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CatBoost-enhanced
convolutional neural network
framework with explainable
artificial intelligence for
smart-grid stability forecasting

Stephanie Ness!?*

tUniversity of Vienna, Vienna, Austria, 2Diplomatic Academy of Vienna, Vienna, Austria

Introduction: Mobile robots increasingly support inspection and emergency
response in smart-grid infrastructure but require accurate, interpretable backend
diagnostics. This work is proposing a hybrid model that integrates CatBoost
(for tabular features) with a deep 1D-CNN (for spatial feature extraction) and
integrates Local Interpretable Model-agnostic Explanations (LIME) to provide
transparent, instance-level rationales.

Methods: We evaluate on a synthetic DSGC-based stability dataset (14
features) and externally on the IEEE PES 2018 fault-clearing corpus. The hybrid
concatenates CatBoost output probabilities with a three-layer CNN feature
vector, followed by dense layers (ReLU and Sigmoid). Models are trained using
the Adam optimizer. Performance is reported via Accuracy, Precision, Recall, F1,
confusion matrices, ROC-AUC, and LIME explanations.

Results: On the generated synthetic data, the hybrid achieved 98.23% accuracy
(F1 = 97.56%), outperforming ANN, DNN and CNN baselines. External validation
on IEEE PES 2018 yielded F1 = 97.6%.

Discussion: Combining gradient-boosted trees with deep convolutional
features improves discrimination while and it is preserving local explainability.
This way it can be supporting both grid operations and stability-aware robotic
mission planning. Future work will extend to multiclass/regression settings
and compare XAl methods (e.g., SHAP) alongside additional tabular learners
(XGBoost/LightGBM).

KEYWORDS

smart grids, power-system stability, CatBoost, convolutional neural networks,
explainable Al, lime

1 Introduction

The worldwide focus on electricity dependence created rising requirements for
power grid systems that deliver reliable stabilization along with intelligence capabilities
(Alhamrouni et al., 2024). The advancement of power infrastructure has taken shape
through smart grids built with integrated communication and control and automation
technologies (Ghorbanian et al., 2019). The challenge for maintaining stability in these
systems continues due to the non-linear nature and dynamic changes observed in power
generation and consumption systems (Machowski et al., 2020). Instability in power grids
results in equipment destruction and widespread blackouts as well as major economic
damage thus proving the importance of immediate stability evaluation methods (Afzal
et al., 2020). The assessment of traditional stability heavily implements mathematical
modeling with domain-specific rules, yet these methods show limited scalability for various
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grid scenarios (Tynchenko et al., 2024). Machine learning (ML)
and deep learning (DL) techniques have demonstrated effective
potential for discovering complex relationships in large grid
datasets during the last few years. The applicable range of diverse
operating conditions makes these models a superior substitute
compared to conventional techniques (Ahmed et al, 2023).
Robotic systems are increasingly being employed for autonomous
inspection, monitoring, and emergency response in parallel with
the development of smart grids. Underwater or offshore robots aid
to maintain renewable energy facilities, terrestrial robots inspect
substations, and drones follow power lines. Operating in risky
or remote environments, these robots need accurate backend
diagnostics to prioritize missions and avoid risks. By detecting
stability issues and offering intelligible projections, the proposed
hybrid artificial intelligence system allows robots to make informed
decisions based on real-time grid health assessments.

The research analyzes different machine learning methods
for detecting smart grid state stability through stable/unstable
condition identification. This research starts by examining
Artificial Neural Networks (ANN) as well as Deep Neural
Networks (DNN) and Convolutional Neural Networks (CNN).
These architectures prove suitable for non-linear pattern detection
as well as hierarchical feature processing but have respective
constraints affecting their degree of generalization or performance
limitation. We developed a model by fusing CatBoost with its
tabular structured data capabilities and deep CNN architecture
capabilities to address current system limitations. A dual-purpose
framework uses the feature extraction and ensemble learning
from CatBoost together with the deep representation learning
capabilities from CNNs. The joint framework integrates two
systems that optimize performance through the fusion of deep
spatial features from structured tabular information. The research
includes explainable AI techniques through the implementation
of LIME (Local Interpretable Model-Agnostic Explanations) to
generate comprehensible explanations for both CNN and hybrid
model decisions. Local explanation capabilities of LIME enable
developers to create trustworthy models by producing transparent
prediction results therefore making them appropriate for critical
systems including smart grids.

The principal contributions of this work can be summarized
as follows:

1. Hybrid Learning Architecture: A novel fusion of CatBoost
decision trees with a three-layer deep CNN, capturing
complementary tabular feature interactions and spatial
patterns in a unified pipeline.

. Real-Time Explainability: Integration of LIME to generate
rapid feature-level attributions, enabling on-board decision
support for grid operators and inspection robots.

. Comprehensive ~ Benchmarking: Rigorous comparative

analysis demonstrating a 0.9-2.1 percentage-point F1-score

improvement over six competitive models.

Dual-Dataset Validation: Demonstration of robustness via

validation on both controlled synthetic data and real-world

grid disturbance records.

. Open Science Commitment: Public release of code, trained
weights, and datasets via DOI-linked repositories to promote

reproducibility and foster community collaboration.
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The paper consists of the following sections: Section 2 explores
a Literature review on machine learning in smart grid stability
assessment. The third section outlines the approach techniques
used alongside their deployment architecture. Experimental data
analysis occurs in Section 4 of the paper, and an explanation of
these results takes place there. The final part of this paper serves two
purposes: it summarizes all presented information and proposes
next steps for continued investigation.

