generation of biochar design can achieve both precision and
sustainability, so releasing its full potential for worldwide
remediation activities.
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