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Existing photovoltaic (PV) output simulation methods often rely on artificial

neural networks for short-term forecasting, and there has been a struggle

to capture long-term patterns and stochastic fluctuations when using Markov

Chain Monte Carlo techniques. To address these limitations, this paper

proposes an improved headroom model-based approach that enhances

traditional methods in three key aspects. First, unlike traditional headroom

models that ignore temporal dependencies in output fluctuations, the

approach integrates probabilistic distributions with soft sequential constraints

to preserve time-dependent patterns. Second, whereas previous studies often

overlooked seasonal weather variations, here PV output curves are classified

into representative weather types and seasonally adaptive Markov chains

are constructed to model radiation dynamics and transition probabilities.

Third, to address the oversimplification of sunrise and sunset transitions,

the method introduces a specialized statistical correction tailored to these

critical periods. The method accurately models PV output patterns and

fluctuations, demonstrating <1% deviation in annual duration (4,121h) and

utilization (1,297h), with a 7.80%−14.59% lower root mean square error and

10.27%−14.07% reduced mean absolute error vs. conventional methods. It

e�ciently generates realistic long-term sequences from limited data, enhancing

the accuracy and e�ciency of PV power sequence simulation.
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1 Introduction

Energy is the foundation of sustainable economic and social development and is an

indispensable power guarantee for human production and life (Liu C. C. et al., 2022). As

an important part of renewable energy (Li P. D. et al., 2022), photovoltaic (PV) power

generation in China has been developing rapidly in recent years, effectively alleviating both

the energy crisis and environmental pressures (Liu J. et al., 2023). However, the output

power of PV power generation systems is easily affected by environmental factors such

as irradiation and temperature, and it exhibits significant randomness and uncertainty

compared to traditional power sources (Zhou et al., 2023). These issues pose a huge

challenge to the safety and reliability of power system operations. Simulating the output

curve of PVs is important for the optimal design of PV power plants, grid configuration

planning, and the formulation of new energy policies (Lee et al., 2021).

Frontiers in SmartGrids 01 frontiersin.org

https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://www.frontiersin.org/journals/smart-grids#editorial-board
https://doi.org/10.3389/frsgr.2025.1632546
http://crossmark.crossref.org/dialog/?doi=10.3389/frsgr.2025.1632546&domain=pdf&date_stamp=2025-11-13
mailto:xingyue@tsinghua-eiri.org
https://doi.org/10.3389/frsgr.2025.1632546
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frsgr.2025.1632546/full
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Dong et al. 10.3389/frsgr.2025.1632546

PV output curve modeling methods can be divided into two

main categories based on the modeling object (Dong et al., 2023).

The first category is themodelingmethod based on solar irradiation

intensity, also known as the indirect method, which generally

uses physical methods, statistical methods, or learning methods to

establish a model of solar irradiation, and then the appropriate

photovoltaic cell model for photovoltaic conversion to obtain

the photovoltaic output model (Wang et al., 2022). The relevant

literature is based on this idea, which first establishes the optimal

probability model for radiation intensity, and then obtains the PV

output according to the PV conversion rate (Benchrifa et al., 2023;

Mishra et al., 2023). This method can clearly reflect the physical

meaning and better reflect the regular changes, but it requires a

large amount of detailed meteorological data and it is difficult to

accurately fit the PV conversion relationship of different PV cell

inversion processes, making it difficult to put into practical use

most of the time (Liu, 2022).

The second category is the power-based modeling method, also

known as the direct method, which uses algorithms to find the

mathematical relationship between measured PV historical output

data, and directly simulates new PV output sequences based on that

historical data (Zhi et al., 2023). The main algorithms used in the

current research approaches are artificial neural networks (ANNs),

deep learning models, and Monte Carlo Markov Chains. Kallio and

Siroux (2023) developed prediction models using multiple linear

regression and ANNs, demonstrating that the ANN model trained

on individual PV output data achieved the highest accuracy. While

ANNs excel at capturing non-linear relationships in short-term PV

forecasting, their performance strongly depends on the quality and

quantity of training data. Additionally, ANN models are prone to

overfitting when applied to medium- and long-term simulations,

limiting their generalization capability. Meng et al. (2021) adopted

a deep learning-based approach to identify highly correlated

meteorological variables under different weather conditions. This

method improved the mapping between meteorological factors

and power output while reducing computational training time.

