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Fault detection in induction motors is critical due to their extensive use in 
industrial applications. Among the various types of faults, stator faults are the 
most frequent and complex, making early detection particularly challenging. In 
this paper, a novel methodology for detecting inter-turn short circuits (ITSCs) 
through stator current analysis is presented. The methodology employs a 
sine–cosine filter to suppress the fundamental-frequency component, 
constructs a cumulative distribution function (CDF) to enhance ITSC-related 
features, and detects faults via a sparse representation of the CDF using the 
Orthogonal Matching Pursuit algorithm. To verify the methodology’s 
effectiveness, the current stator signals have been analyzed across five levels 
of fault and four mechanical load conditions. Finally, experimental results show 
that the proposed method achieves a fault-detection accuracy of 98%, requires a 
small training dataset, and enables the detection of up to 10 short-circuited turns.
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1 Introduction

Rotary electrical machines have been the most essential machines in diverse areas of the 
industry. Among the different types of rotary machines, Induction Motors (IMs) have had a 
strong presence in the industry due to their low cost and reliability. These machines have 
substantial worldwide applications, accounting for an estimated 60%–80% of electrical 
energy consumption in the industrial sector (Gonzalez-Abreu et al., 2022; de Souza et al., 
2022; Ghosh et al., 2020). As a crucial component of industrial processes, IMs must be 
continuously monitored to ensure its correct functionality, maximize its useful life, and 
prevent production process breakdowns.

Despite the promising results reported in the literature, faults in IMs and their detection 
are still a current and hot topic of research. In this regard, various authors have presented 
novel investigations in order to increase the viability and accuracy of fault detection and 
classification in line with the available technology and state-of-the-art methods. 
Additionally, research about the nature and locations of faults has enabled specific 
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methods thanks to the identification of intrinsic features in signals 
generated by the machine, such as mechanical vibrations or stator 
current signals (Abid et al., 2021; Garcia-Calva et al., 2022; Wang 
et al., 2022; Chen et al., 2024; Ziad et al., 2024). In particular, 
electrical faults represent 35%–40% of the failures in IMs (Gangsar 
and Tiwari, 2020), where stator windings failures are between 16% 
and 37% of failures that an IM can exhibit (Sheikh et al., 2022; 
Terron-Santiago et al., 2021; Niu et al., 2023), being the ITSC the 
most common failures in the stator windings.

One of the most employed techniques for fault detection in IMs 
is the Motor Current Signal Analysis (MCSA). This technique 
consists of acquiring the current signal from one or more phases 
of the IM stator and applying a specific method to extract the desired 
information for the detection and classification of faults. MCSA has 
demonstrated to be a practical approach for detecting electrical 
faults because it can be directly related to them (Gyftakis and 
Cardoso, 2021; Villalobos-Pina et al., 2024; Alloui et al., 2023). 
However, Gyftakis and Cardoso (Gyftakis and Cardoso, 2021) 
demonstrated the difficulty of detecting low-severity ITSC faults 
using traditional techniques. This issue is also exposed by 
Villalobos-Pina et al. (2024), who, through the implementation of 
conventional applications techniques based on MCSA, such as the 
Discrete Fourier Transform (DFT) and the Discrete Wavelet 
Transform (DWT) using Haar wavelet, found difficulties in 
reaching an accurate classification, leading to the integration of 
sophisticated techniques and methods such as a phasor analysis and 
a fuzzy logic system to handle this issue. Accordingly, other authors 
have explored the application of different signal processing methods 
in a non-conventional way, such as the well-known DWT, to extract 
features associated with the fault and then compute statistical 
parameters to discern among the possible faults (Sakhara et al., 
2017; Almounajjed et al., 2021; Prakash et al., 2020; Susanta Ray and 
Dey, 2020). For example, Sakhara et al. (2017) report detecting ITSC 
faults with DWT at D3–D5 and A7 decomposition levels using a 
Daubechies wavelet; however, they do not provide a classification 
stage to evaluate the reported method. Alternatively, Almounajjed 
et al. (2021) compare techniques based on Fast-Fourier Transform 
(FFT) and multiresolution techniques based on DWT along with 
statistical parameters for detecting ITSC fault, identifying the ITSC 
fault in the detailed coefficients at level 7 using Daubechies wavelet 
and, consequently, reaching a better accuracy (96.72%) with 100% of 
mechanical load. In addition, techniques based on the FFT obtain 
spectrograms to detect the fault components (Ghanbari et al., 2022; 
Gyftakis, 2022; Hussain et al., 2021; Sakhara et al., 2017). Such as the 
case of Ghanbari et al. (2022) where the spectrograms, harmonics 
elimination, the histogram, and statistical indexes computation, 
such as the kurtosis and skewness, among other used techniques, 
are complemented for the ITSC fault detection. Unfortunately, 
Ghanbari et al. do not offer a quantitative analysis of the 
proposed method to confirm its effectiveness. Hussain et al. 
(2021) introduce a synergy between the FFT, Short-Time Fourier 
Transform (STFT), Continuous Wavelet Transform (CWT), and a 
model of deep learning to detect the ITSC fault, reaching up to 
97.87% accuracy in simulated faulty signals. Other techniques, such 
as those applied by Sarkar et al. (2021) use the Principal Component 
Analysis (PCA) for detection of up to 1 Short-Circuited Turn (SCT) 
at no load and 30% of mechanical load condition, reaching 100% of 
accuracy. However, studies at higher mechanical load conditions are 

not included to prove the overall effectiveness. Mejia-Barron et al. 
(2019) applied brick-wall filters and Shannon Entropy (SE) to detect 
up to 10 SCTs with 98% of accuracy. Moreover, Bazan et al. (2019)
introduce a method based on mutual information estimation with a 
Multilayer Perceptron (MLP) neural network to detect up to 3% of 
SCTs with an accuracy of 95%. While the aforementioned works 
report high accuracy rates, some of their limitations include the 
reliance on mechanical information to achieve the reported 
performance.

