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Accurate channel-estimation algorithms are critical for enhancing the
throughput of wireless communication systems, including millimetre wave
(mmWave) multiple-input multiple-output (MIMO) systems, where precise
channel knowledge enables reliable signal detection and beamforming. In
practical wireless environments, impulsive non-Gaussian noise with unknown
statistics often occurs due to electromagnetic interference and harsh
propagation conditions, significantly degrading estimation accuracy and
overall system performance. In this context, the maximum correntropy
criterion (MCC) has emerged as an attractive solution for robust channel
estimation that outperforms state-of-the-art algorithms. However, the MCC-
based algorithm’s performance is sensitive to the tuning of hyperparameters,
which is challenging in the presence of non-Gaussian noise, such as impulsive
noise (IN). Furthermore, a recent genre of kernel width sampling methods makes
MCC hyperparameter-free and allows for asymptotic convergence to the
squared-error performance of MCC with the ideal kernel width. To ensure
their practical applicability, convergence analysis is essential to theoretically
guarantee stability and performance under various IN scenarios. This study
presents convergence analysis of hyperparameter-free MCC-based channel
estimation for mmWave MIMO systems considering various IN scenarios. To
validate the theoretical analysis, simulations are conducted on practical
mmWave MIMO system models. Simulation results closely match the
analytical findings, which confirms the accuracy and effectiveness of the
analysis we here present.

KEYWORDS

channel estimation, millimetre wave, convergence analysis, hyperparameter-free
maximum correntropy criterion, 5G/B5G

1 Introduction

Millimetre wave (mmWave) multiple-input multiple-output (MIMO) systems are
crucial for next-generation wireless networks, offering high data throughput, extensive
connectivity, and low latency (Hemadeh et al., 2017; Ali et al., 2020). These capabilities are
essential for 5G, B5G, and future 6G networks due to their support for high-speed mobile
broadband, ultra-reliable low-latency communications (URLLC), and massive machine-
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type communications (mMTC) (Elbamby et al., 2018; Srivastava
et al.,, 2019; Bhatia et al., 2019; Ali et al., 2020; Awan et al., 2017;
Mitra et al., 2018). However, mmWave propagation has unique
features that make precise channel estimation challenging (Heath
et al., 2016). These include high route loss, low dispersion, and a
preference for fewer spatial pathways. Real-world mmWave
communication situations may experience non-Gaussian noise,
including rapid signal fluctuations due to movement, blockage,
air absorption, and device malfunctions (Zhao et al., 2013). As
we move toward 6G, the operational spectrum is expanding to
include mid-bands (7-15 GHz) for their favourable coverage-
capacity trade-off alongside the continued use of mmWave (Saad
et al, 2019). This development enables new paradigms such as
integrated sensing and communication (ISAC), where channel state
information is repurposed for high-resolution environmental
imaging (Zhang et al.,, 2021; Bazzi et al,, 2025). These advanced
applications demand channel estimation that is not only accurate
but also highly robust against the non-Gaussian noise prevalent in
complex real-world deployments. MIMO systems started by using
classic channel estimation methods such as least squares (LS) and
minimum mean-square error (MMSE). However, these traditional
methods exhibit significant limitations, especially in practical
mmWave environments affected by impulsive and non-Gaussian
(NPML)
estimators provide robustness by modelling unknown noise
distributions (Bhatia and Mulgrew, 2004), they suffer from high
computational complexity, making them unsuitable for large-scale

noise. While non-parametric maximum likelihood

mmWave MIMO systems that require real-time processing. In
contrast, the hyperparameter-free maximum correntropy criterion
(MCC) has emerged as a low-complexity and effective alternative, as
it captures higher-order error statistics and provides robustness
against impulsive and non-Gaussian noise without the need for
manual parameter tuning. Therefore, hyperparameter-free MCC
offers a practical and efficient solution for robust channel
estimation in mmWave MIMO systems, thus enabling reliable
performance in challenging environments.

In traditional communication models, commonly represented
additive white Gaussian noise (AWGN) is characterised as a normal
distribution with a zero mean and constant variance. While this
assumption is effective in several scenarios, it fails in environments
with impulsive interference, such as urban wireless systems, where
noise displays heavy-tailed characteristics (Selim et al., 2020b). As an
example of heavy-tailed distributions, non-Gaussian impulsive noise
(IN) is accurately characterised by the Bernoulli-Gaussian
distribution (Selim et al., 2020b), which accounts for abrupt
interference caused by environmental factors, electronic
switching, and power fluctuations (Ghosh, 2002; Selim et al,
2020a; b).