However, deep learning models require extensive hyperparameter

tuning and large datasets. Yang et al. (2023) proposed a hybrid

PV power prediction method combining similar days selection,

gray-Markov models, and AdaBoost. Their approach used Markov

chains to correct gray-Markov prediction errors and integrated

them via the BP-AdaBoost algorithm. While this method improved

prediction robustness by combining multiple techniques, the gray-

Markov model itself struggles with highly stochastic PV output

fluctuations, particularly in long-term simulations where weather

variability introduces significant uncertainty.

The modeling of PV output time based on the headroommodel

combines the above two methods, better simulating the generation

of sequences of any length with a small amount of data, and so is

suitable for the medium- and long-term simulation of PV output

sequences. However, current research on the simulation of PV

output sequences based on the headroom model often ignores the

time-series characteristics of fluctuations in historical sequences. At

the same time, it is difficult to reflect the fluctuating characteristics

of PV output with seasonal and weather changes. Therefore, in

this paper we choose to improve the traditional simulation method

based on the headroom model. Li (2015) estimated the maximum

value of solar radiation under ideal conditions using the headroom

model andmodeled the deterministic and uncertain components of

the PV output separately to reflect regular changes and accurately

simulate the PV output time series. Therefore, in this paper we

will demonstrate the effectiveness of the proposed method by

comparing it with the method in Li (2015).

Using the traditional simulation method based on the

headroommodel, we propose a new PV output simulation method.

First, the relative PV output is decomposed into a base value

and an offset value, and probability models are established for

different weather types. Then, the weather transfer probability is

calculated separately for each season, and a weather Markov chain

is generated at random. Finally, the base value and offset value

are sampled using a method that takes into account the volatility

of the time series. After correcting the sunrise and sunset times,

the PV output sequence is restored according to the headroom

model. The simulation is based on data from a specific location in

Guangdong Province in 2023. The results show that compared with

the traditional method used in Li (2015), the simulation sequence

generated by the method in this paper more effectively retains

the probability distribution and autocorrelation of the historical

PV output sequence, while also inheriting the seasonality of the

historical sequence. It can provide a basis for the dispatching plan

and operation mode arrangement of the power grid.

2 Analysis of PV output based on the
headroom model

The active output of a PV system is affected by light, including

both deterministic (e.g., periodic variations in solar radiation) and

stochastic factors (e.g., air quality, cloud cover). Therefore, the PV

output can be divided into deterministic and stochastic parts; the

deterministic part can be simulated by a headroom model, while

the stochastic part needs to be described by other models to more

accurately reflect the output variations.

2.1 Principles of the headroom model

2.1.1 Solar phototransport process
Energy on Earth comes primarily from the sun—it travels

through the atmosphere to the surface in the form of radiation,

which is categorized into direct and diffuse radiation (Xu et al.,

2024). For any point on Earth, the intensity of radiation directly

from the sun onto Earth’s atmosphere can be calculated using

Equation 1 (Erol and Filik, 2022):

I0 = S0

[

1+ 0.033 cos

(

2π (N + 10)

365

)]

(1)

where I0 is the intensity of solar radiation perpendicular to the

atmosphere, S0 is the solar constant (which represents the total

amount of solar radiation received per unit area perpendicular to

the rays of light entering Earth’s atmosphere, and takes the value

of 1,367 W/m2), and N is the date sequence number of the year,

starting from 1 January.
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2.1.2 Solar position model
The solar incidence angle, i.e., the angle between the solar

incidence ray and the normal to the inclined plane, can be

calculated using Equations 2–5, assuming that the attenuating effect

of the atmosphere on the intensity of solar irradiation is not taken

into account (Masevhe and Maluta, 2022):

sinα = sin δ sinφ + sin δ sinφ cosω (2)

ω = (12− t)15◦ + (120◦ − ψ) (3)

δ ≈ 2π 23.45◦

360◦ sin
(

2π 284+N
365

)

(4)

cos θi = cosβ sinα + sinβ sin γ cos δ sin ω + sinβ cos γ cos δ

(sinφ cosω − sin δ) (5)

where α denotes the solar altitude angle, ω the solar time angle, φ

the local latitude, δ the declination angle, and β is the tilt angle and

γ the azimuth angle of the PV array panels.

2.1.3 E�ect of the atmosphere on the intensity of
solar radiation

The atmospheric transparency coefficient is the percentage

of Earth’s atmosphere that allows the passage of solar radiation.

