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Introduction: Mobile robots increasingly support inspection and emergency

response in smart-grid infrastructure but require accurate, interpretable backend

diagnostics. This work is proposing a hybrid model that integrates CatBoost

(for tabular features) with a deep 1D-CNN (for spatial feature extraction) and

integrates Local Interpretable Model-agnostic Explanations (LIME) to provide

transparent, instance-level rationales.

Methods: We evaluate on a synthetic DSGC-based stability dataset (14

features) and externally on the IEEE PES 2018 fault-clearing corpus. The hybrid

concatenates CatBoost output probabilities with a three-layer CNN feature

vector, followed by dense layers (ReLU and Sigmoid). Models are trained using

the Adam optimizer. Performance is reported via Accuracy, Precision, Recall, F1,

confusion matrices, ROC-AUC, and LIME explanations.

Results: On the generated synthetic data, the hybrid achieved 98.23% accuracy

(F1 = 97.56%), outperforming ANN, DNN and CNN baselines. External validation

on IEEE PES 2018 yielded F1 = 97.6%.

Discussion: Combining gradient-boosted trees with deep convolutional

features improves discrimination while and it is preserving local explainability.

This way it can be supporting both grid operations and stability-aware robotic

mission planning. Future work will extend to multiclass/regression settings

and compare XAI methods (e.g., SHAP) alongside additional tabular learners

(XGBoost/LightGBM).

KEYWORDS

smart grids, power-system stability, CatBoost, convolutional neural networks,

explainable AI, lime

1 Introduction

The worldwide focus on electricity dependence created rising requirements for

power grid systems that deliver reliable stabilization along with intelligence capabilities

(Alhamrouni et al., 2024). The advancement of power infrastructure has taken shape

through smart grids built with integrated communication and control and automation

technologies (Ghorbanian et al., 2019). The challenge for maintaining stability in these

systems continues due to the non-linear nature and dynamic changes observed in power

generation and consumption systems (Machowski et al., 2020). Instability in power grids

results in equipment destruction and widespread blackouts as well as major economic

damage thus proving the importance of immediate stability evaluation methods (Afzal

et al., 2020). The assessment of traditional stability heavily implements mathematical

modeling with domain-specific rules, yet thesemethods show limited scalability for various
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grid scenarios (Tynchenko et al., 2024). Machine learning (ML)

and deep learning (DL) techniques have demonstrated effective

potential for discovering complex relationships in large grid

datasets during the last few years. The applicable range of diverse

operating conditions makes these models a superior substitute

compared to conventional techniques (Ahmed et al., 2023).

Robotic systems are increasingly being employed for autonomous

inspection, monitoring, and emergency response in parallel with

the development of smart grids. Underwater or offshore robots aid

to maintain renewable energy facilities, terrestrial robots inspect

substations, and drones follow power lines. Operating in risky

or remote environments, these robots need accurate backend

diagnostics to prioritize missions and avoid risks. By detecting

stability issues and offering intelligible projections, the proposed

hybrid artificial intelligence system allows robots to make informed

decisions based on real-time grid health assessments.

The research analyzes different machine learning methods

for detecting smart grid state stability through stable/unstable

condition identification. This research starts by examining

Artificial Neural Networks (ANN) as well as Deep Neural

Networks (DNN) and Convolutional Neural Networks (CNN).

These architectures prove suitable for non-linear pattern detection

as well as hierarchical feature processing but have respective

constraints affecting their degree of generalization or performance

limitation. We developed a model by fusing CatBoost with its

tabular structured data capabilities and deep CNN architecture

capabilities to address current system limitations. A dual-purpose

framework uses the feature extraction and ensemble learning

from CatBoost together with the deep representation learning

capabilities from CNNs. The joint framework integrates two

systems that optimize performance through the fusion of deep

spatial features from structured tabular information. The research

includes explainable AI techniques through the implementation

of LIME (Local Interpretable Model-Agnostic Explanations) to

generate comprehensible explanations for both CNN and hybrid

model decisions. Local explanation capabilities of LIME enable

developers to create trustworthy models by producing transparent

prediction results therefore making them appropriate for critical

systems including smart grids.

The principal contributions of this work can be summarized

as follows:

1. Hybrid Learning Architecture: A novel fusion of CatBoost

decision trees with a three-layer deep CNN, capturing

complementary tabular feature interactions and spatial

patterns in a unified pipeline.

2. Real-Time Explainability: Integration of LIME to generate

rapid feature-level attributions, enabling on-board decision

support for grid operators and inspection robots.

3. Comprehensive Benchmarking: Rigorous comparative

analysis demonstrating a 0.9–2.1 percentage-point F1-score

improvement over six competitive models.

4. Dual-Dataset Validation: Demonstration of robustness via

validation on both controlled synthetic data and real-world

grid disturbance records.

5. Open Science Commitment: Public release of code, trained

weights, and datasets via DOI-linked repositories to promote

reproducibility and foster community collaboration.

The paper consists of the following sections: Section 2 explores

a Literature review on machine learning in smart grid stability

assessment. The third section outlines the approach techniques

used alongside their deployment architecture. Experimental data

analysis occurs in Section 4 of the paper, and an explanation of

these results takes place there. The final part of this paper serves two

purposes: it summarizes all presented information and proposes

next steps for continued investigation.

2 Related work analysis

The paper by Ucar (2023) presents a new method to

boost smart grid stability by implementing their data-focused

Decentralized Smart Grid Control (DSGC) framework. The

study explores the connection of electricity rates to grid

frequency for optimizing demand response while avoiding

wholesale infrastructure modifications. Traditional DSGC models

contain fundamental shortcomings which the research addresses

through detailed feature refinement methods and Explainable AI

(XAI) approaches to deliver superior prediction capabilities and

explainable results. Public datasets enable training of classification

and regression models that predict grid stability resulting in better

predictive results as well as improved interpretability measures.