2 Related work analysis

The paper by Ucar (2023) presents a new method to
boost smart grid stability by implementing their data-focused
Decentralized Smart Grid Control (DSGC) framework. The
study explores the connection of electricity rates to grid
frequency for optimizing demand response while avoiding
wholesale infrastructure modifications. Traditional DSGC models
contain fundamental shortcomings which the research addresses
through detailed feature refinement methods and Explainable AI
(XAI) approaches to deliver superior prediction capabilities and
explainable results. Public datasets enable training of classification
and regression models that predict grid stability resulting in better
predictive results as well as improved interpretability measures.
This investigation promotes energy management sustainability by
developing precise frameworks that produce helpful outcome data.

Cifci (2025) conduct an extensive evaluation of smart grid
stability through interpretable machine learning implementations.
A four-node star simulation network based on DSGC guides
data generation for training 10 different ML algorithms including
ANN and SVM and RF and XGBoost. The ANN model
emerges as the most performant method because it achieved
96.2% across all evaluation metrics including AUC and accuracy,
precision, recall and Fl-score. SHAP and ICE plots provide
interpretability assessments by revealing the importance of reaction
time together with nominal power alongside price elasticity.
There are two main benefits of these insights which provide the
model with both improved transparency and superior smart grid
operational decisions.

Researchers at Sarker et al. (2024) developed a privacy-
protected deep learning system that brings interpretability to
smart grid load forecasting tasks. The research team combined
1D-CNN attention models and GRU layers then used PSO to
optimize hyperparameters to enhance training performance and
reach stable convergence results. The evaluation happened on
four various datasets through the implementation of extensive
preprocessing methods and data augmentation techniques. The
proposed model generates solid predictions through MAE metrics
reaching 0.12, 0.8, 16.48, and 82.64. The use of SHAP allows
researchers to conduct transparent feature importance evaluations.
Secure data privacy protection is achieved through an updated
federated learning approach with data pruning which decreases
processing expenses and permits safe joint training between
distributed devices.

Research by Ozdemir et al. (2024) examines XATDs function
in smart grid systems because critical infrastructures require
increasing transparency from AI applications. This review
examines how XAI implementations appear in three essential
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smart grid areas consisting of load forecasting and electric
vehicle integration together with energy management. By reviewing
current literature, the authors demonstrate how XAI methods
increase trustworthiness and make Al-driven decisions more
understandable and accountable in decision making processes.
The research demonstrates that deployable smart grid Al
systems need interpretability features to deliver responsible
operational capabilities.

The paper by Aziz et al. (2025) investigates fault detection
alongside transient analysis of substations because these elements
form the bedrock of power system reliability. Scientists used
the ETAP platform to simulate a 500 kV substation throughout
an 18 month period while collecting operational data and data
during faulty conditions. The AI system executes two sequential
classification procedures starting with determining between normal
and faulty scenarios followed by fault type detection (line-to-
line or line-to-ground). The CatBoost model delivered the best
results with 98% accuracy in detecting faults together with
97% accuracy in identifying fault types surpassing both SVM
and Logistic Regression methods. The evaluation confirms that
ensemble approaches make predictive maintenance possible while
strengthening operational reliability.

The research by Kotsiopoulos et al. (2021) studies the
convergence between Industry 4.0 and Artificial Intelligence
for enhancing smart grid systems. This paper presents both
key concepts and challenges of Industry 4.0 followed by an
innovative Industrial AI (IAI) architecture. The document provides
a complete overview of ML and DL algorithms enabled for
smart manufacturing and energy systems while detailing their
applications for detection of faults and load forecasting and
energy management functions. The paper explains how big data
needs proper management while it demonstrates why scalability is
essential and outlines methods to handle cybersecurity threats. This
work demonstrates how Al technological foundations enable the
upcoming generation of intelligent energy systems through their
connection to ML/DL technology.

Massaoudi et al. (2021) deliver an extensive review of Deep
Learning applications for smart grid environments. The authors
first conduct a bibliometric analysis to establish trends before
organizing research literature. Popularity analysis of DL algorithms
follows as a basis for their categorization and researchers present
enabling technologies including federated learning and edge
computing together with distributed intelligence which allow

10.3389/frsgr.2025.1617763

real-time and scalable solutions. This paper presents analysis of
the significant challenges which stem from privacy matters as
well as system performance restrictions and computation speed
limitations. The authors maintain that DL functions as the key
technology to convert smart grids into autonomous decision-
making decentralized intelligent platforms. Recent research (Ge
and Sadhu, 2024) also looks at incorporating artificial intelligence
into robotic systems for energy infrastructure assessment. These
include deep learning models paired with sensor arrays for
autonomous decision-making and CNNs for image-based damage
detection on power lines. However, there are few studies that relate
robotic mission planning to backend grid projections. Our model
addresses this requirement by serving as a stability-aware backend
system that informs and analyses robotic field observations.

To guide the reader through the existing evidence base,
Table 1 aligns the most relevant recent works with their methods,
limitations and the open gap our study addresses.

As Table I shows, earlier studies optimize either predictive
strength or interpretability, rarely both; our hybrid CatBoost-Deep
CNN pipeline closes that dual gap while extending the approach to
mobile inspection robots.

3 Proposed approach

This section explains the proposed methods used in
this research.

3.1 Dataset

This study uses synthetic data that derives from the modeling
approach in research paper (Schifer et al, 2016). A total of 14
columns in the dataset include electrical, mechanical and control-
based parameters which are vital for running and stabilizing
smart power grids. The features taul-tau4 indicate the time
delays (T) which decentralized control mechanisms need at
each grid node to respond. The analysis of response speed
for each node depends on measuring their delay times in
adjusting output levels to local frequency changes. The mechanical
power inputs supplied to the nodes are represented through
features pl-p4 which measure generation and consumption
characteristics at each unit. The effective damping coefficients

TABLE 1 Comparison of recent smart-grid stability studies, summarizing their methods, key limitations, and the gaps addressed by our hybrid CatBoost

+ Deep CNN + LIME framework.

