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Heart rate is one of the most vital physiological parameters and is clinically widely 
used to assess human health status. In recent years, wearable devices based on 
photoplethysmography (PPG) have been extensively applied in real-time 
monitoring. However, PPG signals are susceptible to interference from various 
types of noise during acquisition, particularly motion artifacts (MA), which pose a 
significant challenge to the accurate extraction of physiological parameters. This 
study focuses on heart rate extraction from dynamic PPG signals and explores 
denoising methods combining traditional signal processing and machine learning 
techniques. The main research contents of this paper are as follows: further 
improvements are made on the basis of existing algorithms by integrating support 
vector machines (SVM). A more comprehensive signal quality assessment is 
performed via SVM, which incorporates the time-domain and frequency? 
domain statistical characteristics of both PPG signals and triaxial acceleration 
(ACC) signals. In addition, the short-time Fourier transform (STFT) is integrated to 
capture time-varying characteristics, thereby mitigating the impact of local signal 
quality degradation on the analysis of full-window signals. For spectral peak 
tracking, a Gaussian window is adopted to optimize the spectral search range and 
a comprehensive analysis is conducted by fusing spectral amplitude information 
with historical heart rate data. Experimental results demonstrate that the heart 
rate error of the test set is 1.71 beats per minute (BPM).
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Introduction

Alongside the rapid development of society, the prevalence of cardiovascular diseases 
(CVDs) in China has been on a steady rise. For CVDs, early identification and prevention 
represent effective strategies for curbing the escalation of morbidity and mortality rates. 
Wearable devices capable of continuous human activity monitoring have broken through 
the constraints of traditional physiological data collection methods and are now widely 
employed in health monitoring for CVD patients (Sun et al., 2024). Moreover, the 
integration of wearable devices with artificial intelligence (AI) offers distinct advantages 
and considerable potential in the field of biomedical engineering. For instance, the 
multidisciplinary approach adopted by Mazumdar et al. (2025) in their design of a soft 
robotic system for Parkinson’s disease highlights the potential of combining soft robotics, 
functional materials, and machine learning to develop novel healthcare solutions.

Heart rate is one of the critical indicators for evaluating human health status and is 
therefore a physiological parameter that wearable devices need to monitor continuously. 
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Compared with electrocardiogram (ECG) signals, devices based on 
PPG technology are more suitable for daily health monitoring due to 
advantages such as portability and ease of wear. Despite these notable 
merits, several non-negligible issues persist during practical 
application. For example, physical exercise and daily activities can 
lead to gaps between the sensor and the skin, allowing ambient light to 
penetrate and consequently generating motion artifacts (Maeda et al., 
2011). These motion artifacts can significantly degrade the quality of 
the collected PPG signals, which in turn impairs the accuracy of 
measuring physiological parameters such as heart rate.

Heart rate extraction from dynamic PPG signals based on 
traditional signal processing can be divided into two phases: signal 
enhancement and heart rate estimation. Signal enhancement primarily 
leverages signal processing techniques to improve signal quality, thereby 
reducing motion artifacts and other types of noise in PPG signals. This 
phase can be further subdivided into two sub-stages: preprocessing and 
signal denoising. The core objective of preprocessing is to eliminate 
noise outside the heart rate frequency range to ensure signal purity; 
signal denoising, by contrast, focuses on removing complex noise such 
as motion artifacts and enhancing the valid components of the signal, 
laying a solid foundation for subsequent analyses. The heart rate 
estimation phase typically comprises two steps: spectral peak 
tracking and post-processing. In the spectral peak tracking step, the 
signal is transformed into the frequency domain to identify spectral 
peaks associated with heart rate. In the post-processing step, methods 
such as filtering and smoothing are applied to further optimize heart 
rate estimation results, improving calculation accuracy and stability. To 
enhance the accuracy of heart rate extraction, research efforts 
worldwide have primarily focused on optimizing signal denoising 
technologies and refining spectral peak tracking algorithms.

Related work

Sun and Jia (2020) proposed a PPG signal denoising method based 
on ensemble empirical mode decomposition (EEMD) and wavelet 
threshold filtering. The combination of these two techniques can 
effectively avoid misjudgment caused by noise-dominated 
conditions. Results demonstrate that this method can maximize the 
preservation of the nonlinear and non-stationary characteristics of PPG 
signals. Khan et al. (2015) put forward a two-stage denoising algorithm 
for PPG signals. The first stage employs the absolute criterion of EEMD 
to eliminate outlier errors and does not rely on historical heart rate data. 
The second stage integrates recursive least squares (RLS) filtering and 
time-domain extraction techniques to enhance the algorithm’s 
robustness. By iteratively adjusting the filter parameters, RLS can 
adapt to the noise characteristics under varying exercise intensities. 
Coupled with a forgetting factor, it balances convergence speed and 
estimation stability during signal processing, thus preventing error drift 
induced by sudden changes in motion states.

Chung et al. (2018) proposed constructing a finite state machine 
(FSM) to determine the reliability of the current heart rate value, 
based on the prominence of the dominant spectral peak within the 
frequency spectrum and its deviation from the previously estimated 
heart rate. By discarding unreliable heart rate values, this method 
enhances the accuracy of heart rate estimation. Meng et al. (2022)
extracted step frequency information from acceleration signals and 
established an adaptive model based on the correlation among step 

frequency information, historical heart rate, and current heart rate. 
This model narrows the potential frequency range of heart rate, 
thereby reducing estimation errors.

Lan et al. (2024) seamlessly integrated the adaptive noise 
suppression advantage of RLS filtering for non-stationary PPG 
signals with a reliability evaluation mechanism for verifying heart 
rate estimation, thereby constructing a novel framework for heart 
rate extraction from PPG signals. When judging the intensity of MA, 
triaxial acceleration signals were used as reference; RLS filtering and 
empirical wavelet transform (EWT) were added for denoising. 
Meanwhile, FSM was introduced to evaluate the reliability of 
historical heart rate data, which optimized the spectral peak 
selection strategy and improved the stability of the algorithm.

Xiong et al. (2017) regarded spectral peak selection as a 
classification problem. They extracted the peak coefficient ratio of 
candidate spectral peaks and the distance from the previous heart 
rate spectral peak as features, and utilized a SVM to perform binary 
classification on the spectral peaks, with the classification results being 
either true spectral peaks or false spectral peaks. The FSM framework 
proposed by Lan et al. (2024) has certain limitations in the utilization of 
features in terms of state transition rules. In contrast, machine learning 
methods can extract features related to the prediction target from signals 
and perform optimization based on these extracted features. Therefore, 
this study integrates machine learning into the PPG signal heart rate 
extraction framework, which can effectively integrate different spectral 
peak selection rules and further reduce the error of heart rate estimation.

The main contributions of this study are as follows:

1. Based on the algorithm proposed by Lan et al. (2024), SVM is 
adopted to replace the FSM framework. By constructing an 
SVM classification model and taking multi-dimensional 
feature vectors as the decision basis, a more adaptive state 
transition criterion is established to evaluate the quality of 
signals processed by RLS filtering, which compensates for the 
limitations of FSM in feature utilization.

