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Existing photovoltaic (PV) output simulation methods often rely on artificial
neural networks for short-term forecasting, and there has been a struggle
to capture long-term patterns and stochastic fluctuations when using Markov
Chain Monte Carlo techniques. To address these limitations, this paper
proposes an improved headroom model-based approach that enhances
traditional methods in three key aspects. First, unlike traditional headroom
models that ignore temporal dependencies in output fluctuations, the
approach integrates probabilistic distributions with soft sequential constraints
to preserve time-dependent patterns. Second, whereas previous studies often
overlooked seasonal weather variations, here PV output curves are classified
into representative weather types and seasonally adaptive Markov chains
are constructed to model radiation dynamics and transition probabilities.
Third, to address the oversimplification of sunrise and sunset transitions,
the method introduces a specialized statistical correction tailored to these
critical periods. The method accurately models PV output patterns and
fluctuations, demonstrating <1% deviation in annual duration (4,121 h) and
utilization (1,297 h), with a 7.80%—14.59% lower root mean square error and
10.27%—14.07% reduced mean absolute error vs. conventional methods. It
efficiently generates realistic long-term sequences from limited data, enhancing
the accuracy and efficiency of PV power sequence simulation.
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1 Introduction

Energy is the foundation of sustainable economic and social development and is an
indispensable power guarantee for human production and life (Liu C. C. et al,, 2022). As
an important part of renewable energy (Li P. D. et al., 2022), photovoltaic (PV) power
generation in China has been developing rapidly in recent years, effectively alleviating both
the energy crisis and environmental pressures (Liu J. et al., 2023). However, the output
power of PV power generation systems is easily affected by environmental factors such
as irradiation and temperature, and it exhibits significant randomness and uncertainty
compared to traditional power sources (Zhou et al., 2023). These issues pose a huge
challenge to the safety and reliability of power system operations. Simulating the output
curve of PVs is important for the optimal design of PV power plants, grid configuration
planning, and the formulation of new energy policies (Lee et al., 2021).
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PV output curve modeling methods can be divided into two
main categories based on the modeling object (Dong et al., 2023).
The first category is the modeling method based on solar irradiation
intensity, also known as the indirect method, which generally
uses physical methods, statistical methods, or learning methods to
establish a model of solar irradiation, and then the appropriate
photovoltaic cell model for photovoltaic conversion to obtain
the photovoltaic output model (Wang et al., 2022). The relevant
literature is based on this idea, which first establishes the optimal
probability model for radiation intensity, and then obtains the PV
output according to the PV conversion rate (Benchrifa et al., 2023;
Mishra et al., 2023). This method can clearly reflect the physical
meaning and better reflect the regular changes, but it requires a
large amount of detailed meteorological data and it is difficult to
accurately fit the PV conversion relationship of different PV cell
inversion processes, making it difficult to put into practical use
most of the time (Liu, 2022).

The second category is the power-based modeling method, also
known as the direct method, which uses algorithms to find the
mathematical relationship between measured PV historical output
data, and directly simulates new PV output sequences based on that
historical data (Zhi et al., 2023). The main algorithms used in the
current research approaches are artificial neural networks (ANNs),
deep learning models, and Monte Carlo Markov Chains. Kallio and
Siroux (2023) developed prediction models using multiple linear
regression and ANNSs, demonstrating that the ANN model trained
on individual PV output data achieved the highest accuracy. While
ANNGs excel at capturing non-linear relationships in short-term PV
forecasting, their performance strongly depends on the quality and
quantity of training data. Additionally, ANN models are prone to
overfitting when applied to medium- and long-term simulations,
limiting their generalization capability. Meng et al. (2021) adopted
a deep learning-based approach to identify highly correlated
meteorological variables under different weather conditions. This
method improved the mapping between meteorological factors
and power output while reducing computational training time.
However, deep learning models require extensive hyperparameter
tuning and large datasets. Yang et al. (2023) proposed a hybrid
PV power prediction method combining similar days selection,
gray-Markov models, and AdaBoost. Their approach used Markov
chains to correct gray-Markov prediction errors and integrated
them via the BP-AdaBoost algorithm. While this method improved
prediction robustness by combining multiple techniques, the gray-
Markov model itself struggles with highly stochastic PV output
fluctuations, particularly in long-term simulations where weather
variability introduces significant uncertainty.