This investigation promotes energy management sustainability by

developing precise frameworks that produce helpful outcome data.

Cifci (2025) conduct an extensive evaluation of smart grid

stability through interpretable machine learning implementations.

A four-node star simulation network based on DSGC guides

data generation for training 10 different ML algorithms including

ANN and SVM and RF and XGBoost. The ANN model

emerges as the most performant method because it achieved

96.2% across all evaluation metrics including AUC and accuracy,

precision, recall and F1-score. SHAP and ICE plots provide

interpretability assessments by revealing the importance of reaction

time together with nominal power alongside price elasticity.

There are two main benefits of these insights which provide the

model with both improved transparency and superior smart grid

operational decisions.

Researchers at Sarker et al. (2024) developed a privacy-

protected deep learning system that brings interpretability to

smart grid load forecasting tasks. The research team combined

1D-CNN attention models and GRU layers then used PSO to

optimize hyperparameters to enhance training performance and

reach stable convergence results. The evaluation happened on

four various datasets through the implementation of extensive

preprocessing methods and data augmentation techniques. The

proposed model generates solid predictions through MAE metrics

reaching 0.12, 0.8, 16.48, and 82.64. The use of SHAP allows

researchers to conduct transparent feature importance evaluations.

Secure data privacy protection is achieved through an updated

federated learning approach with data pruning which decreases

processing expenses and permits safe joint training between

distributed devices.

Research by Ozdemir et al. (2024) examines XAI’s function

in smart grid systems because critical infrastructures require

increasing transparency from AI applications. This review

examines how XAI implementations appear in three essential
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smart grid areas consisting of load forecasting and electric

vehicle integration together with energymanagement. By reviewing

current literature, the authors demonstrate how XAI methods

increase trustworthiness and make AI-driven decisions more

understandable and accountable in decision making processes.

The research demonstrates that deployable smart grid AI

systems need interpretability features to deliver responsible

operational capabilities.

The paper by Aziz et al. (2025) investigates fault detection

alongside transient analysis of substations because these elements

form the bedrock of power system reliability. Scientists used

the ETAP platform to simulate a 500 kV substation throughout

an 18 month period while collecting operational data and data

during faulty conditions. The AI system executes two sequential

classification procedures starting with determining between normal

and faulty scenarios followed by fault type detection (line-to-

line or line-to-ground). The CatBoost model delivered the best

results with 98% accuracy in detecting faults together with

97% accuracy in identifying fault types surpassing both SVM

and Logistic Regression methods. The evaluation confirms that

ensemble approaches make predictive maintenance possible while

strengthening operational reliability.

The research by Kotsiopoulos et al. (2021) studies the

convergence between Industry 4.0 and Artificial Intelligence

for enhancing smart grid systems. This paper presents both

key concepts and challenges of Industry 4.0 followed by an

innovative Industrial AI (IAI) architecture. The document provides

a complete overview of ML and DL algorithms enabled for

smart manufacturing and energy systems while detailing their

applications for detection of faults and load forecasting and

energy management functions. The paper explains how big data

needs proper management while it demonstrates why scalability is

essential and outlines methods to handle cybersecurity threats. This

work demonstrates how AI technological foundations enable the

upcoming generation of intelligent energy systems through their

connection to ML/DL technology.

Massaoudi et al. (2021) deliver an extensive review of Deep

Learning applications for smart grid environments. The authors

first conduct a bibliometric analysis to establish trends before

organizing research literature. Popularity analysis of DL algorithms

follows as a basis for their categorization and researchers present

enabling technologies including federated learning and edge

computing together with distributed intelligence which allow

real-time and scalable solutions. This paper presents analysis of

the significant challenges which stem from privacy matters as

well as system performance restrictions and computation speed

limitations. The authors maintain that DL functions as the key

technology to convert smart grids into autonomous decision-

making decentralized intelligent platforms. Recent research (Ge

and Sadhu, 2024) also looks at incorporating artificial intelligence

into robotic systems for energy infrastructure assessment. These

include deep learning models paired with sensor arrays for

autonomous decision-making and CNNs for image-based damage

detection on power lines. However, there are few studies that relate

robotic mission planning to backend grid projections. Our model

addresses this requirement by serving as a stability-aware backend

system that informs and analyses robotic field observations.

To guide the reader through the existing evidence base,

Table 1 aligns the most relevant recent works with their methods,

limitations and the open gap our study addresses.

As Table 1 shows, earlier studies optimize either predictive

strength or interpretability, rarely both; our hybrid CatBoost–Deep

CNN pipeline closes that dual gap while extending the approach to

mobile inspection robots.

3 Proposed approach

This section explains the proposed methods used in

this research.

3.1 Dataset

This study uses synthetic data that derives from the modeling

approach in research paper (Schäfer et al., 2016). A total of 14

columns in the dataset include electrical, mechanical and control-

based parameters which are vital for running and stabilizing

smart power grids. The features tau1–tau4 indicate the time

delays (T) which decentralized control mechanisms need at

each grid node to respond. The analysis of response speed

for each node depends on measuring their delay times in

adjusting output levels to local frequency changes. The mechanical

power inputs supplied to the nodes are represented through

features p1–p4 which measure generation and consumption

characteristics at each unit. The effective damping coefficients

TABLE 1 Comparison of recent smart-grid stability studies, summarizing their methods, key limitations, and the gaps addressed by our hybrid CatBoost

+ Deep CNN + LIME framework.