In recent years, Bayesian-learning-based sparse recovery
techniques have been explored for mmWave channel estimation,
such as the iterative variational Bayes framework in Bazzi et al.
(2016), where the channel is decomposed into angle-of-arrival
(AoA) and angle-of-departure (AoD) components. However,
these approaches generally assume a Gaussian prior/likelihood,
which invalidates their scope to communication systems affected
by IN with unknown statistics. To address robustness under such
non-Gaussian conditions, the MCC has emerged as an effective
alternative, as it captures higher-order error statistics beyond the

Frontiers in Signal Processing

10.3389/frsip.2025.1709070

second-order moments used in MMSE-based methods (Selim et al.,
2020b). The MCC inherently enhances resilience to IN, improves
convergence behaviour (Kumar et al, 2024) and preserves
underlying channel-noise structure. Nevertheless, its performance
is highly sensitive to the kernel width which varies with the noise
characteristics and complicates receiver design (Ma et al, 2015;
Chen et al,, 2019). Recently, hyperparameter-free MCC algorithms
(Mitra et al., 2021; Kumar et al., 2024) have de-necessitated
adjustable kernel width selection by eliminating the need for
hard-tuning and replacing it with hyperparameter-sampling,
thereby simplifying receiver design. In detail, these methods
utilise kernel sampling to asymptotically attain the performance
of the MCC with an optimal kernel width, thereby alleviating the
requirement for tuning. The adaptability of the
hyperparameter-free MCC renders it especially suitable for real-

manual

time communication systems, where efficient and rapid estimation
is essential.

Many current studies emphasise algorithm development instead
of conducting a thorough analysis of critical parameters such as
convergence behaviour, steady-state error performance, and
robustness in the presence of various noise conditions (Kumar
et al, 2024), which are essential for reliable deployment. This
study addresses the gap by delivering a thorough performance
analysis of hyperparameter-free-MCC-based channel-estimation
in mmWave MIMO systems impaired by IN. We establish
performance bounds, validate convergence properties, and
compare efficiency with conventional MCC methods through
theoretical derivations and simulations, which are not available in
the literature. Our results clarify the practical feasibility of the
hyperparameter-free MCC, particularly in real-world non-
Gaussian noise situations, hence establishing it as a promising
and versatile method for channel estimation for next-generation
mmWave MIMO-based communication systems.

1.1 Contributions

Based on the above discussion, the key contributions of this
work are summarised thus.

o Analysis of the convergence of hyperparameter-free MCC in
the context of channel estimation for mmWave MIMO.

o An equation for the steady-state error is derived for the
proposed algorithm, which is validated for various
mmWave MIMO scenarios.

« Abound is derived for the step-size of the hyperparameter-free

MCC to ensure convergence.

1.2 Notations

Vectors are represented by lowercase a, while scalars are
indicated by the letter a. Matrices are represented with uppercase
letters such as A. The notation A denotes the inverse, A* indicates
the conjugate, Af represents the Hermitian (conjugate transpose),
and AT signifies the transpose, using superscripts. The optimal value
of a variable (-) is denoted as (-),. Furthermore, the notation ()@
represents the i term of the vector (-). vec(A) represents the
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vectorisation of the matrix A. The trace, Tr(-), sums the diagonal
components of a matrix, while Ay (+) is the largest eigenvalue of a
matrix. In this context, V() represents the gradient of the function,
while E[] signifies the statistical expectation. The I, norm of a
vector x can be given as [|x|,.

2 System model

The transmitter and receiver design of the system comprises
a transmitter fitted with Npx transmit antennas and Ny radio
frequency (RF) chains and a receiver fitted with Ngx receive
antennas and Ngr RF chains. Following the connection
N4 <Ngr<min(Ntx, Nrx), the number of RF
usually either less than or equal to the number of parallel

chains is

data streams N,. These streams represent a fundamental
which

performance is maintained by using fewer RF chains than the

feature of hybrid beamforming systems, in
total number of antennas, hence lowering hardware complexity.
Combining the baseband precoder Fyp with the RF precoder
Fre>a Ntx X Nrp complex matrix forms the transmitted signal
F (Alkhateeb et al., 2014). At the receiver, the RF combiner
Wher—a Ngp x Nrx  complex matrix—and the baseband
combiner Wpg—a Ngr X Ny complex matrix—are utilised to
analyse the received signal. Phase shifters enable the RF precoder
and combiner to be constructed using only phase changes while
2016;

Kumar et al., 2024). Effective beamforming made possible by

maintaining constant signal magnitudes (Heath et al.,

this method enables the system to achieve high-performance
communication in mmWave settings.