The modeling of PV output time based on the headroom model
combines the above two methods, better simulating the generation
of sequences of any length with a small amount of data, and so is
suitable for the medium- and long-term simulation of PV output
sequences. However, current research on the simulation of PV
output sequences based on the headroom model often ignores the
time-series characteristics of fluctuations in historical sequences. At
the same time, it is difficult to reflect the fluctuating characteristics
of PV output with seasonal and weather changes. Therefore, in
this paper we choose to improve the traditional simulation method
based on the headroom model. Li (2015) estimated the maximum
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value of solar radiation under ideal conditions using the headroom
model and modeled the deterministic and uncertain components of
the PV output separately to reflect regular changes and accurately
simulate the PV output time series. Therefore, in this paper we
will demonstrate the effectiveness of the proposed method by
comparing it with the method in Li (2015).

Using the traditional simulation method based on the
headroom model, we propose a new PV output simulation method.
First, the relative PV output is decomposed into a base value
and an offset value, and probability models are established for
different weather types. Then, the weather transfer probability is
calculated separately for each season, and a weather Markov chain
is generated at random. Finally, the base value and offset value
are sampled using a method that takes into account the volatility
of the time series. After correcting the sunrise and sunset times,
the PV output sequence is restored according to the headroom
model. The simulation is based on data from a specific location in
Guangdong Province in 2023. The results show that compared with
the traditional method used in Li (2015), the simulation sequence
generated by the method in this paper more effectively retains
the probability distribution and autocorrelation of the historical
PV output sequence, while also inheriting the seasonality of the
historical sequence. It can provide a basis for the dispatching plan
and operation mode arrangement of the power grid.

2 Analysis of PV output based on the
headroom model

The active output of a PV system is affected by light, including
both deterministic (e.g., periodic variations in solar radiation) and
stochastic factors (e.g., air quality, cloud cover). Therefore, the PV
output can be divided into deterministic and stochastic parts; the
deterministic part can be simulated by a headroom model, while
the stochastic part needs to be described by other models to more
accurately reflect the output variations.

2.1 Principles of the headroom model

2.1.1 Solar phototransport process

Energy on Earth comes primarily from the sun—it travels
through the atmosphere to the surface in the form of radiation,
which is categorized into direct and diffuse radiation (Xu et al,
2024). For any point on Earth, the intensity of radiation directly
from the sun onto Earth’s atmosphere can be calculated using
Equation 1 (Erol and Filik, 2022):

365 M

Iy =395 |:l + 0.033 cos (M)]
where I is the intensity of solar radiation perpendicular to the
atmosphere, Sy is the solar constant (which represents the total
amount of solar radiation received per unit area perpendicular to
the rays of light entering Earth’s atmosphere, and takes the value
of 1,367 W/m?), and N is the date sequence number of the year,

starting from 1 January.
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2.1.2 Solar position model

The solar incidence angle, i.e., the angle between the solar
incidence ray and the normal to the inclined plane, can be
calculated using Equations 2-5, assuming that the attenuating effect
of the atmosphere on the intensity of solar irradiation is not taken
into account (Masevhe and Maluta, 2022):

sino = sin § sin ¢ + sin § sin ¢ cos w (2)
o = (12 — )15° + (120° — ¥) (3)
o 23.45° 2844N
d &~ 2m 553 sin (27t 376*;) (4)
cos0; = cos B sina + sin B sin y cos d sin @ + sin B cos y cos §
(sin ¢ cos w — sin §) (5)

where o denotes the solar altitude angle, @ the solar time angle, ¢
the local latitude, § the declination angle, and g is the tilt angle and
y the azimuth angle of the PV array panels.

2.1.3 Effect of the atmosphere on the intensity of
solar radiation

The atmospheric transparency coeflicient is the percentage
of Earth’s atmosphere that allows the passage of solar radiation.
Denoting the atmospheric mass by Mpand the atmospheric
transparency factor for direct radiation by t,, the atmospheric
transparency coefficient for direct solar radiation under full sunny
conditions can be calculated using Equations 6, 7 (Zhou et al,
2022):

Ty = 0.56 (¢~ 0-56Mn | (=0.096My)

(6)

1
M, = [1229 + (614sina)*]* — 614sina (7)

For higher elevations, we correct for the atmospheric quality of the

(

where M}, is the corrected atmospheric quality,z is the altitude of
P(z)
Py
The instantaneous direct solar radiation I;, is obtained from

Equation 9 (Ding et al., 2024):

area using Equation 8:

P(2)

My = M,—— =M, (8)
Py

288 — 0.065z \ >2%
288

the area, and is the atmospheric quality correction factor.