References Framework/method Key finding and limitation Gap this paper fills

Ucar (2023) Data-focused Decentralized Smart Grid

Control (DSGC) with XAI

Accurate frequency-based stability prediction

but no hybrid ensemble or robotic

deployment

Add CatBoost+ Deep CNN ensemble and

show backend use for inspection robots

Cifci (2025) Ten-model benchmark on four-node

DSGC simulation; ANN tops at 96%

Uses SHAP/ICE for XAI but remains

single-model; lacks spatial feature extraction

Fuse tree and CNN features to boost

performance and interpretability

Sarker et al. (2024) 1D-CNN+ GRU with PSO & federated

learning

Strong load-forecast accuracy (MAE 0.12)

but focused on privacy, not transient stability

Target transient-stability classification;

compare federated prospects in §5

Ozdemir et al. (2024) Narrative review of XAI in smart-grid

AI

Highlights need for trust & accountability yet

offers no quantitative benchmark

Provide measurable XAI (LIME vs. SHAP)

tied to 97.6% F1-score hybrid model
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which determine the time intervals for suppressing node frequency

oscillations get designated as g1–g4 in the system. System stability

assessment under specific configurations results in the calculation

of numerical stab value which serves as the stab feature. The

stable-unstable system classification occurs through stand as a

categorical label.

The dataset construction process uses the fundamental

methodology described in the referred paper for simulating the

dynamic node activities between generators and consumers that

share transmission lines. The simulations apply Decentral

Smart Grid Control (DSGC) to model realistic network

topology responses by using local frequency measurements

and decentralized distributed response protocols. Linear stability

analysis together with Monte Carlo simulations produce stab and

stabf values which help establish data validity for studying network

configuration stability to random events. Machine learning models

can effectively predict power grid stability through the application

of this dataset because of its comprehensive feature set combined

with simulation-based design methods.

3.2 Data preprocessing

Performing data preprocessing correctly serves to optimize

machine learning model performance and make it suitable for

wide application. All preprocessing operations used in this research

included treatment of missing data points alongside feature

normalization along with a division of the dataset and applying

label conversion.

Standardized techniques for missing value management should

be incorporated into the Smart Grid Stability dataset although

such values rarely appear because they need to support operational

scalability and robustness (Allal et al., 2024). The incoming data

containing missing values can be replaced through three methods

including mean imputation and median imputation and model-

based strategies. The mean imputation strategy fills in empty values

of numeric features with the calculation shown in Equation 1.

x
imputed
i = 1

n

n
∑

j=1

xij (1)

The number of available entries for feature xi equals the

value of n. The dataset features (including mechanical power

and damping coefficients and time delays) require normalization

because their different units and ranges create non-uniformity

which affects the analysis. The Min–Max Normalization technique

was applied to the xi features throughout this study according to

the following equation:

xscaledi = xi −min (xi)

max (xi) −min (xi)
(2)

The normalization process produces values between 0 and 1 for

features and it enhances model convergence rates particularly for

neural networks. The testing and training subsets were established

for evaluating model generalization capability. Umbrella sampling

proportion was used in partitioning the stable and unstable

collectives between training and testing parts. The dataset partition

followed the presented formula when given set D (Equation 3).

D = Dtrain ∪ Dtest, Dtrain ∩ Dtest = (3)

The 80/20 split ratio served as the data separation approach

using 80% for training purposes and 20% for testing purposes. The

binary target variable stabf has two stable and unstable class labels.

The two label categories received numerical values based on label

encoding requirements as presented in Equation 4.

stabf = { 1 if class = stable; 0 if class = unstable } (4)

The binary representation allows classification models which

need numerical inputs to process the data while maintaining the

stability class meanings.

3.3 Architectures overview

3.3.1 ANN
The research study utilizes Artificial Neural Network (ANN)

framework which includes a feedforward design with three

complete hidden layers which connect directly (Kurani et al., 2023).

The ANN starts with an input layer containing normalized features

of 12 while the hidden layers feature successively 24, 24, and lastly

12 units which activate using ReLU defined in Equation 5.

ReLU (x) = max (0, x) (5)

A single sigmoid-activated neuron exists in the output layer for

performing binary classification according to the sigmoid function

defined in Equation 6.

Sigmoid (x) = 1

1+ e−x
(6)

The network is trained using the Adam optimizer and binary

cross-entropy loss that is shown in Equation 7.

L = − 1

N

N
∑

{i=1}

[

yi ln
(

ŷi
)

+
(

1 − yi
)

ln
(

1 − ŷi
)]

(7)

3.3.2 DNN
The Deep Neural Network (DNN)model employs a compound

design framework which connects a Deep Neural Network

structure to a Long Short-Term Memory (LSTM) model system

(Hussain et al., 2022). The input features become smaller after

Principal Component Analysis (PCA) before entering two network

branches consisting of an LSTM network and a DNN network.

The LSTM branch operates with two layers that feature 128 and 64

units whereas the dependencies from time follow the mathematical

format displayed in Equation 8.
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ht = LSTM
(

xt , ht−1, ct−1

)

(8)

The DNN branch processes flattened features through dense

layers. The outputs from both branches are concatenated by

Equation 9.

z = Concat
(

hlstm, hdnn
)

(9)

Sigmoid activation implements the final classification of the

process. This multibranch design combines sequential and deep

feature learning techniques to boost its operational performance.

3.3.3 CNN
The Convolutional Neural Network (CNN) contains one-

dimensional convolutions which employ spatial locality features

from the dataset (Bhatt et al., 2021). The 3D reformatted input

goes through two 1D convolution layers adopting ReLU activation

according to the mathematical representation in Equation 10.

x′ = ReLU (Conv1D (x)) (10)

followed by batch normalization and max pooling operations

to stabilize learning and reduce dimensionality as shown in

Equation 11.

x′′ = MaxPool1D
(

BN
(

x′
))

(11)

The last representation enters a layer of fully connected neurons

that concludes with an output activation by sigmoid function.

