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Fault detection in induction motors is critical due to their extensive use in
industrial applications. Among the various types of faults, stator faults are the
most frequent and complex, making early detection particularly challenging. In
this paper, a novel methodology for detecting inter-turn short circuits (ITSCs)
through stator current analysis is presented. The methodology employs a
sine—cosine filter to suppress the fundamental-frequency component,
constructs a cumulative distribution function (CDF) to enhance ITSC-related
features, and detects faults via a sparse representation of the CDF using the
Orthogonal Matching Pursuit algorithm. To verify the methodology's
effectiveness, the current stator signals have been analyzed across five levels
of fault and four mechanical load conditions. Finally, experimental results show
that the proposed method achieves a fault-detection accuracy of 98%, requires a
small training dataset, and enables the detection of up to 10 short-circuited turns.

KEYWORDS

cumulative distribution function, fault detection, induction motor, inter-turns short-
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1 Introduction

Rotary electrical machines have been the most essential machines in diverse areas of the
industry. Among the different types of rotary machines, Induction Motors (IMs) have had a
strong presence in the industry due to their low cost and reliability. These machines have
substantial worldwide applications, accounting for an estimated 60%-80% of electrical
energy consumption in the industrial sector (Gonzalez-Abreu et al., 2022; de Souza et al.,
2022; Ghosh et al.,, 2020). As a crucial component of industrial processes, IMs must be
continuously monitored to ensure its correct functionality, maximize its useful life, and
prevent production process breakdowns.

Despite the promising results reported in the literature, faults in IMs and their detection
are still a current and hot topic of research. In this regard, various authors have presented
novel investigations in order to increase the viability and accuracy of fault detection and
classification in line with the available technology and state-of-the-art methods.
Additionally, research about the nature and locations of faults has enabled specific
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methods thanks to the identification of intrinsic features in signals
generated by the machine, such as mechanical vibrations or stator
current signals (Abid et al., 2021; Garcia-Calva et al., 2022; Wang
et al., 2022; Chen et al, 2024; Ziad et al, 2024). In particular,
electrical faults represent 35%-40% of the failures in IMs (Gangsar
and Tiwari, 2020), where stator windings failures are between 16%
and 37% of failures that an IM can exhibit (Sheikh et al., 2022;
Terron-Santiago et al., 2021; Niu et al.,, 2023), being the ITSC the
most common failures in the stator windings.

One of the most employed techniques for fault detection in IMs
is the Motor Current Signal Analysis (MCSA). This technique
consists of acquiring the current signal from one or more phases
of the IM stator and applying a specific method to extract the desired
information for the detection and classification of faults. MCSA has
demonstrated to be a practical approach for detecting electrical
faults because it can be directly related to them (Gyftakis and
Cardoso, 2021; Villalobos-Pina et al.,, 2024; Alloui et al., 2023).
However, Gyftakis and Cardoso (Gyftakis and Cardoso, 2021)
demonstrated the difficulty of detecting low-severity ITSC faults
using traditional techniques. This issue is also exposed by
Villalobos-Pina et al. (2024), who, through the implementation of
conventional applications techniques based on MCSA, such as the
Discrete Fourier Transform (DFT) and the Discrete Wavelet
Transform (DWT) using Haar wavelet, found difficulties in
reaching an accurate classification, leading to the integration of
sophisticated techniques and methods such as a phasor analysis and
a fuzzy logic system to handle this issue. Accordingly, other authors
have explored the application of different signal processing methods
in a non-conventional way, such as the well-known DWT, to extract
features associated with the fault and then compute statistical
parameters to discern among the possible faults (Sakhara et al,
2017; Almounajjed et al., 2021; Prakash et al., 2020; Susanta Ray and
Dey, 2020). For example, Sakhara et al. (2017) report detecting ITSC
faults with DWT at D3-D5 and A7 decomposition levels using a
Daubechies wavelet; however, they do not provide a classification
stage to evaluate the reported method. Alternatively, Almounajjed
et al. (2021) compare techniques based on Fast-Fourier Transform
(FFT) and multiresolution techniques based on DWT along with
statistical parameters for detecting ITSC fault, identifying the ITSC
fault in the detailed coefficients at level 7 using Daubechies wavelet
and, consequently, reaching a better accuracy (96.72%) with 100% of
mechanical load. In addition, techniques based on the FFT obtain
spectrograms to detect the fault components (Ghanbari et al., 2022;
Gyftakis, 2022; Hussain et al., 2021; Sakhara et al., 2017). Such as the
case of Ghanbari et al. (2022) where the spectrograms, harmonics
elimination, the histogram, and statistical indexes computation,
such as the kurtosis and skewness, among other used techniques,
are complemented for the ITSC fault detection. Unfortunately,
Ghanbari et al. do not offer a quantitative analysis of the
proposed method to confirm its effectiveness. Hussain et al.
(2021) introduce a synergy between the FFT, Short-Time Fourier
Transform (STFT), Continuous Wavelet Transform (CWT), and a
model of deep learning to detect the ITSC fault, reaching up to
97.87% accuracy in simulated faulty signals. Other techniques, such
as those applied by Sarkar et al. (2021) use the Principal Component
Analysis (PCA) for detection of up to 1 Short-Circuited Turn (SCT)
at no load and 30% of mechanical load condition, reaching 100% of
accuracy. However, studies at higher mechanical load conditions are
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not included to prove the overall effectiveness. Mejia-Barron et al.
(2019) applied brick-wall filters and Shannon Entropy (SE) to detect
up to 10 SCTs with 98% of accuracy. Moreover, Bazan et al. (2019)
introduce a method based on mutual information estimation with a
Multilayer Perceptron (MLP) neural network to detect up to 3% of
SCTs with an accuracy of 95%. While the aforementioned works
report high accuracy rates, some of their limitations include the
reliance on mechanical information to achieve the reported
performance.

