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Case Report: Combination oral
appliance therapy acute
influence on cardiac
electrophysiology and
hemodynamics in OSA patient
with paroxysmal atrial fibrillation

Preetam Schramm*, Emet Schneiderman, Jason Hui,
Zohre German and Ju Ying Lin

Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX,
United States

Background and objectives: Sleep apnea-related autonomic responses may
increase cardiac arrhythmias. Ablation, cardioversion, and pharmacologic
therapies for paroxysmal atrial fibrillation (AF) could benefit from adjunctive
oral appliance therapy with a mouth shield (OAT+) compared to auto-adjusting
positive airway pressure (APAP).
Methods: A 67-year-old male with moderate obstructive sleep apnea (OSA),
AF history, three ablations, and on Carvedilol (10 mg daily) underwent home
sleep recordings with APAP and with OAT+ after 4 weeks. Randomly selected
premature atrial contractions (PACs; n=20) and time-linked plethysmography
waves from each intervention were compared.
Results: OAT+ reduced the PAC index (-61.9%), cardiac conduction intervals
(nR-R, p = 0.025; pre-PAC R-R, p = 0.003; R-PAC-R, p = 0.051; PAC R-post
systolic pause-R, p < 0.001) except for a P-R interval increase (p = 0.032). PAC-
associated plethysmography wave amplitudes increased with OAT+ (pre-PAC
wave-1, p < 0.001; PAC wave-2, p = 0.023; post-PAC wave-3, p < 0.001).
Conclusions: OAT+ shows promise as an adjunct AF therapy in OSA patients,
improving cardiac conduction and vascular function over APAP.

KEYWORDS

oral appliance, obstructive sleep apnea, premature atrial contraction, plethysmography,
auto-adjusting positive airway pressure

1 Introduction

Atrial fibrillation (AF) is highly prevalent in the U.S. and possesses a greater risk
in patients with sleep disordered breathing (SDB) vs. patients without SDB (Verrier
and Josephson, 2021; Goudis and Ketikoglou, 2017). AF recurrence after catheter
ablation is associated with 25% increased risk in patients with obstructive sleep apnea
(OSA) (Ng et al., 2011). Mounting evidence implicates repeated hypoxic episodes linked
to OSA and central sleep apnea (CSA) acting as chemo-reflex triggers to enhance
sympathetic nervous system (SNS) activity responses. Sympathetic over-activity may
induce premature atrial contractions (PACs), excitability of cardiac pacemaker and
atrial cells, tachycardia and cardiovascular stress. In an animal model, episodes of
hypoxia were shown to induce pulmonary vein burst firing and reduction of negative
tracheal pressure promptly restored normal sinus rhythm (Goudis and Ketikoglou, 2017).
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Pharmacological and ablation therapies are effective for AF,
but their efficacy is reduced by OSA. Continuous positive
airway pressure (CPAP) treatment for OSA mitigates sympathetic
activation, boosts vagal stimulation, and lowers the risk of
AF progression and recurrence (Verrier and Josephson, 2021).
However, the Sleep Apnea Cardiovascular Endpoints study found
that CPAP does not prevent cardiovascular events in patients with
moderate-to-severe OSA and cardiovascular disease, with CPAP
users showing a non-significant increase in the hazard ratio (1.46)
for new-onset AF (McEvoy et al., 2016). Additionally, a large study
on adaptive servo-ventilation therapy for CSA indicated increased
all-cause and cardiovascular mortality in chronic heart failure
patients (Cowie et al., 2015). While CPAP is beneficial in improving
blood pressure dipping (Kumagai et al., 2022), reducing the risk of
cardiovascular events, enhancing cardiac function and decreasing
risks of arrhythmias and pulmonary hypertension in some patients,
its effectiveness is limited by poor patient adherence compared with
oral appliance (OA) therapy.

OA, which advances the mandible to increase oropharyngeal
space and reduce airway collapsibility, is an alternative to CPAP, a
first-line treatment for mild to moderate OSA and a second-line
option for severe cases or CPAP intolerance (Walsh et al., 2008).
Compared to no intervention, OA improves oxygen saturation. A
study in severe OSA patients without cardiac disease found OA
more effective than CPAP in reducing brain natriuretic peptide
levels, suggesting improved cardiac function (Hoekema et al.,
2008). Notably, a patient with elevated brain natriuretic peptide
levels and AF showed AF improvement with OA. The authors
suggested this benefit may be due to reduced breathing effort and
intrathoracic pressure, though intra-esophageal pressures, cardiac
electrophysiology and hemodynamics were not analyzed.