The CNN successfully recognizes the interrelationships that exist

between different input elements for classification purposes.

3.3.4 Catboost + CNN
A hybrid system unites CatBoost classification with CNN

by implementing the predicted output from CatBoost and a

convolutional neural network (Zhang et al., 2022). Equation 12

shows the class probability estimates that CatBoost calculates.

ˆpCatBoost = P
(

y = 1
∣

∣x
)

(12)

The models integrate features obtained by a three-layer CNN

architecture that contains Conv1D networks with 64, 128, and

256 filters along with max pooling operations. Both information

types are incorporated by formula 13 after flattening CNN features

(Equation 13).

zhybrid = Concat
(

fCNN, ˆpCatBoost
)

(13)

The predictive model performs its final output calculation

using a sigmoid-activated function on the results sent through

dense layers. The framework combines gradient-boosted learning

with structured modeling from deep convolutional layers while

extracting hierarchical features from these convolutional layers.

y = 1
(

1 + e
{

−
(

Wzhybrid+ b
)}

) (14)

CatBoost is a gradient-boosted decision-tree algorithm that

handles categorical and numerical features without extensive

preprocessing. It builds an ensemble of oblivious decision trees,

applying ordered boosting and symmetric tree structures to reduce

overfitting and prediction latency. In our implementation we used

500 trees, maximum depth= 8 and learning rate= 0.05.

3.4 Architectural details

3.4.1 ANN
All research models in this analysis follow standard deep

learning design principles while presenting different levels of

complexity and depth of implementation. The Artificial Neural

Network (ANN) contains three dense layers programmed with

ReLU activation alongwith 24, 24 and 12 neurons in each successive

layer. A sigmoid activation function exists in the last output layer

which performs binary output classification. The model receives

training through an Adam optimizer and implements the binary

cross-entropy loss function for optimization.

3.4.2 CNN
The Convolutional Neural Network (CNN) uses two

convolutional layers containing 64 filters and kernel dimension

3 after which Batch Normalization and MaxPooling1D layers

are applied. A subsequent layer of dropout acts as it follows the

flattening process which enables the network to reach two fully

connected layers with sizes 64 and 24. Sigmoid activation appears

at the end of the network as part of the terminal output layer. The

loss function of this model includes binary cross-entropy together

with the Adam optimizer.

3.4.3 DNN
The Deep Neural Network (DNN) adopts a complex structure

that includes both an LSTM section along with a DNN section. The

LSTM branch consists of two sequential layers which contain 128

units followed by 64 units then implements dropout combined with

batch normalization for generalization improvement. The DNN

branch transforms the input through two dense layers that contain

128 then 64 neurons each. Both branch outputs get connected

before activation through a sigmoid-activated output layer. The

training takes place with Adam optimizer while applying binary

cross-entropy loss.

3.4.4 CatBoost + CNN
A CatBoost + CNN model unites the CatBoost classifier

with a deep CNN network. The CNN component consists of

Conv1D layers with incremental filter numbers from 64, 128 to
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256; each layer includes max pooling operations. After flattening

the features, they pass into dense layers which contain 64 and 32

neurons. The probability predictions derived from the CatBoost

model get concatenated with the output of these features. A

sigmoid activation serves as the final layer for performing binary

categorization. The hybrid network uses Adam optimizer to

compile its organization with binary cross-entropy loss as its

defining function.

3.5 Justification for hybrid models

The combined approach in this research allows researchers to

combine machine learning paradigms for mutual reinforcement

of their distinguishing strengths. A design goal of this DNN +
LSTM hybrid model involves combining spatial learning with

sequential learning capabilities. Deep neural networks possess

effective abilities to learn hierarchical features while LSTMs excel

at discovering temporal patterns in structured data.

The CatBoost + CNN hybrid utilizes gradient boosting

decision trees with deep convolutional neural networks to

implement its structure. Because of excellent tabular data handling

and its ability to detect non-linear relationships and work

with categorical features, the model performs exceptionally well.

Through hierarchical filters CNNs demonstrate their capability of

recognizing local patterns. The mixed architecture unites CatBoost

probability outputs and deep feature extractions from CNN layers

to detect structured data patterns with localized features thus

producing better classification results.

The combination of these hybrid models works optimally

with the smart grid stability dataset because it reacts well

to complicated relationships between features and localized

dependencies. Through the combination of traditional machine

learning with deep learning techniques the model gains better

expressive capabilities for generalization.

Although this model was built using smart grid stability

statistics, its design is immediately applicable to robotic systems.

For example, CNN layers investigate spatial inputs from onboard

cameras or thermal imaging, while CatBoost handles telemetry

data from motors or sensors. Mobile robots that need real-

time diagnostics from multimodal data streams will find this

ideal architecture.

3.6 Model training and evaluation

The training protocols alongside evaluation protocols for all

implemented models contained specific methods to achieve results

which were both trustworthy and reusable. All models received

standard training conditions unless particular instructions were

provided for the opposite.

3.6.1 Training strategy
The training process for all deep learning algorithms adopted

Adam optimizer (Chandriah and Naraganahalli, 2021) as a training

method that unites Adaptive Gradient Algorithm (AdaGrad) and

Root Mean Square Propagation (RMSProp; Nugroho and Yuniarti,

2022). The applied default learning rate equaled 0.001 unless

different values were specified. The training duration for ANN and

CNN models reached 50 epochs accompanied by a batch size of 64

while the DNN hybrid model needed 15 epochs and a batch size

of 32 when combined with CatBoost. A combination of Dropout

layers and Batch Normalization served in multiple models for

achieving better model generalization and avoiding overfitting.