Beyond the feature extraction, the detection and classification of
ITSC faults need classification algorithms to ensure the correct
performance. So, artificial intelligence algorithms have been
widely implemented due to their high reliability and accuracy.
Algorithms such as Artificial Neural Network (ANN) (Bazan
et al, 2019; Rajamany et al, 2019) and Convolutional Neural
Network (CNN) (Jiménez-Guarneros et al, 2022; Susanta Ray
and Dey, 2020; Shih et al, 2022; Faraj et al., 2023; Ziad et al,,
2025) are the most used ones for this task. Unfortunately, these
techniques typically require training with large datasets to identify
Additionally,
algorithms can be complex, computationally demanding, and

patterns associated with specific faults. such
often require specialized and costly hardware.

In addition, techniques based on histograms obtained from the
stator current signals have proven to be effective in detecting faults
in IMs, such as in detecting broken bars of rotors (Dias et al., 2020),
bearing faults (Avina-Corral et al., 2022; Tang et al., 2022), and other
assessments in IMs (Dias et al., 2023; Glucina et al., 2023). One of the
main advantages of this technique is its relative simplicity to
implement, with minimal or no signal preprocessing required.
However, despite the number of techniques applied today to the
detection of ITSC faults in IMs, the development and application of
different algorithms and methodologies are necessary, especially
when the faults are incipient or when the mechanical load
condition changes.

Addressing the issues previously mentioned, this paper presents
a novel methodology based on the computation of the histogram
from a CDF derived from a current stator signal where the
fundamental frequency was removed to highlight the small
components related to the ITSC faults; then, the CDF was
decomposed into its sparse representation with the Orthogonal
Matching Pursuit (OMP) algorithm to find similarities and
differences across various fault classes. It is worth noting that the
implementation of sparse representation has been applied in recent
years to pattern recognition with excellent results (Morales-Perez
et al, 2018; He et al,, 2019; Qu et al, 2019), which outstanding
dictionary-based performance motivates its utilization in machinery
fault classification (Zhao et al., 2018). Although this approach was
originally introduced in a different area (i.e., compressed sensing)
(Rani et al., 2018; Zhang et al., 2015), its ability to reconstruct signals
or images from specific and carefully chosen bases facilitates the
identification of patterns (similarities or differences) to carry out the
recognition task. In this regard, tools and algorithms from the
literature, such as the OMP algorithm and the dictionary
developed by the Value
Decomposition (K-SVD) algorithm, are applied to store the

learning  process K-Singular

features extracted from the CDFs obtained from current signals

with the suppressed fundamental frequency, creating a novelty and
well-structured methodology for ITSC fault detection, and
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extending the integration of processing and classification methods
in the ITSC faults detection area to elucidate the potential synergy of
them. Through this approach, five levels of ITSC damage were
detected under four different mechanical load conditions in a 2-hp
IM, reaching accurate classifications without necessitating
information about the load.

The innovations of the paper are listed as follows:

« New methodology for ITSC fault detection based on the CDF
and the sparse with
dictionary learning.

Highlighting the ITSC faults into CDFs from the current
signal with fundamental signal suppression using a sine/

computation representation

cosine filter.
number

Reducing the of dictionary atoms to just
35 significantly improves the OMP’s performance for
classification and detection applications compared with
traditional overcomplete dictionaries containing more than
500 atoms, representing a reduction of over 90%.

o The training process can be developed using a small data set,
achieving more than 98% accuracy.

o The developed training process generates dictionaries with

sufficient information on damage levels and their behavior,

ensuring that mechanical load does not affect the performance
of the classification process.

2 Theoretical background

Electrical faults in IMs can be detected because the faults
induce spurious components in the stator current spectra (Sheikh
et al., 2022). In this context, MCSA can be effective for detection if
the spurious signals into the current signal have sufficient amplitude.
As with other faults, ITSC faults can distort the fundamental
frequency component due to the presence of sines and cosines
signals with a feature frequency (Niu et al, 2023), as

presented below.
Fise = fo[% (1-9)% b] (1)

where f, is the frequency of the fundamental sine signal from
the power source, a = {1,2,3,... } is an integer number, p is the
pole-pair of the motor, s is the slip, and b ={1,3,5,... } is an odd
index. However, detecting these spurious frequencies is still a
challenging task; in fact, the smaller the sine amplitude, the more
difficult the detection. Therefore, MCSA technique usually requires
a pre-processing technique in order to effectively extract the
fault feature.

2.1 Fundamental signal suppression

The acquired motor current signal includes a fundamental
component with a significant amplitude in contrast with any
other harmonic component associated with the ones generated
by the electrical faults from the stator, which mask the latter and
complicate their detection. So, if the fundamental signal can be
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suppressed, the remaining signals can contain the spurious signals
related to a stator fault with an amplitude that is easier to process.