2. According to the signal quality evaluation results, different 
spectral peak selection rules are employed. Spectral peak 
tracking is performed on denoised signals in combination 
with the STFT, followed by the post-processing of estimated 
heart rate values. This enables more refined and accurate 
analysis of the local time-frequency domain characteristics, 
thereby mining more abundant information from the signals.

3. The experiments supplement data from various types of arm 
movements, and the algorithm is validated using both public 
datasets and self-collected datasets. Experimental results 
demonstrate that the proposed algorithm achieves lower 
estimation error in heart rate prediction and maintains high 
accuracy across diverse motion states.

Materials and methods

Datasets

Public dataset
The public dataset was sourced from the open data of the 

2015 IEEE Signal Processing Cup (Temko, 2017). This dataset is 
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primarily designed for research on heart rate extraction under 
motion states and has been widely applied in the field of PPG- 
based heart rate extraction (Choe et al., 2024; Huang et al., 2023; Ray 
et al., 2022; Zhang et al., 2022). Although it dates back many years, its 
rigorous synchronized acquisition method and high data quality 
ensure that it still retains considerable research value in this domain.

To enhance data diversity, 12 training sets and 10 test sets were 
selected from the aforementioned dataset. Each training set contains 2- 
channel PPG signals, 3-axis ACC signals, and 1-channel ECG data, 
with a sampling frequency of 125 Hz. The PPG signals were collected 
by pulse oximeters equipped with 515 nm green LEDs. All participants 
were healthy male subjects aged between 18 and 35 years old. During 
data acquisition, the subjects performed 5-min exercises on a treadmill 
with varying speeds following this protocol: 30 s at 1–2 km/h, 1 min at 
6–8 km/h, 1 min at 12–15 km/h, 1 min at 6–8 km/h, 1 min at 
12–15 km/h, and 30 s at 1–2 km/h. The test set data cover a wider range 
of hand movements, and the specific dataset attributes are presented in 
Table 1. In the table, T1 denotes common rehabilitation exercises 
involving various forearm and upper arm movements (e.g., hand 
gripping and stretching), while T2 represents more vigorous 
forearm and upper arm movements such as boxing.

Self-collection dataset
Data acquisition equipment

The self-collected data were acquired using a device developed 
by the Suzhou Institute of Biomedical Engineering and Technology, 
Chinese Academy of Sciences. Each dataset includes 4-channel PPG 
signals and 3-axis ACC signals, with the sampling frequency of PPG 
signals set at 250 Hz and that of ACC signals at 25 Hz. Both PPG and 
ACC signals were collected by a smart wristwatch (Model: MPPB- 
V1), and the PPG data were captured via a green LED with a 
wavelength of 540 nm.

Data acquisition protocol
The self-collected data in this study were obtained from 

8 healthy male subjects (aged 18–35 years). Prior to the 
experiment, each subject wore a chest strap on the chest and the 
smart wristwatch on the left wrist. The experiment was conducted in 
an indoor environment, and the specific protocol is as follows:

1. At the start of the experiment, all subjects maintained a static 
sitting posture for 5 min. This step allowed the subjects to 
acclimatize to the device-wearing state, regulate their 
breathing, and ensure the stable operation of the 
acquisition equipment.

2. All subjects performed three different types of activity tasks 
as required by the experiment: static sitting, walking, and 
running. The specific arrangement was as follows: 
4 subjects maintained a static sitting posture throughout 
the experiment; 2 subjects performed continuous walking; 
1 subject engaged in continuous running; and 1 subject 
completed the task sequence of 1-min static sitting, 2-min 
walking, and 2-min running. During walking and running, 
all subjects were required to maintain a natural arm- 
swinging motion, and the exercise intensity was self- 
regulated by the subjects. The data acquisition duration 
was set to 5 min for each subject. This experiment was 
designed to cover diverse exercise intensities and heart rate 
variation scenarios, so as to verify the adaptability and 
robustness of the proposed method across multiple 
motion states.

3. After the completion of data acquisition, the subjects remained 
seated with the devices still worn for an additional 1 min.

TABLE 1 Attributes of the test dataset.

No. Subject ID Motion type Age Weight (kg) Height (cm) Gender Healthy or not

1 S1 T1 29 70 169 Male Yes

2 S2 T1 21 77 188 Male Yes

3 S2 T2 21 77 188 Male Yes

4 S3 T2 19 54 174 Male Yes

5 S4 T2 20 64 162 Male Yes

6 S5 T2 20 57 174 Male Yes

7 S6 T1 19 70 180 Male Yes

8 S6 T2 19 70 180 Male Yes

9 S7 T2 21 73 180 Male Yes

10 S8 T1 58 70 156 Female No

TABLE 2 Attributes of the self-collected dataset.

Dataset Motion state MA intensity

1 Walking Medium

2 Resting Weak

3 Walking Medium

4 Running Strong

5 Resting-walking-running Strong

6 Resting Weak

7 Resting Weak

8 Resting Weak
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Data attributes
The 8 collected datasets were parsed and sorted in chronological 

order of timestamps. The corresponding PPG signals and ACC 
signals were extracted and saved as. txt format files, respectively. The 
specific attributes of the datasets are presented in Table 2. 
Specifically, Datasets 2, 6–8 correspond to the static sitting state; 
Datasets 1 and 3 correspond to the walking state; Dataset 
4 corresponds to the running state; and Dataset 5 covers the 
transition state from rest to walking and then to running.

Dataset splitting
To ensure data independence and prevent data leakage, this 

study split the 22 datasets into training and test sets at a ratio of 8:2, 
with the division performed on a per-subject basis. Specifically, the 
first 17 datasets were selected as the training set, and the remaining 
5 datasets were used as the test set. This ratio is a classic split in the 
field: 80% of the subjects allocated to the training set provide 
sufficient sample diversity and data volume, ensuring that the 
model can learn the features of physiological signals; the 
remaining 20% assigned to the test set have an adequate sample 
size to support statistical analysis, thus guaranteeing the stability of 
evaluation results.

Splitting the datasets by subjects enables accurate assessment of 
the model’s true generalization ability, directly reflecting the model’s 
adaptability to new subjects and avoiding the overfitting problem 
caused by random splitting.

PPG signal heart rate extraction framework

Building upon the heart rate estimation framework proposed by 
Lan et al. (Lan et al., 2024), this study replaces the FSM framework 
with the SVM and integrates it with different spectral peak selection 
rules, thereby effectively reducing the error of heart rate estimation. 
The specific algorithm flow is illustrated in Figure 1.

PPG signal preprocessing
Consistent with the signal preprocessing method proposed by 

Lan et al. (2024), each dataset was segmented using a window length 
and sliding window consistent with the reference heart rate settings, 
which were 8 s and 2 s, respectively. Band-pass filtering was applied 

to the PPG signals of each channel and the triaxial ACC signals. The 
band-pass range was set to 0.4–3.5 Hz, corresponding to a heart rate 
range of 24–210 BPM.