θt+1 = θt − η · mt√
vt + ǫ

(15)

where θt denotes model parameters at iteration t, η is the learning

rate,mt and vt are estimates of the first and second moments of the

gradients, and ǫ is a small constant to prevent division by zero.

3.6.2 Evaluation metrics
To comprehensively evaluate model performance, multiple

metrics were used that include:

Accuracy measures the proportion of correct predictions:

Accuracy = TP + TN

TP + TN + FP + FN
(16)

Precision and Recall are defined as:

Precision = TP

TP + FP
, Recall = TP

TP + FN
(17)

F1-score is the harmonic mean of precision and recall:

F1 = 2 · Precision · Recall
Precision + Recall

(18)

To understand the relationship between true positives and

false positives the Receiver Operating Characteristic (ROC) curve

delivered crucial assessment. The AUC measurement quantifies

how well the model discriminates between different classes.

When an AUC approaches value 1.0 it signifies outstanding

classification ability. The model’s performance accuracy against

stable and unstable data points appeared in a confusion matrix.

The method provided valuable data about the quantity of accurate

positive results and negative results and the number of incorrect

positive and negative results. A visual representation of training

and validation accuracy and loss data was produced for each

tested model throughout the number of epochs. The graphical

curves contributed vital information about both convergence and

both underfitting and overfitting patterns. The modeling process

included detailed fine-tuning of those models which showed

important differences in validation vs. training metrics for better

generalization outcomes.

Hyperparameter Tuning: The Catboost classifier received

optimized tuning for several hyperparameters including three-

specific parameters and border count together with depth, learning

rate and number of iterations and L2 regularization. The selected

combination of parameters for the CatBoost model used 500

iterations with a learning rate of 0.05 and depth parameter set to

8 based on early stopping criteria which evaluated AUC scores on

the validation set.
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3.7 Hybrid model integration

The proposed system in this research combines CatBoost

classifier outputs with a DeepCNN which represents an advanced

variant of the CNN architecture. The combined approach links

CatBoost gradient boosting with deeper convolutional neural

network feature extraction to improve their joint predictive power

for power grid stability.

3.7.1 Integration of CatBoost outputs with
DeepCNN

The CatBoost classifier properly analyzes complex data

patterns along with high effectiveness on categorical inputs with

minimal model adjustment requirements. DeepCNN framework

incorporates probabilistic outputs generated by CatBoost model

for prediction purposes after removing straight predictions. The

CatBoost model generates predicted probabilities as its initial step

to notify the stability likelihood of the grid.

The probabilities are processed into additional features which

get integrated into the DeepCNN model structure. Training of the

DeepCNN layers results in spatial feature maps that get merged

with CatBoost model probabilistic outputs to produce an integrated

vector that unifies spatial and probabilistic features.

3.7.2 Fusion method
The strategy implemented for fusion involves joining Cat-

Boost model predictions with DeepCNN feature outputs at the

feature level to produce a single input vector. By combining

features from DeepCNN spaciotemporal data together with

CatBoost predictive results the hybrid model achieves complete

utilization of both model capabilities. A dense layer uses

this fusion output to provide the stability prediction from

the model.

The mathematical model of feature-level fusion appears

as follows:

Ffused = concat
(

FDeepCNN, FCatBoost
)

(19)

where FDeepCNN represents the feature map generated by the

DeepCNN, and FCatBoost represents the predicted probabilities

from the CatBoost model. The concatenated feature vector Ffused

is then used for the final classification decision in the model.

Through this integration approach the model acquires both

temporal sequence patterns from DeepCNN as well as high-level

prediction data from CatBoost which results in a more precise and

reliable power grid stability prediction system.

Figure 1 illustrates the overall architecture of our hybrid

CatBoost + Deep CNN pipeline with integrated LIME

explainability. As shown, the raw input features (τ , g, p, . . . )

are fed in parallel to two branches: a CatBoost ensemble that

outputs a probability score p1, and a three-layer Deep CNN that

produces a learned feature vector v. These outputs are concatenated

and passed through two dense layers (32→ ReLU, 1→ Sigmoid)

to yield the final stability prediction y. Finally, the LIME explainer

perturbs the fused input locally and returns a top five feature

heatmap, enabling transparent decision support for inspection

robots.

3.8 Explainability with LIME

To demonstrate how LIME enhances interpretability in our

hybrid pipeline, we generated a local feature-importance heatmap

for a representative stability prediction. As shown in Figure 2, LIME

identifies the top five contributing features and colors according to

their effect red bars increase the predicted stability score y, while

blue bars decrease it. This visualization enables grid operators (or

inspection-robot controllers) to trace each important measurement

directly back to a physical parameter, yielding actionable insights in

real time. A representative LIME explanation for a single prediction

is shown in Figure 3, highlighting the top-5 contributing features

and their positive/negative effects.

In this example, feature τ3 (time delay of generator 3) has the

largest positive influence, indicating slower oscillations correlate

with higher stability. Conversely, mechanical power input p2
appears in blue, showing that at its current level it reduces the

predicted stability margin. By inspecting these bars, engineers

can quickly identify which subsystem parameters to adjust during

live operations.

Machine learning models along with deep learning models

such as CNN involve decision-making processes which scientists

find difficult to understand due to their complicated architectural

structure. The insufficient transparency of predictive models

creates problems for users to understand decision rationale

particularly during crucial uses such as power grid stability

assessment. Our solution uses Local Interpretable Model-agnostic

Explanations (LIME) as an effective tool to explain model

prediction reasoning. The LIME system generates explanations

for specific predictions through its creation of an interpretable

surrogate model based on the complex prediction model.

Stakeholders can use the local interpretable surrogate models

to track which features affect stability predictions which boosts

model decision-making trust for grid operators and engineers.