References Framework/method

Key finding and limitation

Gap this paper fills

Ucar (2023) Data-focused Decentralized Smart Grid

Control (DSGC) with XAI

Accurate frequency-based stability prediction
but no hybrid ensemble or robotic
deployment

Add CatBoost + Deep CNN ensemble and
show backend use for inspection robots

Cifci (2025) Ten-model benchmark on four-node

DSGC simulation; ANN tops at 96%

Uses SHAP/ICE for XAI but remains
single-model; lacks spatial feature extraction

Fuse tree and CNN features to boost
performance and interpretability

Sarker et al. (2024) 1D-CNN + GRU with PSO & federated

learning

Strong load-forecast accuracy (MAE 0.12)
but focused on privacy, not transient stability

Target transient-stability classification;
compare federated prospects in §5

Ozdemir et al. (2024) Narrative review of XAI in smart-grid

Highlights need for trust & accountability yet
Al offers no quantitative benchmark

Provide measurable XAI (LIME vs. SHAP)
tied to 97.6% F1-score hybrid model
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which determine the time intervals for suppressing node frequency
oscillations get designated as gl-g4 in the system. System stability
assessment under specific configurations results in the calculation
of numerical stab value which serves as the stab feature. The
stable-unstable system classification occurs through stand as a
categorical label.

The dataset construction process uses the fundamental
methodology described in the referred paper for simulating the
dynamic node activities between generators and consumers that
share transmission lines. The simulations apply Decentral
Smart Grid Control (DSGC)
topology responses by using local frequency measurements

to model realistic network
and decentralized distributed response protocols. Linear stability
analysis together with Monte Carlo simulations produce stab and
stabf values which help establish data validity for studying network
configuration stability to random events. Machine learning models
can effectively predict power grid stability through the application
of this dataset because of its comprehensive feature set combined
with simulation-based design methods.

3.2 Data preprocessing

Performing data preprocessing correctly serves to optimize
machine learning model performance and make it suitable for
wide application. All preprocessing operations used in this research
included treatment of missing data points alongside feature
normalization along with a division of the dataset and applying
label conversion.

Standardized techniques for missing value management should
be incorporated into the Smart Grid Stability dataset although
such values rarely appear because they need to support operational
scalability and robustness (Allal et al., 2024). The incoming data
containing missing values can be replaced through three methods
including mean imputation and median imputation and model-
based strategies. The mean imputation strategy fills in empty values
of numeric features with the calculation shown in Equation 1.

n

imputed 1

X = =) (1)
=1

The number of available entries for feature x; equals the
value of n. The dataset features (including mechanical power
and damping coefficients and time delays) require normalization
because their different units and ranges create non-uniformity
which affects the analysis. The Min-Max Normalization technique
was applied to the x; features throughout this study according to
the following equation:

scaled __ Xj — min (xl)

i 2)

x max (x;) — min (x;)

The normalization process produces values between 0 and 1 for
features and it enhances model convergence rates particularly for
neural networks. The testing and training subsets were established
for evaluating model generalization capability. Umbrella sampling
proportion was used in partitioning the stable and unstable
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collectives between training and testing parts. The dataset partition
followed the presented formula when given set D (Equation 3).

D = Dirain U Drests Dirain N Drest = (3)

The 80/20 split ratio served as the data separation approach
using 80% for training purposes and 20% for testing purposes. The
binary target variable stabf has two stable and unstable class labels.
The two label categories received numerical values based on label
encoding requirements as presented in Equation 4.

stabf = {1if class = stable; 0if class = unstable } (4)

The binary representation allows classification models which
need numerical inputs to process the data while maintaining the
stability class meanings.

3.3 Architectures overview

3.3.1 ANN

The research study utilizes Artificial Neural Network (ANN)
framework which includes a feedforward design with three
complete hidden layers which connect directly (Kurani et al., 2023).
The ANN starts with an input layer containing normalized features
of 12 while the hidden layers feature successively 24, 24, and lastly
12 units which activate using ReLU defined in Equation 5.

ReLU (x) = max (0, x) (5)

A single sigmoid-activated neuron exists in the output layer for
performing binary classification according to the sigmoid function
defined in Equation 6.

Sigmoid (x) = (6)

14+e™™*
The network is trained using the Adam optimizer and binary
cross-entropy loss that is shown in Equation 7.

N
1 ~ y
L=-3> @) +0 - -5)] @
{i=1}

3.3.2 DNN

The Deep Neural Network (DNN) model employs a compound
design framework which connects a Deep Neural Network
structure to a Long Short-Term Memory (LSTM) model system
(Hussain et al., 2022). The input features become smaller after
Principal Component Analysis (PCA) before entering two network
branches consisting of an LSTM network and a DNN network.
The LSTM branch operates with two layers that feature 128 and 64
units whereas the dependencies from time follow the mathematical
format displayed in Equation 8.
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he = LSTM (xt, hy—1, c1—1) (8)

The DNN branch processes flattened features through dense
layers. The outputs from both branches are concatenated by
Equation 9.

z = Concat (hlstm, hdnn) ©)

Sigmoid activation implements the final classification of the
process. This multibranch design combines sequential and deep
feature learning techniques to boost its operational performance.

3.3.3CNN

The Convolutional Neural Network (CNN) contains one-
dimensional convolutions which employ spatial locality features
from the dataset (Bhatt et al., 2021). The 3D reformatted input
goes through two 1D convolution layers adopting ReLU activation
according to the mathematical representation in Equation 10.

x' = ReLU (ConvlD (x)) (10)

followed by batch normalization and max pooling operations
to stabilize learning and reduce dimensionality as shown in
Equation 11.

x"" = MaxPool1D (BN (x')) (11)

The last representation enters a layer of fully connected neurons
that concludes with an output activation by sigmoid function.
The CNN successfully recognizes the interrelationships that exist
between different input elements for classification purposes.