To achieve this, it is necessary to generate a reference that
effectively tracks the fundamental signal (both phase and
amplitude). This can be reached by processing the target signal x
to estimate the fundamental component. Accordingly, two sub-
signals, denoted as u and v, are generated based on the Discrete Sine
and Cosine Transforms (Britanak et al., 2010; Morales-Perez et al.,
2022), with their coefficients computed using the equations
given below.

w-1

uln] = u;) x[n+ w) %sin[%] (2a)
w-1

v[n] = 2 x[n+ w] %cos [%] (2b)

where n = {0, 1,2,..., N — 1} is the n — th sample of a signal x of
length N, W is the width of a window with a cycle of sine/cosine
reference of k — th frequency, and M is the number of samples of the
signal of interest in a second. Thus, W can be obtained as
W =[M/k]; note that k= f (fundamental frequency) and
M = f, (sampling frequency). The arbitrary selection of the
parameters defined above can result in the inefficiency of the
filtering due to its direct relation to the suppression frequency
and sampling rate.

This way, the amplitude of the fundamental signal can be
obtained from the coefficients calculated in Equations 2a, b,
applying Equation 3.

Aln] = \u[n]* + v[n]? 3)

Likewise, coefficients of an effective reference signal y can be
generated according to Equation 4:

y[n] = sign (v[n])cos (¢ [n]) (4)

where y[n] is the n-th coefficient of y, ¢ [n] = tan™! (u[n]/v[n]).
Note that the resulting value of y[n] is between —1 and +1. This
approach can suppress the fundamental signal by using:

r[n] = x[n] - Aln]yn] )

where 7[n] is the n-th coefficient of the remaining signal r with
the fundamental suppressed.

An example of the fundamental signal suppression process is
depicted in Figure 1. Note that the approach’s effectiveness in
correctly extracting the fundamental component must use a
cycle of the fundamental signal; in this example, the
suppression is adequate from 100 samples (see Figure la). A
remaining signal can be obtained from Equation 5 (see the
yellow plot in Figure la) that only contains information on
the sidebands of the fundamental signal. This can be verified
when obtaining the Power Spectral Density (PDS) (see
Figure 1b), where the frequency components of the target
signal x[n] (blue plot) and the remaining signal r[n] (red
plot) are compared. As shown in Figure 1b, the filter can
effectively suppress the primary frequency (fundamental sine
signal from the power source) and does not affect other
components significantly. In Figure 1b, the component f, is
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Example of the suppression process of the fundamental signal frequency component from a stator current signal: (a) time domain and (b)

frequency domain.

the frequency of the ITSC fault sited to the sidebands of f, in
concordance with Equation 1, demonstrating the ITSC
components preservation after of the filtering.

2.2 Sparse representation

Sparse representation involves decomposing a signal x into
fundamental bases, represented as non-zeros coefficients o[m]
(Rani et al.,, 2018; Zhang et al., 2015). This representation can be
denoted by a linear combination as listed below:

M
x[n] = )" Dn,mla[m] +r.[n] (6)
m=1
where D € RNM is a dictionary with M fundamental signals or

bases b,,, a[m] is the m-th coefficient of a sparse vector a € RUM,
and 7[n] is the n-th sample of a residual vector r; € RM It is
import to note that N < M.

The representation Equation 6 can be considered sparse only if
condition Equation 7 is met.

min ||x — Doc||§ st. el cK< N (7)
4

where [|a|y is the &, norm of the sparse vector a, and K is the
sparsity. In other words, condition Equation 7 denotes that the
sparse representation is a version of x with a few non-zeros
coefficients due to &V a,,, # 0 being a compressed version of x.
On the other hand, as Equation 7 relies on an optimization
problem, the proposing and application of diverse algorithms
to obtain it is possible. Some algorithms for this purpose can be
found in the literature (Zhang et al, 2015). This paper
applies the OMP algorithm due to its fast convergence and
this
representation of a

relatively low complexity. Essentially, algorithm

determines the sparse signal by
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computing and selecting the best orthogonal projections
between the signal and the given dictionary in an iterative
manner. A pseudo-code of this is shown in Algorithm 1
(Morales-Perez et al., 2022).

Require: D and x.
Ensure: ro=x, Dg={}, Up={}, and j =0
while (stop criterion is not met) do
1=argmax|{rj,dp)|

m={1,...M}
U; = [Uj-; U 1]
D; = [Dj+ | dy]
dj = (ﬁjXT);‘
rj=X- ﬁ]dj
j+

end while

return d;, U;, and r;

Algorithm 1. Orthogonal Matching Pursuit.

Furthermore, the fidelity of the sparse representation does
not only rely on the algorithm to obtain it, the determination of
the dictionaries is also a crucial task, being necessary the study
the types of signal to be represented. This challenge has led to
development of methods to construct them effectively, e.g., the
construction of dictionaries from mathematical transforms is
recommended if the signals are periodic and well-determined in
shape, phase, and amplitude (Morales-Perez et al., 2022). A
Different process is recommended for signals without a
defined shape, containing very specific features, or when the
representation from space transformation is not feasible
(Gangeh et al., 2015). The latter scenario can be addressed by
applying algorithms like the K-SVD introduced by Aharon et al.
(2006), which is utilized in this paper due to its effectiveness in
generating dictionary atoms.
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FIGURE 2
Example of CDFs obtained from a remaining signal r with an ITSC

fault. O, 10, 20, 30, and 40 are the number of short-circuited turns in
the stator.