Beyond the feature extraction, the detection and classification of 
ITSC faults need classification algorithms to ensure the correct 
performance. So, artificial intelligence algorithms have been 
widely implemented due to their high reliability and accuracy. 
Algorithms such as Artificial Neural Network (ANN) (Bazan 
et al., 2019; Rajamany et al., 2019) and Convolutional Neural 
Network (CNN) (Jiménez-Guarneros et al., 2022; Susanta Ray 
and Dey, 2020; Shih et al., 2022; Faraj et al., 2023; Ziad et al., 
2025) are the most used ones for this task. Unfortunately, these 
techniques typically require training with large datasets to identify 
patterns associated with specific faults. Additionally, such 
algorithms can be complex, computationally demanding, and 
often require specialized and costly hardware.

In addition, techniques based on histograms obtained from the 
stator current signals have proven to be effective in detecting faults 
in IMs, such as in detecting broken bars of rotors (Dias et al., 2020), 
bearing faults (Aviña-Corral et al., 2022; Tang et al., 2022), and other 
assessments in IMs (Dias et al., 2023; Glucina et al., 2023). One of the 
main advantages of this technique is its relative simplicity to 
implement, with minimal or no signal preprocessing required. 
However, despite the number of techniques applied today to the 
detection of ITSC faults in IMs, the development and application of 
different algorithms and methodologies are necessary, especially 
when the faults are incipient or when the mechanical load 
condition changes.

Addressing the issues previously mentioned, this paper presents 
a novel methodology based on the computation of the histogram 
from a CDF derived from a current stator signal where the 
fundamental frequency was removed to highlight the small 
components related to the ITSC faults; then, the CDF was 
decomposed into its sparse representation with the Orthogonal 
Matching Pursuit (OMP) algorithm to find similarities and 
differences across various fault classes. It is worth noting that the 
implementation of sparse representation has been applied in recent 
years to pattern recognition with excellent results (Morales-Perez 
et al., 2018; He et al., 2019; Qu et al., 2019), which outstanding 
dictionary-based performance motivates its utilization in machinery 
fault classification (Zhao et al., 2018). Although this approach was 
originally introduced in a different area (i.e., compressed sensing) 
(Rani et al., 2018; Zhang et al., 2015), its ability to reconstruct signals 
or images from specific and carefully chosen bases facilitates the 
identification of patterns (similarities or differences) to carry out the 
recognition task. In this regard, tools and algorithms from the 
literature, such as the OMP algorithm and the dictionary 
learning process developed by the K-Singular Value 
Decomposition (K-SVD) algorithm, are applied to store the 
features extracted from the CDFs obtained from current signals 
with the suppressed fundamental frequency, creating a novelty and 
well-structured methodology for ITSC fault detection, and 
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extending the integration of processing and classification methods 
in the ITSC faults detection area to elucidate the potential synergy of 
them. Through this approach, five levels of ITSC damage were 
detected under four different mechanical load conditions in a 2-hp 
IM, reaching accurate classifications without necessitating 
information about the load.

The innovations of the paper are listed as follows:

• New methodology for ITSC fault detection based on the CDF 
computation and the sparse representation with 
dictionary learning.

• Highlighting the ITSC faults into CDFs from the current 
signal with fundamental signal suppression using a sine/ 
cosine filter.

• Reducing the number of dictionary atoms to just 
35 significantly improves the OMP’s performance for 
classification and detection applications compared with 
traditional overcomplete dictionaries containing more than 
500 atoms, representing a reduction of over 90%.

• The training process can be developed using a small data set, 
achieving more than 98% accuracy.

• The developed training process generates dictionaries with 
sufficient information on damage levels and their behavior, 
ensuring that mechanical load does not affect the performance 
of the classification process.

2 Theoretical background

Electrical faults in IMs can be detected because the faults 
induce spurious components in the stator current spectra (Sheikh 
et al., 2022). In this context, MCSA can be effective for detection if 
the spurious signals into the current signal have sufficient amplitude. 
As with other faults, ITSC faults can distort the fundamental 
frequency component due to the presence of sines and cosines 
signals with a feature frequency (Niu et al., 2023), as 
presented below. 

fitsc � fo
a

p
1 − s( ) ± b􏼢 􏼣 (1)

where fo is the frequency of the fundamental sine signal from 
the power source, a � {1, 2, 3, . . . } is an integer number, p is the 
pole-pair of the motor, s is the slip, and b � {1, 3, 5, . . . } is an odd 
index. However, detecting these spurious frequencies is still a 
challenging task; in fact, the smaller the sine amplitude, the more 
difficult the detection. Therefore, MCSA technique usually requires 
a pre-processing technique in order to effectively extract the 
fault feature.

2.1 Fundamental signal suppression

The acquired motor current signal includes a fundamental 
component with a significant amplitude in contrast with any 
other harmonic component associated with the ones generated 
by the electrical faults from the stator, which mask the latter and 
complicate their detection. So, if the fundamental signal can be 

suppressed, the remaining signals can contain the spurious signals 
related to a stator fault with an amplitude that is easier to process.