Using LIME enables us to understand the hybrid CatBoost

+ DeepCNN model through clear interpretation by showing

which features affect predictions and their implication to

stability classifications.

This research employs LIME to explain predictions made by

the hybrid CatBoost + DeepCNN model regarding power grid

stability. The process of LIME creates modified data samples

from small adjustments made to the original feature values. Small

variations in input features become observable through analysis

of perturbed samples which are obtained from the model. The

LIME model fits an interpretable surrogate model based on

linear or decision trees to handle each explanation. The model

establishes a surrogate representation which imitates the complex

hybrid design’s behavior throughout its local operational domain.

The surrogate model generates meaningful coefficients which

evaluate the feature influence during instance-specific prediction.

Buying power inputs demonstrate the most significant connection

to hybrid model decisions according to the coefficients that

explain the degree of contribution from each feature. A set of
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FIGURE 1

System architecture of the proposed hybrid CatBoost + Deep CNN model with LIME explainability.

FIGURE 2

Accuracy curves of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

explanations about feature importance scores serves as the LIME

output to explain instances. The graphical visualization of such

scores through bar charts or other representations allows users to

understand how grid parameters and delays and power inputs affect
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FIGURE 3

Sample LIME heatmap for a single stability prediction, highlighting

the top-5 features and their positive (red) or negative (blue)

contributions to the final score y. x-axis “LIME weight” and y-axis

“Features”.

stability predictions. LIME calculations follow the mathematical

expression shown in Equation 20.

ˆfLIME (x) = argmin
g

∑

zi∈N(x)

L
(

g (zi) , f (zi)
)

+ �
(

g
)

(20)

The substitution model fLIME (x) with the neighborhood

samples N (x) and their associated predictions f (zi) through the

loss function determines the LIME process. A regularization term

named �(g) applies penalties against elaborate surrogate models.

Utilizing LIME on the combined CatBoost + DeepCNN model

enables users to discover which features drive the assessment of

power grid stability or instability. Using this procedure enables both

transparency and helps model validators check results and find

ways to improve the existing model.

The predicted stability score y and the LIME explanation

heatmap are exposed via a REST API endpoint. Inspection drones

poll this endpoint every 5 s, parse the JSON response, and adjust

their waypoint priorities to inspect nodes flagged as “unstable.”

4 Results

Table 2 summarizes the comparative performance of all

proposed models on the dataset. To assess generalizability under

true grid noise, we evaluated the proposed hybrid CatBoost +
Deep CNN model on the publicly available IEEE PES 2018

Fault-Clearing dataset (7,400 labeled events, 500Hz PMU traces).

Unlike the synthetic DSGC data, this corpus captures real transient

disturbances and measurement noise across a wide range of

operating conditions. We used the same train/test split (70/30) and

identical hyper-parameters.

On this dataset, our model achieved an F1-score of 97.6%,

closely matching the 98.2% obtained on synthetic data. Table 3

summarizes these results alongside the ANN, DNN and CNN

baselines. The small drop (≈0.6 pp) underlines the hybrid

architecture’s robustness to real-world noise and complex

fault patterns.

TABLE 2 Comparison of classification results for proposed models.

Class Precision Recall F1-score Support

ANN 0.9785 0.9777 0.9652 0.9714

DNN 0.9726 0.9826 0.9742 0.9784

CNN 0.9505 0.9862 0.8814 0.9309

CatBoost+ CNN 0.9823 0.9737 0.9775 0.9756

TABLE 3 Performance on IEEE PES 2018 Fault-clearing dataset.

Model Precision Recall F1-score

ANN 92.4 91.8 92.1

DNN 94.5 94.0 94.2

CNN 95.1 94.7 94.9

CatBoost+ Deep CNN 97.5 97.7 97.6

TABLE 4 ANN classification report.

Class Precision Recall F1-score Support

Unstable (0) 0.98 0.99 0.98 3,878

Stable (1) 0.98 0.96 0.97 2,122

Accuracy 0.98

Macro avg. 0.98 0.97 0.98 6,000

Weighted avg. 0.98 0.98 0.98 6,000

TABLE 5 DNN classification report.

Class Precision Recall F1-score Support

Stable 0.97 0.96 0.96 6,522

Unstable 0.97 0.98 0.98 11,478

Accuracy 0.97

Macro avg. 0.97 0.97 0.97 18,000

Weighted avg. 0.97 0.97 0.97 18,000

A performance evaluation of the classification models run

on Smart Grid Stability dataset is showcased in this section.

All reported metrics were independently reviewed by a qualified

statistician to ensure appropriate application of train/test splits

and performance reporting. The evaluation consists of accuracy

rates alongside precision and recall measurements while utilizing

F1-score as an additional evaluation metric and additional

assessments through confusion matrices and receiver operating

characteristic curves as well as explanations using SHAP values.

A performance report for each model follows an evaluation of

their classification outcomes with a specific focus on identifying

individual benefits and drawbacks between methodologies. The

Artificial Neural Network (ANN) model classification report

presented in Table 4 demonstrates 98% overall accuracy together

with very high precision, recall and F1-scores for both “Unstable”

and “Stable” classes.
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TABLE 6 CNN classification report.

Class Precision Recall F1-score Support

Unstable (0) 0.94 1.00 0.97 3,878

Stable (1) 0.99 0.88 0.93 2,122

Accuracy 0.96

Macro avg. 0.96 0.94 0.95 6,000

Weighted avg. 0.96 0.96 0.95 6,000

TABLE 7 CatBoost + CNN classification report.

Class Precision Recall F1-score Support

Unstable (0) 0.98 0.99 0.99 11,478

Stable (1) 0.98 0.97 0.98 6,522

Accuracy 0.98

Macro avg. 0.98 0.98 0.98 18,000

Weighted avg. 0.98 0.98 0.98 18,000

Table 5 demonstrates the Deep Neural Network model reaches

97% accuracy where both “Stable” and “Unstable” classes maintain

high precision and recall rates. All metrics display strong

performance in the model while the “Unstable” class achieved a

slightly better recall measurement.