)

Ib = IOTb cos 6

Approximating the atmospheric transparency coefficient of
diffuse radiation, 74, by assuming a linear relationship between it
and direct radiation (Liu et al., 2022) gives us Equation 10:

74 = 0271 — 0.2747, (10)
According to Equation 11, the intensity of solar radiation is
Ding et al. (2024)

1 I—Td

Iy = - sino—————
1— 1.41nﬁh

3 (11)
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where k is a parameter related to atmospheric quality. When the
atmospheric quality is poor, k takes a value between 0.6 and 0.7;
when the atmospheric quality is normal, k takes a value between
0.7 and 0.8; when the atmospheric quality is better than normal, k
takes a value between 0.8 and 0.9.

In summary, the total solar radiation intensity at a location
on Earth at time ¢ can be calculated from Equation 12 without
considering random factors (Sheng et al., 2022):

L=+ 1 (12)

The intensity of solar radiation received under headroom
conditions on the PV panels at any location and moment on Earth
can be calculated using (Equation 12).

From this analysis, it can be seen that the level of PV output is
affected by both deterministic and stochastic factors. Therefore, to
improve the accuracy of the PV output model, it is divided into two
parts (Equation 13):

P(i,t) = Ppcy (i, t) * Pn(i, t) (13)

where Px(i,t), P(i,t), and Ppci(i,t) are the PV relative output,
PV actual output, and headroom output, respectively, at moment
t of day i. The headroom output is the PV output generated by
the intensity of solar radiation in the absence of any shading in
the headroom condition, which is an analytical function of time,
geographic location, and the tilt angle of the PV panels (Wang
et al,, 2020). The specific solution process can be referred to in the
literature (Li, 2015), and will not be repeated here.

The relative output is decomposed into a power baseline value
Ps(i) and a power offset value AP (i, t) through Equations 14, 15:

Pn(iy t) = Ps(i) + APN(i, t) (14)
Ps(i) = ;;PN@ 0 (15)

where the baseline value corresponds to the average value of daily
output, reflecting the intensity of solar radiation throughout the
day, and the offset value is the output minus the average value at
each moment, reflecting the fluctuation of solar radiation. In what
follows, the uncertainty part of the PV is modeled based on the
reference value and offset value respectively.

3 Method for PV output simulation

The specific flow of PV simulation is shown in Figure 1, which
summarizes the following steps:

Step 1. Calculate the PV relative output, the baseline value, and
the offset value based on the headroom model. The principle of
calculating the PV relative output based on the headroom model
and splitting it into the base value and offset value was specifically
introduced in Section 1.

Step 2. Cluster PV relative output curves to classify weather
types. By adopting a self-organizing map (SOM; see Section 3.1.1),
the PV output curve is divided according to the clustering result,
and each curve corresponds to the weather type.
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Begin

l

1.Calculate PV relative output, baseline,
and offset based on clearsky model.

l

2.Cluster PV relative output curves to
classify weather types.

i

3.Fit probability distributions for
baseline, offset, and fluctuations by
weather type.

l

4. Simulate seasonal weather types.

l

5.Sample daily baseline and fluctuation
curves to generate relative output.

l

6.Correct sunrise and sunset times.

l

7.Combine net output to calculate PV
output time series.

l

End

FIGURE 1
Flowchart showing the PV output simulation procedure.

Step 3. Fit probability distributions for baseline, offset, and
fluctuations by weather type. A kernel density estimation method
is used to fit the probability distribution of the normal output
moment benchmark value, offset value, and fluctuation value for
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each type of weather. The statistics for each time period relative to
the previous time period relative power difference, are called the
fluctuation value.

Step 4. Simulate weather types by season. The weather
clustering results in seasons, respectively, the number of weather
types and transfer probability, generate a weather Markov chain,
which randomly generates the weather type of each day.

Step 5. Sample daily baseline and fluctuation curves to generate
relative output. According to the weather type, sample simulation
each day’s benchmark value and fluctuation coeflicient curve to
obtain the PV relative output curve.

Step 6. Correct sunrise and sunset times. Consider 1 h after the
start of daily PV output and 1h before the end of output as the
sunrise and sunset time of each day, and correct the relative output
of this time.

Step 7. Combine the net outputs to calculate the PV output
time series. The PV relative output obtained from the simulation is
multiplied by the headroom output to obtain the actual PV output.

