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Heart rate is one of the most vital physiological parameters and is clinically widely
used to assess human health status. In recent years, wearable devices based on
photoplethysmography (PPG) have been extensively applied in real-time
monitoring. However, PPG signals are susceptible to interference from various
types of noise during acquisition, particularly motion artifacts (MA), which pose a
significant challenge to the accurate extraction of physiological parameters. This
study focuses on heart rate extraction from dynamic PPG signals and explores
denoising methods combining traditional signal processing and machine learning
techniques. The main research contents of this paper are as follows: further
improvements are made on the basis of existing algorithms by integrating support
vector machines (SVM). A more comprehensive signal quality assessment is
performed via SVM, which incorporates the time-domain and frequency?
domain statistical characteristics of both PPG signals and triaxial acceleration
(ACC) signals. In addition, the short-time Fourier transform (STFT) is integrated to
capture time-varying characteristics, thereby mitigating the impact of local signal
quality degradation on the analysis of full-window signals. For spectral peak
tracking, a Gaussian window is adopted to optimize the spectral search range and
a comprehensive analysis is conducted by fusing spectral amplitude information
with historical heart rate data. Experimental results demonstrate that the heart
rate error of the test set is 1.71 beats per minute (BPM).

KEYWORDS

heart rate, machine learning, motion artifact, photoplethysmography, support
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Introduction

Alongside the rapid development of society, the prevalence of cardiovascular diseases
(CVDs) in China has been on a steady rise. For CVDs, early identification and prevention
represent effective strategies for curbing the escalation of morbidity and mortality rates.
Wearable devices capable of continuous human activity monitoring have broken through
the constraints of traditional physiological data collection methods and are now widely
employed in health monitoring for CVD patients (Sun et al., 2024). Moreover, the
integration of wearable devices with artificial intelligence (AI) offers distinct advantages
and considerable potential in the field of biomedical engineering. For instance, the
multidisciplinary approach adopted by Mazumdar et al. (2025) in their design of a soft
robotic system for Parkinson’s disease highlights the potential of combining soft robotics,
functional materials, and machine learning to develop novel healthcare solutions.

Heart rate is one of the critical indicators for evaluating human health status and is
therefore a physiological parameter that wearable devices need to monitor continuously.
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Compared with electrocardiogram (ECG) signals, devices based on
PPG technology are more suitable for daily health monitoring due to
advantages such as portability and ease of wear. Despite these notable
merits, several non-negligible issues persist during practical
application. For example, physical exercise and daily activities can
lead to gaps between the sensor and the skin, allowing ambient light to
penetrate and consequently generating motion artifacts (Maeda et al.,
2011). These motion artifacts can significantly degrade the quality of
the collected PPG signals, which in turn impairs the accuracy of
measuring physiological parameters such as heart rate.

Heart rate extraction from dynamic PPG signals based on
traditional signal processing can be divided into two phases: signal
enhancement and heart rate estimation. Signal enhancement primarily
leverages signal processing techniques to improve signal quality, thereby
reducing motion artifacts and other types of noise in PPG signals. This
phase can be further subdivided into two sub-stages: preprocessing and
signal denoising. The core objective of preprocessing is to eliminate
noise outside the heart rate frequency range to ensure signal purity;
signal denoising, by contrast, focuses on removing complex noise such
as motion artifacts and enhancing the valid components of the signal,
laying a solid foundation for subsequent analyses. The heart rate
estimation phase typically comprises two steps: spectral peak
tracking and post-processing. In the spectral peak tracking step, the
signal is transformed into the frequency domain to identify spectral
peaks associated with heart rate. In the post-processing step, methods
such as filtering and smoothing are applied to further optimize heart
rate estimation results, improving calculation accuracy and stability. To
enhance the accuracy of heart rate extraction, research efforts
worldwide have primarily focused on optimizing signal denoising
technologies and refining spectral peak tracking algorithms.

Related work

Sun and Jia (2020) proposed a PPG signal denoising method based
on ensemble empirical mode decomposition (EEMD) and wavelet
threshold filtering. The combination of these two techniques can
caused by
conditions. Results demonstrate that this method can maximize the

effectively avoid misjudgment noise-dominated
preservation of the nonlinear and non-stationary characteristics of PPG
signals. Khan et al. (2015) put forward a two-stage denoising algorithm
for PPG signals. The first stage employs the absolute criterion of EEMD
to eliminate outlier errors and does not rely on historical heart rate data.
The second stage integrates recursive least squares (RLS) filtering and
time-domain extraction techniques to enhance the algorithm’s
robustness. By iteratively adjusting the filter parameters, RLS can
adapt to the noise characteristics under varying exercise intensities.
Coupled with a forgetting factor, it balances convergence speed and
estimation stability during signal processing, thus preventing error drift
induced by sudden changes in motion states.

Chung et al. (2018) proposed constructing a finite state machine
(FSM) to determine the reliability of the current heart rate value,
based on the prominence of the dominant spectral peak within the
frequency spectrum and its deviation from the previously estimated
heart rate. By discarding unreliable heart rate values, this method
enhances the accuracy of heart rate estimation. Meng et al. (2022)
extracted step frequency information from acceleration signals and
established an adaptive model based on the correlation among step
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frequency information, historical heart rate, and current heart rate.
This model narrows the potential frequency range of heart rate,
thereby reducing estimation errors.

Lan et al. (2024) seamlessly integrated the adaptive noise
suppression advantage of RLS filtering for non-stationary PPG
signals with a reliability evaluation mechanism for verifying heart
rate estimation, thereby constructing a novel framework for heart
rate extraction from PPG signals. When judging the intensity of MA,
triaxial acceleration signals were used as reference; RLS filtering and
empirical wavelet transform (EWT) were added for denoising.
Meanwhile, FSM was introduced to evaluate the reliability of
historical heart rate data, which optimized the spectral peak
selection strategy and improved the stability of the algorithm.

Xiong et al. (2017) regarded spectral peak selection as a
classification problem. They extracted the peak coefficient ratio of
candidate spectral peaks and the distance from the previous heart
rate spectral peak as features, and utilized a SVM to perform binary
classification on the spectral peaks, with the classification results being
either true spectral peaks or false spectral peaks. The FSM framework
proposed by Lan et al. (2024) has certain limitations in the utilization of
features in terms of state transition rules. In contrast, machine learning
methods can extract features related to the prediction target from signals
and perform optimization based on these extracted features. Therefore,
this study integrates machine learning into the PPG signal heart rate
extraction framework, which can effectively integrate different spectral
peak selection rules and further reduce the error of heart rate estimation.

The main contributions of this study are as follows:

1. Based on the algorithm proposed by Lan et al. (2024), SVM is
adopted to replace the FSM framework. By constructing an
SVM classification model and taking multi-dimensional
feature vectors as the decision basis, a more adaptive state
transition criterion is established to evaluate the quality of
signals processed by RLS filtering, which compensates for the
limitations of FSM in feature utilization.