3 Methodology

The feature extraction of a specific failure into the stator current
signal can be a challenge. Therefore, this paper proposes a
methodology to detect ITSC faults by processing the stator
current using cumulative histograms and sparse representation.

The first stage consists of removing the principal component of
the stator current signal. This stage is developed for extracting and
highlighting the elements related to the fault for detection. This
process is conducted as.

1. Obtain u[n] and v[n], applying Equations 2a, b respectively,
selecting the length of a window W for a cycle of the
fundamental signal to be suppressed.

2. Then, compute the amplitude of the fundamental signal
using Equation 3.

3. Next, generate a reference signal by applying Equation 4.

4. Finally, suppress the fundamental signal using the reference
generated and the previously estimated, as specified in
Equation 5. The remaining signal r[n] will used for the

next stage.

The obtaining of the cumulative histogram is the
second stage. Cumulative histograms are histograms
obtained from the CDF of a data set

X = {x[0],x[1],...,x[n]}Vx[n] € R (Leon-Garcia, 2017). In this
way, the CDF is defined in Equation 8.

he(x) = P(X<x) (8)

where P(X <x) is a function that fits X <x. Following the
above, the CDF of r[n] is obtained to get a pattern that includes only
the information of the possible faults (see Figure 2), with no regard
for the phase shift of the acquired signal.

From Figure 2, the differences from CDFs with 0, 10, 20, 30, and
40 short circuit turns in the stator can be observed. The distortion of
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these CDFs is fault
distinction among them.

The following stages consist of developing the classification

caused by the features, allowing

process. First and foremost, a training process to generate the
necessary information for fault detection based on sparse
representation must be developed. Then, the classification process
can be executed to identify the possible fault of the stator motor.
These processes are described in detail in the following sub-section.

3.1 Training process

This process consists of obtaining the necessary dictionaries for
classifying the faults employing a training algorithm, which is, in
other words, the well-named dictionary learning process. The
K-SVD algorithm is used for this purpose, employing a training
set of signals (or, in this case, histograms) that share the same
features. In line with the standard training stage, the proposed
approach employs K-SVD exclusively for dictionary learning.
Once the dictionary attains the desired quality, the algorithm is
no longer required. In this sense, the algorithm will find the training
set’s features and adjust the dictionary’s atoms to represent each
reference in an effective sparse representation. The process is
iterative, and the algorithm’s convergence depends on the
complexity of the features extracted from the training set.
Therefore, a dictionary must be generated for each fault so the
OMP algorithm can distinguish them. The pseudocode described in
Algorithm 2 summarizes the applied K-SVD algorithm.

Require: Dy, X, K, and M

1: fork=1toKdo

2 Use the OMP algorithm to obtain «
3 for j=1 toMdo

4: w={ie,2,... .M} s.t. a[j,1]1+ 0
5: ay[j, w] =0

6 R = X, - Dya,

7 UAV = SVD(R)

8: d; e Dy = uy

9: a,lj, 0] = viA(1,1)

10: end for

11: end for

12: return Dy

Algorithm 2. K-Singular Value Decomposition.

It is important to note that Algorithm 2 requires the K and M
values to function, where K is the number of iterations to adjust the
dictionary and the M is the number of atoms of the dictionary. Dy
and X are the initial dictionary and the training set, respectively.
Finally, the algorithm returns the trained dictionary Dy, used in the
next and last stages.

3.2 Classification process

Once the dictionaries have been trained, the classification
process can be carried out. The process involves the introduction
of the CDF obtained in the above stages to the OMP algorithm (see
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FIGURE 3
General block diagram of the proposed methodology.

Algorithm 1). For this purpose, the stop criterion selected for the
OMP algorithm is the maximum reconstruction error Equation 9. In
this manner, the sparse representation is expected to be better with
only the dictionary that contains the features that match the features
of the CDF, reducing the reconstruction error with this specific
dictionary. Accordingly, the reconstruction error metric is selected
because it aligns with the underlying least-squares formulation of
sparse representation, enabling the evaluation of the energy
contributed by the selected atoms rather than merely assessing
the signal shape. (Morales-Perez et al., 2018; Zhao et al., 2018).

__ I,
I,

e<e )

where € is the maximum permissible reconstruction error, ¢ is
the actual reconstruction error reached by the OMP, and ||«|, is the
¢, norm. It is important to note that x « h. is in the OMP
algorithm. In this way, each sparse representation obtained with
each dictionary D; returns a reconstruction error &;.

So, the classification is reached by selecting the minimum error
&, indicating the fault features contained in the CDF detected in a
dictionary by the OMP algorithm.

(10)
where f is the index of the featured fault, and P is the number of

faults to detect. Both processes, training and classification, are
summarized in the general block diagram depicted in Figure 3.

4 Experimental setup

The current signals used to develop and validate the proposal
were acquired by using the experimental setup illustrated in
Figure 4. This test bench was implemented to replicate well-
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conditions

FIGURE 4
Experimental setup.

established configurations reported in the literature and to
comply with the recommended, widely adopted test conditions.
Table 1 shows the information and the main characteristics of the
principal equipment and the devices used in the experimental
setup. In this regard, the induction motor was modified to
simulate the ITSC with the following severities: 0, 10, 20, 30, and
40 SCTs in a single-phase winding, where the total of turns is
141 turns. induced with the
dynamometer to obtain the following load levels: 0%, 33.3%,

The mechanical loads were

66.6%, and 100% of its nominal mechanical load.