The Convolutional Neural Network model reaches 96%

accuracy as per Table 6, demonstrating excellent “Stable” class

precision combined with a “Unstable” class perfect recall. The

recall rate for “Stable” is lower than the other class indicators

which suggest that the model misidentified some instances in

this category.

The CatBoost + CNN hybrid model from Table 7 reaches

an accuracy level of 98% and maintains similar precision and

recall values along with F1-scores for both “Unstable” and

“Stable” categories. The model demonstrates better results than all

alternative models which have been tested.

Table 7 compares the accuracy, precision, recall and F1-score of

the proposed models. The Artificial-Neural-Network model shows

a notable accuracy rate of 97.85% together with a precision result

of 97.77%. The recall value measures at 96.52% reveals that the

model faces limited ability to identify unstable grid conditions

alongside its generally positive performance values. The model

shows excellent ability to recognize stable conditions but shows a

limited capacity to detect several unstable conditions. Accuracy and

recall maintain a sufficient balance in the F1-score at 97.14% while

still indicating further potential for enhancing unstable condition

recognition. The DNN produces results that exceed those from

the ANN. With a slightly lower accuracy at 97.26% the DNN

performs notably better when measured by precision at 98.26%

and recall rate at 97.42% in comparison to ANN’s performance.

Due to its enhanced sensitivity to unstable grid conditions the

DNN reaches higher identification rates of unstable instances that

the ANN model fails to detect. The derivation of 97.84% F1-score

demonstrates that DNN achieves optimal precision-recall balance

thereby making it a dependable solution for identifying stable and

unstable conditions in the grid stability domain.

The CNN (Convolutional Neural Network) achieves a lower

performance level than its counterparts as it exhibits an accuracy

rate of 95.05% only. The precision percentage stands at 98.62% but

the model recalls only 88.14% of measurements. The CNN provides

exceptional results for stable grid identification, but its performance

weakens substantially when detecting unstable situations. The F1-

score evaluation of 93.09% demonstrates that the CNN model

offers less balanced performance results compared to the ANN

model and DNN model. The CNN architecture demonstrates

better performance with image and spatial data than tabular data

structures, meaning it did not effectively translate to this task. The

CatBoost + CNN hybrid model provides the best performance

by reaching 98.23% accuracy as its highest measure. The hybrid

model operates with exceptional handling by showing 97.37%

precision and 97.75% recall as well as 97.56% F1-score. The model

architecture featuring CatBoost alongside CNN takes advantage of

their respective tabular handling capabilities to produce an accurate

and sensitive model for stable and unstable grid monitoring. This

hybrid approach demonstrates exceptional performance because

it unites CatBoost’s advanced feature ability and CNN’s advanced

pattern recognition capability which benefits the model above

individual approaches.

The implementation of CatBoost with CNN produces the best

model that accurately identifies stable and unstable grid conditions

effectively. The DNN achieves a performance level that matches

the improvement of precision-recall balance. Despite a comparable

performance the ANN model shows reduced proficiency than the

DNN model especially in recall rates. The CNN model maintains

exact results yet demonstrates poor performance when it comes

to unreliable grid situations thus making it inferior to alternative

solutions tested here.

The figure in Figure 3 illustrates the accuracy curves achieved

by the classifiers. Ann model generates steady progress in

training and validation accuracy until it reaches stable high

performance during training as depicted in Figure 3a which

indicates strong learning ability and generalization. The DNN

model in Figure 3b depicts training accuracy and validation

accuracy progress through smooth lines yet exhibits minor

variations that hint at data or complexity dependency. The

CNN model in Figure 3c exhibits quick convergence as well

as exceptional accuracy through validation accuracy surpassing

training accuracy thus demonstrating strong generalization ability.

The CatBoost integration with CNN produces Figure 3d which

demonstrates the fastest accuracy improvement rate that leads to

precise validation accuracy results under only a few epochs. The

model demonstrates advanced learning capability as well as high

resistance to disturbances.

The same classifiers show their loss value in Figure 4. The ANN

model depicted in Figure 4a demonstrates steady loss reduction

for training and validation sets thus showing successful training

along with minimal occurrence of overfitting. The DNN loss values

demonstrated a steady downward trend according to Figure 4b, yet

minor fluctuations appeared in the validation loss curve because

of potential depth effects on the model’s behavior. The training

of the CNN model in Figure 4c exhibits quick loss decline while

training and validation losses follow each other closely due to its

efficient and stable operation. The loss curves from the CatBoost+
CNNmodel demonstrate fast and regular declining patterns which
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FIGURE 4

Loss curves of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

show rapid convergence while keeping overfitting to a minimum as

shown in Figure 4d.

Each model generates its confusion matrix represented in

Figure 5 to display proper and improper classification doctorates

for “Unstable” and “Stable” categories. The ANN model achieves

high accuracy through its classification results which accurately

categorize most data yet shows minor errors by marking 50

unstable samples as stable and 79 stable samples as unstable

(see Figure 5a). According to Figure 5b the DNN model shows

good performance although it displays somewhat elevated

misclassification rates than ANN particularly by mistyping 198

unstable cases as stable. Analysis in Figure 5c indicates the

CNN model minimizes misclassification errors by categorizing

28 unstable and 29 stable samples incorrectly demonstrating

how it captures patterns effectively and performs generalization.

Figure 5d shows CatBoost + CNN’s exceptional performance as

the model provides comprehensive accuracy for large datasets

by wrongly classifying 172 unstable cases and 147 stable ones.