2. According to the signal quality evaluation results, different
spectral peak selection rules are employed. Spectral peak
tracking is performed on denoised signals in combination
with the STFT, followed by the post-processing of estimated
heart rate values. This enables more refined and accurate
analysis of the local time-frequency domain characteristics,
thereby mining more abundant information from the signals.

3. The experiments supplement data from various types of arm
movements, and the algorithm is validated using both public
datasets and self-collected datasets. Experimental results
demonstrate that the proposed algorithm achieves lower
estimation error in heart rate prediction and maintains high
accuracy across diverse motion states.

Materials and methods
Datasets
Public dataset

The public dataset was sourced from the open data of the
2015 IEEE Signal Processing Cup (Temko, 2017). This dataset is
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TABLE 1 Attributes of the test dataset.

10.3389/frsip.2026.1724468

Subject ID Motion type Age Weight (kg) Height (cm) Gender Healthy or not

1 S1 T1 29 70 169 Male Yes

2 S2 Tl 21 77 188 Male Yes

3 S2 T2 21 77 188 Male Yes

4 S3 T2 19 54 174 Male Yes

5 sS4 T2 20 64 162 Male Yes

6 S5 T2 20 57 174 Male Yes

7 S6 T1 19 70 180 Male Yes

8 S6 T2 19 70 180 Male Yes

9 S7 T2 21 73 180 Male Yes

10 S8 T1 58 70 156 Female No
primarily designed for research on heart rate extraction under  TABLE 2 Attributes of the self-collected dataset.
motion states and has been widely applied in the field of PPG- Dataset Moti - MA intensit

. atase otion state intensi

based heart rate extraction (Choe et al., 2024; Huang et al., 2023; Ray y
etal, 2022; Zhang et al,, 2022). Although it dates back many years, its 1 Walking Medium
rigorous syflch.romze.d acqullsmon method and hlgh déta qual?ty 5 Resting Weak
ensure that it still retains considerable research value in this domain.

To enhance data diversity, 12 training sets and 10 test sets were 3 Walking Medium
selected from the aforementioned dataset. Each training set contains 2- 4 Running Strong
channel PPG signals, 3-axis ACC signals, and 1-channel ECG data, ‘ A A
with a sampling frequency of 125 Hz. The PPG signals were collected > Resting- walking-running Strong
by pulse oximeters equipped with 515 nm green LEDs. All participants 6 Resting Weak
were healthy male subjects aged between 18 and 35 years old. During ; Resting Weak
data acquisition, the subjects performed 5-min exercises on a treadmill
with varying speeds following this protocol: 30 s at 1-2 km/h, 1 min at 8 Resting Weak

6-8 km/h, 1 min at 12-15 km/h, 1 min at 6-8 km/h, 1 min at
12-15km/h, and 30 s at 1-2 km/h. The test set data cover a wider range
of hand movements, and the specific dataset attributes are presented in
Table 1. In the table, T1 denotes common rehabilitation exercises
involving various forearm and upper arm movements (e.g., hand
gripping and stretching), while T2 represents more vigorous
forearm and upper arm movements such as boxing.

Self-collection dataset
Data acquisition equipment

The self-collected data were acquired using a device developed
by the Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences. Each dataset includes 4-channel PPG
signals and 3-axis ACC signals, with the sampling frequency of PPG
signals set at 250 Hz and that of ACC signals at 25 Hz. Both PPG and
ACC signals were collected by a smart wristwatch (Model: MPPB-
V1), and the PPG data were captured via a green LED with a
wavelength of 540 nm.

Data acquisition protocol

The self-collected data in this study were obtained from
8 healthy male subjects (aged 18-35 years). Prior to the
experiment, each subject wore a chest strap on the chest and the
smart wristwatch on the left wrist. The experiment was conducted in
an indoor environment, and the specific protocol is as follows:
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1. At the start of the experiment, all subjects maintained a static
sitting posture for 5 min. This step allowed the subjects to
acclimatize to the device-wearing state, regulate their
breathing, and ensure the stable operation of the

acquisition equipment.

. All subjects performed three different types of activity tasks
as required by the experiment: static sitting, walking, and
running. The specific arrangement was as follows:
4 subjects maintained a static sitting posture throughout
the experiment; 2 subjects performed continuous walking;
1 subject engaged in continuous running; and 1 subject
completed the task sequence of 1-min static sitting, 2-min
walking, and 2-min running. During walking and running,
all subjects were required to maintain a natural arm-
swinging motion, and the exercise intensity was self-
regulated by the subjects. The data acquisition duration
was set to 5 min for each subject. This experiment was
designed to cover diverse exercise intensities and heart rate
variation scenarios, so as to verify the adaptability and
robustness of the proposed method across multiple
motion states.

3. After the completion of data acquisition, the subjects remained

seated with the devices still worn for an additional 1 min.
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An SVM classification model is constructed to evaluate the quality of signals after preprocessing and RLS filtering. Based on the evaluation results,
different spectral peak screening rules are adopted. Combined with STFT, spectral peak tracking is performed on the denoised signals, and finally, post-

processing is conducted on the estimated heart rate.

Data attributes

The 8 collected datasets were parsed and sorted in chronological
order of timestamps. The corresponding PPG signals and ACC
signals were extracted and saved as. txt format files, respectively. The
specific attributes of the datasets are presented in Table 2.
Specifically, Datasets 2, 6-8 correspond to the static sitting state;
Datasets 1 and 3 correspond to the walking state; Dataset
4 corresponds to the running state; and Dataset 5 covers the
transition state from rest to walking and then to running.

Dataset splitting

To ensure data independence and prevent data leakage, this
study split the 22 datasets into training and test sets at a ratio of 8:2,
with the division performed on a per-subject basis. Specifically, the
first 17 datasets were selected as the training set, and the remaining
5 datasets were used as the test set. This ratio is a classic split in the
field: 80% of the subjects allocated to the training set provide
sufficient sample diversity and data volume, ensuring that the
model can learn the features of physiological signals; the
remaining 20% assigned to the test set have an adequate sample
size to support statistical analysis, thus guaranteeing the stability of
evaluation results.

Splitting the datasets by subjects enables accurate assessment of
the model’s true generalization ability, directly reflecting the model’s
adaptability to new subjects and avoiding the overfitting problem
caused by random splitting.

PPG signal heart rate extraction framework

Building upon the heart rate estimation framework proposed by
Lan et al. (Lan et al.,, 2024), this study replaces the FSM framework
with the SVM and integrates it with different spectral peak selection
rules, thereby effectively reducing the error of heart rate estimation.
The specific algorithm flow is illustrated in Figure 1.