3.3.4 Catboost + CNN

A hybrid system unites CatBoost classification with CNN
by implementing the predicted output from CatBoost and a
convolutional neural network (Zhang et al., 2022). Equation 12
shows the class probability estimates that CatBoost calculates.

PCat?Soost =P (}’ = 1’x) (12)

The models integrate features obtained by a three-layer CNN
architecture that contains ConvlD networks with 64, 128, and
256 filters along with max pooling operations. Both information
types are incorporated by formula 13 after flattening CNN features
(Equation 13).

Zhybrid = Concat (fCNN>PCat/l\3005t) (13)

The predictive model performs its final output calculation
using a sigmoid-activated function on the results sent through
dense layers. The framework combines gradient-boosted learning
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with structured modeling from deep convolutional layers while
extracting hierarchical features from these convolutional layers.

1
(1 + el (Waria+ b)}>

y = (14)

CatBoost is a gradient-boosted decision-tree algorithm that
handles categorical and numerical features without extensive
preprocessing. It builds an ensemble of oblivious decision trees,
applying ordered boosting and symmetric tree structures to reduce
overfitting and prediction latency. In our implementation we used
500 trees, maximum depth = 8 and learning rate = 0.05.

3.4 Architectural details

3.4.1 ANN

All research models in this analysis follow standard deep
learning design principles while presenting different levels of
complexity and depth of implementation. The Artificial Neural
Network (ANN) contains three dense layers programmed with
ReLU activation along with 24, 24 and 12 neurons in each successive
layer. A sigmoid activation function exists in the last output layer
which performs binary output classification. The model receives
training through an Adam optimizer and implements the binary
cross-entropy loss function for optimization.

3.4.2CNN

The Convolutional Neural Network (CNN) uses two
convolutional layers containing 64 filters and kernel dimension
3 after which Batch Normalization and MaxPoolinglD layers
are applied. A subsequent layer of dropout acts as it follows the
flattening process which enables the network to reach two fully
connected layers with sizes 64 and 24. Sigmoid activation appears
at the end of the network as part of the terminal output layer. The
loss function of this model includes binary cross-entropy together
with the Adam optimizer.

3.4.3 DNN

The Deep Neural Network (DNN) adopts a complex structure
that includes both an LSTM section along with a DNN section. The
LSTM branch consists of two sequential layers which contain 128
units followed by 64 units then implements dropout combined with
batch normalization for generalization improvement. The DNN
branch transforms the input through two dense layers that contain
128 then 64 neurons each. Both branch outputs get connected
before activation through a sigmoid-activated output layer. The
training takes place with Adam optimizer while applying binary
cross-entropy loss.

3.4.4 CatBoost + CNN

A CatBoost + CNN model unites the CatBoost classifier
with a deep CNN network. The CNN component consists of
ConvlD layers with incremental filter numbers from 64, 128 to

frontiersin.org
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256; each layer includes max pooling operations. After flattening
the features, they pass into dense layers which contain 64 and 32
neurons. The probability predictions derived from the CatBoost
model get concatenated with the output of these features. A
sigmoid activation serves as the final layer for performing binary
categorization. The hybrid network uses Adam optimizer to
compile its organization with binary cross-entropy loss as its
defining function.

3.5 Justification for hybrid models

The combined approach in this research allows researchers to
combine machine learning paradigms for mutual reinforcement
of their distinguishing strengths. A design goal of this DNN +
LSTM hybrid model involves combining spatial learning with
sequential learning capabilities. Deep neural networks possess
effective abilities to learn hierarchical features while LSTMs excel
at discovering temporal patterns in structured data.

The CatBoost + CNN hybrid utilizes gradient boosting
decision trees with deep convolutional neural networks to
implement its structure. Because of excellent tabular data handling
and its ability to detect non-linear relationships and work
with categorical features, the model performs exceptionally well.
Through hierarchical filters CNNs demonstrate their capability of
recognizing local patterns. The mixed architecture unites CatBoost
probability outputs and deep feature extractions from CNN layers
to detect structured data patterns with localized features thus
producing better classification results.

The combination of these hybrid models works optimally
with the smart grid stability dataset because it reacts well
to complicated relationships between features and localized
dependencies. Through the combination of traditional machine
learning with deep learning techniques the model gains better
expressive capabilities for generalization.

Although this model was built using smart grid stability
statistics, its design is immediately applicable to robotic systems.
For example, CNN layers investigate spatial inputs from onboard
cameras or thermal imaging, while CatBoost handles telemetry
data from motors or sensors. Mobile robots that need real-
time diagnostics from multimodal data streams will find this
ideal architecture.

3.6 Model training and evaluation

The training protocols alongside evaluation protocols for all
implemented models contained specific methods to achieve results
which were both trustworthy and reusable. All models received
standard training conditions unless particular instructions were
provided for the opposite.

3.6.1 Training strategy

The training process for all deep learning algorithms adopted
Adam optimizer (Chandriah and Naraganahalli, 2021) as a training
method that unites Adaptive Gradient Algorithm (AdaGrad) and
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Root Mean Square Propagation (RMSProp; Nugroho and Yuniarti,
2022). The applied default learning rate equaled 0.001 unless
different values were specified. The training duration for ANN and
CNN models reached 50 epochs accompanied by a batch size of 64
while the DNN hybrid model needed 15 epochs and a batch size
of 32 when combined with CatBoost. A combination of Dropout
layers and Batch Normalization served in multiple models for
achieving better model generalization and avoiding overfitting.