Denoting the atmospheric mass by Mhand the atmospheric

transparency factor for direct radiation by τb, the atmospheric

transparency coefficient for direct solar radiation under full sunny

conditions can be calculated using Equations 6, 7 (Zhou et al.,

2022):

τb = 0.56
(

e−0.56Mh + e−0.096Mh
)

(6)

Mh =
[

1229+ (614 sinα)2
]
1
2 − 614 sinα (7)

For higher elevations, we correct for the atmospheric quality of the

area using Equation 8:

Mh
′

= Mh
P (z)

P0
= Mh

(

288− 0.065z

288

)5.256

(8)

where M
′

h is the corrected atmospheric quality,z is the altitude of

the area, and P(z)
P0

is the atmospheric quality correction factor.

The instantaneous direct solar radiation Ib is obtained from

Equation 9 (Ding et al., 2024):

Ib = I0τb cos θi (9)

Approximating the atmospheric transparency coefficient of

diffuse radiation, τd, by assuming a linear relationship between it

and direct radiation (Liu et al., 2022) gives us Equation 10:

τd = 0.271− 0.274τb (10)

According to Equation 11, the intensity of solar radiation is

Ding et al. (2024)

Id =
1

2
sinα

1− τd
1− 1.4 ln τd

Mh

(11)

where k is a parameter related to atmospheric quality. When the

atmospheric quality is poor, k takes a value between 0.6 and 0.7;

when the atmospheric quality is normal, k takes a value between

0.7 and 0.8; when the atmospheric quality is better than normal, k

takes a value between 0.8 and 0.9.

In summary, the total solar radiation intensity at a location

on Earth at time t can be calculated from Equation 12 without

considering random factors (Sheng et al., 2022):

It = Ib + Id (12)

The intensity of solar radiation received under headroom

conditions on the PV panels at any location and moment on Earth

can be calculated using (Equation 12).

From this analysis, it can be seen that the level of PV output is

affected by both deterministic and stochastic factors. Therefore, to

improve the accuracy of the PV output model, it is divided into two

parts (Equation 13):

P(i, t) = PDCI (i, t) ∗ PN(i, t) (13)

where PN(i, t), P(i, t), and PDCI(i, t) are the PV relative output,

PV actual output, and headroom output, respectively, at moment

t of day i. The headroom output is the PV output generated by

the intensity of solar radiation in the absence of any shading in

the headroom condition, which is an analytical function of time,

geographic location, and the tilt angle of the PV panels (Wang

et al., 2020). The specific solution process can be referred to in the

literature (Li, 2015), and will not be repeated here.

The relative output is decomposed into a power baseline value

PS(i) and a power offset value1PN(i, t) through Equations 14, 15:

PN(i, t) = PS(i)+1PN(i, t) (14)

PS(i) =
1

n

n
∑

i=1

PN(i, t) (15)

where the baseline value corresponds to the average value of daily

output, reflecting the intensity of solar radiation throughout the

day, and the offset value is the output minus the average value at

each moment, reflecting the fluctuation of solar radiation. In what

follows, the uncertainty part of the PV is modeled based on the

reference value and offset value respectively.

3 Method for PV output simulation

The specific flow of PV simulation is shown in Figure 1, which

summarizes the following steps:

Step 1. Calculate the PV relative output, the baseline value, and

the offset value based on the headroom model. The principle of

calculating the PV relative output based on the headroom model

and splitting it into the base value and offset value was specifically

introduced in Section 1.

Step 2. Cluster PV relative output curves to classify weather

types. By adopting a self-organizing map (SOM; see Section 3.1.1),

the PV output curve is divided according to the clustering result,

and each curve corresponds to the weather type.
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FIGURE 1

Flowchart showing the PV output simulation procedure.

Step 3. Fit probability distributions for baseline, offset, and

fluctuations by weather type. A kernel density estimation method

is used to fit the probability distribution of the normal output

moment benchmark value, offset value, and fluctuation value for

each type of weather. The statistics for each time period relative to

the previous time period relative power difference, are called the

fluctuation value.

Step 4. Simulate weather types by season. The weather

clustering results in seasons, respectively, the number of weather

types and transfer probability, generate a weather Markov chain,

which randomly generates the weather type of each day.

Step 5. Sample daily baseline and fluctuation curves to generate

relative output. According to the weather type, sample simulation

each day’s benchmark value and fluctuation coefficient curve to

obtain the PV relative output curve.

Step 6. Correct sunrise and sunset times. Consider 1 h after the

start of daily PV output and 1 h before the end of output as the

sunrise and sunset time of each day, and correct the relative output

of this time.