To achieve this, it is necessary to generate a reference that 
effectively tracks the fundamental signal (both phase and 
amplitude). This can be reached by processing the target signal x
to estimate the fundamental component. Accordingly, two sub- 
signals, denoted as u and v, are generated based on the Discrete Sine 
and Cosine Transforms (Britanak et al., 2010; Morales-Perez et al., 
2022), with their coefficients computed using the equations 
given below. 

u n[ ] � 􏽘
W−1

w�0
x n + w[ ]

2
W
sin

2πk w + 1( )

M
􏼢 􏼣 (2a)

v n[ ] � 􏽘

W−1

w�0
x n + w[ ]

2
W
cos

2πk w + 1( )

M
􏼢 􏼣 (2b)

where n � {0, 1, 2, . . . , N− 1} is the n− th sample of a signal x of 
length N, W is the width of a window with a cycle of sine/cosine 
reference of k− th frequency, and M is the number of samples of the 
signal of interest in a second. Thus, W can be obtained as 
W � ⌈M/k⌉; note that k ≡ f (fundamental frequency) and 
M ≡ fs (sampling frequency). The arbitrary selection of the 
parameters defined above can result in the inefficiency of the 
filtering due to its direct relation to the suppression frequency 
and sampling rate.

This way, the amplitude of the fundamental signal can be 
obtained from the coefficients calculated in Equations 2a, b, 
applying Equation 3. 

A n[ ] �

�����������

u n[ ]2 + v n[ ]2
􏽱

(3)

Likewise, coefficients of an effective reference signal y can be 
generated according to Equation 4: 

y n[ ] � sign v n[ ]( )cos ϕ n[ ]( 􏼁 (4)

where y[n] is the n-th coefficient of y, ϕ[n] � tan−1(u[n]/v[n]). 
Note that the resulting value of y[n] is between −1 and +1. This 
approach can suppress the fundamental signal by using: 

r n[ ] � x n[ ]−A n[ ]y n[ ] (5)

where r[n] is the n-th coefficient of the remaining signal r with 
the fundamental suppressed.

An example of the fundamental signal suppression process is 
depicted in Figure 1. Note that the approach’s effectiveness in 
correctly extracting the fundamental component must use a 
cycle of the fundamental signal; in this example, the 
suppression is adequate from 100 samples (see Figure 1a). A 
remaining signal can be obtained from Equation 5 (see the 
yellow plot in Figure 1a) that only contains information on 
the sidebands of the fundamental signal. This can be verified 
when obtaining the Power Spectral Density (PDS) (see 
Figure 1b), where the frequency components of the target 
signal x[n] (blue plot) and the remaining signal r[n] (red 
plot) are compared. As shown in Figure 1b, the filter can 
effectively suppress the primary frequency (fundamental sine 
signal from the power source) and does not affect other 
components significantly. In Figure 1b, the component fa is 
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the frequency of the ITSC fault sited to the sidebands of fo in 
concordance with Equation 1, demonstrating the ITSC 
components preservation after of the filtering.

2.2 Sparse representation

Sparse representation involves decomposing a signal x into 
fundamental bases, represented as non-zeros coefficients α[m]
(Rani et al., 2018; Zhang et al., 2015). This representation can be 
denoted by a linear combination as listed below: 

x n[ ] � 􏽘

M

m�1
D n,m[ ]α m[ ] + rs n[ ] (6)

where D ∈ RN×M is a dictionary with M fundamental signals or 
bases bm, α[m] is the m-th coefficient of a sparse vector α ∈ R1×M, 
and rs[n] is the n-th sample of a residual vector rs ∈ RN×1. It is 
import to note that N≪M.

The representation Equation 6 can be considered sparse only if 
condition Equation 7 is met. 

min
α
‖x−Dα‖22 s.t. ‖α‖0 ≤K≪N (7)

where ‖α‖0 is the ℓ0 norm of the sparse vector α, and K is the 
sparsity. In other words, condition Equation 7 denotes that the 
sparse representation is a version of x with a few non-zeros 
coefficients due to α̃∀ αm ≠ 0 being a compressed version of x. 
On the other hand, as Equation 7 relies on an optimization 
problem, the proposing and application of diverse algorithms 
to obtain it is possible. Some algorithms for this purpose can be 
found in the literature (Zhang et al., 2015). This paper 
applies the OMP algorithm due to its fast convergence and 
relatively low complexity. Essentially, this algorithm 
determines the sparse representation of a signal by 

computing and selecting the best orthogonal projections 
between the signal and the given dictionary in an iterative 
manner. A pseudo-code of this is shown in Algorithm 1
(Morales-Perez et al., 2022).

Require: D and x.
Ensure: r0 � x, D0 � {}, U0 � {}, and j � 0
while (stop criterion is not met) do
i � argmax

m�{1,...,M}
|〈rj,dm〉|

Uj � [Uj−1 ∪ i]
D̃j � [D̃j−1 | di]
α̃j � (D̃jxT)−1

rj � x− D̃jα̃j
j++

end while
return ̃αj, Uj, and rj

Algorithm 1. Orthogonal Matching Pursuit. 

Furthermore, the fidelity of the sparse representation does 
not only rely on the algorithm to obtain it, the determination of 
the dictionaries is also a crucial task, being necessary the study 
the types of signal to be represented. This challenge has led to 
development of methods to construct them effectively, e.g., the 
construction of dictionaries from mathematical transforms is 
recommended if the signals are periodic and well-determined in 
shape, phase, and amplitude (Morales-Perez et al., 2022). A 
Different process is recommended for signals without a 
defined shape, containing very specific features, or when the 
representation from space transformation is not feasible 
(Gangeh et al., 2015). The latter scenario can be addressed by 
applying algorithms like the K-SVD introduced by Aharon et al. 
(2006), which is utilized in this paper due to its effectiveness in 
generating dictionary atoms.