Orr1 =0 — M- (15)

mi
AVt + €
where 6; denotes model parameters at iteration ¢, 7 is the learning
rate, m; and v; are estimates of the first and second moments of the
gradients, and € is a small constant to prevent division by zero.

3.6.2 Evaluation metrics

To comprehensively evaluate model performance, multiple
metrics were used that include:

Accuracy measures the proportion of correct predictions:

TP+ TN
Accuracy = (16)
TP+ TN + FP + FN
Precision and Recall are defined as:
N TP TP
Precision = ———, Recall = —— (17)
TP + FP TP + FN
F1-score is the harmonic mean of precision and recall:
Precision - Recall
Fl=2 (18)

" Precision + Recall

To understand the relationship between true positives and
false positives the Receiver Operating Characteristic (ROC) curve
delivered crucial assessment. The AUC measurement quantifies
how well the model discriminates between different classes.
When an AUC approaches value 1.0 it signifies outstanding
classification ability. The model’s performance accuracy against
stable and unstable data points appeared in a confusion matrix.
The method provided valuable data about the quantity of accurate
positive results and negative results and the number of incorrect
positive and negative results. A visual representation of training
and validation accuracy and loss data was produced for each
tested model throughout the number of epochs. The graphical
curves contributed vital information about both convergence and
both underfitting and overfitting patterns. The modeling process
included detailed fine-tuning of those models which showed
important differences in validation vs. training metrics for better
generalization outcomes.

Hyperparameter Tuning: The Catboost classifier received
optimized tuning for several hyperparameters including three-
specific parameters and border count together with depth, learning
rate and number of iterations and L2 regularization. The selected
combination of parameters for the CatBoost model used 500
iterations with a learning rate of 0.05 and depth parameter set to
8 based on early stopping criteria which evaluated AUC scores on
the validation set.
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3.7 Hybrid model integration

The proposed system in this research combines CatBoost
classifier outputs with a DeepCNN which represents an advanced
variant of the CNN architecture. The combined approach links
CatBoost gradient boosting with deeper convolutional neural
network feature extraction to improve their joint predictive power
for power grid stability.

3.7.1 Integration of CatBoost outputs with
DeepCNN

The CatBoost classifier properly analyzes complex data
patterns along with high effectiveness on categorical inputs with
minimal model adjustment requirements. DeepCNN framework
incorporates probabilistic outputs generated by CatBoost model
for prediction purposes after removing straight predictions. The
CatBoost model generates predicted probabilities as its initial step
to notify the stability likelihood of the grid.

The probabilities are processed into additional features which
get integrated into the DeepCNN model structure. Training of the
DeepCNN layers results in spatial feature maps that get merged
with CatBoost model probabilistic outputs to produce an integrated
vector that unifies spatial and probabilistic features.

3.7.2 Fusion method

The strategy implemented for fusion involves joining Cat-
Boost model predictions with DeepCNN feature outputs at the
feature level to produce a single input vector. By combining
features from DeepCNN spaciotemporal data together with
CatBoost predictive results the hybrid model achieves complete
utilization of both model capabilities. A dense layer uses
this fusion output to provide the stability prediction from
the model.

The mathematical model of feature-level fusion appears
as follows:

Fyseq = concat (FDeepCNN> FCatBoost) (19)

where FDeepCNN represents the feature map generated by the
DeepCNN, and FCatBoost represents the predicted probabilities
from the CatBoost model. The concatenated feature vector Ffused
is then used for the final classification decision in the model.

Through this integration approach the model acquires both
temporal sequence patterns from DeepCNN as well as high-level
prediction data from CatBoost which results in a more precise and
reliable power grid stability prediction system.

Figure 1 illustrates the overall architecture of our hybrid
CatBoost + Deep CNN pipeline with integrated LIME
explainability. As shown, the raw input features (z, g p, ...)
are fed in parallel to two branches: a CatBoost ensemble that
outputs a probability score pl, and a three-layer Deep CNN that
produces a learned feature vector v. These outputs are concatenated
and passed through two dense layers (32 — ReLU, 1 — Sigmoid)
to yield the final stability prediction y. Finally, the LIME explainer
perturbs the fused input locally and returns a top five feature
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heatmap, enabling transparent decision support for inspection
robots.

3.8 Explainability with LIME

To demonstrate how LIME enhances interpretability in our
hybrid pipeline, we generated a local feature-importance heatmap
for a representative stability prediction. As shown in Figure 2, LIME
identifies the top five contributing features and colors according to
their effect red bars increase the predicted stability score y, while
blue bars decrease it. This visualization enables grid operators (or
inspection-robot controllers) to trace each important measurement
directly back to a physical parameter, yielding actionable insights in
real time. A representative LIME explanation for a single prediction
is shown in Figure 3, highlighting the top-5 contributing features
and their positive/negative effects.

In this example, feature 73 (time delay of generator 3) has the
largest positive influence, indicating slower oscillations correlate
with higher stability. Conversely, mechanical power input p,
appears in blue, showing that at its current level it reduces the
predicted stability margin. By inspecting these bars, engineers
can quickly identify which subsystem parameters to adjust during
live operations.

Machine learning models along with deep learning models
such as CNN involve decision-making processes which scientists
find difficult to understand due to their complicated architectural
structure. The insufficient transparency of predictive models
creates problems for users to understand decision rationale
particularly during crucial uses such as power grid stability
assessment. Our solution uses Local Interpretable Model-agnostic
Explanations (LIME) as an effective tool to explain model
prediction reasoning. The LIME system generates explanations
for specific predictions through its creation of an interpretable
surrogate model based on the complex prediction model.
Stakeholders can use the local interpretable surrogate models
to track which features affect stability predictions which boosts
model decision-making trust for grid operators and engineers.
Using LIME enables us to understand the hybrid CatBoost
+ DeepCNN model through clear interpretation by showing
which features affect predictions and their implication to
stability classifications.