The current signals were acquired by the current clamp
connected to the data acquisition system board, configured with
a sampling frequency of 6 kHz. A data set was created with 20 tests
per severity and load condition with a duration of 3.5 s (obtaining
21,000 samples) only in order to minimize the physical damage that
can be provoked to the stator with the simulated faults. Hence, a
total of 400 signals were acquired in the IM steady states conditions
and stored in the database proprietary of the laboratory of Sistemas
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TABLE 1 Main equipment and devices used in the experimental setup.

Equipment/Device

10.3389/frsip.2026.1712465

Main characteristics

(1) Induction Motor WEG 218ET3EM145TW Three-phase, 2 hp, 220 V, 60 Hz

(2) ITSC conditions - - 0, 10, 20, 30, and 40 SCT.

(3) Dynamometer Lab-Volt 8,540 Four-quadrant, three-phase, 12 A, speed range 0-3,600 rpm, nominal torque 0-12.18 Nm
(4) Starter Siemens 3RT2018-1AN61 Three-phase, 200-220 V @ 60 Hz, AC-3e/AC-3, 16 A, 7.5 kW/400 V

(5) Current clamps Fluke i200s CAT III 600 V, dual range 20/200 A, output 10/100 mV/A

(6) DAQ National Instruments USB-6211 8 differential or 16 single-ended inputs, 16-bit resolution, 250 kS/s

(7) PC Dell G15 16 GB of RAM, 512 GB SSD NVMe, Intel Core i5 @ 2.6 GHz

Dindmicos, Facultad de Ingenieria, Universidad Auténoma de
Querétaro (UAQ), Campus San Juan del Rio, which can be
accessed by formal request and upon signing an agreement for
academic research purposes.

5 Experimental results

Once all current signals were acquired in the steady state of the
IM, each acquired signal was segmented into seven parts, with each
part containing 0.5 s of information. According to the preliminary
testing, 0.5 s is enough time in order to conserve the features related
to ITSC in the current signal and reduce the amount of data for
analysis and, consequently, the computational time consumption. In
this way, the created data set for this paper is 2,800 segments of the
current signal in a steady state of IM for all conditions. Following the
proposed methodology, the suppression of the fundamental signal is
firstly conducted using the procedure described above to highlight
the presence of the components related to the ITSC faults; otherwise,
the fundamental signal, being of relatively larger amplitude, tends to
conceal them and make their detection more difficult. Then, the
CDF is computed to obtain a defined pattern regardless of the phase
of the spurious component in the preprocessed signal. So, to detect
these patterns that may show slight changes between them, the
dictionary training process has to be carried out.

To avoid bias, this process was validated using a 5-fold cross-
validation as recommended in the literature (Marcot and Hanea,
2021; Morales-Perez et al., 2018). This validation consists of
randomly selecting the signals used for the training process; the
remaining is used for the validation process. The latter was repeated
five times. The CDFs were obtained as explained in the methodology
section; each signal segment in the steady state of 0.5 s length was
normalized to an amplitude of + 1 to ensure all signals are within the
same amplitude range. Then, they were converted into CDFs with
200 classes (steps of 0.01), enough for the development of the
classification, accordingly with the preliminary tests. For each
condition, 140 CDFs were obtained, with 40 randomly selected
to train the dictionaries and 100 for testing. The dictionaries for
training were created with M =35 atoms: the first atom as &,
normalized CDF from a sine signal of 2 Hz and the other
34 atoms as a constant of 1/+/200. This way, the K-SVD
algorithm starts from a specific base and adjusts the atoms from
a principal feature (first atom). Thereby, the remaining features are
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FIGURE 5
Average accuracies reached by different values of M.

saved into the other atoms (initially constants), ensuring the
extraction of significant features according to the fault severities
and avoiding the over-training of atoms.

The selection of the number of atoms was based on the results of
the tests resumed in the plot depicted in Figure 5, which indicated that
the dictionaries with more than 35 atoms (M > 35) did not achieve
significant improvements and increase the computational time-
consumption. Even though the literature precise that dictionaries
trained with K = 35 reach an acceptable performance for specific
applications (Morales-Perez et al., 2018), the number of iterations for
the training process was configured to K = {50, 60, 70, 80, 90, 100} to
research the effectiveness of the trained dictionaries.

Also, the OMP was configured to reach a maximum
reconstruction error of € = 0.001 due to the minor differences in
the CDFs for closely faults in terms of severity. So, higher values of €
can decrease the method’s effectiveness. An example of the
reconstruction from the sparse representation obtained through
the OMP algorithm is depicted in Figure 6. This example
presents a CDF reconstructed with different dictionaries (as
proposed in this work), trained with 10, 20, 30, and 40 SCTs. It
may be noticed that the reconstruction (red plot) has discrepancies
compared to the original CDF (blue plot), and these discrepancies
increase if the employed dictionary does not match the group of the
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Example of reconstruction from the sparse representation obtained with the OMP algorithm and the trained dictionaries: (a) 10 SCT, (b) 20 SCT, (c)