PPG signal preprocessing

Consistent with the signal preprocessing method proposed by
Lan et al. (2024), each dataset was segmented using a window length
and sliding window consistent with the reference heart rate settings,
which were 8 s and 2 s, respectively. Band-pass filtering was applied
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to the PPG signals of each channel and the triaxial ACC signals. The
band-pass range was set to 0.4-3.5 Hz, corresponding to a heart rate
range of 24-210 BPM.

To reduce computational complexity and signal dimensionality
while preserving the main features of the signals, averaging
processing was performed on both the PPG and ACC signals.
The band-pass filtered signals were normalized via L2-norm
normalization, and then the signals of each channel were
subjected to weighted averaging to obtain the averaged PPG
signal (PPGcom) and averaged ACC signal (ACCcom).

The specific computing method are presented in Equations 1, 2.

1 PPG PPG
PPGeom = (—1+ —2> (1)
2\PPG|, |PPG,|,
1{ Acc, A A
AcCeom = 3 Sy S &)
3\ | Accyll, ||Acc},||2 | Acc. I,

Where PPG1 and PPG2 denote the two-channel PPG signals
after band-pass filtering, respectively; ACCx, ACCy, and ACCz
denote the triaxial acceleration signals after band-pass filtering,
respectively.

RLS filtering

Adaptive filtering minimizes the discrepancy between the
reference signal and the input signal by continuously iteratively
adjusting the filter parameters. When the reference signal can well
reflect MA information, adaptive filtering can effectively remove
MA. Basic adaptive filtering methods include least mean square
(LMS) filtering and RLS filtering. Compared with LMS filtering, RLS
filtering offers the advantages of faster convergence speed and better
adaptability to non-stationary signals (Geng and Zhang, 2008),
making it more suitable for processing non-stationary signals
such as PPG signals. Therefore, RLS filtering was selected for
this study.

PPGcom and ACCcom described in Section 3.2.1 were used as
the reference signal a(n) and the input signal x(n), respectively. The
estimated MA signal is denoted as y(n), and the error signal is
defined as e(n) = x(n) — y(n). The framework is illustrated in
Figure 2. The parameters of RLS were set as follows: order N =
A = 0999, and covariance

55, forgetting factor initial

estimate © = 0.1.
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FIGURE 2
PPGcom and ACCcom serve as the reference signal a(n) and the

input signal x(n), respectively, y(n) denotes the estimated motion
artifact (MA) signal, and the error signal is defined as e(n) = x(n)-y(n).
RLS filtering is performed in accordance with this framework.

SVM-based imbalanced classification
Data balancing based on SMOTE

Taking the difference between the frequency domain information
of PPG signals processed by RLS filtering and the reference heart rate as
the evaluation metric, signal quality labeling was performed on each
sample. The results indicated that the number of samples with good
signal quality was far greater than that of samples with poor signal
quality, resulting in a data imbalance phenomenon. Direct
classification on imbalanced data will cause the classifier to be
biased toward the majority class in prediction results. Therefore,
data balancing is required prior to classification.

The Synthetic Minority Over-Sampling Technique (SMOTE) was
selected herein to achieve data balancing. SMOTE was proposed by
Chawla et al. (Arunkumar and Bhaskar, 2020) in 2002 to address the
problem of large class imbalance ratios in classification tasks. Its core
idea is to balance the data by generating minority class samples
through interpolation between neighboring samples. Specifically, it
calculates the Euclidean distance (i.e., geometric distance) between
each minority class sample and other minority class samples to
measure the dissimilarity between two samples. Based on the
calculation results, the K nearest samples are selected from all
minority class samples, which is the K-nearest neighbor (KNN)
method (Holmes and Adams, 2002). Then, one sample is randomly
selected from the chosen ones, linear interpolation is performed, and
new samples are generated. By augmenting the minority class samples
in the training data using SMOTE, the total number of training
samples is increased from 2,427 to 4,822, and the class ratio is
adjusted from the original 1:150 to 1:1.

Classifier selection

To compensate for the limitations of the FSM framework in
feature utilization, machine learning is adopted in this study to
perform signal quality classification on the balanced data, classifying
the signals into two categories: good quality and poor quality. This
approach also enables the integration of different spectral peak
selection rules for subsequent processing. Three classic machine
learning classifiers were employed for performance comparison,
namely SVM, random forest (Breiman, 2001), and K-nearest
neighbor (Cover and Hart, 1967). These methods are classic,
representative, and practically validated algorithms in the field of
technical
discriminative learning, ensemble learning, and instance-based

machine learning, covering three core routes:
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learning. Verified by academic research and

engineering practice, they share common advantages such as

long-term

stable generalization, clear parameter tuning logic, and broad
scenario adaptability, which can fully support the experimental
requirements for model comparison and the goal of scenario
adaptability.

First, parameter sensitivity analysis is carried out through
preliminary experiments to identify the key parameters that exert
a significant impact on classification performance for each classifier.
For these key parameters, multiple groups of gradient parameter
combinations are designed for comparison experiments. The model
performance metrics under each parameter combination are
evaluated to complete the parameter optimization process. After
the key parameters of each model are adjusted to their optimal
values, a horizontal comparison of the performance of the SVM,
random forest, and K-nearest neighbor classifiers is conducted based
on a unified experimental environment. Ultimately, the optimal
classifier suitable for the target task is selected.

Feature selection

During the feature selection process for each classifier, a total of
11 features were selected as classification features, which were
derived from the time-domain and frequency-domain features of
the original PPG signal (PPGpre), the PPG signal processed by RLS
filtering (PPGRLS), and the triaxial acceleration signals. The detailed
descriptions are as follows:

Ratio.  Ratio is defined as the ratio of the total amplitude of the
region of interest (ROI) to the total amplitude of the entire
frequency spectrum. Since the heart rate of the previous window
is close to that of the current window, the historical heart rate has
significant reference value for heart rate estimation of the current
window. Therefore, based on the heart rate position of the previous
window, a Gaussian window is superimposed on the frequency
spectrum of the PPG signal in the current window instead of the
rectangular window commonly used in traditional algorithms, so as
to optimize heart rate estimation. The parameters of the Gaussian
function include amplitude A, mean p and standard deviation 8.

(x=n)*

fF=a.c 3)

Here, the mean is determined by the heart rate position of the
previous window, and the amplitude is set to 1. The value of the
standard deviation determines the coverage range of the Gaussian
function. As illustrated in Figure 3, it shows the Gaussian curves
corresponding to the standard deviations of 10 and 5, respectively.
To reduce the impact of motion artifacts on heart rate estimation,
the standard deviation is set to 5.