Step 7. Combine the net outputs to calculate the PV output

time series. The PV relative output obtained from the simulation is

multiplied by the headroom output to obtain the actual PV output.

3.1 Weather type classification and weather
type simulation

3.1.1 Comparison of security e�ciency
Weather factors affect the amount of solar radiation received

by the PV power plant, which in turn affects its output (Hui et al.,

2022). The relative PV output curves are significantly different for

different weather factors (Wang et al., 2024). Since the fluctuation

characteristics of the PV output are only related to the thickness of

cloud cover, it is not necessary to classifymanyweather types for PV

output time-series modeling, and it is only necessary to classify the

generalized weather types obtained through the clustering analysis

of PV output curves.

An SOM is a kind of unsupervised learning network, the

complex can realize the dimensional mapping from the input

space (n-dimensional) to the output plane (2-dimensional), and

the mapping has topological feature preservation properties (Liu

S. Q. et al., 2023). In this paper, we adopt an SOM method to

select four feature quantities of one day’s output data to form

feature vectors instead of the relative output curve vectors of

photovoltaic power plants for clustering analysis, and divide the

photovoltaic output curves according to the clustering results. Each

class of curves corresponds to a different type of weather. The four

selected eigenquantities are the base value, standard deviation, first-

order difference absolute mean, and first-order difference absolute

maximum, and they are calculated as follows:

• Baseline value, d1. This index reflects the level of output

throughout the day, e.g., high on sunny days and low on rainy

days, and can be calculated from Equation 16:

d1 =
1

n

n
∑

i=1

PN(i) (16)

where PN(i) represents the relative PV output at the ith moment of

the day.
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• Standard deviation, d2. This index reflects the level of

fluctuation throughout the day, e.g., low on sunny and rainy

days and high on cloudy days, and can be calculated from

Equation 17:

d2 =

√

√

√

√

1

n

n
∑

i=1

(PN(i)− d1)
2 (17)

• Mean of the absolute value of fluctuation value, d3. This index

reflects the level of temporal fluctuations, e.g., high on cloudy

days, and can be calculated from Equation 18:

v0 =
∣

∣PN(i+ 1)− PN(i)
∣

∣

d3 =
1

n−1

n−1
∑

i=1
v0

(18)

where v0 is the relative output difference of each time period relative

to the previous time period; that is, the first-order difference of the

offset value, which is called the fluctuation value.

• Maximum of the absolute value of fluctuation value, d4. This

index reflects the intensity of fluctuations, e.g., high on cloudy

or sudden weather, and can be calculated from Equation 19:

d4 = max v0 (19)

To ensure that the weights of the eigenvalues are the same, the

input to the neural network needs to be normalized.

3.1.2 Simulation of weather transfer
characteristics

After the weather types are obtained from clustering, the

sequence of weather types throughout the year needs to be further

determined. For any stochastic process, when the state at a certain

moment is known, the subsequent states are only related to the

state at that moment, but not to the state before that moment; this

transfer property that the probability distribution of the next state

can only be determined by the current state is known as theMarkov

property. A Markov chain is the discrete-time stochastic process

model with the Markov property for the stochastic process in the

state space after the transition from one state to another (Ying and

Lin, 2024).

When studying the transfer characteristics of weather, it can be

assumed that today’s weather state only relates to yesterday, and the

simulation of the sequence of weather types throughout the year

can be regarded as a Markov stochastic process (Kolios et al., 2023).

That is, by using Markov chains to simulate the transition between

various types of weather, the clustering of the weather types can be

statistically obtained from the historical weather process transfer

probability matrix.

According to Section 2.2.1, the daily output profiles have been

classified into a number of weather types, Z = 1, 2, . . . , k, using

the SOM method. The transitions between weather types can be

represented by a state transfer matrixPz and a cumulative state

transfer matrix Qz , both of which can be expressed as a k × k

square matrix:

Pz =













p11 p12 . . . p1k
p21 p22 . . . p2k
...

...
. . .

...

pk1 pk2 . . . pkk













(20)

Qz =

























p11 p11 + p12 . . .
k

∑

i=1
p1i

p21 p21 + p22 . . .
k

∑

i=1
p2i

...
...

. . .
...

pk1 pk1 + pk2 . . .
k

∑

i=1
pki

























(21)

where pij = P(Zn+1 = j
∣

∣Zn = i) denotes the conditional

probability that today is of type i and tomorrow is of type j. After

establishing the state transfer matrix Pz and the cumulative state

transfer matrixQz based on the historical weather data, a first-order

Markov chain Z = {Z1,Z2, . . . ,ZN} can be generated to simulate

the transfer characteristics of the weather changes within N days.