To reduce computational complexity and signal dimensionality 
while preserving the main features of the signals, averaging 
processing was performed on both the PPG and ACC signals. 
The band-pass filtered signals were normalized via L2-norm 
normalization, and then the signals of each channel were 
subjected to weighted averaging to obtain the averaged PPG 
signal (PPGcom) and averaged ACC signal (ACCcom).

The specific computing method are presented in Equations 1, 2. 

PPGcom �
1
2

PPG1

PPG1‖ ‖2
+

PPG2

PPG2‖ ‖2
􏼠 􏼡 (1)

Acccom �
1
3

Accx

Accx‖ ‖2
+

Accy

Accy
����

����2

+
Accz

Accz‖ ‖2
⎛⎝ ⎞⎠ (2)

Where PPG1 and PPG2 denote the two-channel PPG signals 
after band-pass filtering, respectively; ACCx, ACCy, and ACCz 
denote the triaxial acceleration signals after band-pass filtering, 
respectively.

RLS filtering
Adaptive filtering minimizes the discrepancy between the 

reference signal and the input signal by continuously iteratively 
adjusting the filter parameters. When the reference signal can well 
reflect MA information, adaptive filtering can effectively remove 
MA. Basic adaptive filtering methods include least mean square 
(LMS) filtering and RLS filtering. Compared with LMS filtering, RLS 
filtering offers the advantages of faster convergence speed and better 
adaptability to non-stationary signals (Geng and Zhang, 2008), 
making it more suitable for processing non-stationary signals 
such as PPG signals. Therefore, RLS filtering was selected for 
this study.

PPGcom and ACCcom described in Section 3.2.1 were used as 
the reference signal a(n) and the input signal x(n), respectively. The 
estimated MA signal is denoted as y(n), and the error signal is 
defined as e(n) = x(n) − y(n). The framework is illustrated in 
Figure 2. The parameters of RLS were set as follows: order N = 
55, forgetting factor λ = 0.999, and initial covariance 
estimate ϴ = 0.1.

FIGURE 1 
An SVM classification model is constructed to evaluate the quality of signals after preprocessing and RLS filtering. Based on the evaluation results, 
different spectral peak screening rules are adopted. Combined with STFT, spectral peak tracking is performed on the denoised signals, and finally, post- 
processing is conducted on the estimated heart rate.
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SVM-based imbalanced classification
Data balancing based on SMOTE

Taking the difference between the frequency domain information 
of PPG signals processed by RLS filtering and the reference heart rate as 
the evaluation metric, signal quality labeling was performed on each 
sample. The results indicated that the number of samples with good 
signal quality was far greater than that of samples with poor signal 
quality, resulting in a data imbalance phenomenon. Direct 
classification on imbalanced data will cause the classifier to be 
biased toward the majority class in prediction results. Therefore, 
data balancing is required prior to classification.

The Synthetic Minority Over-Sampling Technique (SMOTE) was 
selected herein to achieve data balancing. SMOTE was proposed by 
Chawla et al. (Arunkumar and Bhaskar, 2020) in 2002 to address the 
problem of large class imbalance ratios in classification tasks. Its core 
idea is to balance the data by generating minority class samples 
through interpolation between neighboring samples. Specifically, it 
calculates the Euclidean distance (i.e., geometric distance) between 
each minority class sample and other minority class samples to 
measure the dissimilarity between two samples. Based on the 
calculation results, the K nearest samples are selected from all 
minority class samples, which is the K-nearest neighbor (KNN) 
method (Holmes and Adams, 2002). Then, one sample is randomly 
selected from the chosen ones, linear interpolation is performed, and 
new samples are generated. By augmenting the minority class samples 
in the training data using SMOTE, the total number of training 
samples is increased from 2,427 to 4,822, and the class ratio is 
adjusted from the original 1:150 to 1:1.

Classifier selection
To compensate for the limitations of the FSM framework in 

feature utilization, machine learning is adopted in this study to 
perform signal quality classification on the balanced data, classifying 
the signals into two categories: good quality and poor quality. This 
approach also enables the integration of different spectral peak 
selection rules for subsequent processing. Three classic machine 
learning classifiers were employed for performance comparison, 
namely SVM, random forest (Breiman, 2001), and K-nearest 
neighbor (Cover and Hart, 1967). These methods are classic, 
representative, and practically validated algorithms in the field of 
machine learning, covering three core technical routes: 
discriminative learning, ensemble learning, and instance-based 

learning. Verified by long-term academic research and 
engineering practice, they share common advantages such as 
stable generalization, clear parameter tuning logic, and broad 
scenario adaptability, which can fully support the experimental 
requirements for model comparison and the goal of scenario 
adaptability.

First, parameter sensitivity analysis is carried out through 
preliminary experiments to identify the key parameters that exert 
a significant impact on classification performance for each classifier. 
For these key parameters, multiple groups of gradient parameter 
combinations are designed for comparison experiments. The model 
performance metrics under each parameter combination are 
evaluated to complete the parameter optimization process. After 
the key parameters of each model are adjusted to their optimal 
values, a horizontal comparison of the performance of the SVM, 
random forest, and K-nearest neighbor classifiers is conducted based 
on a unified experimental environment. Ultimately, the optimal 
classifier suitable for the target task is selected.

Feature selection
During the feature selection process for each classifier, a total of 

11 features were selected as classification features, which were 
derived from the time-domain and frequency-domain features of 
the original PPG signal (PPGpre), the PPG signal processed by RLS 
filtering (PPGRLS), and the triaxial acceleration signals. The detailed 
descriptions are as follows:

Ratio. Ratio is defined as the ratio of the total amplitude of the 
region of interest (ROI) to the total amplitude of the entire 
frequency spectrum. Since the heart rate of the previous window 
is close to that of the current window, the historical heart rate has 
significant reference value for heart rate estimation of the current 
window. Therefore, based on the heart rate position of the previous 
window, a Gaussian window is superimposed on the frequency 
spectrum of the PPG signal in the current window instead of the 
rectangular window commonly used in traditional algorithms, so as 
to optimize heart rate estimation. The parameters of the Gaussian 
function include amplitude A, mean μ and standard deviation δ. 

f x( ) � A · e
− x− μ( )2

2δ2 (3)

Here, the mean is determined by the heart rate position of the 
previous window, and the amplitude is set to 1. The value of the 
standard deviation determines the coverage range of the Gaussian 
function. As illustrated in Figure 3, it shows the Gaussian curves 
corresponding to the standard deviations of 10 and 5, respectively. 
To reduce the impact of motion artifacts on heart rate estimation, 
the standard deviation is set to 5.

For the frequency spectrum of each window, it is multiplied 
point-wise by the Gaussian window function described above. The 
comparison of spectral signals before and after Gaussian windowing 
is illustrated in Figure 4. The spectral signal after Gaussian 
windowing is accumulated to obtain the total amplitude denoted 
as Sum1, while the total amplitude of the spectral signal before 
Gaussian windowing is recorded as Sum2. The corresponding 
calculation formula for ratio is thus given by ratio = Sum1/Sum2. 
This ratio feature can reflect the intensity of motion artifacts to a 
certain extent: when motion artifacts are significant, the total 

FIGURE 2 
PPGcom and ACCcom serve as the reference signal a(n) and the 
input signal x(n), respectively, y(n) denotes the estimated motion 
artifact (MA) signal, and the error signal is defined as e(n) = x(n)−y(n). 
RLS filtering is performed in accordance with this framework.
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amplitude of non-interest regions increases, thus resulting in a 
smaller ratio value.