3.1 Weather type classification and weather
type simulation

3.1.1 Comparison of security efficiency

Weather factors affect the amount of solar radiation received
by the PV power plant, which in turn affects its output (Hui et al.,
2022). The relative PV output curves are significantly different for
different weather factors (Wang et al., 2024). Since the fluctuation
characteristics of the PV output are only related to the thickness of
cloud cover, it is not necessary to classify many weather types for PV
output time-series modeling, and it is only necessary to classify the
generalized weather types obtained through the clustering analysis
of PV output curves.

An SOM is a kind of unsupervised learning network, the
complex can realize the dimensional mapping from the input
space (n-dimensional) to the output plane (2-dimensional), and
the mapping has topological feature preservation properties (Liu
S. Q. et al, 2023). In this paper, we adopt an SOM method to
select four feature quantities of one day’s output data to form
feature vectors instead of the relative output curve vectors of
photovoltaic power plants for clustering analysis, and divide the
photovoltaic output curves according to the clustering results. Each
class of curves corresponds to a different type of weather. The four
selected eigenquantities are the base value, standard deviation, first-
order difference absolute mean, and first-order difference absolute
maximum, and they are calculated as follows:

e Baseline value, d;. This index reflects the level of output

throughout the day, e.g., high on sunny days and low on rainy
days, and can be calculated from Equation 16:

1< )
=~ ;PN(O (16)

where Px (i) represents the relative PV output at the ith moment of
the day.
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e Standard deviation, d,. This index reflects the level of
fluctuation throughout the day, e.g., low on sunny and rainy
days and high on cloudy days, and can be calculated from
Equation 17:

dy = % ; (Pri) — 1) (17)

e Mean of the absolute value of fluctuation value, d3. This index
reflects the level of temporal fluctuations, e.g., high on cloudy
days, and can be calculated from Equation 18:

Vo = }PN(Z' +1

~

— Pn(i)|
dy= L IVO (18)
" i=1

3
|

where vy is the relative output difference of each time period relative
to the previous time period; that is, the first-order difference of the
offset value, which is called the fluctuation value.

e Maximum of the absolute value of fluctuation value, dy. This
index reflects the intensity of fluctuations, e.g., high on cloudy
or sudden weather, and can be calculated from Equation 19:

dy = max vy (19)

To ensure that the weights of the eigenvalues are the same, the
input to the neural network needs to be normalized.

3.1.2 Simulation of weather transfer
characteristics

After the weather types are obtained from clustering, the
sequence of weather types throughout the year needs to be further
determined. For any stochastic process, when the state at a certain
moment is known, the subsequent states are only related to the
state at that moment, but not to the state before that moment; this
transfer property that the probability distribution of the next state
can only be determined by the current state is known as the Markov
property. A Markov chain is the discrete-time stochastic process
model with the Markov property for the stochastic process in the
state space after the transition from one state to another (Ying and
Lin, 2024).

When studying the transfer characteristics of weather, it can be
assumed that today’s weather state only relates to yesterday, and the
simulation of the sequence of weather types throughout the year
can be regarded as a Markov stochastic process (Kolios et al., 2023).
That is, by using Markov chains to simulate the transition between
various types of weather, the clustering of the weather types can be
statistically obtained from the historical weather process transfer
probability matrix.

According to Section 2.2.1, the daily output profiles have been
classified into a number of weather types, Z = 1,2,...,k, using
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the SOM method. The transitions between weather types can be
represented by a state transfer matrixP, and a cumulative state
transfer matrix Q;, both of which can be expressed as a k x k
square matrix:

P11 p12 ... Pik
P21 P22 - P2k
z = . .. . (20)
DPk1 Pk2 - - Pkk
_ P
pu puFpi2 oo D pui
i=1
k
P21 pa1 +p22 .. D pai
Q, = i=1 (21)
k
Pkl Pr1FPr2 oo D P
L =1
where p;j = P(Z,11 = j}Zn = i) denotes the conditional

probability that today is of type i and tomorrow is of type j. After
establishing the state transfer matrix P, and the cumulative state
transfer matrix Q, based on the historical weather data, a first-order
Markov chain Z = {Zy,2,,..
the transfer characteristics of the weather changes within N days.
The probability distributions of the weather for different
seasons are also different. Therefore, it is necessary to count the

.,ZN} can be generated to simulate

number of times and the transfer probability of each weather type
separately by season, and generate the weather Markov chain to
select the transfer matrix for the corresponding season.