2.1 mmWave channel model

We investigate a dense urban non-line-of-sight (NLoS)
scenario using the mmWave channel model. The channel is
described as a narrowband geometric channel with a single
propagation path between the transmitter and receiver, offered
by each of the N scatterers. The channel matrix H is expressed
using the standard geometric mmWave MIMO model (Heath

et al., 2016):

N
H= S o (o ) el)
k=1

where, in Equation 1, p, is the complex path gain of the k' path
and ()"
and 9
(AoAs), while ¢3* and ¢¢! denote the azimuth and elevation angles

denotes the Hermitian transpose. The parameters 9"
represent the azimuth and elevation angles of arrival

of departure (AoDs), each ranging from [-7/2, 7/2]. The factor 4
represents the average path loss between the transmitter (BS) and
receiver (MS). Their respective antenna array response vectors to
capture the 3D array geometry using Kronecker products may be
written as

(‘((xaz, el) — (Xf) ® {z!(ail),

where, in Equation 2, ® denotes the Kronecker product, and the

e {TX,RX}, ac{p. 9, (2

vectors ¢ (-) and { Zl (+) represent the azimuth and elevation steering
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responses at the transmitter and receiver sides, respectively. They are
mathematically expressed as
{H o) = W[ 1, erreos(ay) | griznf2cos(ayr)
e - jond (Nzhl)cos(uzz)]T’ 3)
where, in Equation 3, d = % denotes the inter-antenna spacing,
and A represents the carrier wavelength. A similar expression holds
for the elevation steering vector (el(oc ) by replacing o” with the
elevation angle o' and N* with N¢!. The geometric channel model
given in (1) can be equivalently expressed in the angular domain as
H = Arx H, A¥x> where Arx and Arx denote the transmit and
receive array response dictionary matrices, respectively, while H,
represents the beamspace channel matrix. Specifically, H, is
defined as H, = diag(ﬂl\’”ﬂNRX (P> Py - pn]T). The array
response dictionary matrices are constructed as Agx=
[Crx (9% 9, G (95, 95, G (957, 951, Adly = [Gax (957, ),
(Tx(q)z D) Crx (9%, %)) where {rx (992, 9¢") and {ry (977,
Sf ) denote the transmit and receive steering vectors corresponding
to the ith

azimuth-elevation AoD and AoA, respectively.

2.2 Formulation of the mmWave hybrid
MIMO channel

The AoA and AoD are discretised into G > max(Ntx, Nrx)
evenly spaced points in the interval [3F,%). The AoD grid ¥rx and
AoA grid Yrx are uniformly spaced and defined as

Wi = {(<Pff,¢ff) o=l g mD m,nsG},
4)
az qel . az ﬂ(p - 1) TI(q— 1)
={(9P’92) B SP =T, 9;I=T, ].Sp,qSG .
(5)

where in Equations 4, 5 the transmit and receive array response
dictionaries (ARDs) are modelled using Kronecker products to
jointly capture azimuth and elevation steering, given as Arx (Wrx) =
AE (9) ® A (¢F) and Apx (Yrx) = A% () ® Af,\lx (9%). These
matrices satisfy orthogonality conditions Arx (‘I’TX)A¥X (Yrx) =

INTX and  Arx (Yro)ARx (Yrx) =
2019) In the beamspace domain, the channel matrix H; is

GRXINRX (Srivastava et al.,

represented as
H, = Apx (Yr) Hp A (Y'r), (6)

where, in Equation 6, matrix H; € C%*C denotes the diagonal
channel matrix, which facilitates efficient channel estimation and
signal processing. In practical 3D mmWave systems, antenna
elements exhibit spatial correlation due to mutual coupling,
limited inter-element spacing, and restricted angular spread in
the propagation environment. To capture these effects, the
conventional uncorrelated geometric channel model is extended
to include both transmit and receive correlations using the
Kronecker correlation model (Mitra and Bhatia, 2018; Forenza
et al., 2007) as follows:

Her = RGZH R, )
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where, in Equation 7, Ryx € CN™*N™ and Ryx € CV®*N& gre the
transmit and receive spatial correlation matrices, respectively. These
matrices characterise the coupling effects among adjacent antenna
elements at both link ends.