Mean and variance of the frequency domain signal after fourier 
transform of PPGRLS. The mean helps identify the main 
frequency components of the PPG signal, while the variance 
reveals the distribution in the frequency domain. A larger 
variance typically corresponds to a broader frequency 
distribution.

Mean and variance of PPGpre. The mean reflects issues such as 
signal drift in the PPG signal, while the variance reflects the signal’s 
fluctuation characteristics.

ACC. The original triaxial acceleration signals before band-pass 
filtering were processed to calculate their scalar sum, denoted as 
ACC. This scalar sum can effectively reflect the intensity of motion: 
when the ACC value is relatively large, it indicates a relatively high 

motion intensity. The specific computing method is presented in 
Equation 4. 

Acc �􏽘
N

i�1

�����������������������
Accx i( )

2 + Accy i( )
2 + Accz i( )

2
􏽱

(4)

Where N denotes the total number of sampling points in each 
window, and ACCx(i), ACCy(i), and ACCz(i) represent the 
acceleration signals in the x, y, and z directions, respectively.

Absolute value of the difference in Acc calculated from adjacent 
windows. This reflects the change in motion state between two 
consecutive windows. A smaller difference indicates consistent 
motion states between the two adjacent windows.

Mean and variance of the magnitude of the resultant acceleration 
(Ampacc) of the triaxial acceleration. The mean is used to 
distinguish motions of different intensities—high-intensity motions 
typically correspond to a higher mean. The variance characterizes 
the regularity of the current motion; abrupt changes in motion state 
will lead to an increase in variance. The specific computing method 
is presented in Equation 5. 

Ampacc i( ) �
�����������������������
Accx i( )

2 + Accy i( )
2 + Accz i( )

2
􏽱

1 ≤ i≤N (5)

Crest factor (CF) of PPGRLS and ACCcom after fourier 
transform. CF is defined as the ratio of the peak value to the 
root mean square (RMS) of the entire signal. A larger crest factor 
indicates that the dominant frequency peak is relatively more 
prominent compared to other frequency peaks. For PPG signals, 
a larger crest factor implies better current signal quality. For 
acceleration signals, a larger crest factor suggests that the current 
motion has stronger stability and regularity. The specific computing 
method is presented in Equation 6. 

CF �
xpeak

xrms
(6)

Where xpeak denotes the peak value of the dominant 
frequency in the frequency spectrum of each window, and 
xrms denotes the root mean square of the spectral amplitude 
in each window.

Classification model performance evaluation metrics
This paper will demonstrate the classification accuracy through 

both numerical and graphical methods. Numerically, Accuracy, 
Precision, Recall, F1-score, and Macro-F1 are selected. A 
graphical confusion matrix is used to more intuitively reflect the 
classification accuracy. The specific descriptions are as follows:

Accuracy. The proportion of correctly predicted samples to the 
total number of samples. The specific computing method is 
presented in Equation 7. 

Accuracy �
TP + TN

TP + FP + TN + FN
(7)

TP (True Positive): The model predicts a sample as belonging to 
a certain class, and the actual label of the sample also belongs to 
that class.

FIGURE 3 
Gaussian curves corresponding to different standard deviations.

FIGURE 4 
Spectrum signals before and after windowing.
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TN (True Negative): The model predicts a sample as not 
belonging to a certain class, and the actual label of the sample 
also does not belong to that class.

FP (False Positive): The model predicts a sample as belonging to 
a certain class, but the actual label of the sample does not belong to 
that class.

FN (False Negative): The model predicts a sample as not 
belonging to a certain class, but the actual label of the sample 
belongs to that class.

Precision. The proportion of correctly predicted positive 
samples among all samples predicted as positive. The specific 
computing method is presented in Equation 8. 

Precision �
TP

TP + FP
(8)

Recall. The proportion of correctly predicted positive samples 
among all actually positive samples. The specific computing method 
is presented in Equation 9. 

Recall �
TP

TP + FN
(9)

F1-score. The harmonic mean of precision and recall.
This metric comprehensively considers both precision and 

recall, and thus better reflects the overall performance of the 
model. In some cases, improving precision may lead to a 
decrease in recall, and this metric balances the two. The specific 
computing method is presented in Equation 10. 

F1 �
2 × Precision × Recall
Precision + Recall

(10)

Macro-F1. The arithmetic mean of F1-scores calculated for 
each class.

This metric emphasizes that all classes are equally important and 
is not affected by differences in the number of samples across classes, 
thereby reflecting the comprehensive performance of the model. 
Therefore, it can provide a balanced evaluation in cases of class 
imbalance or when each class is of equal importance. The specific 
computing method is presented in Equation 11. 

Macro F1 �
1
C
􏽘

C

i�1
Fi (11)

C represents the number of classes.

Confusion matrix. The structure diagram of the confusion 
matrix is shown in Figure 5A; when the value of each cell is 
represented by the depth of color, a corresponding heatmap can 
be generated, as shown in Figure 5B.

Spectral peak tracking
STFT

Based on the classification results in Section 3.2.3.2, signals 
judged to have poor quality require further analysis. Since the 
traditional Fourier transform cannot meet the needs of spectral 
analysis for such non-stationary signals whose spectral structure 

varies with time, a joint time-frequency analysis method is adopted 
to adapt to these non-stationary signals (Xiao and Feng, 2010). 
Therefore, STFT applies a window function with finite length to 
perform sliding window processing on the signal. It is assumed that 
the signal within each window is stationary, and then Fourier 
analysis is conducted on the signal of each window. Finally, the 
spectral information of all windows is combined to obtain time- 
frequency spectrum information.

STFT involves several key parameters: window length, sliding 
step, and window function. The sampling frequency of the PPG 
signal is 125 Hz, and the total window length is set to 8 s. 
Considering that the dataset was collected under motion 
conditions and to ensure that each sub-window contains at least 
one complete PPG cycle, the corresponding window length is set to 
100 sampling points, with a sliding step of 100 sampling points, 
resulting in no overlap between adjacent sub-windows. The 
Hanning window is selected as the window function to reduce 
spectral leakage.

STFT analysis is performed on the PPG signal to identify the 
position of the dominant frequency peak in the frequency spectrum 
of each sub-window. If the corresponding peak positions of adjacent 
sub-windows remain consistent, the frequency spectrum of the 
corresponding time-domain signals is considered continuous, and 
the time-domain signals in these sub-windows can be spliced 
together. The spliced signal can be regarded as the low-artifact 
segment within the window. As illustrated in Figure 6, although the 
spectrogram of the PPG signal processed by STFT retains the 
characteristics of the real PPG signal, it is subject to the time- 
frequency resolution limitation of STFT. Signal segmentation 
reduces the signal length, which in turn leads to a corresponding 
decrease in spectral resolution. Consequently, the exact position of 
the real heart rate cannot be directly located from the spectrum, and 
only its approximate range can be determined.