3.2 PV output time-series simulation

3.2.1 Distribution fitting based on kernel density
estimation (KDE)

The stochastic modeling of PV output requires the probability
distribution of statistical PV output characteristics. The general
research idea is to first assume that the solar irradiance or other
influencing factors obey a certain parameter distribution, and then
estimate the parameters of the distribution using historical data.
This research method has certain limitations: parameter selection
is subjective, and the theoretical basis is not sufficient. Moreover,
most of the existing related research focuses on the parameter
distribution of a specific influencing factor, and it is difficult to
comprehensively reflect the stochasticity. Therefore, the preset
parameter distribution cannot be applied.

Therefore, in this paper, we choose to use kernel density
estimation (KDE) for parameter fitting, which is a method that
does not require any a priori knowledge, instead taking the
characteristics of the data distribution completely from the data
samples; this method has been applied to load modeling and wind
speed modeling (Li M. et al., 2022). Its specific principle is more
complicated and has been demonstrated in the literature, so it will
not be repeated here (see Hou et al., 2022).

For modeling PV stochasticity, we fit probability distributions
to the baseline and offset values of the PV relative output. However,

frontiersin.org
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Begin 5
| Begin
1.Sample daily baseline by weather type. «—— l
2 Sample offset by weather type. 1.Find start, end, and relative output of
l the curve.
3.Subtract offset to calculate fluctuation. i
- 2.Define sunrise and sunset hours.
4.Sampling result judgment. i
l True
5.Proceed to the next moment. 3.Determine reference output for
l sunrise and sunset moments
False
6.Check daily length i
y True 4.Fit probability distributions and
7.Combine headroom output to calculate sample OUtpUtS.
PV output.
False
8.Check total sequence length. 5.Reduce to relative OUtpUt.
l True i
Begin
FIGURE 2 End
Flowchart showing the PV relative output sequence simulation
procedure. FIGURE 3
Flowchart showing the sunrise and sunset time correction process.

extracting only the offset value of each time period in turn does
not enable a reflection of the time-ordered nature of PV series
fluctuations. Therefore, it is necessary to count the relative output
difference of each time period relative to the previous time period;
that is, the fluctuation value vy.

Bandwidth selection plays a critical role in non-parametric
KDE modeling. Excessive bandwidth leads to oversmoothing of the
probability density function, obscuring essential structural features,
while insufficient bandwidth results in overfitting through the
inclusion of spurious local fluctuations. In this study, the optimal
bandwidth for each weather type is determined using an established
formula (Rao et al., 2023). The impact of bandwidth selection on
the simulated PV output sequences will be further examined in
Section 4 (Case Study) to validate modeling robustness.

3.2.2 Sampling method considering the
time-ordered nature of PV series fluctuations

After completing the extraction of the output characteristics
and weather transfer characteristics of the original sequence, the
simulation of the PV sequence can be performed. The overall
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simulation process is shown in Figure 2. The specific steps are
as follows.

Step 1. Sample daily baseline by weather type. Simple
sampling of daily baseline values based on randomly generated
weather chains.

Step 2. Sample offset by weather type. Simple sampling of daily
offset values based on randomly generated weather chains.

Step 3. Subtract offset to calculate fluctuation. Take the current
moment’s offset value and subtract it from the value at the previous
moment to get a sample of the fluctuation value vy.

Step 4. Judge sampling result. Denote the probability density
distribution function of vy as f (vg). Construct a new probability
density function g (vp), satisfying kq (vo) > f (vo), where k is a
constant. Sample [0, kq (vo)] uniformly to get ug. If ug <f (vo), then
accept this sampling and go to the next moment. Otherwise reject
this sampling and resample the offset value distribution until the
sampling is accepted.

Step 5. Proceed to the next moment. Accept this sampling to get
the offset value for that moment.
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FIGURE 5
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FIGURE 6
Historical and relative output during a one-week period.

Step 6. Check daily length. If sampling has been completed at all
moments of the current day, calculate the relative PV output at all
moments of the current day and proceed to the next day. Otherwise
return to step 2.

Step 7. Combine headroom output to calculate PV output.
Multiply the simulated relative PV output by the headroom output
to obtain the actual PV output.

Step 8. Check total sequence length. If all days of the simulation
sequence have been generated all day PV relative output, output PV
relative output simulation sequence, otherwise return to step 1.

3.2.3 Sunrise and sunset time correction

The periods of 1h after the start of the daily PV output and
1h before the end of the output are regarded as the daily sunrise
and sunset hours. Compared with the normal power time, the
relative power of each weather type is shown to fluctuate around the
benchmark value, and the relative power of the sunrise and sunset
hours is shown to have an upward or downward trend. Therefore,
it is necessary to correct this period of time using separate statistics,
as shown in Figure 3. The specific steps are as follows.