We hypothesized that PAC temporal changes during sleep in
a patient with AF and moderate OSA could reveal differences
in cardiac electrophysiology between oral appliance therapy with
mouth shield (OAT+) and APAP.

2 Report of case

A 67-year-old Caucasian male (Body Mass Index, 27.4 kg/m²,
202 lbs) with moderate OSA (Apnea Hypopnea Index, 22
events/hour) and a history of paroxysmal AF managed with three
ablations was referred for OAT+. He reported discomfort with
APAP therapy using a full-face mask. His only medication is
10 mg daily of Carvedilol extended release for heart rate and

Abbreviations: AHI, Apnea and Hypopnea Index (#events/hour); AF, Atrial

fibrillation; APAP, Auto-adjusting Positive Airway Pressure; Amp, Amplitude

(k-pixels); BMI, Body Mass Index (kg/m2); CPAP, Continuous positive

airway pressure; CPC, Cardiopulmonary coupling; CSA, Central Sleep

Apnea; e-LFCbb, Elevated low frequency coupling broad band; ECG,

Electrocardiogram; HFC, High frequency coupling; HRV, Heart rate variability;

HST, Home Sleep Test; LFC, Low frequency coupling; OA, Oral appliance;

OAT+, Oral Appliance Therapy plus mouth shield; ODI, Oxygen Desaturation

Index (#events/hour); OSA, Obstructive Sleep Apnea; PAC, Premature atrial

contraction; PNS, Parasympathetic nervous system; RERA, respiratory effort

related arousal; RDI, Respiratory Disturbance Index (#events/hour); SNS,

Sympathetic nervous system; VLFC, Very low frequency coupling.

FIGURE 1

myTAP oral appliance plus mouth shield.

TABLE 1 Comparison of sleep polygraph variables between OAT+ and
APAP.

Sleep study
variable

Clinical management % Change

APAP OAT+
RDI (#events/h) 2.2 2.7 22.72

Heart rate average (b/m) 51.6 54.8 6.20

Heart rate maximum
(b/m)

105 102 −2.94

Oxygen saturation average
(%)

94.2 91.5 −2.86

ODI (#events/h) 3.1 2.1 −32.25

Respiratory rate
(breaths/m)

12.8 12.4 −3.12

Mouth breathing
(#minutes)

0 0 0

Snoring (%) 0 6.2 6.2

RDI, respiratory disturbance index (#events/h); ODI, oxygen desaturation index (#events/h);
APAP, auto-adjusting positive airway pressure; OAT+, oral appliance therapy plus
mouth shield.

blood pressure control. An oral exam revealed no contraindications
including Mallampatti score =2, unobstructed nasal breathing
(breathing through the nose for 1–2 min with mouth closed, awake
and reclined in dental chair), >8 stable teeth per arch to support
the OA, healthy gums, jaw joints and muscles. The subject was
dentist-fitted with a titratable OAT+ (myTAP, AMI, Carrollton,
TX; Figure 1) to reduce upper airway collapse, mouth breathing
(MB) and provide comfort (Chakraborty et al., 2010).

3 Materials and methods

A home sleep test (HST) evaluated APAP—full-face mask
efficacy 12-weeks before the introduction to OAT+ (Table 1).
Following a 4-week adjustment period to OAT+, initially titrated
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to 60% of maximal protrusion, a second HST was performed with
OAT+ at this position. Both recordings (>6 h 30 min) collected
airflow, respiratory effort, snoring, electrocardiogram (ECG, 2-lead
configuration), body position and pulse oximetry with a Nonin
finger probe. Electroencephalogram was not recorded. Respiratory
dynamics data, including RDI were obtained and analyzed using
Noxturnal software and the NOX T3 recorder (NOX Medical,
Reykjavík, Iceland). Apnea and hypopnea events were visually
scored using revised American Academy of Sleep Medicine 2007
scoring criteria (Berry et al., 2012). RDI was defined as the
sum of all apneas and hypopnea events/hour (apneas, >90%
reduction in airflow from baseline; hypopneas, 30–90% airflow
reduction from baseline associated with ≥3% oxygen desaturation
and duration ≥10 seconds). The RDI includes the number of
respiratory effort related arousal (RERA) and snore RERA events
per hour of recorded time rather than sleep time, so may slightly
underestimate the Apnea Hypopnea index (AHI). RERA scoring
used ANS arousals based on pulse signal heart rate increases
≥5 beats/min in addition to a sequence of breaths lasting ≥10 s
characterized by increasing respiratory effort or by flattening
of the inspiratory portion of the nasal pressure (Mayer et al.,
2020). Respiratory rate (#breaths/minute), oxygen desaturation
index (ODI, #events/h with ≥3% oxygen desaturation), and SaO2
(percent), MB (#minutes; ≥3 breaths minimum duration ≥20
dB) and snore percent (snore minutes ≥20 dB/analysis duration
minutes) were obtained. The recorder placement followed the
manufacturer’s recommended mid-thoracic montage.