30 SCT, and (d) 40 SCT.

reconstructed CDF (see the plot in Figure 6d). This occurs
because the dictionary does not have enough features in its
atoms to offer an effective sparse and
reconstruction; consequently, the OMP algorithm uses all the

representation

available dictionary information to represent the input CDF,
resulting in a CDF with pronounced differences over the
original. This is not the case when the dictionary has enough
features in its atoms. In this way, it is notable that the fault
contained in the reconstructed CDF is 20 SCTs, which best fits
with the original CDF (see the plot in Figure 6b). Reconstruction
errors ¢; obtained from these tests were 0.0064, 0.0010, 0.0088, and
0.0168, concluding that the best dictionary for this reconstruction is
the one trained with 20 SCT (e =0.001), indicating a correct
classification from Equation 10. Table 2 presents the overall
results of the test development with different K parameters for
the training process.

The accuracy per the condition of the tests was calculated using
Equation 11.

Nop
Ai =
N,

ACC = mean (A;) + std(4;) s.t. x 100% (11)

t
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where A; is the i-th accuracy of each fold cross-validation, Nrp is
the number of true positives, and N is the number of total samples
of the specific condition. The global accuracies per K is:
96.63% + 2.218, 97.77% + 1.92475, 97.8% =+ 1.9833,
97.96% + 2.0063, 97.6% + 2.0106, and 98.24% + 1.8479; for K50,
K60, K70, K80, K90, and K100, respectively.

As shown in Table 2, the best performance is reached with a
trained dictionary with 60 iterations (K60). Parameters exceeding
60 do not show a significant increase in the global accuracy of the
test; indeed, a number greater than 60 iterations for this application
results merely in minor adjustments to the atoms, implying more
time consumption with very small changes in the behavior and
effectiveness. Therefore, 60 iterations is selected in this work, which
is enough to reach a practical accuracy (~ 98%) and distinguish the
severity of the fault regardless of mechanical load. In addition, it is
worth noting that the threshold of maximum reconstruction error
€ =0.001 underscores the methodology’s capacity to discern
with minimal differences, a

between faults, those

noteworthy challenge in this field.

even

Furthermore, additional tests were developed to verify the
effectiveness of the methodology’s proposed workflow. These
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TABLE 2 Accuracy results with different training iterations parameter (K).

Severity (SCT)

10.3389/frsip.2026.1712465

Accuracy [ACC (%)]

K70 K80
0.00% 0 89.200 + 7.085 93.000 + 3.391 89.000 + 8.216 93.400 + 5.459 89.600 + 8.503 88.800 + 11.563
10 90.400 + 6.025 95.400 + 2.966 97.000 + 2.449 94.400 + 5.983 96.000 £ 2.121 97.400 + 3.130
20 92.800 + 3.962 95.000 + 4.000 95.400 + 1.517 94.600 + 7.893 97.400 + 1.949 97.400 + 2.881
30 97.200 + 2.168 98.400 + 2.074 97.800 + 2.280 98.000 + 1.871 93.000 + 5.788 99.000 + 0.707
40 96.000 + 4.528 95.800 + 4.919 97.600 + 3.362 98.800 + 1.304 97.400 + 3.782 99.200 + 0.837
33.33% 0 86.000 + 4.950 94.800 + 2.387 96.400 + 2.608 96.000 + 1.000 97.600 + 2.074 95.400 + 3.647
10 95.400 + 0.894 96.600 + 1.817 96.800 + 3.564 97.000 + 2.550 94.600 + 3.975 98.800 + 1.304
20 99.400 + 1.342 97.800 + 2.950 99.800 + 0.447 99.000 + 1.732 99.800 + 0.447 99.800 + 0.447
30 99.400 + 0.894 99.600 + 0.548 99.000 + 1.414 100.000 + 0.000 99.400 + 0.548 97.800 + 4.382
40 98.600 + 1.673 99.200 + 1.304 99.800 + 0.447 99.800 + 0.447 99.200 + 1.789 99.600 + 0.548
66.66% 0 97.400 + 2.191 98.200 + 2.683 94.200 + 5.119 97.400 + 1.949 97.400 + 1.949 97.600 + 3.286
10 99.000 + 0.707 99.200 + 0.837 99.200 + 0.837 97.800 + 2.950 99.000 £ 0.707 99.200 + 0.447
20 97.000 + 2.550 98.600 + 1.140 99.600 + 0.548 97.600 + 3.362 97.000 £ 1.581 98.400 + 0.894
30 99.200 + 0.447 99.200 + 0.837 99.400 + 0.548 99.000 + 0.000 98.800 + 1.095 99.200 + 0.837
40 98.000 + 1.871 98.400 + 2.510 99.000 + 0.000 98.400 + 1.342 98.200 + 2.387 99.000 + 0.707
100.00% 0 98.800 + 0.837 97.600 + 1.517 96.800 + 4.970 99.200 + 0.837 97.600 + 1.517 98.400 + 0.894
10 99.400 + 1.342 99.800 + 0.447 99.400 + 0.894 100.000 + 0.000 100.000 + 0.000 100.000 £ 0.000
20 100.000 + 0.000 100.000 + 0.000 100.000 + 0.000 99.800 + 0.447 100.000 + 0.000 100.000 + 0.000
30 100.000 + 0.000 100.000 + 0.000 100.000 + 0.000 100.000 + 0.000 100.000 + 0.000 100.000 + 0.000
40 99.400 + 0.894 98.800 + 2.168 99.800 + 0.447 99.000 + 1.000 100.000 + 0.000 99.800 + 0.447