Step 1. Find the starting moment Tyise, ending moment T,
and the corresponding relative output values Pnyise and Pyt of the
relative output curve for each day.

Step 2. Define the sunrise and sunset hours. The five moments
after the starting moment are defined as sunrise hours and the five
moments after the ending moment are defined as sunset hours.

Step 3. Determine the reference output for each moment of the
sunrise hour and each moment of the sunset hour, respectively. The
ratio of the relative output to each moment of the sunrise period

Frontiersin Smart Grids

and the ratio of the relative output to each moment of the sunset
period are used as reference outputs.

Step 4. Fitting probability distributions to reference outflows
at each moment separately and sampling. Probability distributions
were fitted to the reference outflows at each moment separately for
the sub-seasons and sampled.

Step 5. Reduction to relative output. Reduction of the reference
output obtained by sampling at each moment in time to the

relative output.

4 Case study
4.1 Boundary conditions

In this paper, the effectiveness of the proposed method is
modeled and verified based on the 2023 output historical data of a
PV station in Yangjiang, Guangdong Province. The time resolution
of this data is 10 min, which gives 144 pieces of data per day.
The power station is located at approximately 21.8°N, 112°E, and
the rated capacity is 100 MW. The simulation environment is
MATLAB 2022a.

Figure 4 shows the historical data output for the whole
year, where the deterministic data and uncertainty of the PV
output can be observed. The deterministic data includes the
daily characteristics of the daily output, which rises after sunrise,
reaching an extreme value at noon, and then declines to zero output
at sunset. The deterministic data also includes the regular variations
of annual characteristics such as long output time in summer,
followed by the second-longest output time in spring and fall, and
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Cumulated transition matrixes for each of the four seasons.

the shortest output time in winter. Uncertainty includes random
variations influenced by weather.

4.2 Analysis of PV relative output

The modeling data are missing the tilt angle and horizontal
angle of the photovoltaic array. For this situation, the specific
principle of this paper for estimating installation information is
that the headroom power is the ideal power, and the parameter is
roughly estimated according to whether the power time period is
covered, and then it is checked whether the specific daily power
curve is enveloped for fine-tuning. Figure 5 shows the specific time
periods of the historical annual PV output and the headroom
output. As can be seen from the figure, the daily headroom output
curve envelopes the historical output curve. Although there is a
certain deviation from the actual situation due to the lack of the tilt
and horizontal angles of the PV array, it will not have a significant
impact on the simulation results because the headroom model is
used during the simulation process to transform and invert the
actual power and relative power. As long as the actual power
can be completely enclosed by the headroom power during the
normal power output period, it will have little impact on clustering,
statistics, modeling, and sampling during the process.

Observation of the labeled part of Figure 5 reveals that, unlike
the netting sequence, the historical sequence power out time

Frontiersin Smart Grids

does not show a better symmetry, with the starting moment in
January-March significantly later than the netting sequence, and
the power out time being delayed as a whole, while in September-
December, the sunset moment is earlier than that of the headroom
sequence and the power output moment is advanced overall. This
phenomenon may be due to the installation of each PV panel tilt
angle and the horizontal angle is not the same as the result; if there
is a large impact, using multiple sets of parameters to simulate the
combination of each PV panel could be considered to obtain the
target effect.

After obtaining the headroom model, the relative output of the
historical series is calculated and split into the baseline and offset
values. The last week of data is selected for display in Figure 6,
where it can be seen that the daily curves are quite different,
representing different weather types, and so it is necessary to model
them separately. Meanwhile, it can be observed that at sunset on the
last day, the relative output appears to climb abnormally; the reason
and correction method for this are discussed in Section 3.2.3.

4.3 Weather classification

We process the relative output of the historical series of
normal hours, calculating the four characteristic values of the
daily output curve (baseline value, standard deviation, mean
of the absolute value of fluctuation value, and maximum of
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the absolute value of fluctuation value), and inputting them
into the SOM neural network for clustering after normalization.
Using the Davies-Bouldin Index (Li and Liu, 2022), it was
determined that they could be classified into six classes. These
classes are named according to their output characteristics: cloudy,
rainy, sudden change, sunny, cloudy A, and cloudy B (cloudy
A has a medium average output level but high fluctuation,
while cloudy B has a high average output level and medium
fluctuation). The typical output curves for each category are shown
in Figure 7.

As can be seen in Figure7, the data among the various
types of weather are still scattered, and parameter fitting
may be difficult when fitting probability distributions of
the output

characteristics, so the KDE non-parametric

estimation was chosen to rely only on fitting the

data characteristics.