Twenty PAC events were randomly selected at similar time
points from the start of each night’s polygraphy ECG signal
(Table 2). PACs were selected with an approximate 20–30 min
interval from recording start to potentially capture NREM and
REM PAC events. PACs were defined as having a coupling interval
to the prior QRS complex ≤50% of the mean R-R interval. Manual

TABLE 2 Comparison of cardiac conduction responses to OAT+ vs. APAP.

Cardiac
conduction
variable (s)

Clinical management % Change P-
value

APAP OAT+
nR-R interval 1.17 [1.08–1.19] 1.09 [1.06–1.12] −6.67 0.025

Pre-PAC R-R
interval

1.16 [1.13–1.20] 1.10 [1.07–1.13] −5.49 0.003

R-PAC R interval 0.64 [0.61–0.68] 0.60 [0.59–0.63] −5.37 0.051

PAC R-post
systolic pause-R
interval

1.64 [1.60–1.68] 1.54 [1.37–1.56] −6.40 <0.001

PAC P-R interval 0.032
[0.029–0.035]

0.035
[0.035–0.038]

9.37 0.032

PAC index
(#events/h)

48.3 18.4 −61.90

nR-R, normal R peak to R peak interval; Pre-PAC R-R interval, R-R interval preceding pre-
atrial contraction; R-PAC R Interval, R peak to PAC’s R peak; PAC R-Post systolic pause-
R interval, PAC’s R peak including post systolic pause to following R peak; PAC’s P wave
termination to R peak; APAP, auto-adjusting positive airway pressure; OAT+, oral appliance
therapy plus mouth shield [Median [IQR]].

measures of cardiac conduction and plethysmography, a non-
invasive method to evaluate peripheral hemodynamic parameters
by measuring changes in peak amplitude (kPixels) variation for
each PAC event, with the Noxturnal software (Table 3; Figure 2).

RemLogic version 1.1 (Embla Systems, Inc., Thornton, CO,
USA) software was used to obtain heart rate variability (HRV)
and cardiopulmonary coupling (CPC) analyses results from both
recordings (Table 3). CPC analysis is an automated method that
uses and ECG-derived respiration (EDR) signal directly from
QRS axis shifts and is designed to assess breathing dynamics

TABLE 3 Comparison of heart rate variability and cardiopulmonary
coupling analysis responses to OAT+ vs. APAP.

Heart rate
variability
variable

Clinical
management

% Change Dominance

APAP OAT+ SNS vs. PNS

Average RR interval
(ms)

1,163 1,064 −8.51 PNS

SDNN (ms) 170 275 61.76 PNS

SDNN index (ms) 160 270 68.75 PNS

RMSSD (ms) 247 455 84.21 PNS

NN50 count 11,072 18,805 69.84 PNS

Percent NN50 of
total HR (%)

47.7 84.5 77.14

SDANN (ms) 43 49 13.95

Average total power
(ms2)

8,217 6,875 −16.33

Average VLF power
(ms2)

1,226 209 −82.95

Average LF power
(ms2)

2,110 654 −69.00 PNS

Average HF power
(ms2)