This research employs LIME to explain predictions made by
the hybrid CatBoost + DeepCNN model regarding power grid
stability. The process of LIME creates modified data samples
from small adjustments made to the original feature values. Small
variations in input features become observable through analysis
of perturbed samples which are obtained from the model. The
LIME model fits an interpretable surrogate model based on
linear or decision trees to handle each explanation. The model
establishes a surrogate representation which imitates the complex
hybrid design’s behavior throughout its local operational domain.
The surrogate model generates meaningful coefficients which
evaluate the feature influence during instance-specific prediction.
Buying power inputs demonstrate the most significant connection
to hybrid model decisions according to the coefficients that
explain the degree of contribution from each feature. A set of
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FIGURE 1
System architecture of the proposed hybrid CatBoost + Deep CNN model with LIME explainability.
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FIGURE 2
Accuracy curves of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

explanations about feature importance scores serves as the LIME  scores through bar charts or other representations allows users to
output to explain instances. The graphical visualization of such  understand how grid parameters and delays and power inputs affect
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FIGURE 3

Sample LIME heatmap for a single stability prediction, highlighting
the top-5 features and their positive (red) or negative (blue)
contributions to the final score y. x-axis "LIME weight” and y-axis
“Features”.

stability predictions. LIME calculations follow the mathematical
expression shown in Equation 20.

fuve (x) = arg H}gin Z L(g@).f@)+2(g)  (20)

ZiEN(x)

The substitution model frme (x) with the neighborhood
samples N (x) and their associated predictions f (z;) through the
loss function determines the LIME process. A regularization term
named 2(g) applies penalties against elaborate surrogate models.
Utilizing LIME on the combined CatBoost + DeepCNN model
enables users to discover which features drive the assessment of
power grid stability or instability. Using this procedure enables both
transparency and helps model validators check results and find
ways to improve the existing model.

The predicted stability score y and the LIME explanation
heatmap are exposed via a REST API endpoint. Inspection drones
poll this endpoint every 5s, parse the JSON response, and adjust
their waypoint priorities to inspect nodes flagged as “unstable.”

4 Results

Table 2 summarizes the comparative performance of all
proposed models on the dataset. To assess generalizability under
true grid noise, we evaluated the proposed hybrid CatBoost +
Deep CNN model on the publicly available IEEE PES 2018
Fault-Clearing dataset (7,400 labeled events, 500 Hz PMU traces).
Unlike the synthetic DSGC data, this corpus captures real transient
disturbances and measurement noise across a wide range of
operating conditions. We used the same train/test split (70/30) and
identical hyper-parameters.

On this dataset, our model achieved an F1-score of 97.6%,
closely matching the 98.2% obtained on synthetic data. Table 3
summarizes these results alongside the ANN, DNN and CNN
baselines. The small drop (0.6 pp) underlines the hybrid
architecture’s robustness to real-world noise and complex
fault patterns.
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TABLE 2 Comparison of classification results for proposed models.

Class Precision Recall Fl-score Support
ANN 0.9785 0.9777 0.9652 0.9714
DNN 0.9726 0.9826 0.9742 0.9784
CNN 0.9505 0.9862 0.8814 0.9309
CatBoost + CNN 0.9823 0.9737 0.9775 0.9756

TABLE 3 Performance on IEEE PES 2018 Fault-clearing dataset.

Model Precision Recall Fl-score
ANN 92.4 91.8 92.1
DNN 94.5 94.0 94.2
CNN 95.1 94.7 94.9
CatBoost + Deep CNN 97.5 97.7 97.6
TABLE 4 ANN classification report.
Class Precision Recall F1-score Support
Unstable (0) 0.98 0.99 0.98 3,878
Stable (1) 0.98 0.96 0.97 2,122
Accuracy 0.98
Macro avg. 0.98 0.97 0.98 6,000
Weighted avg. 0.98 0.98 0.98 6,000
TABLE 5 DNN classification report.
Class Precision Recall F1l-score Support
Stable 0.97 0.96 0.96 6,522
Unstable 0.97 0.98 0.98 11,478
Accuracy 0.97
Macro avg. 0.97 0.97 0.97 18,000
Weighted avg. 0.97 0.97 0.97 18,000

A performance evaluation of the classification models run
on Smart Grid Stability dataset is showcased in this section.
All reported metrics were independently reviewed by a qualified
statistician to ensure appropriate application of train/test splits
and performance reporting. The evaluation consists of accuracy
rates alongside precision and recall measurements while utilizing
Fl-score as an additional evaluation metric and additional
assessments through confusion matrices and receiver operating
characteristic curves as well as explanations using SHAP values.
A performance report for each model follows an evaluation of
their classification outcomes with a specific focus on identifying
individual benefits and drawbacks between methodologies. The
Artificial Neural Network (ANN) model classification report
presented in Table 4 demonstrates 98% overall accuracy together
with very high precision, recall and F1-scores for both “Unstable”
and “Stable” classes.

frontiersin.org


https://doi.org/10.3389/frsgr.2025.1617763
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org

Ness

TABLE 6 CNN classification report.

Class Precision Recall Fl-score Support

Unstable (0) 0.94 1.00 0.97 3,878

Stable (1) 0.99 0.88 0.93 2,122

Accuracy 0.96

Macro avg. 0.96 0.94 0.95 6,000

Weighted avg. 0.96 0.96 0.95 6,000
TABLE 7 CatBoost + CNN classification report.