FIGURE 1 
Example of the suppression process of the fundamental signal frequency component from a stator current signal: (a) time domain and (b) 
frequency domain.
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3 Methodology

The feature extraction of a specific failure into the stator current 
signal can be a challenge. Therefore, this paper proposes a 
methodology to detect ITSC faults by processing the stator 
current using cumulative histograms and sparse representation.

The first stage consists of removing the principal component of 
the stator current signal. This stage is developed for extracting and 
highlighting the elements related to the fault for detection. This 
process is conducted as.

1. Obtain u[n] and v[n], applying Equations 2a, b respectively, 
selecting the length of a window W for a cycle of the 
fundamental signal to be suppressed.

2. Then, compute the amplitude of the fundamental signal 
using Equation 3.

3. Next, generate a reference signal by applying Equation 4.
4. Finally, suppress the fundamental signal using the reference 

generated and the previously estimated, as specified in 
Equation 5. The remaining signal r[n] will used for the 
next stage.

The obtaining of the cumulative histogram is the 
second stage. Cumulative histograms are histograms 
obtained from the CDF of a data set 
X � {x[0], x[1], . . . , x[n]}∀x[n] ∈ R (Leon-Garcia, 2017). In this 
way, the CDF is defined in Equation 8. 

hc x( ) � P X≤x( ) (8)

where P(X≤x) is a function that fits X≤x. Following the 
above, the CDF of r[n] is obtained to get a pattern that includes only 
the information of the possible faults (see Figure 2), with no regard 
for the phase shift of the acquired signal.

From Figure 2, the differences from CDFs with 0, 10, 20, 30, and 
40 short circuit turns in the stator can be observed. The distortion of 

these CDFs is caused by the fault features, allowing 
distinction among them.

The following stages consist of developing the classification 
process. First and foremost, a training process to generate the 
necessary information for fault detection based on sparse 
representation must be developed. Then, the classification process 
can be executed to identify the possible fault of the stator motor. 
These processes are described in detail in the following sub-section.

3.1 Training process

This process consists of obtaining the necessary dictionaries for 
classifying the faults employing a training algorithm, which is, in 
other words, the well-named dictionary learning process. The 
K-SVD algorithm is used for this purpose, employing a training 
set of signals (or, in this case, histograms) that share the same 
features. In line with the standard training stage, the proposed 
approach employs K-SVD exclusively for dictionary learning. 
Once the dictionary attains the desired quality, the algorithm is 
no longer required. In this sense, the algorithm will find the training 
set’s features and adjust the dictionary’s atoms to represent each 
reference in an effective sparse representation. The process is 
iterative, and the algorithm’s convergence depends on the 
complexity of the features extracted from the training set. 
Therefore, a dictionary must be generated for each fault so the 
OMP algorithm can distinguish them. The pseudocode described in 
Algorithm 2 summarizes the applied K-SVD algorithm.

Require: D0, X, K, and M
1: for k � 1 to K do
2: Use the OMP algorithm to obtain α
3: for j � 1 to M do
4: ω � {i ∈ 1,2, . . . ,M} s.t. αk[j,i] ≠ 0
5: αω[j,ω] � 0
6: R � Xω −Dkαω

7: UΔV � SVD(R)
8: dj ∈ Dk � u1
9: αω[j,ω] � v1Δ(1,1)
10: end for
11: end for
12: return Dk

Algorithm 2. K-Singular Value Decomposition. 

It is important to note that Algorithm 2 requires the K and M
values to function, where K is the number of iterations to adjust the 
dictionary and the M is the number of atoms of the dictionary. D0

and X are the initial dictionary and the training set, respectively. 
Finally, the algorithm returns the trained dictionary Dk, used in the 
next and last stages.

3.2 Classification process

Once the dictionaries have been trained, the classification 
process can be carried out. The process involves the introduction 
of the CDF obtained in the above stages to the OMP algorithm (see 

FIGURE 2 
Example of CDFs obtained from a remaining signal r with an ITSC 
fault. 0, 10, 20, 30, and 40 are the number of short-circuited turns in 
the stator.
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Algorithm 1). For this purpose, the stop criterion selected for the 
OMP algorithm is the maximum reconstruction error Equation 9. In 
this manner, the sparse representation is expected to be better with 
only the dictionary that contains the features that match the features 
of the CDF, reducing the reconstruction error with this specific 
dictionary. Accordingly, the reconstruction error metric is selected 
because it aligns with the underlying least-squares formulation of 
sparse representation, enabling the evaluation of the energy 
contributed by the selected atoms rather than merely assessing 
the signal shape. (Morales-Perez et al., 2018; Zhao et al., 2018). 

ε≤ ϵ s.t. ε �
‖r‖2
‖x‖2

(9)

where ϵ is the maximum permissible reconstruction error, ε is 
the actual reconstruction error reached by the OMP, and ‖•‖2 is the 
ℓ2 norm. It is important to note that x← hc is in the OMP 
algorithm. In this way, each sparse representation obtained with 
each dictionary Di returns a reconstruction error εi.

So, the classification is reached by selecting the minimum error 
εi, indicating the fault features contained in the CDF detected in a 
dictionary by the OMP algorithm. 

f � min εi( )
i� 1,...,P{ }

(10)

where f is the index of the featured fault, and P is the number of 
faults to detect. Both processes, training and classification, are 
summarized in the general block diagram depicted in Figure 3.