For the frequency spectrum of each window, it is multiplied
point-wise by the Gaussian window function described above. The
comparison of spectral signals before and after Gaussian windowing
is illustrated in Figure 4. The spectral signal after Gaussian
windowing is accumulated to obtain the total amplitude denoted
as Suml, while the total amplitude of the spectral signal before
Gaussian windowing is recorded as Sum2. The corresponding
calculation formula for ratio is thus given by ratio = Sum1/Sum2.
This ratio feature can reflect the intensity of motion artifacts to a
certain extent: when motion artifacts are significant, the total
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Spectrum signals before and after windowing.

amplitude of non-interest regions increases, thus resulting in a
smaller ratio value.

Mean and variance of the frequency domain signal after fourier
transform of PPGRLS. The mean helps identify the main
frequency components of the PPG signal, while the variance
reveals the distribution in the frequency domain. A larger
variance a broader

typically corresponds to frequency

distribution.

The mean reflects issues such as
signal drift in the PPG signal, while the variance reflects the signal’s

Mean and variance of PPGpre.
fluctuation characteristics.

ACC.
filtering were processed to calculate their scalar sum, denoted as
ACC. This scalar sum can effectively reflect the intensity of motion:

The original triaxial acceleration signals before band-pass

when the ACC value is relatively large, it indicates a relatively high
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motion intensity. The specific computing method is presented in
Equation 4.

N
Acc = Z\/ACCX(,')Z + ACCy(i)z + ACCZ(i)Z (4)
i=1

Where N denotes the total number of sampling points in each
window, and ACCx(i), ACCy(i), and ACCz(i) represent the
acceleration signals in the X, y, and z directions, respectively.

Absolute value of the difference in Acc calculated from adjacent
windows.  This reflects the change in motion state between two
consecutive windows. A smaller difference indicates consistent

motion states between the two adjacent windows.

Mean and variance of the magnitude of the resultant acceleration
(Ampacc) of the triaxial acceleration. The mean is used to
distinguish motions of different intensities—high-intensity motions
typically correspond to a higher mean. The variance characterizes
the regularity of the current motion; abrupt changes in motion state
will lead to an increase in variance. The specific computing method

is presented in Equation 5.

Ampg (i) = \/Accx(i)z +Accyi)? + Acc,)> 1<i<N  (5)

Crest factor (CF) of PPGRLS and ACCcom after fourier
CF is defined as the ratio of the peak value to the
root mean square (RMS) of the entire signal. A larger crest factor

transform.

indicates that the dominant frequency peak is relatively more
prominent compared to other frequency peaks. For PPG signals,
a larger crest factor implies better current signal quality. For
acceleration signals, a larger crest factor suggests that the current
motion has stronger stability and regularity. The specific computing
method is presented in Equation 6.

CF = Zpeck ©)
xrms
Where xpeak denotes the peak value of the dominant
frequency in the frequency spectrum of each window, and
xrms denotes the root mean square of the spectral amplitude
in each window.

Classification model performance evaluation metrics

This paper will demonstrate the classification accuracy through
both numerical and graphical methods. Numerically, Accuracy,
Recall,
graphical confusion matrix is used to more intuitively reflect the

Precision, Fl-score, and Macro-F1 are selected. A

classification accuracy. The specific descriptions are as follows:

Accuracy.  The proportion of correctly predicted samples to the
total number of samples. The specific computing method is

presented in Equation 7.

A TP+TN
ccuracy =
Y S TP+FP+TN +FN

@)
TP (True Positive): The model predicts a sample as belonging to

a certain class, and the actual label of the sample also belongs to
that class.
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TN (True Negative): The model predicts a sample as not
belonging to a certain class, and the actual label of the sample
also does not belong to that class.

FP (False Positive): The model predicts a sample as belonging to
a certain class, but the actual label of the sample does not belong to
that class.

FN (False Negative): The model predicts a sample as not
belonging to a certain class, but the actual label of the sample
belongs to that class.

Precision. The proportion of correctly predicted positive
samples among all samples predicted as positive. The specific
computing method is presented in Equation 8.

TP

— 8
TP+ FP ®

Precision =

Recall.
among all actually positive samples. The specific computing method

The proportion of correctly predicted positive samples

is presented in Equation 9.

TP

Recall = ——
ecall = T T FN

©)

F1-score. The harmonic mean of precision and recall.

This metric comprehensively considers both precision and
recall, and thus better reflects the overall performance of the
model. In some cases, improving precision may lead to a
decrease in recall, and this metric balances the two. The specific

computing method is presented in Equation 10.

2 x Precision x Recall
F, = — (10)
Precision + Recall

Macro-F1.
each class.

The arithmetic mean of Fl-scores calculated for

This metric emphasizes that all classes are equally important and
is not affected by differences in the number of samples across classes,
thereby reflecting the comprehensive performance of the model.
Therefore, it can provide a balanced evaluation in cases of class
imbalance or when each class is of equal importance. The specific
computing method is presented in Equation 11.

1 E
Macro_F, = = ) F; 11
| CZ (1)

C represents the number of classes.
Confusion matrix. The structure diagram of the confusion
matrix is shown in Figure 5A; when the value of each cell is
represented by the depth of color, a corresponding heatmap can
be generated, as shown in Figure 5B.

Spectral peak tracking
STFT

Based on the classification results in Section 3.2.3.2, signals
judged to have poor quality require further analysis. Since the
traditional Fourier transform cannot meet the needs of spectral
analysis for such non-stationary signals whose spectral structure
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varies with time, a joint time-frequency analysis method is adopted
to adapt to these non-stationary signals (Xiao and Feng, 2010).
Therefore, STFT applies a window function with finite length to
perform sliding window processing on the signal. It is assumed that
the signal within each window is stationary, and then Fourier
analysis is conducted on the signal of each window. Finally, the
spectral information of all windows is combined to obtain time-
frequency spectrum information.

STFT involves several key parameters: window length, sliding
step, and window function. The sampling frequency of the PPG
signal is 125 Hz, and the total window length is set to 8 s.
Considering that the dataset was collected under motion
conditions and to ensure that each sub-window contains at least
one complete PPG cycle, the corresponding window length is set to
100 sampling points, with a sliding step of 100 sampling points,
resulting in no overlap between adjacent sub-windows. The
Hanning window is selected as the window function to reduce
spectral leakage.

STFT analysis is performed on the PPG signal to identify the
position of the dominant frequency peak in the frequency spectrum
of each sub-window. If the corresponding peak positions of adjacent
sub-windows remain consistent, the frequency spectrum of the
corresponding time-domain signals is considered continuous, and
the time-domain signals in these sub-windows can be spliced
together. The spliced signal can be regarded as the low-artifact
segment within the window. As illustrated in Figure 6, although the
spectrogram of the PPG signal processed by STFT retains the
characteristics of the real PPG signal, it is subject to the time-
frequency resolution limitation of STFT. Signal segmentation
reduces the signal length, which in turn leads to a corresponding
decrease in spectral resolution. Consequently, the exact position of
the real heart rate cannot be directly located from the spectrum, and
only its approximate range can be determined.