The correlation matrices are typically modelled as Toeplitz-
structured matrices to represent spatial correlation among uniform
planar array (UPA) elements. This Toeplitz exponential structure is
widely adopted in the literature for accurately modelling the spatial
correlation characteristics of UPA-based MIMO channels, owing to
its ability to capture the exponential decay of correlation with
antenna spacing (Van Zelst and Hammerschmidt, 2002; Cirki¢
and Larsson, 2014; Chikha et al., 2025).

")), ®)
Rpx = Toeplitz([1, o, ¢% ..., o"*7']), 9)

Ryx = Toeplitz([1, 0, ¢, ...,

where., in Equations 8, 9 o€ [0,1] denotes the correlation
coefficient that controls the strength of spatial correlation. The
received signal matrix, denoted by Y, incorporates the effect of the
correlated 3D channel and is expressed in terms of the baseband
and RF precoding matrices, together with the pilot matrix
\/ﬁIN}?&am. Specifically, the received signal model can be
formulated as

Y= \/ﬁ WgIBWII;IFHCOn‘fRFfBBINg?m + W, (10)

where, in Equation 10, W denotes the additive noise matrix. To
facilitate channel estimation, the received signal matrix Y must be

vectorised. After applying the property
vec (ABC) = (CT ® A)vec (B), the received signal can be
expressed as

y =vec(Y) = \VPZh +w, (11)

where, in Equation 11,y € CN& Ni&"<! s the vectorised received signal,
NraNgyxl

heff = VeC(Hcorr) = (R”l[‘/)Z(T ® R[l{/)z() (A'FX ® ARX)hIa e Crr Rix >
h;, = vec(Hp) represents the beamspace channel vector, and Z =
Be:lmNg(;‘(‘Im

FLFr ® WeWeg € CVrx
The vectorised noise, w = vec(W), follows a Gaussian-Bernoulli

“NixNtxjs the sensing matrix.

distribution, reflecting the characteristics of impulsive noise (Selim
et al., 2020b). Its probability density function (PDF) of n follows a
bimodal Gaussian distribution, as

pw) = (1= p)N(0,0,) + pN (0,Tay,), (12)

where, Equation 12, A (u, 02) represents a normal distribution
with mean y and variance ¢*. The parameters p and I' define the
characteristics of the impulsive noise model, where T represents the
noise variance scaling factor and p indicates the probability of
encountering the high-variance noise component.

3 Review of hyperparameter-free MCC

Information theoretic learning (ITL)-based adaptive signal
processing methods are viable for generic signal processing over
scenarios impaired by non-Gaussian additive distortions (Chen
et al, 2013). In the context of hyperparameter-free ITL-based
channel estimation over impulsive noise, this section first reviews
two recent ITL-based strategies among the existing research: the
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recently proposed MCC and the hyperparameter-free MCC. In
further sections, the convergence of the hyperparameter-free
MCC is analysed.

3.1 Review of MCC-based channel
estimation

In this section, we review a channel estimation method based on
MCC derived in Kumar et al. (2024). We denote the auto-covariance
matrix C as C = E{ZH (n)Z(n)} € C%C" and the cross-covariance
vector bas b = IE{ZH (n)y(n)} € C%!. The error term e is defined
as e(n)=b-Chy(n). The MCC-based
formulated as

cost function is

N
Juce (n) = E{ Z exp (—yle” (n)?) } (13)

where the parameter y serves as the hyperparameter for the
MCC criterion and is typically determined using various heuristic
approaches. By applying the steepest descent method to Equation
13, the update equation for the MCC algorithm is derived as
fl:) (n+1) = ﬁ:) (n) +pexp(—ple® M) e (n),  (14)
where, in Equation 14, u denotes the step size. The MCC method
is resilient to non-Gaussian noise by approximating R-nyi’s « order
information potential. Nonetheless, the performance of MCC
mostly relies on the “best value,” p, which is chosen via heuristic
techniques. We next propose a hyperparameter-free variation of
MCC to overcome this restriction.

3.2 Review of hyperparameter-free MCC-
based channel estimation

In this review the
hyperparameter-free MCC (Kumar et al,, 2024). We first form a

section, we recently formulated

vector 1(n) as
1(n) = C(n)h, (n).