The probability distributions of the weather for different

seasons are also different. Therefore, it is necessary to count the

number of times and the transfer probability of each weather type

separately by season, and generate the weather Markov chain to

select the transfer matrix for the corresponding season.

3.2 PV output time-series simulation

3.2.1 Distribution fitting based on kernel density
estimation (KDE)

The stochastic modeling of PV output requires the probability

distribution of statistical PV output characteristics. The general

research idea is to first assume that the solar irradiance or other

influencing factors obey a certain parameter distribution, and then

estimate the parameters of the distribution using historical data.

This research method has certain limitations: parameter selection

is subjective, and the theoretical basis is not sufficient. Moreover,

most of the existing related research focuses on the parameter

distribution of a specific influencing factor, and it is difficult to

comprehensively reflect the stochasticity. Therefore, the preset

parameter distribution cannot be applied.

Therefore, in this paper, we choose to use kernel density

estimation (KDE) for parameter fitting, which is a method that

does not require any a priori knowledge, instead taking the

characteristics of the data distribution completely from the data

samples; this method has been applied to load modeling and wind

speed modeling (Li M. et al., 2022). Its specific principle is more

complicated and has been demonstrated in the literature, so it will

not be repeated here (see Hou et al., 2022).

For modeling PV stochasticity, we fit probability distributions

to the baseline and offset values of the PV relative output. However,
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FIGURE 2

Flowchart showing the PV relative output sequence simulation

procedure.

extracting only the offset value of each time period in turn does

not enable a reflection of the time-ordered nature of PV series

fluctuations. Therefore, it is necessary to count the relative output

difference of each time period relative to the previous time period;

that is, the fluctuation value v0.

Bandwidth selection plays a critical role in non-parametric

KDEmodeling. Excessive bandwidth leads to oversmoothing of the

probability density function, obscuring essential structural features,

while insufficient bandwidth results in overfitting through the

inclusion of spurious local fluctuations. In this study, the optimal

bandwidth for each weather type is determined using an established

formula (Rao et al., 2023). The impact of bandwidth selection on

the simulated PV output sequences will be further examined in

Section 4 (Case Study) to validate modeling robustness.

3.2.2 Sampling method considering the
time-ordered nature of PV series fluctuations

After completing the extraction of the output characteristics

and weather transfer characteristics of the original sequence, the

simulation of the PV sequence can be performed. The overall

FIGURE 3

Flowchart showing the sunrise and sunset time correction process.

simulation process is shown in Figure 2. The specific steps are

as follows.

Step 1. Sample daily baseline by weather type. Simple

sampling of daily baseline values based on randomly generated

weather chains.

Step 2. Sample offset by weather type. Simple sampling of daily

offset values based on randomly generated weather chains.

Step 3. Subtract offset to calculate fluctuation. Take the current

moment’s offset value and subtract it from the value at the previous

moment to get a sample of the fluctuation value v0.

Step 4. Judge sampling result. Denote the probability density

distribution function of v0 as f (v0). Construct a new probability

density function q (v0), satisfying kq (v0) > f (v0), where k is a

constant. Sample
[

0, kq (v0)
]

uniformly to get u0. If u0 <f (v0), then

accept this sampling and go to the next moment. Otherwise reject

this sampling and resample the offset value distribution until the

sampling is accepted.

Step 5. Proceed to the next moment. Accept this sampling to get

the offset value for that moment.
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FIGURE 4

Full-year historical data.

FIGURE 5

Headroom Output periods for historical and headroom sequences.
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FIGURE 6

Historical and relative output during a one-week period.

Step 6. Check daily length. If sampling has been completed at all

moments of the current day, calculate the relative PV output at all

moments of the current day and proceed to the next day. Otherwise

return to step 2.

Step 7. Combine headroom output to calculate PV output.

Multiply the simulated relative PV output by the headroom output

to obtain the actual PV output.

Step 8. Check total sequence length. If all days of the simulation

sequence have been generated all day PV relative output, output PV

relative output simulation sequence, otherwise return to step 1.

3.2.3 Sunrise and sunset time correction
The periods of 1 h after the start of the daily PV output and

1 h before the end of the output are regarded as the daily sunrise

and sunset hours. Compared with the normal power time, the

relative power of each weather type is shown to fluctuate around the

benchmark value, and the relative power of the sunrise and sunset

hours is shown to have an upward or downward trend. Therefore,

it is necessary to correct this period of time using separate statistics,

as shown in Figure 3. The specific steps are as follows.