4 Experimental setup

The current signals used to develop and validate the proposal 
were acquired by using the experimental setup illustrated in 
Figure 4. This test bench was implemented to replicate well- 

established configurations reported in the literature and to 
comply with the recommended, widely adopted test conditions. 
Table 1 shows the information and the main characteristics of the 
principal equipment and the devices used in the experimental 
setup. In this regard, the induction motor was modified to 
simulate the ITSC with the following severities: 0, 10, 20, 30, and 
40 SCTs in a single-phase winding, where the total of turns is 
141 turns. The mechanical loads were induced with the 
dynamometer to obtain the following load levels: 0%, 33.3%, 
66.6%, and 100% of its nominal mechanical load.

The current signals were acquired by the current clamp 
connected to the data acquisition system board, configured with 
a sampling frequency of 6 kHz. A data set was created with 20 tests 
per severity and load condition with a duration of 3.5 s (obtaining 
21,000 samples) only in order to minimize the physical damage that 
can be provoked to the stator with the simulated faults. Hence, a 
total of 400 signals were acquired in the IM steady states conditions 
and stored in the database proprietary of the laboratory of Sistemas 

FIGURE 3 
General block diagram of the proposed methodology.

FIGURE 4 
Experimental setup.
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Dinámicos, Facultad de Ingeniería, Universidad Autónoma de 
Querétaro (UAQ), Campus San Juan del Río, which can be 
accessed by formal request and upon signing an agreement for 
academic research purposes.

5 Experimental results

Once all current signals were acquired in the steady state of the 
IM, each acquired signal was segmented into seven parts, with each 
part containing 0.5 s of information. According to the preliminary 
testing, 0.5 s is enough time in order to conserve the features related 
to ITSC in the current signal and reduce the amount of data for 
analysis and, consequently, the computational time consumption. In 
this way, the created data set for this paper is 2,800 segments of the 
current signal in a steady state of IM for all conditions. Following the 
proposed methodology, the suppression of the fundamental signal is 
firstly conducted using the procedure described above to highlight 
the presence of the components related to the ITSC faults; otherwise, 
the fundamental signal, being of relatively larger amplitude, tends to 
conceal them and make their detection more difficult. Then, the 
CDF is computed to obtain a defined pattern regardless of the phase 
of the spurious component in the preprocessed signal. So, to detect 
these patterns that may show slight changes between them, the 
dictionary training process has to be carried out.

To avoid bias, this process was validated using a 5-fold cross- 
validation as recommended in the literature (Marcot and Hanea, 
2021; Morales-Perez et al., 2018). This validation consists of 
randomly selecting the signals used for the training process; the 
remaining is used for the validation process. The latter was repeated 
five times. The CDFs were obtained as explained in the methodology 
section; each signal segment in the steady state of 0.5 s length was 
normalized to an amplitude of ± 1 to ensure all signals are within the 
same amplitude range. Then, they were converted into CDFs with 
200 classes (steps of 0.01), enough for the development of the 
classification, accordingly with the preliminary tests. For each 
condition, 140 CDFs were obtained, with 40 randomly selected 
to train the dictionaries and 100 for testing. The dictionaries for 
training were created with M � 35 atoms: the first atom as ℓ2

normalized CDF from a sine signal of 2 Hz and the other 
34 atoms as a constant of 1/

���
200
√

. This way, the K-SVD 
algorithm starts from a specific base and adjusts the atoms from 
a principal feature (first atom). Thereby, the remaining features are 

saved into the other atoms (initially constants), ensuring the 
extraction of significant features according to the fault severities 
and avoiding the over-training of atoms.

The selection of the number of atoms was based on the results of 
the tests resumed in the plot depicted in Figure 5, which indicated that 
the dictionaries with more than 35 atoms (M> 35) did not achieve 
significant improvements and increase the computational time- 
consumption. Even though the literature precise that dictionaries 
trained with K � 35 reach an acceptable performance for specific 
applications (Morales-Perez et al., 2018), the number of iterations for 
the training process was configured to K � {50, 60, 70, 80, 90, 100} to 
research the effectiveness of the trained dictionaries.

Also, the OMP was configured to reach a maximum 
reconstruction error of ϵ � 0.001 due to the minor differences in 
the CDFs for closely faults in terms of severity. So, higher values of ϵ
can decrease the method’s effectiveness. An example of the 
reconstruction from the sparse representation obtained through 
the OMP algorithm is depicted in Figure 6. This example 
presents a CDF reconstructed with different dictionaries (as 
proposed in this work), trained with 10, 20, 30, and 40 SCTs. It 
may be noticed that the reconstruction (red plot) has discrepancies 
compared to the original CDF (blue plot), and these discrepancies 
increase if the employed dictionary does not match the group of the 

TABLE 1 Main equipment and devices used in the experimental setup.

Equipment/Device Brand Model Main characteristics

(1) Induction Motor WEG 218ET3EM145TW Three-phase, 2 hp, 220 V, 60 Hz

(2) ITSC conditions – – 0, 10, 20, 30, and 40 SCT.