Spectral peak selection

During the spectral peak selection process, different spectral peak
selection rules are adopted based on the signal quality assessment
results, and the specific workflow is illustrated in Figure 7.

For PPG signals with good quality, the PPGRLS is first subjected to
Fourier transform. Then, according to the position of the previous
window (locpre), a Gaussian window as described in Section 3.2.3.3 is
superimposed on the frequency spectrum. The heart rate spectral peak
of such signals is sharp, single, and stable, which does not require
coverage by a wide window. A narrow window can improve spectral
peak resolution and avoid introducing noise spectral peaks. Moreover,
Chung et al. (2019) reported that 99% of the absolute heart rate
differences within 2 s between consecutive windows in the ISPC
database are approximately 5 BPM. Therefore, the standard
deviation is set to § = 5 and the mean is set to u = locpre.

For signals with poor quality, the dominant frequency position
(locSTFT) is first determined by STFT. However, it should be noted
that the interval corresponding to locSTFT does not necessarily reflect
the true heart rate. For instance, if motion artifacts affect the entire
window, the extracted signal may correspond to the frequency range of
motion artifacts instead. Therefore, it is necessary to compare the
relative distance between locSTFT and locpre to determine whether
their distance falls within the preset threshold range THloc (THloc =
15). If the distance between the two is less than THloc, the interval is
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The original PPG signal spectrum contains multiple spectral

peaks with large amplitudes. After STFT analysis, the spectral energy of
the PPG signal is concentrated around the true heart rate, which
facilitates subsequent spectral peak screening. In addition, it can

be clearly observed from the figure that STFT analysis retains the true
PPG signal while removing most of the motion artifact (MA)
information.

regarded as the heart rate interval. Due to the low resolution of STFT, it
is necessary to conduct analysis in combination with the original PPG
signal. Specifically, the spectral peak (locl) closest to locSTFT is
identified in the frequency spectrum of the PPG signal. Motion
artifacts may cause the heart rate spectral peak to broaden, shift, or
even split. A wide window can cover the potential range of the true
spectral peak and avoid missed detection caused by spectral peak shift.
Furthermore, Zhang et al. (2015) mentioned that the BPM variation
between two consecutive windows rarely exceeds 10 bpm. Thus, a
Gaussian window with the mean of loc1 and standard deviation of 10 is
superimposed on the original PPG spectral peak. If the distance does
not meet the threshold requirement, the spectral filtering method is
similar to that for signals with good quality, except that the standard
deviation is set to 10.

In addition, multiple groups of gradient combinations of standard
deviations should be designed around the two key values of 5 and
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10 for comparative experiments. The model performance under
different parameters is evaluated to select the optimal standard
deviation of the Gaussian window suitable for the target task.

After the above windowing process, the abscissa corresponding
to the maximum point of the frequency spectrum is taken as the
estimated heart rate position (Loccur), and the heart rate value
corresponding to each window is calculated. The specific computing
method is presented in Equation 12.

Loccur -

1
BPM,,, = x 60 X Fg (12)

FFT

NEFFT represents the number of points in the Fourier transform,
which is 4,096, and Fs corresponds to the sampling frequency.

Post-processing

Post-processing is mainly aimed at the removal of outliers
generated during the heart rate estimation process and the
smoothing of the heart rate curve, so as to improve the accuracy
and stability of heart rate data. For outlier removal, this study adopts
the backtracking verification method, which conducts detection
when the heart rate values are reliable and corrects the heart rate
values based on the information of abnormal windows. The specific
flowchart is illustrated in Figure 8.

After completing backtracking verification, the heart rate curve
after backtracking is smoothed using the Savitzky-Golay filter. The
Savitzky-Golay filter can better preserve the local characteristics of
the signal while achieving smoothing. The performance of this filter
is mainly determined by two parameters: window size and
Through
parameter tuning, the window size is set to 11 and the

polynomial order. experimental verification and
polynomial order is set to 3. Filtering can remove the outliers
that were not identified during backtracking verification, making

the heart rate curve smoother and closer to the true heart rate.

Methods and metrics for performance
evaluation of heart rate extraction model

In the algorithm performance verification of this study, three

comparative algorithms are selected: WFPV (Temko, 2017) with
Wiener filtering denoising, SPECMAR (Islam et al., 2019) with
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spectral subtraction denoising, and SSR_Kalma (Zhang et al., 2022)
based on Sparse Signal Reconstruction (SSR). To verify the
generalization ability of the proposed algorithm, its performance
is analyzed based on the results on the test dataset. Meanwhile, to
further compare the performance of the proposed algorithm with
that of the algorithm proposed by Lan et al. (2024), additional tests
are conducted on the self-collected dataset.

To better evaluate the algorithm performance, three evaluation
metrics are adopted in this study, namely Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Pearson
correlation coefficient plot.

MAE

It refers to the average of the absolute values of the differences

between the estimated heart rate and the true heart rate, which can

comprehensively reflect the accuracy of the calculation results. The
specific computing method is presented in Equation 13.

N

1 . .

MAE = % |BPMe: (i) = BPMipie ()]

i=1

(13)

Where N denotes the total number of windows in each group of
data, BPMest(i) denotes the estimated heart rate value of the i-th
window, and BPMtrue(i) denotes the reference heart rate value of
the i-th window.

MAPE

It is the average of the ratios of absolute errors to the true heart
rate, and it is a relative indicator. When comparing errors across
different datasets, it can eliminate the impact caused by individual
differences. The specific computing method is presented in
Equation 14.

1 i|BPMm (i) = BPM e (3)]

MAPE = — - x 100%
BPMtrue (l)

N (14)

i=1

Pearson correlation coefficient plot

From a visualization perspective, the Pearson correlation
coefficient plot is used to reflect the relationship between the
estimated heart rate and the true heart rate. The Pearson
correlation coefficient is a parameter that measures correlation,
and its value is positively correlated with the degree of
correlation: the larger the value, the stronger the correlation. The

specific computing method is presented in Equation 15.

cov(X,Y)

5.0y (15)

p(X,Y) =
Where cov (X,Y) denotes the covariance between X and Y, and
06X, 8Y denote the standard deviations of X and Y, respectively.

Bland-Altman plot

The Bland-Altman plot visually demonstrates the difference
between the true heart rate and the predicted heart rate in a
graphical manner. This plot takes the mean of the two heart rates
as the abscissa and their difference as the ordinate to draw a
scatter plot. By calculating the mean of the differences and the
standard deviation (sd) of the differences, if the scatter points
are concentrated within the 95% confidence interval of the
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differences (i.e., mean + 1.96sd), the predicted heart rate and
the true heart rate can be considered to have a high degree of
consistency.