4.4 Simulation of weather type

For seasonal weather clustering, the state transfer matrix was
generated by counting the number of times each weather type
occurred and the respective transfer probability. Figure 8 shows
a schematic diagram of the cumulative transfer matrix for the
four seasons. The differences in the probability of weather transfer
between seasons are quite large. Therefore, it is necessary for us
to calculate the probability of weather transfer for each season
separately and sampling to generate the weather chain. We then
extract the baseline value for each day and the offset value for
each moment according to the weather, and judge whether it is
acceptable or not. After the extraction is completed, the correction
to the output boundary and the sunrise and sunset hours is carried
out. The relative output obtained from the correction is multiplied
by the headroom output to obtain the simulated output sequence.
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TABLE 1 Comparison of key indicators for historical and simulated
output.

Output data

nual output Annual utilization
uration/h /h

Historical output 4160.5 1283.2

Simulated output 4121.3 (fluctuation range:

4,100-4,190 h)

1296.7 (fluctuation range:
1,260-1,340 h)

4.5 Simulation results and evaluation

Figure 9 shows the annual simulated power output diagram.
Compared with the historical power output in Figure 4, it can
be seen that the simulated power output well restores the daily
and annual characteristics of the photovoltaic power output.
Additionally, the weather changes over a period of time show the
seasonality of the historical series well; for example, there are many
cloudy and rainy days in winter and spring, and there are many
sunny days in summer and autumn.

The overall evaluation of the simulation results, as shown in
Table 1, provides further statistical comparison of historical output
(Figure 4) and simulated output (Figure 9) for the annual output
duration and annual utilization hours. The results show an annual
output duration for the historical output of 4160.5h, and an
annual output duration for the simulated output of 4121.3 h (taking
into account the Markov chain simulation of weather types and
the randomness of sampling the daily baseline values and offset
values, the fluctuation range is 4,100-4,190h). There are 1283.2
annual utilization hours for the historical output and 1296.7 annual
utilization hours for the simulated output (the fluctuation range is
1,260-1,340 h). Overall, the error of the key indicators of the two
is within an acceptable range, and the annual weather distribution
is also relatively consistent, so the simulation results are reliable
and valid.

frontiersin.org


https://doi.org/10.3389/frsgr.2025.1632546
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org

Dong et al.

Figure 10 shows the simulated output curves for each type
of weather. Observing the generation of specific daily output
curves in Figure 10, it can be seen that the output characteristics
of the different types weather are well-reflected. Moreover, the
sampling method is consistent with the continuity of PV output
because the simulated curves do not show frequent and drastic
fluctuations within a short period of time due to the consideration
of the temporal nature of the fluctuations. In terms of simulation
speed, after repeated tests, it takes less than 10s to generate a
PV simulation output sequence with a length of 1 year, and the
program runs efficiently.

10.3389/frsgr.2025.1632546

Since the proposed simulation method builds upon the
traditional headroom model-based approach (referred to as the
original method), its improvements include selective sampling of
fluctuation amounts and a correction method for sunrise and
sunset times to better restore the characteristics of the historical
series. To further validate the effectiveness of the proposed method,
the probability density function and autocorrelation function were
used to assess whether the simulated results preserve the historical
characteristics of the original series. A comparative analysis was
conducted of the historical output, the simulated output generated
by the original method, and the simulated output generated by
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the proposed method. The autocorrelation coeflicients of the
three outputs are presented in Figure 11, while the probability
distributions relative to the rated capacity are shown in Figure 12.
The results demonstrate that, in terms of both autocorrelation
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coeflicients and probability distribution, the proposed method
yields simulation results that align more closely with the historical
output than the original method, thereby enhancing the fidelity of
historical characteristic restoration.

The root mean square error (RMSE), mean absolute error
(MAE), and normalized RMSE (NRMSE) were computed for
both methods across four distinct seasons. As summarized
in Table 2, the proposed method consistently achieves lower
RMSE, MAE, and NRMSE values compared to the original
method in all seasonal cases. These results quantitatively

confirm that the proposed simulation approach more accurately

replicates the historical output characteristics than the
original method.
4.6 Parameter sensitivity analysis

To  comprehensively  evaluate the robustness of
key parameters in the proposed model, systematic
sensitivity analyses were conducted for both the KDE
bandwidth selection and the sunrise/sunset correction
window length.