Then in (Equation 14), RFF mapping approximates the exponential
term of the MCC cost function (Mitra et al., 2021):

exp (~yle??) = o(b?)" ©(1?), (15)

where, in Equation 15, ®(.) is the hyperparameter-free RFF
mapping derived in Mitra et al. (2022), which can be provided as
cos( i/ [RIx"S ("] +b:)
(0] (X) = i : >
ng r . T
cos( o, RIS xI"] 4 by, )

(16)

where, in Equation 16, § ~ N (0,1,) and b; ~ U [0, 27] where
Ula,b] signifies a uniform distribution inside the closed interval
[a,b]. The kernel parameters h; for each term are drawn from a
Gamma distribution, h; ~ T'(a;, ;). The parameters a; and f; are
determined as per Mitra et al. (2021).
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€

a = %, B; (17)

8mla;

Notably, in Equation 17, & and f; are not considered
hyperparameters as they are determined using explicit formulae
(Mitra et al, 2021). Additionally, the

approximation error decreases with increasing ng (Rahimi and

for initialisation

Recht, 2007), so ng is also not a hyperparameter. We rewrite the
adaptive equation for hyperparameter-free MCC using this mapping
as follows:

0 =8 410 () @) . 19

where, in Equation 18, y denotes the step size. The next section
provides a detailed convergence analysis of the hyperparameter-free
MCC algorithm.

4 Derivation of convergence analysis

This section contributes to the theoretical analysis of the
steady-state behaviour of the hyperparameter-free MCC-based
channel-estimation algorithm for mmWave MIMO. The energy
conservation analysis relation is widely applied to convergence
analysis in adaptive filtering theory. We denote &(n) = 2Ch (1) =
YiqAiq h(n) as the estimation error, q, denote the i
eigenvector, and A; signify the i eigenvalue of C. In this
context, fl(n) =h, —fl(n) indicates the error vector in the it"
iteration, with h, denoting the optimal value of h. The i/ tuple
of the weight vector ﬁ(l)(n) is updated using Equation 18 as
follows, and after subtracting the true parameter vector h, both
sides, we can then represent the following update equation:

b, (n+1) =hy (M +u0®?) 1) (), (19
0 (c0)-1

where, in Equation 19, ®(-) denotes the random-feature
mapping, y is the step size, and ® represents the random-feature
inner product approximating the kernel function exp (—yle(i) )%
(Mitra et al.,, 2021). Subtracting h, from both sides of 19 gives the
weight error update equation

87+ 1) =027 () - (&9 (n) + w) - 09 (m), (20)

where w denotes the noise component and e (n) = )L,-fl(l) (n).

4.1 Step-size range for convergence

To ensure convergence of the iterative process, the squared

norm of the wupdated Equation 20 must satisfy the
following condition:
~ (i ~ (i 2)2 .
0 (n+ 1) = |h”(n)|2<1 +E a0 (n)>
11 + 1ot o
) .

For convergence, it is necessary that
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212

0<<1 + %—2#&0(” (H)) <1,

which ensures that the update reduces the weight error over time.
Simplifying this inequality yields leads to Equation 22 below:

2\ , 8@t
0<%<2,u)t,-®") (n), 0<p<— ()

. (22)

To guarantee convergence for all modes of the system, we
consider the most restrictive case by using the maximum
eigenvalue A, resulting in the general stability bound:

8e®
O<p< I (23)

max

where, in Equation 23, Ap,y is the maximum eigenvalue of the
system. This condition ensures stability and prevents divergence
during the learning process. To incorporate the stochastic behaviour
of ®, we assume the error sequence e to be monotonically decreasing
for a given step-size range and denote the value of its first element as
M such that 02 < M. Under this assumption, the bounds on E[©]
are given by

1
1+y M

o

<E[®]<]1, (24)

where, in Equation 24, y, is the optimal kernel-width parameter as
defined in Mitra et al. (2021). Accordingly, the rectified step-size
range ensuring mean-square stability, based on the 30 spread of e,
can be expressed as below in Equation 25:

8 1 | 1 1
0 — -3 - .
S e (VT M (U M) 142y, M

(25)

In the context of the MCC criterion using y,, we invoke an
instantaneous “rough” approximation for regular data and
outliers (demarcated by the variable &):

ifle| <&,
if le] > €.

@ =exp(-y,e’) ~ 1,

©~0 (26)

Since most of the adaptations are from regular data (due to
the inherent outlier-suppressing capacity of MCC), the
transient response is governed by y M « 1. This yields the
following simplified range for the step-size y as seen from
Equation 26:

O<u< 8 8 (27)

max

since E[@®] - 1 and Var[®@?] — 0 for y,M <« 1 as concluded
from (Equation 25). This formulation provides a statistically robust
condition for mean-square stability, even under impulsive noise
environments.