2,261 1,241 −45.11 PNS

HRV triangular
index

13 34 161.53

LF/HF ratio 0.93 0.52 −43.52 PNS

Cardiopulmonary coupling analysis variable

HFC 60.8 73.8 21.38 PNS

LFC 24.8 8.1 −67.33 PNS

VLFC 10.5 10.5 0

e-LFCbb 15.2 4.3 −71.71 PNS

LFC/HFC ratio 0.40 0.10 −73.09 PNS

OAT+, oral appliance therapy plus mouth shield; APAP, automatic positive airway pressure
machine; RR Interval, electrocardiogram R peak to R peak time interval; SDNN, standard
deviation of normal to normal (NN) heart beat intervals; SDNN index, mean of the standard
deviations of all the NN intervals; RMSSD, root mean square of successive differences between
normal heartbeats; pNN50, Percentage of successive RR intervals that differ by more than
50 ms; SDANN, Standard deviation of the average NN intervals; VLF band (0.0033–0.04 Hz);
LF band (0.04–0.15 Hz); HF or respiratory band (0.15–0.40 Hz); LF/HF ratio, estimates
the ratio between sympathetic and parasympathetic nervous system (PNS) activity; HFC,
high frequency coupling (0.10 Hz to 0.50 Hz); LFC, low frequency coupling (0.01 Hz to
0.10 Hz); VLFC, very low frequency coupling (0.00391 Hz to 0.010 Hz); e-LFCbb, elevated
low frequency coupling broad band (0.006 Hz to 0.10 Hz); LFC/HFC ratio, estimates unstable
sleep quality (dominant sympathetic nervous system (SNS) activity).
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FIGURE 2

Plethysmography metrics used to identify and quantify time-linked ECG PACs.

that objectively measures sleep quality in patients with SDB to
support our claim that OAT+ increased parasympathetic activity.
CPC classification: high frequency coupling (HFC; 0.1–0.5 Hz);
low frequency coupling (LFC; 0.01–0.1 Hz); Very low frequency
coupling (VLFC; 0.0039–0.01 Hz) (Thomas et al., 2005).

The Mann-Whitney U Test was used for statistical comparison
between interventions. The median and interquartile range [IQR]
is reported.

4 Results

4.1 Home sleep test

The HST results showed increases in the RDI (22.7%), average
HR (6.2%) and snoring (6.2%) with OAT+ compared with APAP.
Decreases in maximum HR (−2.94), oxygen saturation (−2.86%),
the oxygen desaturation index (−32.25%), and respiratory rate
(−3.12%) with OAT+ compare with APAP was observed. MB was
not detected with either intervention (Table 1).

4.2 Cardiac conduction

Comparison of cardiac conduction variables between OAT+
and APAP showed OAT+ significantly reduced the duration of
the normal R-R interval (p = 0.025), pre-PAC R-R interval (p
= 0.003), the PAC R-Post Systolic Pause-R interval (p < 0.001)
and a statistical trend for reduction of the R-PAC R interval (p =
0.051), but increased the PAC P-R interval (p = 0.032) compared
with APAP. OAT+ decreased the PAC index (#events/h) (−61.9%)
compared with APAP (Table 2).

4.3 Heart rate variability and
cardiopulmonary coupling analysis

HRV: OAT+ decreased the average R-R interval (−8.51%),
average total power (−16.33%), average VLF power (−82.95%),
average LF power (−69.0%), average HF power (−46.11%) and

TABLE 4 Comparison of plethysmography wave amplitude responses to
OAT+ vs. APAP.

Plethysmography
variable (kPixels)

Clinical
management

% Change P-
value

APAP OAT+
Pre-PAC wave-1 Amp 6.14

[5.42–
6.82]

9.80
[7.84–
11.32]

59.58 <0.001

PAC wave-2 Amp 3.69
[3.39–
4.51]

4.72
[3.91–
5.21]

27.95 0.023

Post-PAC wave-3 Amp 6.84
[6.02–
8.18]

12.78
[9.59–
14.02]

86.63 <0.001

Pre-PAC wave-1 Amp, pleth wave preceding pre-atrial contraction; PAC wave-2 Amp, pleth
wave time-linked to PAC; Post-PAC wave-3 Amp, pleth wave time-linked to post PAC
following post systolic pause; APAP, auto-adjusting positive airway pressure; OAT+, oral
appliance therapy plus mouth shield [Median [IQR]].

LF/HF ratio (−43.52%) compared with APAP. LF/HF ratio
was lower with OAT+ (0.52) compared with APAP (0.93).
OAT+ increased SDNN (61.76%), SDNN index (68.75%), RMSSD
(84.21%), NN50 count (69.84%), percent NN50 of total HR
(77.14%), SDANN (13.95%), and HRV Triangular index (161.53%)
(Table 3).

CPC: OAT+ increased HFC (21.38%) compared with APAP.
OAT+ decreased LFC (−67.33%), e-LFCbb (−71.71%) and the
LFC/HFC ratio (−73.09%) compared with APAP (Table 3).