For the KDE-based modeling approach, the bandwidth
sensitivity was investigated by adjusting the original optimal
bandwidth by £20%, £15%, £10%, and +5%. As illustrated in
Figure 13, the resulting RMSE, MAE, and NRMSE metrics for all
four seasons exhibit a distinct concave pattern, with minimum
values consistently occurring at the original bandwidth setting.
This behavior confirms that the bandwidth derived from the
established optimal formula represents the most appropriate
choice for minimizing simulation errors across different
seasonal conditions.

Regarding the sunrise/sunset correction, the sensitivity analysis
examined window lengths ranging from zero (no correction)
to nine time intervals. Figure 14 demonstrates that all three
error metrics reach their minimum values when implementing
a five-interval correction window, validating the original
parameter selection. This optimal window length effectively
balances the transitional period characterization while avoiding

overcorrection effects.

5 Conclusions

This paper proposes a new simulation method for photovoltaic
output based on the traditional headroom model. By introducing

TABLE 2 Comparison of simulation errors between the proposed and original methods.

Error metrics RMSE MAE NRMSE

Method Proposed Original Proposed Original Proposed Original

Spring 15.6755 17.7450 8.0027 9.1803 1.2762 1.4447

Summer 14.8972 16.6202 7.7548 8.7376 0.8396 0.9590

Autumn 14.7222 17.2376 7.4174 8.6320 0.8882 1.0633

Winter 14.1354 15.3311 6.8808 7.6681 1.1091 1.2029
Frontiersin Smart Grids 13 frontiersin.org


https://doi.org/10.3389/frsgr.2025.1632546
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org

Dong et al. 10.3389/frsgr.2025.1632546
T8 Seasonal RMSE Under Bandwidth Adjustment o Seasonal MAE Under Bandwidth Adjustment
©— Spring —&— Spring
18 |—&— Summer 9.5 | Summer
Autumn & Autumn
175 |—6—Winter —6— Winter
9
i 7
E E]
S 165 T &
>
i w
2 16 < 8
x =
15.5
75
15
145 7
14 6.5
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
Bandwidth Adjustment Ratio (%) Bandwidth Adjustment Ratio (%)
A) 16 Seasonal NRMSE Under Bandwidth Adjustment B)
’ ~—&— Spring
1.5 | = Summer|
: Autumn
—&— Winter
@
=
©
>
w
€
=
o
—
1
0.9 W\
0.8
-20 -15 -10 -5 0 5 10 15 20
Bandwidth Adjustment Ratio (%)
FIGURE 13

Seasonal error metric variations under bandwidth adjustment. (A) RMSE, (B) MAE, and (C) NRMSE.

selective sampling of the fluctuation quantity and improving the
correction method at sunrise and sunset, the characteristics of
the historical series can be restored with high accuracy. At the
same time, when simulating weather types, the probability of
weather transfer is statistically analyzed by season to reflect the
fluctuating characteristics of PV power output with seasonal and
weather changes. Through the simulation of the output of an actual
PV power plant, it is verified that the method proposed in this
paper can effectively simulate the regular changes and random
fluctuations of photovoltaic power generation. We draw the
following conclusions.

First, the sampling method for
temporal the method for
sunrise and sunset times have enhanced the practicality
of the model. This paper introduces a selective sampling
of the fluctuation amount when sampling the benchmark
and offset of the relative photovoltaic output.
Simulation show that the sequence
sampling method closely matches the

improvements in

fluctuations and correction

values
results simulated
generated by this
historical data terms
autocorrelation, better reflecting the characteristics of the
historical sequence. Validation with operational PV plant data

demonstrates superior performance, with a 7.80%—14.59%

in of probability distribution and
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reduction in RMSE, a 10.27%—14.07% lower MAE, and a
7.80%—16.4% in NRMSE compared to the
original method.

Second, the categorization of weather types and the use
of Markov chains enhance the flexibility of simulation.
Through SOM clustering of the historical data of the PV
output, the weather is categorized into multiple types, and
Markov chains are used to simulate the transfer probability

improvement

of different weather, which effectively retains the fluctuating
characteristics of the PV output with seasonal and weather
changes. The method is able to accurately simulate the
regularity and fluctuation of output power under different
weather conditions, and is suitable for medium- and
long-term simulation.

Last, the case study confirms that the proposed PV
simulation method achieves high computational efficiency
while accurately replicating actual output characteristics. Key
metrics show excellent agreement: annual output duration
(4,121 vs. 4,161 historical hours) and utilization hours
(1,297 vs. 1,283 historical hours) both demonstrate less than
1% deviation. This precise performance makes the method
particularly valuable for grid scheduling, plant design, and policy

development applications.
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