(3) Dynamometer Lab-Volt 8,540 Four-quadrant, three-phase, 12 A, speed range 0–3,600 rpm, nominal torque 0–12.18 Nm

(4) Starter Siemens 3RT2018-1AN61 Three-phase, 200–220 V @ 60 Hz, AC-3e/AC-3, 16 A, 7.5 kW/400 V

(5) Current clamps Fluke i200s CAT III 600 V, dual range 20/200 A, output 10/100 mV/A

(6) DAQ National Instruments USB-6211 8 differential or 16 single-ended inputs, 16-bit resolution, 250 kS/s

(7) PC Dell G15 16 GB of RAM, 512 GB SSD NVMe, Intel Core i5 @ 2.6 GHz

FIGURE 5 
Average accuracies reached by different values of M.
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reconstructed CDF (see the plot in Figure 6d). This occurs 
because the dictionary does not have enough features in its 
atoms to offer an effective sparse representation and 
reconstruction; consequently, the OMP algorithm uses all the 
available dictionary information to represent the input CDF, 
resulting in a CDF with pronounced differences over the 
original. This is not the case when the dictionary has enough 
features in its atoms. In this way, it is notable that the fault 
contained in the reconstructed CDF is 20 SCTs, which best fits 
with the original CDF (see the plot in Figure 6b). Reconstruction 
errors εi obtained from these tests were 0.0064, 0.0010, 0.0088, and 
0.0168, concluding that the best dictionary for this reconstruction is 
the one trained with 20 SCT (ε � 0.001), indicating a correct 
classification from Equation 10. Table 2 presents the overall 
results of the test development with different K parameters for 
the training process.

The accuracy per the condition of the tests was calculated using 
Equation 11. 

ACC � mean Ai( ) ± std Ai( ) s.t. Ai �
NTP

Nt

× 100% (11)

where Ai is the i-th accuracy of each fold cross-validation, NTP is 
the number of true positives, and Nt is the number of total samples 
of the specific condition. The global accuracies per K is: 
96.63% ± 2.218, 97.77% ± 1.92475, 97.8% ± 1.9833, 
97.96% ± 2.0063, 97.6% ± 2.0106, and 98.24% ± 1.8479; for K50, 
K60, K70, K80, K90, and K100, respectively.

As shown in Table 2, the best performance is reached with a 
trained dictionary with 60 iterations (K60). Parameters exceeding 
60 do not show a significant increase in the global accuracy of the 
test; indeed, a number greater than 60 iterations for this application 
results merely in minor adjustments to the atoms, implying more 
time consumption with very small changes in the behavior and 
effectiveness. Therefore, 60 iterations is selected in this work, which 
is enough to reach a practical accuracy (~ 98%) and distinguish the 
severity of the fault regardless of mechanical load. In addition, it is 
worth noting that the threshold of maximum reconstruction error 
ϵ � 0.001 underscores the methodology’s capacity to discern 
between faults, even those with minimal differences, a 
noteworthy challenge in this field.

Furthermore, additional tests were developed to verify the 
effectiveness of the methodology’s proposed workflow. These 

FIGURE 6 
Example of reconstruction from the sparse representation obtained with the OMP algorithm and the trained dictionaries: (a) 10 SCT, (b) 20 SCT, (c) 
30 SCT, and (d) 40 SCT.
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tests, A, B, and C, involve an ablation analysis and evaluation of the 
results. Test A consists of developing the methodology presented in 
this work; Test B is a similar development to the proposed method, 
but the dictionary initialization is random; and finally, Test C 
generates dictionaries in the time domain with the dictionary 
randomly initialized. Examples of confusion matrices are 
depicted in Figure 7; note the mistakes increase from the 
classifier between test A and test B, especially at no mechanical 
load and low damage levels, and the lousy classification in test C. 
Global accuracies are shown in Table 3. As expected, the best results 
are with the CDFs, highlighting the improvement of the accuracy of 
the dictionaries that are initialized as previously exposed in contrast 
with the random initialization. Otherwise, the accuracies reached 
with dictionaries trained in the time domain are very low due to the 
phase shift during the acquired stage, requiring the increasing of the 
numbers of atoms (M) to manage this issue, reaching the inequality 
M≫N and increase the time-consumption noticeably during the 
training process.

It should be pointed out that the required length of the signal to 
reach the fault detection is 0.5 s, which decreases the number of 
samples (to 3,000 samples) that need to be processed. This is in 
contrast to other methodologies that require 1 s or longer to reach 
comparable performance (Cardenas-Cornejo et al., 2023; Mejia- 

Barron et al., 2019; Chen et al., 2023; Jiménez-Guarneros 
et al., 2022).

According to the theory study of the technique’s sparse 
representation and classification purpose, the classification is 
possible as the atoms of the applied dictionaries have enough 
information; that is, the sparse representation is obtained with 
high-quality dictionaries. To evaluate the reconstruction 
performance and quality of the trained dictionaries, the 
logarithm of the Root Mean Square Error (RMSE) was computed 
(Sadeghi et al., 2013). This measure is defined in Equation 12: 

Elog � log10
‖X−Dα‖F

nL
􏼠 􏼡 (12)

where X is the set of used signals (CDFs in this paper), D is the 
testing dictionary, α is the sparse representation of the set of signals 
X for the D dictionary, n is the number of samples in each signal, L is 
the number of signals into the set X, and ‖•‖F is the Forbenius norm.

Measuring results are depicted in Figure 8. Note the highlighted 
differences between the results in dictionaries trained current signal 
in the time domain (Figure 8a) and the trained with proposed CDFs 
(Figure 8b). The quality of the dictionaries increases as the Elog is 
more negative; that is to say, the small squares in the plot acquire a 
dark blue color. In this regard, a remarked diagonal appears in the 

TABLE 2 Accuracy results with different training iterations parameter (K).