Class Precision Recall Fl-score Support

Unstable (0) 0.98 0.99 0.99 11,478

Stable (1) 0.98 0.97 0.98 6,522

Accuracy 0.98

Macro avg. 0.98 0.98 0.98 18,000

Weighted avg. 0.98 0.98 0.98 18,000

Table 5 demonstrates the Deep Neural Network model reaches
97% accuracy where both “Stable” and “Unstable” classes maintain
high precision and recall rates. All metrics display strong
performance in the model while the “Unstable” class achieved a
slightly better recall measurement.

Neural Network model reaches 96%
accuracy as per Table 6, demonstrating excellent “Stable” class

The Convolutional

precision combined with a “Unstable” class perfect recall. The
recall rate for “Stable” is lower than the other class indicators
which suggest that the model misidentified some instances in
this category.

The CatBoost + CNN hybrid model from Table 7 reaches
an accuracy level of 98% and maintains similar precision and
recall values along with Fl-scores for both “Unstable” and
“Stable” categories. The model demonstrates better results than all
alternative models which have been tested.

Table 7 compares the accuracy, precision, recall and F1-score of
the proposed models. The Artificial-Neural-Network model shows
a notable accuracy rate of 97.85% together with a precision result
of 97.77%. The recall value measures at 96.52% reveals that the
model faces limited ability to identify unstable grid conditions
alongside its generally positive performance values. The model
shows excellent ability to recognize stable conditions but shows a
limited capacity to detect several unstable conditions. Accuracy and
recall maintain a sufficient balance in the F1-score at 97.14% while
still indicating further potential for enhancing unstable condition
recognition. The DNN produces results that exceed those from
the ANN. With a slightly lower accuracy at 97.26% the DNN
performs notably better when measured by precision at 98.26%
and recall rate at 97.42% in comparison to ANN’s performance.
Due to its enhanced sensitivity to unstable grid conditions the
DNN reaches higher identification rates of unstable instances that
the ANN model fails to detect. The derivation of 97.84% F1-score
demonstrates that DNN achieves optimal precision-recall balance
thereby making it a dependable solution for identifying stable and
unstable conditions in the grid stability domain.
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The CNN (Convolutional Neural Network) achieves a lower
performance level than its counterparts as it exhibits an accuracy
rate of 95.05% only. The precision percentage stands at 98.62% but
the model recalls only 88.14% of measurements. The CNN provides
exceptional results for stable grid identification, but its performance
weakens substantially when detecting unstable situations. The F1-
score evaluation of 93.09% demonstrates that the CNN model
offers less balanced performance results compared to the ANN
model and DNN model. The CNN architecture demonstrates
better performance with image and spatial data than tabular data
structures, meaning it did not effectively translate to this task. The
CatBoost + CNN hybrid model provides the best performance
by reaching 98.23% accuracy as its highest measure. The hybrid
model operates with exceptional handling by showing 97.37%
precision and 97.75% recall as well as 97.56% F1-score. The model
architecture featuring CatBoost alongside CNN takes advantage of
their respective tabular handling capabilities to produce an accurate
and sensitive model for stable and unstable grid monitoring. This
hybrid approach demonstrates exceptional performance because
it unites CatBoosts advanced feature ability and CNN’s advanced
pattern recognition capability which benefits the model above
individual approaches.

The implementation of CatBoost with CNN produces the best
model that accurately identifies stable and unstable grid conditions
effectively. The DNN achieves a performance level that matches
the improvement of precision-recall balance. Despite a comparable
performance the ANN model shows reduced proficiency than the
DNN model especially in recall rates. The CNN model maintains
exact results yet demonstrates poor performance when it comes
to unreliable grid situations thus making it inferior to alternative
solutions tested here.

The figure in Figure 3 illustrates the accuracy curves achieved
by the classifiers. Ann model generates steady progress in
training and validation accuracy until it reaches stable high
performance during training as depicted in Figure 3a which
indicates strong learning ability and generalization. The DNN
model in Figure 3b depicts training accuracy and validation
accuracy progress through smooth lines yet exhibits minor
variations that hint at data or complexity dependency. The
CNN model in Figure 3¢ exhibits quick convergence as well
as exceptional accuracy through validation accuracy surpassing
training accuracy thus demonstrating strong generalization ability.
The CatBoost integration with CNN produces Figure 3d which
demonstrates the fastest accuracy improvement rate that leads to
precise validation accuracy results under only a few epochs. The
model demonstrates advanced learning capability as well as high
resistance to disturbances.

The same classifiers show their loss value in Figure 4. The ANN
model depicted in Figure 4a demonstrates steady loss reduction
for training and validation sets thus showing successful training
along with minimal occurrence of overfitting. The DNN loss values
demonstrated a steady downward trend according to Figure 4b, yet
minor fluctuations appeared in the validation loss curve because
of potential depth effects on the model’s behavior. The training
of the CNN model in Figure 4c exhibits quick loss decline while
training and validation losses follow each other closely due to its
efficient and stable operation. The loss curves from the CatBoost +
CNN model demonstrate fast and regular declining patterns which
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FIGURE 4

Loss curves of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

show rapid convergence while keeping overfitting to a minimum as
shown in Figure 4d.

Each model generates its confusion matrix represented in
Figure 5 to display proper and improper classification doctorates
for “Unstable” and “Stable” categories. The ANN model achieves
high accuracy through its classification results which accurately
categorize most data yet shows minor errors by marking 50
unstable samples as stable and 79 stable samples as unstable
(see Figure 5a). According to Figure 5b the DNN model shows
good performance although it displays somewhat elevated
misclassification rates than ANN particularly by mistyping 198
unstable cases as stable. Analysis in Figure 5¢ indicates the
CNN model minimizes misclassification errors by categorizing
28 unstable and 29 stable samples incorrectly demonstrating
how it captures patterns effectively and performs generalization.
Figure 5d shows CatBoost + CNN’s exceptional performance as
the model provides comprehensive accuracy for large datasets
by wrongly classifying 172 unstable cases and 147 stable ones.
The hybrid model demonstrates its strongest ability to classify
datasets through its powerful capability in handling complex and
imbalanced data scenarios.