tests, A, B, and C, involve an ablation analysis and evaluation of the
results. Test A consists of developing the methodology presented in
this work; Test B is a similar development to the proposed method,
but the dictionary initialization is random; and finally, Test C
generates dictionaries in the time domain with the dictionary
randomly initialized. Examples of confusion matrices are
depicted in Figure 7; note the mistakes increase from the
classifier between test A and test B, especially at no mechanical
load and low damage levels, and the lousy classification in test C.
Global accuracies are shown in Table 3. As expected, the best results
are with the CDFs, highlighting the improvement of the accuracy of
the dictionaries that are initialized as previously exposed in contrast
with the random initialization. Otherwise, the accuracies reached
with dictionaries trained in the time domain are very low due to the
phase shift during the acquired stage, requiring the increasing of the
numbers of atoms (M) to manage this issue, reaching the inequality
M > N and increase the time-consumption noticeably during the
training process.

It should be pointed out that the required length of the signal to
reach the fault detection is 0.5 s, which decreases the number of
samples (to 3,000 samples) that need to be processed. This is in
contrast to other methodologies that require 1 s or longer to reach
comparable performance (Cardenas-Cornejo et al., 2023; Mejia-

Frontiers in Signal Processing

Barron et al, 2019; Chen et al,
et al., 2022).
According to the theory study of the technique’s sparse

2023; Jiménez-Guarneros

representation and classification purpose, the classification is
possible as the atoms of the applied dictionaries have enough
information; that is, the sparse representation is obtained with
evaluate the
performance and quality of the trained dictionaries, the

high-quality ~ dictionaries. To reconstruction
logarithm of the Root Mean Square Error (RMSE) was computed
(Sadeghi et al., 2013). This measure is defined in Equation 12:

X~ Dallp)

Elog = log1o< aL (12)

where X is the set of used signals (CDFs in this paper), D is the
testing dictionary, « is the sparse representation of the set of signals
X for the D dictionary,  is the number of samples in each signal, L is
the number of signals into the set X, and ||| r is the Forbenius norm.

Measuring results are depicted in Figure 8. Note the highlighted
differences between the results in dictionaries trained current signal
in the time domain (Figure 8a) and the trained with proposed CDFs
(Figure 8b). The quality of the dictionaries increases as the Ej,g is
more negative; that is to say, the small squares in the plot acquire a
dark blue color. In this regard, a remarked diagonal appears in the
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FIGURE 7

Example confusion matrices from ablation analysis: (a) Test A; (b)

Test B; and (c) Test C. [Labels 1, 2, 3, 4, and 5 correspond to 0, 10, 20,
30, and 40 SCTs at 0% of mechanical load, respectively;

6-10 correspond to 0-40 at 33.33%; labels 11-15 correspond to
0-40 at 66.66%; and 16—20 correspond to 16-20 at 100%].

graph of the measuring of the dictionaries trained with the proposed
CDFs, indicating the dictionary that belongs to the same class of the

Frontiers in Signal Processing

10.3389/frsip.2026.1712465

TABLE 3 Global average results of the additional tests.

K (M = 35) Accuracy [ACC (%)]
Test A Test B Test C
50 96.05 93.00 4.60
60 98.10 94.40 3.70
70 98.65 94.80 5.00
80 98.10 94.45 440
90 98.20 94.60 595
100 98.20 95.40 355

CDF (or signal) has a high probability of detecting it (or
high
demonstrated. This is not the case with the dictionaries trained

reconstructed it), giving the accuracy rate above
with current signals in the time domain, where the diagonal is
diffused. These results demonstrate the superiority and the high
performance of the dictionaries trained with the proposed CDFs,
with only 35 atoms in contrast with the suggested in the literature
(Rani etal., 2018; Zhang et al., 2015) (N <« M), at least in this type of

application.

6 Discussion

Table 4 provides a comparative analysis of the proposed
methodology against other works reported in the literature. As
can be observed, the proposed method shows accuracy relative to
other works (Bazan et al., 2019; Cardenas-Cornejo et al., 2023; Chen
et al., 2023) enabling the detection fault of faults as minimal as
10 SCTs, which constitute 7% of the total turns in the stator winding.
Although other papers report the identification of more incipient
faults (Bazan et al, 2019; Cardenas-Cornejo et al., 2023), their
accuracies are around 83%, which is more than 10% lower than
the accuracy reported in this work. Even though there are works
with comparable accuracy rates, e.g., (Mejia-Barron et al., 2019),
they are susceptible to mechanical load, a challenge in most work in
this field. In contrast, this work can distinguish the faults regardless
of the mechanical load, unlike (Bazan et al., 2019; Cardenas-Cornejo
et al., 2023; Chen et al., 2023), which requires testing under specific
load conditions and necessitates knowledge of the load for accurate
detection. On the contrary, the proposed method only needs the
CDF input, which in turn identifies the fault level regardless of the
applied mechanical load. Another advantage of the proposed
methodology is the use of few atoms in the dictionaries, in
contrast with traditional sparse representation methodologies that
need more atoms than their number of samples (Morales-Perez
et al.,, 2018), reducing the time consumption and increasing the
performance efficiency.