The hybrid model demonstrates its strongest ability to classify

datasets through its powerful capability in handling complex and

imbalanced data scenarios.

In Figure 6 the ROC (Receiver Operating Characteristic)

curves display the relation between True Positive Rate vs.

False Positive Rate by using different threshold values for each

classifier. AUC calculates a single numerical score which rates

performance on a scale with 1 as the optimal limit. The ANN

model demonstrates an Area Under the Curve value of 1.00

which indicates perfect separability between categories as depicted

in Figure 6a. The AUC value of 0.97 in Figure 6b indicates a

high level of class discrimination for the DNN model yet not

reaching the highest possible score. The CNN model reaches

another AUC result of 1.00 in Figure 6c which demonstrates

its strong ability to separate different classes. The CatBoost

+ CNN model reaches an AUC value of 1.00 as shown in

Figure 6d thus establishing itself as an exceptional system for

maximum accuracy in identifying stable and unstable states.

The results obtained from confusion matrices as well as ROC

curves demonstrate that all models deliver satisfactory performance

although CNN and CatBoost + CNN excel at classification

accuracy and identification discrimination. The CatBoost + CNN

hybrid model demonstrates the best comprehensive results along

all performance criteria to become the optimal solution for this

classification system.

Figure 7 demonstrates the Local Interpretable Model-agnostic

Explanations (LIME) which highlight key features from each

model namely Artificial Neural Network (ANN), Deep Neural
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FIGURE 5

Confusion matrix of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

Network (DNN), Convolutional Neural Network (CNN), and the

proposed hybrid CatBoost + Deep-CNN for their classification

decisions. The ANN classifier 7a demonstrates positive and

negative impacts as shown in the analysis. Positive effects on

predictions stem from Feature 8 (1.25), Feature 1 (0.32), and

Feature 3 (0.30) while negative effects arise from Feature 0

(−1.59), Feature 10 (−1.23), and Feature 11 (−1.34) regarding

the classification of unstable states. DNN classifier 7b uses

PCA-5 (1.12), PCA-7 (0.60), PCA-10 (0.83) as key positive

factors when trained with PCA-transformed features. PCA-1

(1.37) and PCA-8 (1.27) show negative feature values in the

output because the DNN extracts discriminating information

from compressed features. The CNN model 7c demonstrates

that Feature 7(1.52) and Feature 8 (1.25) have the strongest

positive influence along with Feature 0 (−1.59) and Feature 11

(−1.34) establishing negative influence through its convolutional

layers. The CatBoost + DeepCNN hybrid model depicted

in Figure 7d utilizes different computational patterns which

unify tree-based capabilities with deep learning advantages. The

prediction accuracy for stable states strongly relies on features g2

(1.73), g1 (1.46) along with p1 (1.20) while g1 (−1.16) and T4

(−0.49) demonstrate negative influences. The distinctive patterns

indicate how this blendedmethod recognizes sophisticated patterns

between features because of its ability to process non-linear

interactions.

5 Conclusion and future work

A new powerful hybrid classification system based on Cat-

Boost with Deep Convolutional Neural Networks (Deep-CNN)

provides reliable predictions of smart grid stability together with

outstanding precision and reliability. The research introduces

an innovative approach through the combination of gradient

boosting decision trees with deep learning systems in ways

that have not received widespread application so far in this

field. Through their united use CatBoost analyzes tabular data

relationships and DeepCNN analyzes hierarchical spatial features

enabling the hybrid system to efficiently capture both low-level

and high-level data representations for superior performance.

The joint approach achieves confirmation through experimental

findings. A hybrid implementation of CatBoost + DeepCNN

achieved a 98.23% classification accuracy and 97.37% precision

along-side 97.75% recall and 97.56% F1-score that surpassed

standard models including ANN with F1 of 97.14% and DNN

with F1 of 97.83% as well as CNN with F1 of 93.09%.
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FIGURE 6

ROC curves of proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

FIGURE 7

LIME for the proposed classifiers. (a) ANN. (b) DNN. (c) CNN. (d) CatBoost + CNN.

The model demonstrates excellent generalization potential and

effective class balancing skill when working on new data

sets. The research incorporated the interpretive method LIME

(Local Interpretable Model-Agnostic Explanations) for achieving
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model transparency in decision-making processes. The application

of LIME explanations on CatBoost + DeepCNN provides

energy sector stakeholders with crucial insight into model

prediction decision-making though a well-known interpretive

method. The proposed work has developed a smart grid

stability analysis solution which combines predictive strength

with interpretability through practical implementation. The

proposed system demonstrates successful outcomes, yet research

opportunities continue to exist for further development. The

hybrid model should be expanded to incorporate multi-class and

regression-based formulations to give more detailed understanding

of grid instability degrees. The predictive performance can

be improved by sequential architectures such as LSTM or

GRU along with CatBoost when analyzing time-dependent

grid dynamics.

Furthermore, to comprehensively benchmark the hybrid

model, future studies should include comparisons against other

state-of-the-art tabular learning models, such as XGBoost and

LightGBM. A comparative analysis of different Explainable AI

(XAI) techniques, contrasting the local insights from LIME with

the explanations provided by methods like SHAP, would also

offer a more holistic understanding of the model’s decision-

making process.

The integration of real-time smart grid monitoring with

adaptive learning features allows the model to develop proactive

strategies which build future power systems’ resilience and

intelligence through deployment. Aside from grid management,

this system shows considerable potential for autonomous robotic

examination of critical infrastructure. Integrating with robotic

systems enables real-time predictive planning, safety monitoring,

and intelligent prioritization. Future research will look at edge

deployment of this hybrid model on inspection drones and robots,

allowing them to detect environmental hazard based on projected

grid instabilities and adjust actions accordingly.
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