Spectral peak selection
During the spectral peak selection process, different spectral peak 

selection rules are adopted based on the signal quality assessment 
results, and the specific workflow is illustrated in Figure 7.

For PPG signals with good quality, the PPGRLS is first subjected to 
Fourier transform. Then, according to the position of the previous 
window (locpre), a Gaussian window as described in Section 3.2.3.3 is 
superimposed on the frequency spectrum. The heart rate spectral peak 
of such signals is sharp, single, and stable, which does not require 
coverage by a wide window. A narrow window can improve spectral 
peak resolution and avoid introducing noise spectral peaks. Moreover, 
Chung et al. (2019) reported that 99% of the absolute heart rate 
differences within 2 s between consecutive windows in the ISPC 
database are approximately 5 BPM. Therefore, the standard 
deviation is set to δ = 5 and the mean is set to μ = locpre.

For signals with poor quality, the dominant frequency position 
(locSTFT) is first determined by STFT. However, it should be noted 
that the interval corresponding to locSTFT does not necessarily reflect 
the true heart rate. For instance, if motion artifacts affect the entire 
window, the extracted signal may correspond to the frequency range of 
motion artifacts instead. Therefore, it is necessary to compare the 
relative distance between locSTFT and locpre to determine whether 
their distance falls within the preset threshold range THloc (THloc = 
15). If the distance between the two is less than THloc, the interval is 
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regarded as the heart rate interval. Due to the low resolution of STFT, it 
is necessary to conduct analysis in combination with the original PPG 
signal. Specifically, the spectral peak (loc1) closest to locSTFT is 
identified in the frequency spectrum of the PPG signal. Motion 
artifacts may cause the heart rate spectral peak to broaden, shift, or 
even split. A wide window can cover the potential range of the true 
spectral peak and avoid missed detection caused by spectral peak shift. 
Furthermore, Zhang et al. (2015) mentioned that the BPM variation 
between two consecutive windows rarely exceeds 10 bpm. Thus, a 
Gaussian window with the mean of loc1 and standard deviation of 10 is 
superimposed on the original PPG spectral peak. If the distance does 
not meet the threshold requirement, the spectral filtering method is 
similar to that for signals with good quality, except that the standard 
deviation is set to 10.

In addition, multiple groups of gradient combinations of standard 
deviations should be designed around the two key values of 5 and 

10 for comparative experiments. The model performance under 
different parameters is evaluated to select the optimal standard 
deviation of the Gaussian window suitable for the target task.

After the above windowing process, the abscissa corresponding 
to the maximum point of the frequency spectrum is taken as the 
estimated heart rate position (Loccur), and the heart rate value 
corresponding to each window is calculated. The specific computing 
method is presented in Equation 12. 

BPMcur �
Loccur − 1
NFFT

× 60 × FS (12)

NFFT represents the number of points in the Fourier transform, 
which is 4,096, and Fs corresponds to the sampling frequency.

Post-processing
Post-processing is mainly aimed at the removal of outliers 

generated during the heart rate estimation process and the 
smoothing of the heart rate curve, so as to improve the accuracy 
and stability of heart rate data. For outlier removal, this study adopts 
the backtracking verification method, which conducts detection 
when the heart rate values are reliable and corrects the heart rate 
values based on the information of abnormal windows. The specific 
flowchart is illustrated in Figure 8.

After completing backtracking verification, the heart rate curve 
after backtracking is smoothed using the Savitzky-Golay filter. The 
Savitzky-Golay filter can better preserve the local characteristics of 
the signal while achieving smoothing. The performance of this filter 
is mainly determined by two parameters: window size and 
polynomial order. Through experimental verification and 
parameter tuning, the window size is set to 11 and the 
polynomial order is set to 3. Filtering can remove the outliers 
that were not identified during backtracking verification, making 
the heart rate curve smoother and closer to the true heart rate.

Methods and metrics for performance 
evaluation of heart rate extraction model

In the algorithm performance verification of this study, three 
comparative algorithms are selected: WFPV (Temko, 2017) with 
Wiener filtering denoising, SPECMAR (Islam et al., 2019) with 

FIGURE 5 
Confusion matrix diagram. (A) Confusion matrix structure diagram. (B) Confusion matrix heatmap.

FIGURE 6 
The original PPG signal spectrum contains multiple spectral 
peaks with large amplitudes. After STFT analysis, the spectral energy of 
the PPG signal is concentrated around the true heart rate, which 
facilitates subsequent spectral peak screening. In addition, it can 
be clearly observed from the figure that STFT analysis retains the true 
PPG signal while removing most of the motion artifact (MA) 
information.
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FIGURE 7 
Spectral peak screening flow chart.

FIGURE 8 
Backtracking verification flow chart.
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spectral subtraction denoising, and SSR_Kalma (Zhang et al., 2022) 
based on Sparse Signal Reconstruction (SSR). To verify the 
generalization ability of the proposed algorithm, its performance 
is analyzed based on the results on the test dataset. Meanwhile, to 
further compare the performance of the proposed algorithm with 
that of the algorithm proposed by Lan et al. (2024), additional tests 
are conducted on the self-collected dataset.

To better evaluate the algorithm performance, three evaluation 
metrics are adopted in this study, namely Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), and Pearson 
correlation coefficient plot.

MAE
It refers to the average of the absolute values of the differences 

between the estimated heart rate and the true heart rate, which can 
comprehensively reflect the accuracy of the calculation results. The 
specific computing method is presented in Equation 13. 

MAE �
1
N
􏽘

N

i�1
BPMest i( )−BPMtrue i( )| | (13)

Where N denotes the total number of windows in each group of 
data, BPMest(i) denotes the estimated heart rate value of the i-th 
window, and BPMtrue(i) denotes the reference heart rate value of 
the i-th window.

MAPE
It is the average of the ratios of absolute errors to the true heart 

rate, and it is a relative indicator. When comparing errors across 
different datasets, it can eliminate the impact caused by individual 
differences. The specific computing method is presented in 
Equation 14. 

MAPE �
1
N
􏽘

N

i�1

BPMest i( )−BPMtrue i( )| |

BPMtrue i( )
× 100% (14)

Pearson correlation coefficient plot
From a visualization perspective, the Pearson correlation 

coefficient plot is used to reflect the relationship between the 
estimated heart rate and the true heart rate. The Pearson 
correlation coefficient is a parameter that measures correlation, 
and its value is positively correlated with the degree of 
correlation: the larger the value, the stronger the correlation. The 
specific computing method is presented in Equation 15. 

ρ X,Y( ) �
cov X, Y( )

δXδY
(15)

Where cov (X,Y) denotes the covariance between X and Y, and 
δX, δY denote the standard deviations of X and Y, respectively.

Bland-Altman plot
The Bland-Altman plot visually demonstrates the difference 

between the true heart rate and the predicted heart rate in a 
graphical manner. This plot takes the mean of the two heart rates 
as the abscissa and their difference as the ordinate to draw a 
scatter plot. By calculating the mean of the differences and the 
standard deviation (sd) of the differences, if the scatter points 
are concentrated within the 95% confidence interval of the 

differences (i.e., mean ± 1.96sd), the predicted heart rate and 
the true heart rate can be considered to have a high degree of 
consistency.