Step 1. Find the starting moment Trise, ending moment Tset,

and the corresponding relative output values PNrise and PNset of the

relative output curve for each day.

Step 2. Define the sunrise and sunset hours. The five moments

after the starting moment are defined as sunrise hours and the five

moments after the ending moment are defined as sunset hours.

Step 3. Determine the reference output for each moment of the

sunrise hour and eachmoment of the sunset hour, respectively. The

ratio of the relative output to each moment of the sunrise period

and the ratio of the relative output to each moment of the sunset

period are used as reference outputs.

Step 4. Fitting probability distributions to reference outflows

at each moment separately and sampling. Probability distributions

were fitted to the reference outflows at each moment separately for

the sub-seasons and sampled.

Step 5. Reduction to relative output. Reduction of the reference

output obtained by sampling at each moment in time to the

relative output.

4 Case study

4.1 Boundary conditions

In this paper, the effectiveness of the proposed method is

modeled and verified based on the 2023 output historical data of a

PV station in Yangjiang, Guangdong Province. The time resolution

of this data is 10min, which gives 144 pieces of data per day.

The power station is located at approximately 21.8◦N, 112◦E, and

the rated capacity is 100 MW. The simulation environment is

MATLAB 2022a.

Figure 4 shows the historical data output for the whole

year, where the deterministic data and uncertainty of the PV

output can be observed. The deterministic data includes the

daily characteristics of the daily output, which rises after sunrise,

reaching an extreme value at noon, and then declines to zero output

at sunset. The deterministic data also includes the regular variations

of annual characteristics such as long output time in summer,

followed by the second-longest output time in spring and fall, and
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FIGURE 7

Historical output curves for the six types of weather. (A) Overcast, (B) Rainy, (C) Sudden change, (D) Sunny, (E) Cloudy A, and (F) Cloudy B.
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FIGURE 8

Cumulated transition matrixes for each of the four seasons.

the shortest output time in winter. Uncertainty includes random

variations influenced by weather.

4.2 Analysis of PV relative output

The modeling data are missing the tilt angle and horizontal

angle of the photovoltaic array. For this situation, the specific

principle of this paper for estimating installation information is

that the headroom power is the ideal power, and the parameter is

roughly estimated according to whether the power time period is

covered, and then it is checked whether the specific daily power

curve is enveloped for fine-tuning. Figure 5 shows the specific time

periods of the historical annual PV output and the headroom

output. As can be seen from the figure, the daily headroom output

curve envelopes the historical output curve. Although there is a

certain deviation from the actual situation due to the lack of the tilt

and horizontal angles of the PV array, it will not have a significant

impact on the simulation results because the headroom model is

used during the simulation process to transform and invert the

actual power and relative power. As long as the actual power

can be completely enclosed by the headroom power during the

normal power output period, it will have little impact on clustering,

statistics, modeling, and sampling during the process.

Observation of the labeled part of Figure 5 reveals that, unlike

the netting sequence, the historical sequence power out time

does not show a better symmetry, with the starting moment in

January–March significantly later than the netting sequence, and

the power out time being delayed as a whole, while in September–

December, the sunset moment is earlier than that of the headroom

sequence and the power output moment is advanced overall. This

phenomenon may be due to the installation of each PV panel tilt

angle and the horizontal angle is not the same as the result; if there

is a large impact, using multiple sets of parameters to simulate the

combination of each PV panel could be considered to obtain the

target effect.

After obtaining the headroom model, the relative output of the

historical series is calculated and split into the baseline and offset

values. The last week of data is selected for display in Figure 6,

where it can be seen that the daily curves are quite different,

representing different weather types, and so it is necessary to model

them separately. Meanwhile, it can be observed that at sunset on the

last day, the relative output appears to climb abnormally; the reason

and correction method for this are discussed in Section 3.2.3.

4.3 Weather classification

We process the relative output of the historical series of

normal hours, calculating the four characteristic values of the

daily output curve (baseline value, standard deviation, mean

of the absolute value of fluctuation value, and maximum of
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FIGURE 9

Full-year simulated data.

the absolute value of fluctuation value), and inputting them

into the SOM neural network for clustering after normalization.