Load Severity (SCT) Accuracy [ACC (%)]

K50 K60 K70 K80 K90 K100

0.00% 0 89.200 ± 7.085 93.000 ± 3.391 89.000 ± 8.216 93.400 ± 5.459 89.600 ± 8.503 88.800 ± 11.563

10 90.400 ± 6.025 95.400 ± 2.966 97.000 ± 2.449 94.400 ± 5.983 96.000 ± 2.121 97.400 ± 3.130

20 92.800 ± 3.962 95.000 ± 4.000 95.400 ± 1.517 94.600 ± 7.893 97.400 ± 1.949 97.400 ± 2.881

30 97.200 ± 2.168 98.400 ± 2.074 97.800 ± 2.280 98.000 ± 1.871 93.000 ± 5.788 99.000 ± 0.707

40 96.000 ± 4.528 95.800 ± 4.919 97.600 ± 3.362 98.800 ± 1.304 97.400 ± 3.782 99.200 ± 0.837

33.33% 0 86.000 ± 4.950 94.800 ± 2.387 96.400 ± 2.608 96.000 ± 1.000 97.600 ± 2.074 95.400 ± 3.647

10 95.400 ± 0.894 96.600 ± 1.817 96.800 ± 3.564 97.000 ± 2.550 94.600 ± 3.975 98.800 ± 1.304

20 99.400 ± 1.342 97.800 ± 2.950 99.800 ± 0.447 99.000 ± 1.732 99.800 ± 0.447 99.800 ± 0.447

30 99.400 ± 0.894 99.600 ± 0.548 99.000 ± 1.414 100.000 ± 0.000 99.400 ± 0.548 97.800 ± 4.382

40 98.600 ± 1.673 99.200 ± 1.304 99.800 ± 0.447 99.800 ± 0.447 99.200 ± 1.789 99.600 ± 0.548

66.66% 0 97.400 ± 2.191 98.200 ± 2.683 94.200 ± 5.119 97.400 ± 1.949 97.400 ± 1.949 97.600 ± 3.286

10 99.000 ± 0.707 99.200 ± 0.837 99.200 ± 0.837 97.800 ± 2.950 99.000 ± 0.707 99.200 ± 0.447

20 97.000 ± 2.550 98.600 ± 1.140 99.600 ± 0.548 97.600 ± 3.362 97.000 ± 1.581 98.400 ± 0.894

30 99.200 ± 0.447 99.200 ± 0.837 99.400 ± 0.548 99.000 ± 0.000 98.800 ± 1.095 99.200 ± 0.837

40 98.000 ± 1.871 98.400 ± 2.510 99.000 ± 0.000 98.400 ± 1.342 98.200 ± 2.387 99.000 ± 0.707

100.00% 0 98.800 ± 0.837 97.600 ± 1.517 96.800 ± 4.970 99.200 ± 0.837 97.600 ± 1.517 98.400 ± 0.894

10 99.400 ± 1.342 99.800 ± 0.447 99.400 ± 0.894 100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000

20 100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000 99.800 ± 0.447 100.000 ± 0.000 100.000 ± 0.000

30 100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000

40 99.400 ± 0.894 98.800 ± 2.168 99.800 ± 0.447 99.000 ± 1.000 100.000 ± 0.000 99.800 ± 0.447
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graph of the measuring of the dictionaries trained with the proposed 
CDFs, indicating the dictionary that belongs to the same class of the 

CDF (or signal) has a high probability of detecting it (or 
reconstructed it), giving the high accuracy rate above 
demonstrated. This is not the case with the dictionaries trained 
with current signals in the time domain, where the diagonal is 
diffused. These results demonstrate the superiority and the high 
performance of the dictionaries trained with the proposed CDFs, 
with only 35 atoms in contrast with the suggested in the literature 
(Rani et al., 2018; Zhang et al., 2015) (N≪M), at least in this type of 
application.

6 Discussion

Table 4 provides a comparative analysis of the proposed 
methodology against other works reported in the literature. As 
can be observed, the proposed method shows accuracy relative to 
other works (Bazan et al., 2019; Cardenas-Cornejo et al., 2023; Chen 
et al., 2023) enabling the detection fault of faults as minimal as 
10 SCTs, which constitute 7% of the total turns in the stator winding. 
Although other papers report the identification of more incipient 
faults (Bazan et al., 2019; Cardenas-Cornejo et al., 2023), their 
accuracies are around 83%, which is more than 10% lower than 
the accuracy reported in this work. Even though there are works 
with comparable accuracy rates, e.g., (Mejia-Barron et al., 2019), 
they are susceptible to mechanical load, a challenge in most work in 
this field. In contrast, this work can distinguish the faults regardless 
of the mechanical load, unlike (Bazan et al., 2019; Cardenas-Cornejo 
et al., 2023; Chen et al., 2023), which requires testing under specific 
load conditions and necessitates knowledge of the load for accurate 
detection. On the contrary, the proposed method only needs the 
CDF input, which in turn identifies the fault level regardless of the 
applied mechanical load. Another advantage of the proposed 
methodology is the use of few atoms in the dictionaries, in 
contrast with traditional sparse representation methodologies that 
need more atoms than their number of samples (Morales-Perez 
et al., 2018), reducing the time consumption and increasing the 
performance efficiency.

Furthermore, ANNs and CNNs have demonstrated exceptional 
performances in classification applications. However, these 
architectures usually need a considerable data set size to reach 
their characteristic classification rates and the application of 
specific hardware to develop their training stages. Table 5 shows 
the classification test results with some artificial intelligence 

FIGURE 7 
Example confusion matrices from ablation analysis: (a) Test A; (b) 
Test B; and (c) Test C. [Labels 1, 2, 3, 4, and 5 correspond to 0, 10, 20, 
30, and 40 SCTs at 0% of mechanical load, respectively; 
6–10 correspond to 0–40 at 33.33%; labels 11–15 correspond to 
0–40 at 66.66%; and 16–20 correspond to 16–20 at 100%].