Results

Comparison of PPG signals before and after 
RLS filtering

Figures 9A,B respectively show the spectrograms of the PPG 
signal before and after RLS filtering within the same time window. 
Among them, the red dots mark the spectral peaks corresponding to 
the true heart rate. A clear comparison reveals that before RLS 
filtering, there are two motion artifact (MA) spectral peaks with 
large amplitudes, and one of these spurious peaks is close to the 
spectral peak of the true heart rate. If spectral peak tracking is 
directly performed on this spectrum, the spectral peak of the true 
heart rate may be masked, impairing the accuracy of heart rate 
estimation.

After RLS filtering, the 2 MA spectral peaks are significantly 
suppressed, which highlights the spectral peak corresponding to the 
true heart rate and makes it the dominant peak within the frequency 
band. RLS filtering effectively eliminates the interference of MA, 
thus significantly improving the signal quality.

Classification training results

Performance comparison of key parameter 
combinations for each classifier

Pre-experimental results indicate that the key parameters 
affecting the classification performance of the SVM are the 
kernel function (kernel) and the regularization parameter (C), 
while the number of neighbors (n_neighbors) is the core 
parameter determining the classification performance of the 
K-Nearest Neighbor classifier. For this purpose, multiple groups 
of gradient parameter combinations are designed for the two 
classifiers respectively based on the above key parameters, and 
comparative experiments are conducted. By evaluating the 
classification performance of the models under different 
parameter combinations, the parameter configurations suitable 
for the target task are screened out. Tables 3, 4 respectively list 
the classification performance comparison results of the SVM and 
KNN classifiers under different parameter combinations, based on 
which the values of the key parameters of the two classifiers can be 
determined.

Subsequently, when evaluating the classification performance on 
the test set, the parameters of the SVM are set as follows: kernel = 
‘linear’, C = 1.0, class_weight = {0:10,1:100}; the parameters of the 
K-Nearest Neighbor classifier are set as: n_neighbors = 2. In 
addition, it was also found through pre-experiments that the 
performance differences of the Random Forest classifier under 
different parameter combinations are negligible on the test set, so 
there is no need to conduct additional parameter comparison 
experiments. Its final parameter configuration is set as: number 
of decision trees (n_estimators) = 100, maximum tree depth (max_ 
depth) = None, class weight = {0:10,1:100}.
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Performance comparison and analysis of classifiers 
under optimal parameters

Based on the parameters set in Section 4.2.1, the performance of 
different classifiers was evaluated using the classification results on 
the test set, as detailed in Table 5.

In the performance comparison of classifiers, the SVM and 
Random Forest significantly outperform the K-Nearest Neighbor. 
The Accuracy and Macro-F1 values of the K-Nearest Neighbor are 
much lower than those of the other two classifiers. In terms of 
numerical values, the gap between Random Forest and SVM is 
small. In this study, although the number of positive and negative 
samples is imbalanced, both types of samples are of great 
importance. Therefore, it is necessary to consider the 
classification performance of both positive and negative samples 

simultaneously. From a macro perspective, Macro-F1 reflects the 
overall performance of different classifiers: the Macro-F1 of SVM is 
0.74, which is slightly higher than that of Random Forest (0.73). 
From a visualization perspective, confusion matrices of the SVM 
and Random Forest on the predicted data are plotted, as shown in 
Figures 10A,B, respectively.

The depth of color in the figures clearly indicates a severe 
imbalance in the number of positive and negative class samples, 
where the number of negative class samples is much larger than that 
of positive class samples. The Random Forest correctly predicts only 
3 positive class samples, showing a distinct negative-class bias during 
the prediction process. This result suggests that the Random Forest 
overfits the features of the majority class, leading to insufficient 
discrimination ability for the minority class. This phenomenon may 

FIGURE 9 
Comparison of PPG signal spectra before and after RLS filtering. (A) Before RLS filtering. (B) After RLS filtering.

TABLE 3 Classification performance comparison of SVM under different parameter combinations.

Performance metrics Key parameters kernel Linear poly rbf

C 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

Accuracy 0.97 0.98 0.98 0.33 0.53 0.67 0.93 0.97 0.98

Macro_F1 0.69 0.73 0.74 0.26 0.37 0.43 0.54 0.57 0.55

Precision 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

Recall 0.97 0.97 0.98 0.32 0.53 0.66 0.93 0.97 0.98

F1 0.98 0.99 0.99 0.49 0.69 0.80 0.96 0.98 0.99

TABLE 4 Classification performance comparison of K-nearest neighbor under different parameter combinations.

Performance metrics Key parameters n_neighbors 1 2 3 5 7

Accuracy 0.84 0.86 0.77 0.74 0.73

Macro_F1 0.46 0.46 0.44 0.43 0.43

Precision 0.99 0.99 0.99 0.99 0.99

Recall 0.85 0.87 0.78 0.75 0.74

F1 0.91 0.92 0.87 0.85 0.84
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stem from the fact that when constructing decision trees, the 
Random Forest tends to select features that better distinguish the 
majority class while ignoring those of the minority class. In this 
study, the positive class corresponds to signals evaluated as poor 
quality, so the ability to identify the positive class is of great 
importance. In contrast, when constructing the decision 
boundary, the SVM relies on support vectors that include both 
majority and minority class samples, without neglecting the 
minority class. Thus, it performs better in positive class 
prediction and can identify more positive class samples. 
Although it misclassifies 14 negative class samples as positive 
ones, this result demonstrates to a certain extent that the SVM 
does not completely favor the majority class. Instead, it sacrifices a 
small degree of precision for the negative class to improve the recall 
rate of the positive class, reflecting its sensitivity to the minority class 
and adaptability to imbalanced data distribution. Based on the above 
analysis, the SVM achieves superior comprehensive performance 
compared with the Random Forest and the K-Nearest Neighbor and 
thus it is selected as the classifier for subsequent research.

Results of Gaussian window standard 
deviation screening

To select the optimal standard deviation values of the Gaussian 
window for PPG signals of different quality, multiple groups of 
gradient combinations of standard deviations were designed for 

performance comparison experiments. For PPG signals with good 
quality, 3, 5, and 8 were selected as gradient parameters with 5 as the 
core value; for PPG signals with poor quality, 8, 10, and 12 were 
selected as gradient parameters with 10 as the core value. 
Experimental verification was completed based on pairwise 
combinations of the two parameter sets.

The comparison results of two representative parameter 
combinations are presented in Tables 6, 7 respectively: Table 6
focuses on the scenario where the standard deviation for good- 
quality signals is fixed at 5, comparing its performance with that of 
poor-quality signals using standard deviations of 8, 10, and 12; Table 7
focuses on the scenario where the standard deviation for poor-quality 
signals is fixed at 10, comparing its performance with that of good- 
quality signals using standard deviations of 3, 5, and 8. The experimental 
results show that the parameter combination with a standard deviation 
of 5 for good-quality signals and 10 for poor-quality signals achieves the 
optimal matching degree with the heart rate estimation algorithm task.