Using the Davies–Bouldin Index (Li and Liu, 2022), it was

determined that they could be classified into six classes. These

classes are named according to their output characteristics: cloudy,

rainy, sudden change, sunny, cloudy A, and cloudy B (cloudy

A has a medium average output level but high fluctuation,

while cloudy B has a high average output level and medium

fluctuation). The typical output curves for each category are shown

in Figure 7.

As can be seen in Figure 7, the data among the various

types of weather are still scattered, and parameter fitting

may be difficult when fitting probability distributions of

the output characteristics, so the KDE non-parametric

estimation was chosen to rely only on fitting the

data characteristics.

4.4 Simulation of weather type

For seasonal weather clustering, the state transfer matrix was

generated by counting the number of times each weather type

occurred and the respective transfer probability. Figure 8 shows

a schematic diagram of the cumulative transfer matrix for the

four seasons. The differences in the probability of weather transfer

between seasons are quite large. Therefore, it is necessary for us

to calculate the probability of weather transfer for each season

separately and sampling to generate the weather chain. We then

extract the baseline value for each day and the offset value for

each moment according to the weather, and judge whether it is

acceptable or not. After the extraction is completed, the correction

to the output boundary and the sunrise and sunset hours is carried

out. The relative output obtained from the correction is multiplied

by the headroom output to obtain the simulated output sequence.

TABLE 1 Comparison of key indicators for historical and simulated

output.

Output data Annual output
duration/h

Annual utilization
hours/h

Historical output 4160.5 1283.2

Simulated output 4121.3 (fluctuation range:
4,100–4,190 h)

1296.7 (fluctuation range:
1,260–1,340 h)

4.5 Simulation results and evaluation

Figure 9 shows the annual simulated power output diagram.

Compared with the historical power output in Figure 4, it can

be seen that the simulated power output well restores the daily

and annual characteristics of the photovoltaic power output.

Additionally, the weather changes over a period of time show the

seasonality of the historical series well; for example, there are many

cloudy and rainy days in winter and spring, and there are many

sunny days in summer and autumn.

The overall evaluation of the simulation results, as shown in

Table 1, provides further statistical comparison of historical output

(Figure 4) and simulated output (Figure 9) for the annual output

duration and annual utilization hours. The results show an annual

output duration for the historical output of 4160.5 h, and an

annual output duration for the simulated output of 4121.3 h (taking

into account the Markov chain simulation of weather types and

the randomness of sampling the daily baseline values and offset

values, the fluctuation range is 4,100–4,190 h). There are 1283.2

annual utilization hours for the historical output and 1296.7 annual

utilization hours for the simulated output (the fluctuation range is

1,260–1,340 h). Overall, the error of the key indicators of the two

is within an acceptable range, and the annual weather distribution

is also relatively consistent, so the simulation results are reliable

and valid.
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Figure 10 shows the simulated output curves for each type

of weather. Observing the generation of specific daily output

curves in Figure 10, it can be seen that the output characteristics

of the different types weather are well-reflected. Moreover, the

sampling method is consistent with the continuity of PV output

because the simulated curves do not show frequent and drastic

fluctuations within a short period of time due to the consideration

of the temporal nature of the fluctuations. In terms of simulation

speed, after repeated tests, it takes less than 10 s to generate a

PV simulation output sequence with a length of 1 year, and the

program runs efficiently.

Since the proposed simulation method builds upon the

traditional headroom model-based approach (referred to as the

original method), its improvements include selective sampling of

fluctuation amounts and a correction method for sunrise and

sunset times to better restore the characteristics of the historical

series. To further validate the effectiveness of the proposed method,

the probability density function and autocorrelation function were

used to assess whether the simulated results preserve the historical

characteristics of the original series. A comparative analysis was

conducted of the historical output, the simulated output generated

by the original method, and the simulated output generated by

FIGURE 10

Six weather simulation output curves. (A) Overcast, (B) Rainy, (C) Sudden change, (D) Sunny, (E) Cloudy A, and (F) Cloudy B.
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the proposed method. The autocorrelation coefficients of the

three outputs are presented in Figure 11, while the probability

distributions relative to the rated capacity are shown in Figure 12.

The results demonstrate that, in terms of both autocorrelation

FIGURE 11

Comparison of the autocorrelation coe�cient.

FIGURE 12

Comparison of the probability density function.

coefficients and probability distribution, the proposed method

yields simulation results that align more closely with the historical

output than the original method, thereby enhancing the fidelity of

historical characteristic restoration.