Results

Comparison of PPG signals before and after
RLS filtering

Figures 9A,B respectively show the spectrograms of the PPG
signal before and after RLS filtering within the same time window.
Among them, the red dots mark the spectral peaks corresponding to
the true heart rate. A clear comparison reveals that before RLS
filtering, there are two motion artifact (MA) spectral peaks with
large amplitudes, and one of these spurious peaks is close to the
spectral peak of the true heart rate. If spectral peak tracking is
directly performed on this spectrum, the spectral peak of the true
heart rate may be masked, impairing the accuracy of heart rate
estimation.

After RLS filtering, the 2 MA spectral peaks are significantly
suppressed, which highlights the spectral peak corresponding to the
true heart rate and makes it the dominant peak within the frequency
band. RLS filtering effectively eliminates the interference of MA,
thus significantly improving the signal quality.

Classification training results

Performance comparison of key parameter
combinations for each classifier

Pre-experimental results indicate that the key parameters
affecting the classification performance of the SVM are the
kernel function (kernel) and the regularization parameter (C),
while the number of neighbors (n_neighbors) is the core
parameter determining the classification performance of the
K-Nearest Neighbor classifier. For this purpose, multiple groups
of gradient parameter combinations are designed for the two
classifiers respectively based on the above key parameters, and
comparative experiments are conducted. By evaluating the
of the different
parameter combinations, the parameter configurations suitable

classification performance models under
for the target task are screened out. Tables 3, 4 respectively list
the classification performance comparison results of the SVM and
KNN classifiers under different parameter combinations, based on
which the values of the key parameters of the two classifiers can be
determined.

Subsequently, when evaluating the classification performance on
the test set, the parameters of the SVM are set as follows: kernel =
‘linear’, C = 1.0, class_weight = {0:10,1:100}; the parameters of the
K-Nearest Neighbor classifier are set as: n_neighbors = 2. In
addition, it was also found through pre-experiments that the
performance differences of the Random Forest classifier under
different parameter combinations are negligible on the test set, so
there is no need to conduct additional parameter comparison
experiments. Its final parameter configuration is set as: number
of decision trees (n_estimators) = 100, maximum tree depth (max_
depth) = None, class weight = {0:10,1:100}.
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FIGURE 9
Comparison of PPG signal spectra before and after RLS filtering. (A) Before RLS filtering. (B) After RLS filtering.

TABLE 3 Classification performance comparison of SVM under different parameter combinations.

Performance metrics Key parameters kernel Linear
C . 0.5
Accuracy 097 0.98 0.98 033 0.53 0.67 0.93 0.97 0.98
Macro_F1 0.69 0.73 0.74 0.26 037 043 0.54 0.57 0.55
Precision 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
Recall 0.97 0.97 0.98 0.32 0.53 0.66 0.93 0.97 0.98
F1 0.98 0.99 0.99 0.49 0.69 0.80 0.96 0.98 0.99

TABLE 4 Classification performance comparison of K-nearest neighbor under different parameter combinations.

Performance metrics Key parameters n_neighbors 1 P 3 ) 7
Accuracy 0.84 0.86 0.77 0.74 0.73

Macro_F1 0.46 0.46 0.44 043 043

Precision 0.9 0.9 0.99 0.99 0.9

Recall 0.85 0.87 0.78 0.75 0.74

F1 0.91 0.92 0.87 0.85 0.84

Performance comparison and analysis of classifiers  simultaneously. From a macro perspective, Macro-F1 reflects the
under optimal parameters overall performance of different classifiers: the Macro-F1 of SVM is
Based on the parameters set in Section 4.2.1, the performance of ~ 0.74, which is slightly higher than that of Random Forest (0.73).
different classifiers was evaluated using the classification results on ~ From a visualization perspective, confusion matrices of the SVM
the test set, as detailed in Table 5. and Random Forest on the predicted data are plotted, as shown in
In the performance comparison of classifiers, the SVM and  Figures 10A,B, respectively.
Random Forest significantly outperform the K-Nearest Neighbor. The depth of color in the figures clearly indicates a severe
The Accuracy and Macro-F1 values of the K-Nearest Neighbor are  imbalance in the number of positive and negative class samples,
much lower than those of the other two classifiers. In terms of  where the number of negative class samples is much larger than that
numerical values, the gap between Random Forest and SVM is  of positive class samples. The Random Forest correctly predicts only
small. In this study, although the number of positive and negative 3 positive class samples, showing a distinct negative-class bias during
samples is imbalanced, both types of samples are of great the prediction process. This result suggests that the Random Forest
importance. Therefore, it is necessary to consider the overfits the features of the majority class, leading to insufficient
classification performance of both positive and negative samples  discrimination ability for the minority class. This phenomenon may
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TABLE 5 Classification performance of different classifiers.

Performance metrics

10.3389/frsip.2026.1724468

Random forest

K-nearest neighbors

Accuracy 0.98 0.99 0.86
Macro_F1 0.74 0.73 0.46
Precision- 1.00 0.99 0.99
Recall- 0.98 1.00 0.87
F1- 0.99 0.99 0.92
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Confusion Matrices of Classifiers in the Predicted Data. (A) SVM. (B) Random forest.

stem from the fact that when constructing decision trees, the
Random Forest tends to select features that better distinguish the
majority class while ignoring those of the minority class. In this
study, the positive class corresponds to signals evaluated as poor
quality, so the ability to identify the positive class is of great
importance. In contrast, when constructing the decision
boundary, the SVM relies on support vectors that include both
majority and minority class samples, without neglecting the
minority class. Thus, it performs better in positive class
prediction and can identify more positive class samples.
Although it misclassifies 14 negative class samples as positive
ones, this result demonstrates to a certain extent that the SVM
does not completely favor the majority class. Instead, it sacrifices a
small degree of precision for the negative class to improve the recall
rate of the positive class, reflecting its sensitivity to the minority class
and adaptability to imbalanced data distribution. Based on the above
analysis, the SVM achieves superior comprehensive performance
compared with the Random Forest and the K-Nearest Neighbor and

thus it is selected as the classifier for subsequent research.

Results of Gaussian window standard
deviation screening

To select the optimal standard deviation values of the Gaussian

window for PPG signals of different quality, multiple groups of
gradient combinations of standard deviations were designed for

Frontiers in Signal Processing

performance comparison experiments. For PPG signals with good
quality, 3, 5, and 8 were selected as gradient parameters with 5 as the
core value; for PPG signals with poor quality, 8, 10, and 12 were
selected as gradient parameters with 10 as the core value.
Experimental verification was completed based on pairwise
combinations of the two parameter sets.

results of two representative parameter
combinations are presented in Tables 6, 7 respectively: Table 6
focuses on the scenario where the standard deviation for good-
quality signals is fixed at 5, comparing its performance with that of
poor-quality signals using standard deviations of 8, 10, and 12; Table 7

The comparison

focuses on the scenario where the standard deviation for poor-quality
signals is fixed at 10, comparing its performance with that of good-
quality signals using standard deviations of 3, 5, and 8. The experimental
results show that the parameter combination with a standard deviation
of 5 for good-quality signals and 10 for poor-quality signals achieves the
optimal matching degree with the heart rate estimation algorithm task.