The above conclusions possess universality and representativeness: 
when a standard deviation of 3 or 8 is used for good-quality signals, the 
performance of using a standard deviation of 10 for poor-quality 
signals is superior to that of 8 or 12 in the vast majority of test scenarios; 
similarly, when a standard deviation of 8 or 12 is used for poor-quality 
signals, the performance of using a standard deviation of 5 for good- 
quality signals outperforms that of 3 or 8 in most test scenarios. 
Therefore, only the experimental results of representative parameter 
combinations are presented in this study to simplify data presentation 
and highlight the core conclusions.

TABLE 5 Classification performance of different classifiers.

Performance metrics SVM Random forest K-nearest neighbors

Accuracy 0.98 0.99 0.86

Macro_F1 0.74 0.73 0.46

Precision- 1.00 0.99 0.99

Recall- 0.98 1.00 0.87

F1- 0.99 0.99 0.92

FIGURE 10 
Confusion Matrices of Classifiers in the Predicted Data. (A) SVM. (B) Random forest.
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Comparison of heart rate results before and 
after post-processing

Figure 11 shows the comparison diagram of heart rate results 
before and after post-processing. As can be seen from the figure, the 
estimated heart rate curve without post-processing exhibits obvious 
sawtooth fluctuations, with particularly significant errors observed 
at the 21st and 83rd windows. After the introduction of the post- 
processing strategy, the degree of fitting between the estimated heart 
rate and the true heart rate is significantly improved. Specifically, 
backtracking verification reduces abnormal jumps, while Savitzky- 
Golay filtering effectively suppresses high-frequency interference 
while retaining the main trend of the signal, thereby improving the 
accuracy of the estimated heart rate.

Performance comparison and analysis of 
heart rate estimation models

The specific results are presented in Table 8, and the 
corresponding MAE comparison plot is plotted as shown 
in Figure 12.

Overall, the MAE and MAPE values of the proposed algorithm 
on the test data are both lower than those of other comparative 
algorithms. In terms of maximum error, the values are 3.44 BPM for 
WFPV, 4.80 BPM for SPECMAR, 3.38 BPM for SSR_Kalman, and 
2.76 BPM for the proposed algorithm. This result indicates that the 
proposed algorithm has higher stability than other algorithms, 

further verifying that it can maintain favorable performance even 
on unseen data.

Grouped by exercise type, the MAE values of each algorithm are 
illustrated in Figure 13. In the T1 exercise type, WFPV achieves the 
smallest error; the error of the proposed algorithm is slightly higher 
than that of WFPV, while SSR_Kalman yields the largest error. In 
the T2 exercise type, the proposed algorithm attains the minimum 
error, whereas SPECMAR has the maximum error. From the 
perspective of stability, the proposed algorithm exhibits a small 
difference in error between the two exercise types, demonstrating 
good consistency. In contrast, all other algorithms show a large 
discrepancy in error across the two exercise types. Overall, the 
proposed algorithm outperforms the other comparative 
algorithms in terms of performance.

As shown in Figure 14 are the statistical results of the proposed 
algorithm on the test set.

Panel (A) is a linear correlation plot, where the fitting line of the 
true heart rate versus the predicted heart rate is expressed as y = 
1.00849x−0.79783, with a Pearson correlation coefficient of 0.99201. 
The difference between this value and the Pearson correlation 
coefficient of the training set is small, which indicates that the 
SVM has a certain generalization ability in signal quality prediction 
and also verifies the high accuracy of the proposed algorithm. Panel 
(B) is a Bland-Altman analysis plot, with the mean of errors being 
0.085 BPM. As can be seen from the plot, most scatter points are 
concentrated around the mean of errors, among which 93.4% of the 
points fall within the 95% confidence interval. The distribution of 
scatter points shows no obvious trend, suggesting that the 

TABLE 6 Performance comparison of poor-quality signals with different standard deviations when the standard deviation of good-quality signals is fixed at 5.

No. Motion type 8 10 12

MAE/BPM MAPE MAE/BPM MAPE MAE/BPM MAPE

1 T2 1.00 0.72% 0.96 0.70% 1.00 0.72%

2 T1 3.24 3.58% 2.56 2.83% 2.96 3.27%

3 T2 3.75 2.75% 2.76 2.05% 3.08 2.27%

4 T2 1.72 1.38% 1.63 1.31% 1.72 1.38%

5 T1 0.63 0.74% 0.63 0.74% 0.63 0.74%

Mean - 2.07 1.83% 1.71 1.52% 1.88 1.67%

TABLE 7 Performance comparison of good-quality signals with different standard deviations when the standard deviation of poor-quality signals is fixed 
at 10.

No. Motion type 3 5 8

MAE/BPM MAPE MAE/BPM MAPE MAE/BPM MAPE

1 T2 4.12 2.95% 0.96 0.70% 1.68 1.22%

2 T1 4.31 4.43% 2.56 2.83% 2.67 3.00%

3 T2 2.58 1.92% 2.76 2.05% 2.98 2.17%

4 T2 4.00 3.20% 1.63 1.31% 5.57 4.39%

5 T1 0.74 0.87% 0.63 0.74% 0.63 0.74%

Mean - 3.15 2.67% 1.71 1.52% 2.71 2.30%
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consistency between the estimated heart rate and the true heart rate 
is relatively stable across different heart rate ranges.

The test results are presented in Table 9, where Proposed1 refers to 
the algorithm proposed by Lan et al. (2024) and Proposed2 denotes the 

proposed algorithm in this study. Overall, Proposed2 outperforms 
Proposed1 in both MAE and MAPE metrics. The proposed algorithm 
achieves certain improvements on partial datasets, with the 
improvement being relatively significant especially on the 4th and 

FIGURE 11 
Comparison chart of heart rate estimation before and after post-processing. (A) Before post-processing. (B) After post-processing.

TABLE 8 Heart rate results of test data.

No. Motion type WFPV SPECMAR SSR_Kalman Proposed

MAE/BPM MAPE MAE/BPM MAPE MAE/BPM MAPE MAE/BPM MAPE

1 T2 1.57 1.15% 4.80 - 2.60 2.86% 0.96 0.70%

2 T1 2.01 2.41% 2.72 - 1.86 1.44% 2.56 2.83%

3 T2 3.44 2.45% 3.28 - 0.85 0.99% 2.76 2.05%

4 T2 1.61 1.26% 1.55 - 3.06 2.54% 1.63 1.31%

5 T1 0.75 0.88% 0.82 - 3.38 2.32% 0.63 0.74%

Mean - 1.88 1.63% 2.63 - 2.35 2.03% 1.71 1.52%

FIGURE 12 
Comparison chart of MAE of different algorithms in the test set.

FIGURE 13 
MAE comparison of the test set under different movement types.
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5th datasets. However, both algorithms yield large errors on the 8th 
dataset, indicating that the anti-noise capability of the improved 
algorithm still needs further enhancement.