The root mean square error (RMSE), mean absolute error

(MAE), and normalized RMSE (NRMSE) were computed for

both methods across four distinct seasons. As summarized

in Table 2, the proposed method consistently achieves lower

RMSE, MAE, and NRMSE values compared to the original

method in all seasonal cases. These results quantitatively

confirm that the proposed simulation approach more accurately

replicates the historical output characteristics than the

original method.

4.6 Parameter sensitivity analysis

To comprehensively evaluate the robustness of

key parameters in the proposed model, systematic

sensitivity analyses were conducted for both the KDE

bandwidth selection and the sunrise/sunset correction

window length.

For the KDE-based modeling approach, the bandwidth

sensitivity was investigated by adjusting the original optimal

bandwidth by ±20%, ±15%, ±10%, and ±5%. As illustrated in

Figure 13, the resulting RMSE, MAE, and NRMSE metrics for all

four seasons exhibit a distinct concave pattern, with minimum

values consistently occurring at the original bandwidth setting.

This behavior confirms that the bandwidth derived from the

established optimal formula represents the most appropriate

choice for minimizing simulation errors across different

seasonal conditions.

Regarding the sunrise/sunset correction, the sensitivity analysis

examined window lengths ranging from zero (no correction)

to nine time intervals. Figure 14 demonstrates that all three

error metrics reach their minimum values when implementing

a five-interval correction window, validating the original

parameter selection. This optimal window length effectively

balances the transitional period characterization while avoiding

overcorrection effects.

5 Conclusions

This paper proposes a new simulation method for photovoltaic

output based on the traditional headroom model. By introducing

TABLE 2 Comparison of simulation errors between the proposed and original methods.

Error metrics RMSE MAE NRMSE

Method Proposed Original Proposed Original Proposed Original

Spring 15.6755 17.7450 8.0027 9.1803 1.2762 1.4447

Summer 14.8972 16.6202 7.7548 8.7376 0.8396 0.9590

Autumn 14.7222 17.2376 7.4174 8.6320 0.8882 1.0633

Winter 14.1354 15.3311 6.8808 7.6681 1.1091 1.2029
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FIGURE 13

Seasonal error metric variations under bandwidth adjustment. (A) RMSE, (B) MAE, and (C) NRMSE.

selective sampling of the fluctuation quantity and improving the

correction method at sunrise and sunset, the characteristics of

the historical series can be restored with high accuracy. At the

same time, when simulating weather types, the probability of

weather transfer is statistically analyzed by season to reflect the

fluctuating characteristics of PV power output with seasonal and

weather changes. Through the simulation of the output of an actual

PV power plant, it is verified that the method proposed in this

paper can effectively simulate the regular changes and random

fluctuations of photovoltaic power generation. We draw the

following conclusions.

First, improvements in the sampling method for

temporal fluctuations and the correction method for

sunrise and sunset times have enhanced the practicality

of the model. This paper introduces a selective sampling

of the fluctuation amount when sampling the benchmark

and offset values of the relative photovoltaic output.

Simulation results show that the simulated sequence

generated by this sampling method closely matches the

historical data in terms of probability distribution and

autocorrelation, better reflecting the characteristics of the

historical sequence. Validation with operational PV plant data

demonstrates superior performance, with a 7.80%−14.59%

reduction in RMSE, a 10.27%−14.07% lower MAE, and a

7.80%−16.4% improvement in NRMSE compared to the

original method.

Second, the categorization of weather types and the use

of Markov chains enhance the flexibility of simulation.

Through SOM clustering of the historical data of the PV

output, the weather is categorized into multiple types, and

Markov chains are used to simulate the transfer probability

of different weather, which effectively retains the fluctuating

characteristics of the PV output with seasonal and weather

changes. The method is able to accurately simulate the

regularity and fluctuation of output power under different

weather conditions, and is suitable for medium- and

long-term simulation.

Last, the case study confirms that the proposed PV

simulation method achieves high computational efficiency

while accurately replicating actual output characteristics. Key

metrics show excellent agreement: annual output duration

(4,121 vs. 4,161 historical hours) and utilization hours

(1,297 vs. 1,283 historical hours) both demonstrate less than

1% deviation. This precise performance makes the method

particularly valuable for grid scheduling, plant design, and policy

development applications.

Frontiers in SmartGrids 14 frontiersin.org

https://doi.org/10.3389/frsgr.2025.1632546
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Dong et al. 10.3389/frsgr.2025.1632546

FIGURE 14

Impact of sunrise/sunset correction window length on simulation accuracy. (A) RMSE, (B) MAE, and (C) NRMSE.
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