The above conclusions possess universality and representativeness:
when a standard deviation of 3 or 8 is used for good-quality signals, the
performance of using a standard deviation of 10 for poor-quality
signals is superior to that of 8 or 12 in the vast majority of test scenarios;
similarly, when a standard deviation of 8 or 12 is used for poor-quality
signals, the performance of using a standard deviation of 5 for good-
quality signals outperforms that of 3 or 8 in most test scenarios.
Therefore, only the experimental results of representative parameter
combinations are presented in this study to simplify data presentation
and highlight the core conclusions.
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TABLE 6 Performance comparison of poor-quality signals with different standard deviations when the standard deviation of good-quality signals is fixed at 5.

Motion type 10 12
MAE/BPM MAPE MAE/BPM MAPE MAE/BPM
1 T2 1.00 0.72% 0.96 0.70% 1.00 0.72%
2 T1 3.24 3.58% 256 2.83% 2.96 3.27%
3 T2 3.75 2.75% 276 2.05% 3.08 227%
4 T2 1.72 1.38% 1.63 1.31% 1.72 1.38%
5 T1 0.63 0.74% 0.63 0.74% 0.63 0.74%
Mean - 2.07 1.83% 1.71 1.52% 1.88 1.67%

TABLE 7 Performance comparison of good-quality signals with different standard deviations when the standard deviation of poor-quality signals is fixed
at 10.

Motion type
MAE/BPM MAPE MAE/BPM MAPE MAE/BPM
1 T2 412 2.95% 0.96 0.70% 1.68 1.22%
2 T1 431 4.43% 2.56 2.83% 2.67 3.00%
3 T2 2.58 1.92% 276 2.05% 2.98 2.17%
4 T2 4.00 3.20% 1.63 1.31% 5.57 439%
5 T1 0.74 0.87% 0.63 0.74% 0.63 0.74%
Mean - 3.15 2.67% 1.71 1.52% 271 2.30%

Comparison of heart rate results before and  further verifying that it can maintain favorable performance even
after post-processing on unseen data.

Grouped by exercise type, the MAE values of each algorithm are
Figure 11 shows the comparison diagram of heart rate results  illustrated in Figure 13. In the T1 exercise type, WFPV achieves the
before and after post-processing. As can be seen from the figure, the ~ smallest error; the error of the proposed algorithm is slightly higher
estimated heart rate curve without post-processing exhibits obvious  than that of WFPV, while SSR_Kalman yields the largest error. In
sawtooth fluctuations, with particularly significant errors observed  the T2 exercise type, the proposed algorithm attains the minimum
at the 21st and 83rd windows. After the introduction of the post- error, whereas SPECMAR has the maximum error. From the
processing strategy, the degree of fitting between the estimated heart ~ perspective of stability, the proposed algorithm exhibits a small
rate and the true heart rate is significantly improved. Specifically,  difference in error between the two exercise types, demonstrating
backtracking verification reduces abnormal jumps, while Savitzky-  good consistency. In contrast, all other algorithms show a large
Golay filtering effectively suppresses high-frequency interference  discrepancy in error across the two exercise types. Overall, the
while retaining the main trend of the signal, thereby improving the =~ proposed algorithm outperforms the other comparative

accuracy of the estimated heart rate. algorithms in terms of performance.
As shown in Figure 14 are the statistical results of the proposed

algorithm on the test set.

Performance comparison and analysis of Panel (A) is a linear correlation plot, where the fitting line of the
heart rate estimation models true heart rate versus the predicted heart rate is expressed as y =
1.00849x-0.79783, with a Pearson correlation coefficient of 0.99201.
The specific results are presented in Table 8, and the  The difference between this value and the Pearson correlation
corresponding MAE comparison plot is plotted as shown  coefficient of the training set is small, which indicates that the
in Figure 12. SVM has a certain generalization ability in signal quality prediction
Overall, the MAE and MAPE values of the proposed algorithm  and also verifies the high accuracy of the proposed algorithm. Panel
on the test data are both lower than those of other comparative  (B) is a Bland-Altman analysis plot, with the mean of errors being
algorithms. In terms of maximum error, the values are 3.44 BPM for ~ 0.085 BPM. As can be seen from the plot, most scatter points are
WEFPV, 4.80 BPM for SPECMAR, 3.38 BPM for SSR_Kalman, and  concentrated around the mean of errors, among which 93.4% of the
2.76 BPM for the proposed algorithm. This result indicates that the  points fall within the 95% confidence interval. The distribution of
proposed algorithm has higher stability than other algorithms,  scatter points shows no obvious trend, suggesting that the
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Comparison chart of heart rate estimation before and after post-processing. (A) Before post-processing. (B) After post-processing.

TABLE 8 Heart rate results of test data.

[\[o} Motion type WFPV SPECMAR SSR_Kalman Proposed
MAE/BPM MAPE MAE/BPM MAPE MAE/BPM MAPE MAE/BPM MAPE
1 T2 1.57 1.15% 4.80 - 2.60 2.86% 0.96 0.70%
2 T1 2.01 2.41% 2.72 - 1.86 1.44% 2.56 2.83%
3 T2 3.44 2.45% 3.28 - 0.85 0.99% 2.76 2.05%
4 T2 1.61 1.26% 1.55 - 3.06 2.54% 1.63 1.31%
5 T1 0.75 0.88% 0.82 - 3.38 2.32% 0.63 0.74%
Mean - 1.88 1.63% 2.63 - 2.35 2.03% 1.71 1.52%
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Comparison chart of MAE of different algorithms in the test set.

consistency between the estimated heart rate and the true heart rate
is relatively stable across different heart rate ranges.

The test results are presented in Table 9, where Proposed1 refers to
the algorithm proposed by Lan et al. (2024) and Proposed2 denotes the
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MAE comparison of the test set under different movement types.

proposed algorithm in this study. Overall, Proposed2 outperforms
Proposedl in both MAE and MAPE metrics. The proposed algorithm
achieves certain improvements on partial datasets, with the
improvement being relatively significant especially on the 4th and
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TABLE 9 Comparison of self-collected data results.