Furthermore, ANNs and CNNs have demonstrated exceptional
these
architectures usually need a considerable data set size to reach
their characteristic classification rates and the application of

performances in classification applications. However,

specific hardware to develop their training stages. Table 5 shows
the classification test results with some artificial intelligence
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Graphs of measuring the quality of the dictionary (Eog): (a) dictionaries trained with current signals in the time-domain; (b) dictionaries trained with
CDFs with fundamental signal suppressed.

TABLE 4 Comparison between the proposed methodology and other methods for ITSC fault detection in the literature.

NEEES Load info

(SCT)

Mechanical
load

Techniques Type of signal Accuracy

(domain)

0, 33.33, 66.66,
and 100%

0, 10, 20, 30,
and 40

Necessary

—_

Brick-wall band-pass FIR filters for Current (time) 98%
features extraction.

. Shannon Entropy index for fault

indicator.

. Fuzzy Logic system as a classifier

Mejia-Barron et al.
(2019)

[

w

Bazan et al. (2019) 1. Delayed Mutual Information algorithm Current (time) 83% (0.9:0.4:9.3) Nm 1, 3, 5, and 10% Necessary

as feature extraction.
Multilayer Perceptron ANN as a
classifier

N

Cardenas-Cornejo et al. | 1. Quaternions and statistical indexes as Current (time) 83.33% No load 0, 6,12, 18, and 24 Necessary

(2023) feature extraction.

Decision tree models as a classifier

|34

Chen et al. (2023) 1. Sliding-Average Filter as a Current (time) 96% 0, 0.52, and 1.04 Nm 0,2, and 6 Necessary
pre-processing stage.

. Envelope extraction and Gaussian
Window Weighting as feature
extraction.

. SVM as a classifier

[

w

0, 33.33, 66.66,
and 100%

0, 10, 20, 30,
and 40

This work Unnecessary

—_

Sine-Cosine filter to suppress the Current (time) 98%
fundamental signal.
CDF histograms as a fault indicator.

OMP algorithm as a classifier

1

bl

algorithms under the same training condition of the proposed
methodology.

MLP implemented architecture is a small ANN and
configured to be compatible with the input CDFs and the out
classes, for which an accuracy of 90.33% is reached after
3,000 epochs. The small CNN 1D architecture was taken from
(Jiménez-Guarneros et al., 2022) and modified to preserve
compatibility with the proposed CDF, reaching 75.15% of

Frontiers in Signal Processing

accuracy after the 3,000 epochs. Finally, implementing a
conventional ResNet 1D reaches 95.94% after the 120 epochs. In
all cases, the training set contained 800 CDFs (40 per class), and the
testing set had 2000 CDFs, the same condition under which the
proposed methodology is presented. However, the proposed
classification process performed better, reaching 98.24% with
100 iterations and surpassing the ResNet 1D accuracy at
50 iterations (96.63%).
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TABLE 5 Comparison results of classification test with artificial intelligence
algorithms and the proposed classification.

Metric

MLP CNN 1D RestNet 1D Proposal

Average Accuracy | 90.33% 75.18% 95.94% 98.24%

In addition, advantages such as the intrinsic noise tolerant feature of
the OMP algorithm (Morales-Perez et al., 2022; Wang, 2015; Wu et al,
2013) and the hardware-based architectures available in the literature
(Geetal,, 2019; Roy et al., 2019; Li et al,, 2021; Roy et al,, 2021) make this
approach suitable for real-time applications in industrial environments.

7 Conclusion

A novel methodology based on obtaining the CDF of the current
stator signal with fundamental signal suppression and sparse
representation was presented in this work for ITSC fault detection.
By suppressing the fundamental signal, the components of the ITSC
faults are highlighted, allowing a more effective detection. This is
evidenced by the 98% classification rate achieved. The effectiveness
of the proposed method is due to the OMP algorithm, which facilitates
an efficient reconstruction with the sparse reconstruction obtained from
dictionaries trained with specific faults, resulting in a lower
reconstruction error for dictionaries that contain the features of the
same fault. Additionally, the algorithm demonstrates the capacity to
discern between all the treated faults (0, 10, 20, 30, and 40 SCTs), even if
these have slight differences. This is supported by the maximum
reconstruction error € = 0.001 used and recommended in this work.
Another noteworthy aspect is that the training process for the
dictionaries with the K-SVD algorithm does not require more than
K =60 iterations. Finally, an outstanding feature of the proposed
method is that faults are classified without regard to the mechanical
load (0, 33.33, 66.66, and 100%); that is, the classifier does not need
additional information about the current mechanical load to operate
effectively. In addition, dictionary dimension reduction, from an
overcomplete dictionary (usually, more than M =500 atoms
reported in the literature) to M = 35, represents a considerable
reduction of workload. This feature enables the proposal to be used
in various industrial applications. According to the testing results, the
extension of this research to incipient faults (5 SCT's) will be explored in
future work, including the integration of deep learning models,
extension to another motor type, other fault types, such as bearing
faults, and multiple faults. Also, implementing this method in embedded
systems for real-time applications is considered a viable possibility. In
addition, despite the favorable results, future studies will be considered
to enhance its robustness and resolve possible limitations of time-
varying regimens, other percentages of mechanical load, dynamic
mechanical profiles, and perturbations in the power line network,
which could introduce new behaviors in CDFs.
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