4.4 Plethysmography

OAT+ significantly increased the pre-PAC wave-1 amplitude
(p<0.001), PAC wave-2 amplitude (p = 0.023) and post-PAC
wave-3 amplitude (p < 0.001) compared with APAP (Table 4).

5 Discussion

OAT+, combined with a non-selective beta-blocker, shows
promise as adjunct therapy for AF patients with OSA, potentially
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improving cardiac conduction over full-face mask and APAP
therapy. Key mechanisms include enhanced nasal airflow,
increased parasympathetic activity, higher airway nitric oxide
production, and reduced oxygen desaturation index, and lowering
of hypoxic triggers.

A recent case report linked AF conversion to normal sinus
rhythm and a stable heart rate with optimal CPAP pressure at
9 cm H2O, likely due to the reversal of intrathoracic negative
pressures causing cardiac stress (Walia et al., 2016). Other factors,
such as improved oxygenation and autonomic function, may
have contributed, despite mild desaturations. However, conflicting
reports question whether CPAP reduces intrathoracic stress as
effectively as OA (Schlatzer et al., 2016).

Despite a 2.86% decrease in oxygen saturation, the 32.25%
reduction in ODI and 3.12% decrease in respiratory rate, our
findings suggest parasympathetic activity increased with OAT+.
Our recent study found significant respiratory rate reductions in
non-AF patients with mild to severe OSA using OAT+ (Schramm
et al., 2024). Improved nasal airflow likely entrains delta and
theta brain rhythms, synchronizing cellular networks (Fontanini
and Bower, 2006), including the limbic system, which regulates
breathing, heart rate, and contraction force via input from the
hypothalamus and higher brain regions (Ito et al., 2014; Zelano
et al., 2016; Heck et al., 2017).

Our results support the hypothesis that OAT+ reduces
cardiovascular stress by mitigating snoring although 6.2% residual
snoring persisted without MB. This aligns with previous findings
showing OAT+ stabilizes oxygen saturation by promoting nasal
breathing and reducing MB over 4–12 weeks (Schramm et al.,
2024). Additionally, OA was associated with increased serum nitric
oxide and improved endothelial function (Galic et al., 2016). Novel
to this report, is the additional HRV and CPC results that support
OAT+ increases PNS activity. Low LF/HF ratio (OAT+; 0.52)
reflects PNS dominance (Salsone et al., 2018; Shaffer and Ginsberg,
2017). While increased SNS activity can cause shortening of R-R
intervals, the irregular nature of AF means that shorter intervals
are common due to the increased firing rate of the atria but not
necessarily due to increase in SNS activity. In this case, the decrease
in R-R interval duration is likely attributed to the reduction in
systolic pause duration and lowered PAC index. We speculate these
decreases reflect R-R interval normalization and possible reduction
in intrathoracic pressure (Schlatzer et al., 2016). Furthermore, the
P-R interval increase may reflect Carvedilol’s mixed adrenergic
blocking effects, which influence cardiac conduction based on
sympathetic tone and improve cardiac efficiency by possibly
reducing heart rate variability and workload (Cheng et al., 2006).
The CPC HFC variable is associated with PNS dominance, stable
respiration, blood pressure dipping and non-cyclic alternating
patterns in the electroencephalogram (Thomas et al., 2005). The
decrease in SNS dominant LFC suggest sympathetic activity down-
regulation and the decreased LFC/HFC ratio, demonstrates a shift
toward PNS dominance with OAT+.

The findings of this case report should be interpreted
with caution because electroencephalogram (EEG) data was not
collected in order to make definitive statements about the impact
on NREM, REM sleep, and wake and EEG arousals. EEG sleep
staging would have allowed us to use the AHI and temporally-link

EEG arousals to cardiac events (i.e., increase in HR). Although we
used RDI and included RERA and sRERA events, the number of
respiratory events occurring during the recording vs. sleep might
still be underestimated.

Although we cannot confirm increased NO levels, the rise in
plethysmography amplitude likely reflects OAT+-facilitated nasal
breathing in addition to Carvedilol’s alpha-1 adrenergic blockade,
enhancing peripheral vasodilation. These findings align with
studies showing reduced arterial stiffness, measured by decreased
pulse wave velocity, after 1 year of mandibular advancement device
therapy (Lin et al., 2015). Further research is needed to explore
OAT+ as adjunct therapy for AF patients co-morbid with OSA.
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