Discussion

Nowadays, the prevalence of cardiovascular diseases continues to 
rise, having become one of the major threats to human health. Real-time 
heart rate monitoring based on PPG signals is conducive to the 
prevention, control, and management of diseases, while also 
promoting the development of personalized health management and 
intelligent medical care. However, interference from motion artifacts 
and differences in physiological states among individuals (such as age, 
weight, skin color, etc.) increase the difficulty of signal processing and 
lead to a decline in the generalization ability of algorithms. Especially in 
dynamic scenarios, such as running and daily activities, motion artifacts 
can significantly affect the accuracy of heart rate extraction. Existing 
algorithms generally suffer from insufficient robustness and struggle to 
cope with complex and varied application scenarios. Therefore, this 

paper conducts research on heart rate extraction from PPG signals, 
covering traditional signal processing to machine learning, with the 
main work completed as follows:

To improve the stability and generalization ability of heart rate 
calculation, improvements were made to the signal quality assessment 
and spectrum analysis methods. Since the FSM (Finite State Machine) 
considers fewer parameters when judging signal states, has limited 
adaptive capacity, and is easily affected by fluctuations in signal quality, 
it was thus improved. Signal quality assessment was implemented 
using SVM, with 11 features selected from the time-frequency domain. 
SVM can effectively handle non-linear features, enabling the algorithm 
to identify the essential characteristics of signals from complex ones 
and integrate multi-dimensional features to enhance the algorithm’s 
stability. In addition, to better adapt to the non-stationary and time- 
varying characteristics of PPG signals, STFT was combined to analyze 
their time-frequency properties, which can better capture such 
dynamic changes. During spectrum analysis, a Gaussian window 
was used instead of a rectangular window. Based on the amplitude 
distribution of the Gaussian window, higher weights can be assigned to 
the interval of historical heart rates, increasing the tracking of historical 
heart rates and reducing sensitivity to instantaneous fluctuations. 
Compared with the high-performance WFPV algorithm, the 
proposed algorithm shows smaller calculation errors, more stable 
performance in heart rate results under different motion states, and 
better generalization.

The manual feature extraction method adopted in this study has 
achieved ideal heart rate extraction performance on the test dataset. 
Its core advantage lies in the high adaptability of feature design to the 
physiological mechanisms and noise characteristics of PPG signals. 
The selected time-domain and frequency-domain features all have 
clear physical meanings, which avoids the problem of insufficient 
interpretability caused by the “black-box” nature of deep learning 
models. Furthermore, it does not require large-scale labeled data or 
high computational resources, demonstrating certain efficiency and 
stability in heart rate monitoring tasks with small samples and 
specific scenarios (e.g., static or low-intensity exercise).

Although deep learning methods (such as Long Short-Term 
Memory) have become a research hotspot in physiological signal 
analysis due to their ability to automate feature engineering—for 

FIGURE 14 
Pearson coefficient diagram of test data. (A) Linear correlation diagram. (B) Bland-Altman analysis diagram.

TABLE 9 Comparison of self-collected data results.

No. Proposed1 Proposed2

MAE/BPM MAPE MAE/BPM MAPE

1 1.95 2.35% 1.75 2.13%

2 1.40 1.59% 1.05 1.19%

3 2.07 1.95% 2.09 1.89%

4 1.53 1.29% 0.75 0.62%

5 1.42 1.28% 0.79 0.72%

6 1.50 1.60% 1.57 1.69%

7 1.65 2.23% 2.07 2.77%

8 2.56 3.28% 2.67 3.47%

Mean 1.76 1.95% 1.62 1.81%
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instance, the end-to-end model proposed by Oğuz et al. (2023) can 
adaptively capture complex nonlinear relationships in signals—the 
manual feature method in this study still possesses irreplaceable 
academic value and application scenarios. On the one hand, in 
scenarios with relatively single data distribution and clear noise 
types, manually designed targeted features can effectively reduce the 
model’s overfitting risk. Additionally, with low computational 
complexity, it is more suitable for platforms with limited 
computational resources such as wearable devices. On the other 
hand, its strong interpretability meets the core requirement of 
technical reliability in the field of biomedical engineering, providing 
a clear decision-making basis for heart rate monitoring in clinical 
scenarios. This research approach does not negate the advantages of 
deep learning; instead, through targeted feature engineering, it offers a 
“lightweight and highly interpretable” complementary solution for 
PPG heart rate extraction, enriches technical choices in different 
application scenarios, and provides a potential direction for the 
subsequent design of hybrid models combining deep learning and 
manual features.

This study focuses on heart rate extraction from PPG signals. 
Despite achieving favorable results, it still has limitations. The data 
processed by SMOTE still exhibits extreme class imbalance, as 
quantitative balance does not equate to feature balance, and the core 
contradiction remains unresolved. Although this imbalance alleviates 
the difference in sample quantity distribution through augmentation, it 
fails to address key issues such as insufficient representativeness of 
minority class features, feature distribution overlap, and noise 
amplification of synthetic samples. Consequently, the decision 
boundary shifts toward the majority class during model training, 
traditional accuracy metrics are distorted due to their bias towards 
the majority class, and the model’s generalization ability is limited. It is 
difficult to adapt to clinically critical scenarios corresponding to 
minority class samples in biomedical signal classification (e.g., low- 
quality PPG signals, abnormal heart rate samples), which directly affects 
the practical application value of the model.

The main directions for future research and optimization are 
as follows:

1. The use of fixed windows in the algorithm to analyze PPG signals 
under different states has the problem of insufficient adaptability. 
To improve the time-frequency resolution of signals, an adaptive 
window length method can be attempted to more flexibly 
respond to signal changes under different states.

2. The dataset selected in this paper has certain limitations, with a 
limited amount of data and insufficient consideration of the 
diversity of motion states. In the future, data sources will be 
further expanded, and more data collected under different 
states will be selected, including those of different ages, skin 
colors, and health conditions, to enhance the adaptability and 
generalization of the algorithm. Furthermore, to address the 
data imbalance problem, we focus on two cores: “feature 
balance” and “algorithm adaptation”. On the one hand, 
improved oversampling algorithms such as ADASYN and 
SMOTE-ENN can be adopted to reduce pseudo-samples 
and noise interference, or domain adaptation and transfer 
learning can be used to supplement minority class features, 
thereby achieving true feature balance at the data level. On the 
other hand, weighted loss functions (e.g., Focal Loss, Weighted 

Cross-Entropy) can be combined to suppress the dominant 
role of the majority class during training, or ensemble learning 
strategies such as EasyEnsemble and BalanceCascade can be 
employed to split majority class samples, so as to balance the 
training process. This enhances the model’s ability to recognize 
minority class samples at the algorithm level and 
fundamentally alleviates the impact of extreme data 
imbalance on model performance.

3. Combining Lan et al. (2024)’s research on motion artifact 
removal, efforts will be made from the perspective of multi- 
signal fusion. On the one hand, signal enhancement can be 
achieved through cross-validation and information fusion of 
multi-channel PPG signals; on the other hand, the motion 
artifact information contained in acceleration signals can be 
deeply explored to gain a deeper understanding of the 
interference caused by motion to PPG signals. By integrating 
the synergistic effect of multiple signals, the quality of PPG signals 
in dynamic environments will be further improved.
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