Proposed1 Proposed2
MAE/BPM MAPE MAE/BPM MAPE
1 1.95 2.35% 1.75 2.13%
2 1.40 1.59% 1.05 1.19%
3 2.07 1.95% 2.09 1.89%
4 1.53 1.29% 0.75 0.62%
5 142 1.28% 0.79 0.72%
6 1.50 1.60% 1.57 1.69%
7 1.65 2.23% 2.07 2.77%
8 2.56 3.28% 2.67 3.47%
Mean 1.76 1.95% 1.62 1.81%

5th datasets. However, both algorithms yield large errors on the 8th
dataset, indicating that the anti-noise capability of the improved
algorithm still needs further enhancement.

Discussion

Nowadays, the prevalence of cardiovascular diseases continues to
rise, having become one of the major threats to human health. Real-time
heart rate monitoring based on PPG signals is conducive to the
prevention, control, and management of diseases, while also
promoting the development of personalized health management and
intelligent medical care. However, interference from motion artifacts
and differences in physiological states among individuals (such as age,
weight, skin color, etc.) increase the difficulty of signal processing and
lead to a decline in the generalization ability of algorithms. Especially in
dynamic scenarios, such as running and daily activities, motion artifacts
can significantly affect the accuracy of heart rate extraction. Existing
algorithms generally suffer from insufficient robustness and struggle to
cope with complex and varied application scenarios. Therefore, this
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paper conducts research on heart rate extraction from PPG signals,
covering traditional signal processing to machine learning, with the
main work completed as follows:

To improve the stability and generalization ability of heart rate
calculation, improvements were made to the signal quality assessment
and spectrum analysis methods. Since the FSM (Finite State Machine)
considers fewer parameters when judging signal states, has limited
adaptive capacity, and is easily affected by fluctuations in signal quality,
it was thus improved. Signal quality assessment was implemented
using SVM, with 11 features selected from the time-frequency domain.
SVM can effectively handle non-linear features, enabling the algorithm
to identify the essential characteristics of signals from complex ones
and integrate multi-dimensional features to enhance the algorithm’s
stability. In addition, to better adapt to the non-stationary and time-
varying characteristics of PPG signals, STFT was combined to analyze
their time-frequency properties, which can better capture such
dynamic changes. During spectrum analysis, a Gaussian window
was used instead of a rectangular window. Based on the amplitude
distribution of the Gaussian window, higher weights can be assigned to
the interval of historical heart rates, increasing the tracking of historical
heart rates and reducing sensitivity to instantaneous fluctuations.
Compared with the high-performance WEFPV algorithm, the
proposed algorithm shows smaller calculation errors, more stable
performance in heart rate results under different motion states, and
better generalization.

The manual feature extraction method adopted in this study has
achieved ideal heart rate extraction performance on the test dataset.
Its core advantage lies in the high adaptability of feature design to the
physiological mechanisms and noise characteristics of PPG signals.
The selected time-domain and frequency-domain features all have
clear physical meanings, which avoids the problem of insufficient
interpretability caused by the “black-box” nature of deep learning
models. Furthermore, it does not require large-scale labeled data or
high computational resources, demonstrating certain efficiency and
stability in heart rate monitoring tasks with small samples and
specific scenarios (e.g., static or low-intensity exercise).

Although deep learning methods (such as Long Short-Term
Memory) have become a research hotspot in physiological signal
analysis due to their ability to automate feature engineering—for
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instance, the end-to-end model proposed by Oguz et al. (2023) can
adaptively capture complex nonlinear relationships in signals—the
manual feature method in this study still possesses irreplaceable
academic value and application scenarios. On the one hand, in
scenarios with relatively single data distribution and clear noise
types, manually designed targeted features can effectively reduce the
model’s overfitting risk. Additionally, with low computational
complexity, it is more suitable for platforms with limited
computational resources such as wearable devices. On the other
hand, its strong interpretability meets the core requirement of
technical reliability in the field of biomedical engineering, providing
a clear decision-making basis for heart rate monitoring in clinical
scenarios. This research approach does not negate the advantages of
deep learning; instead, through targeted feature engineering, it offers a
“lightweight and highly interpretable” complementary solution for
PPG heart rate extraction, enriches technical choices in different
application scenarios, and provides a potential direction for the
subsequent design of hybrid models combining deep learning and
manual features.

This study focuses on heart rate extraction from PPG signals.
Despite achieving favorable results, it still has limitations. The data
processed by SMOTE still exhibits extreme class imbalance, as
quantitative balance does not equate to feature balance, and the core
contradiction remains unresolved. Although this imbalance alleviates
the difference in sample quantity distribution through augmentation, it
fails to address key issues such as insufficient representativeness of
minority class features, feature distribution overlap, and noise
amplification of synthetic samples. Consequently, the decision
boundary shifts toward the majority class during model training,
traditional accuracy metrics are distorted due to their bias towards
the majority class, and the model’s generalization ability is limited. It is
difficult to adapt to clinically critical scenarios corresponding to
minority class samples in biomedical signal classification (e.g., low-
quality PPG signals, abnormal heart rate samples), which directly affects
the practical application value of the model.

The main directions for future research and optimization are
as follows:

1. The use of fixed windows in the algorithm to analyze PPG signals
under different states has the problem of insufficient adaptability.
To improve the time-frequency resolution of signals, an adaptive
window length method can be attempted to more flexibly
respond to signal changes under different states.

2. The dataset selected in this paper has certain limitations, with a
limited amount of data and insufficient consideration of the
diversity of motion states. In the future, data sources will be
further expanded, and more data collected under different
states will be selected, including those of different ages, skin
colors, and health conditions, to enhance the adaptability and
generalization of the algorithm. Furthermore, to address the
data imbalance problem, we focus on two cores: “feature
balance” and “algorithm adaptation”. On the one hand,
improved oversampling algorithms such as ADASYN and
SMOTE-ENN can be adopted to reduce pseudo-samples
and noise interference, or domain adaptation and transfer
learning can be used to supplement minority class features,
thereby achieving true feature balance at the data level. On the
other hand, weighted loss functions (e.g., Focal Loss, Weighted
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Cross-Entropy) can be combined to suppress the dominant
role of the majority class during training, or ensemble learning
strategies such as EasyEnsemble and BalanceCascade can be
employed to split majority class samples, so as to balance the
training process. This enhances the model’s ability to recognize
minority class level and

samples at the algorithm

fundamentally alleviates the impact of extreme data
imbalance on model performance.

3. Combining Lan et al. (2024)’s research on motion artifact
removal, efforts will be made from the perspective of multi-
signal fusion. On the one hand, signal enhancement can be
achieved through cross-validation and information fusion of
multi-channel PPG signals; on the other hand, the motion
artifact information contained in acceleration signals can be
deeply explored to gain a deeper understanding of the
interference caused by motion to PPG signals. By integrating
the synergistic effect of multiple signals, the quality of PPG signals

in dynamic environments will be further improved.
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