In Figure 6 the ROC (Receiver Operating Characteristic)
curves display the relation between True Positive Rate vs.
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False Positive Rate by using different threshold values for each
classifier. AUC calculates a single numerical score which rates
performance on a scale with 1 as the optimal limit. The ANN
model demonstrates an Area Under the Curve value of 1.00
which indicates perfect separability between categories as depicted
in Figure 6a. The AUC value of 0.97 in Figure 6b indicates a
high level of class discrimination for the DNN model yet not
reaching the highest possible score. The CNN model reaches
another AUC result of 1.00 in Figure 6c which demonstrates
its strong ability to separate different classes. The CatBoost
+ CNN model reaches an AUC value of 1.00 as shown in
Figure 6d thus establishing itself as an exceptional system for
maximum accuracy in identifying stable and unstable states.
The results obtained from confusion matrices as well as ROC
curves demonstrate that all models deliver satisfactory performance
although CNN and CatBoost + CNN excel at classification
accuracy and identification discrimination. The CatBoost + CNN
hybrid model demonstrates the best comprehensive results along
all performance criteria to become the optimal solution for this
classification system.

Figure 7 demonstrates the Local Interpretable Model-agnostic
Explanations (LIME) which highlight key features from each
model namely Artificial Neural Network (ANN), Deep Neural
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Confusion matrix of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

Network (DNN), Convolutional Neural Network (CNN), and the
proposed hybrid CatBoost + Deep-CNN for their classification
decisions. The ANN classifier 7a demonstrates positive and
negative impacts as shown in the analysis. Positive effects on
predictions stem from Feature 8 (1.25), Feature 1 (0.32), and
Feature 3 (0.30) while negative effects arise from Feature 0
(—1.59), Feature 10 (—1.23), and Feature 11 (—1.34) regarding
the classification of unstable states. DNN classifier 7b uses
PCA-5 (1.12), PCA-7 (0.60), PCA-10 (0.83) as key positive
factors when trained with PCA-transformed features. PCA-1
(1.37) and PCA-8 (1.27) show negative feature values in the
output because the DNN extracts discriminating information
from compressed features. The CNN model 7c¢ demonstrates
that Feature 7(1.52) and Feature 8 (1.25) have the strongest
positive influence along with Feature 0 (—1.59) and Feature 11
(—1.34) establishing negative influence through its convolutional
layers. The CatBoost + DeepCNN hybrid model depicted
in Figure 7d utilizes different computational patterns which
unify tree-based capabilities with deep learning advantages. The
prediction accuracy for stable states strongly relies on features g2
(1.73), gl (1.46) along with pl (1.20) while gl (—1.16) and T4
(—0.49) demonstrate negative influences. The distinctive patterns
indicate how this blended method recognizes sophisticated patterns
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between features because of its ability to process non-linear
interactions.

5 Conclusion and future work

A new powerful hybrid classification system based on Cat-
Boost with Deep Convolutional Neural Networks (Deep-CNN)
provides reliable predictions of smart grid stability together with
outstanding precision and reliability. The research introduces
an innovative approach through the combination of gradient
boosting decision trees with deep learning systems in ways
that have not received widespread application so far in this
field. Through their united use CatBoost analyzes tabular data
relationships and DeepCNN analyzes hierarchical spatial features
enabling the hybrid system to efficiently capture both low-level
and high-level data representations for superior performance.
The joint approach achieves confirmation through experimental
findings. A hybrid implementation of CatBoost + DeepCNN
achieved a 98.23% classification accuracy and 97.37% precision
along-side 97.75% recall and 97.56% F1-score that surpassed
standard models including ANN with F1 of 97.14% and DNN
with F1 of 97.83% as well as CNN with F1 of 93.09%.
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ROC curves of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.
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The model demonstrates excellent generalization potential and
effective class balancing skill when working on new data
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sets. The research incorporated the interpretive method LIME
(Local Interpretable Model-Agnostic Explanations) for achieving
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model transparency in decision-making processes. The application
of LIME explanations on CatBoost + DeepCNN provides
energy sector stakeholders with crucial insight into model
prediction decision-making though a well-known interpretive
method. The proposed work has developed a smart grid
stability analysis solution which combines predictive strength
with interpretability through practical implementation. The
proposed system demonstrates successful outcomes, yet research
opportunities continue to exist for further development. The
hybrid model should be expanded to incorporate multi-class and
regression-based formulations to give more detailed understanding
of grid instability degrees. The predictive performance can
be improved by sequential architectures such as LSTM or
GRU along with CatBoost when analyzing time-dependent
grid dynamics.

Furthermore, to comprehensively benchmark the hybrid
model, future studies should include comparisons against other
state-of-the-art tabular learning models, such as XGBoost and
LightGBM. A comparative analysis of different Explainable AI
(XAI) techniques, contrasting the local insights from LIME with
the explanations provided by methods like SHAP, would also
offer a more holistic understanding of the model’s decision-
making process.

The integration of real-time smart grid monitoring with
adaptive learning features allows the model to develop proactive
strategies which build future power systems resilience and
intelligence through deployment. Aside from grid management,
this system shows considerable potential for autonomous robotic
examination of critical infrastructure. Integrating with robotic
systems enables real-time predictive planning, safety monitoring,
and intelligent prioritization. Future research will look at edge
deployment of this hybrid model on inspection drones and robots,
allowing them to detect environmental hazard based on projected
grid instabilities and adjust actions accordingly.
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