TABLE 3 Global average results of the additional tests.

K (M = 35) Accuracy [ACC (%)]

Test A Test B Test C

50 96.05 93.00 4.60

60 98.10 94.40 3.70

70 98.65 94.80 5.00

80 98.10 94.45 4.40

90 98.20 94.60 5.95

100 98.20 95.40 3.55
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algorithms under the same training condition of the proposed 
methodology.

MLP implemented architecture is a small ANN and 
configured to be compatible with the input CDFs and the out 
classes, for which an accuracy of 90.33% is reached after 
3,000 epochs. The small CNN 1D architecture was taken from 
(Jiménez-Guarneros et al., 2022) and modified to preserve 
compatibility with the proposed CDF, reaching 75.15% of 

accuracy after the 3,000 epochs. Finally, implementing a 
conventional ResNet 1D reaches 95.94% after the 120 epochs. In 
all cases, the training set contained 800 CDFs (40 per class), and the 
testing set had 2000 CDFs, the same condition under which the 
proposed methodology is presented. However, the proposed 
classification process performed better, reaching 98.24% with 
100 iterations and surpassing the ResNet 1D accuracy at 
50 iterations (96.63%).

FIGURE 8 
Graphs of measuring the quality of the dictionary (Elog): (a) dictionaries trained with current signals in the time-domain; (b) dictionaries trained with 
CDFs with fundamental signal suppressed.

TABLE 4 Comparison between the proposed methodology and other methods for ITSC fault detection in the literature.

Work Techniques Type of signal 
(domain)

Accuracy Mechanical 
load

Severities 
(SCT)

Load info

Mejia-Barron et al. 
(2019)

1. Brick-wall band-pass FIR filters for 
features extraction. 

2. Shannon Entropy index for fault 
indicator. 

3. Fuzzy Logic system as a classifier

Current (time) 98% 0, 33.33, 66.66, 
and 100%

0, 10, 20, 30, 
and 40

Necessary

Bazan et al. (2019) 1. Delayed Mutual Information algorithm 
as feature extraction. 

2. Multilayer Perceptron ANN as a 
classifier

Current (time) 83% (0.9:0.4:9.3) Nm 1, 3, 5, and 10% Necessary

Cardenas-Cornejo et al. 
(2023)

1. Quaternions and statistical indexes as 
feature extraction. 

2. Decision tree models as a classifier

Current (time) 83.33% No load 0, 6, 12, 18, and 24 Necessary

Chen et al. (2023) 1. Sliding-Average Filter as a 
pre-processing stage. 

2. Envelope extraction and Gaussian 
Window Weighting as feature 
extraction. 

3. SVM as a classifier

Current (time) 96% 0, 0.52, and 1.04 Nm 0, 2, and 6 Necessary

This work 1. Sine-Cosine filter to suppress the 
fundamental signal. 

2. CDF histograms as a fault indicator. 
3. OMP algorithm as a classifier

Current (time) 98% 0, 33.33, 66.66, 
and 100%

0, 10, 20, 30, 
and 40

Unnecessary
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In addition, advantages such as the intrinsic noise tolerant feature of 
the OMP algorithm (Morales-Perez et al., 2022; Wang, 2015; Wu et al., 
2013) and the hardware-based architectures available in the literature 
(Ge et al., 2019; Roy et al., 2019; Li et al., 2021; Roy et al., 2021) make this 
approach suitable for real-time applications in industrial environments.

7 Conclusion

A novel methodology based on obtaining the CDF of the current 
stator signal with fundamental signal suppression and sparse 
representation was presented in this work for ITSC fault detection. 
By suppressing the fundamental signal, the components of the ITSC 
faults are highlighted, allowing a more effective detection. This is 
evidenced by the 98% classification rate achieved. The effectiveness 
of the proposed method is due to the OMP algorithm, which facilitates 
an efficient reconstruction with the sparse reconstruction obtained from 
dictionaries trained with specific faults, resulting in a lower 
reconstruction error for dictionaries that contain the features of the 
same fault. Additionally, the algorithm demonstrates the capacity to 
discern between all the treated faults (0, 10, 20, 30, and 40 SCTs), even if 
these have slight differences. This is supported by the maximum 
reconstruction error ϵ � 0.001 used and recommended in this work. 
Another noteworthy aspect is that the training process for the 
dictionaries with the K-SVD algorithm does not require more than 
K � 60 iterations. Finally, an outstanding feature of the proposed 
method is that faults are classified without regard to the mechanical 
load (0, 33.33, 66.66, and 100%); that is, the classifier does not need 
additional information about the current mechanical load to operate 
effectively. In addition, dictionary dimension reduction, from an 
overcomplete dictionary (usually, more than M � 500 atoms 
reported in the literature) to M � 35, represents a considerable 
reduction of workload. This feature enables the proposal to be used 
in various industrial applications. According to the testing results, the 
extension of this research to incipient faults (5 SCTs) will be explored in 
future work, including the integration of deep learning models, 
extension to another motor type, other fault types, such as bearing 
faults, and multiple faults. Also, implementing this method in embedded 
systems for real-time applications is considered a viable possibility. In 
addition, despite the favorable results, future studies will be considered 
to enhance its robustness and resolve possible limitations of time- 
varying regimens, other percentages of mechanical load, dynamic 
mechanical profiles, and perturbations in the power line network, 
which could introduce new behaviors in CDFs.
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