4.2 Steady-state behaviour

. r (i
At steady state (n — 00), the weight vector h ) (00) converges
to a constant value, and the update term becomes negligible.
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Mathematically, this implies l~1(i) (n+1) = fl(i) (n) the squared norm
of h(l) (00) satisfies

(28)

~ (i ) 292 5 B ) 5
|h()(00)|2<2;4)ti®(’) (c0) - A, ) _#[(1-pay, + proy]

4 4

Dividing both sides of F&uation 28 by (Z;M,-@(” (00) — @) gives
Equation 21, isolating |h (c0)]%.

¥ [(1-p)a+pray, ]

~ (i)
Ih" (co)l* = e
(ZyAiG(’) (0c0) — HT)

(29)

From Equation 29, the mean squared deviation (MSD), which
quantifies the steady-state error, is given by

(l—p)uﬁﬁpruﬁ,

# 4
Bli - ‘LIAIZ

(l—p)aﬁﬁpraﬁ,
4

MsD=Y
vi 21,00 (00) -

i ’ (30)
e Vi

where covariance matrix C is characterised by the eigenvalues
{A;}, which directly influence both the convergence condition and
the steady-state MSD, as reflected in the derived analytical
expressions.

In the next section, we validate Equation 30 through
computer simulations assuming practical mmWave MIMO
channels. From the above analysis, we can conclude the
following salient points.

o From our analysis, it is guaranteed that the proposed
algorithm approaches the converged MSD in (Equation
30) without depending on hyperparameters specific to
noise statistics.

o We are aware of the performance analysis of MCC variants,
either with variable spread factor or using rules of thumb (Ma
et al,, 2015). In this context, our contribution/analysis is novel
as we do not depend on accurate spread factor initialisations in
our formulation/convergence analysis; rather, we sample it
according to I'[a, ff].

It is noteworthy that a, § themselves are not hyperparameters, as
they are explicit formulae to initialise them (Mitra et al., 2021).
Furthermore, the approximation error monotonously decreases
with an increase in ng (Rahimi and Recht, 2007); thus, ng is also
not a hyperparameter.

5 Simulation results

This section validates the convergence analysis of the
proposed hyperparameter-free MCC method for mmWave
MIMO channel estimation. We run the simulations under
various signal-to-noise ratio (SNR) levels and MIMO orders to
robustness  of

assess  the and

hyperparameter-free MCC and to validate the convergence

accuracy, generality,
analysis. The simulation setup consists of an mmWave MIMO
system with N = 8 RF chains, Nyx = 32 transmit antennas, and
Nrx = 32 receive antennas, as well as an extended case with
Nrx = 64 transmit antennas and Ny = 64 receive antennas. The
channel is distinguished as a narrowband geometric channel with
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FIGURE 1

MSE vs. iterations for MCC and hyperparameter-free MCC
(32 x 32 MIMO, Ngr =8,N =2,p =0.1,and T = 10); step size y = 0.003
lies within the analytical bound (Equation 27).
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FIGURE 2
MSE vs. iterations for MCC and hyperparameter-free MCC

(64 X 64 MIMO, Nge =8, N=2, p=0.1, and T = 10); step size u =
0.003 lies within the analytical bound (Equation 27).

N =2 scatterers where the AoA and the AoD are evenly
distributed in the interval [0,7). As described in Section 2, the
noise is expressed as a bimodal Gaussian distribution whereby
the probability p of meeting high-variance noise components
changes across several situations.

5.1 MSE vs. iterations for different uy, p, N,
and I'

In the first scenario, we examine a situation with a high
probability of high-variance noise (p =0.1) together with a
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MSE vs. iterations for MCC and hyperparameter-free MCC
(32 x 32 MIMO, Ngr =8, N=2, p=0.01, and T = 100); step size u =
0.007 lies within the analytical bound (Equation 27).
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MSE vs. iterations for MCC and hyperparameter-free MCC
(64 X 64 MIMO, Ngr =8, N=2, p=0.01, and T = 100); step size p =
0.007 lies within the analytical bound (Equation 27).

modest noise variance scaling factor (I =10) (Selim et al,
2020b). Figures 1, 2 illustrate the relationship between MSE
and the number of iterations at SNR levels of 20 dB, 25 dB,
and 30 dB for both 32 x 32 and 64 x 64 MIMO configurations.
The results show that, with rising SNR, the proposed
hyperparameter-free MCC method approaches an MSE close
to the noise floor given by (30). Furthermore, there is
substantial agreement between the analytical and the
simulated MSE in the high SNR regime, which reinforces the
analytical results presented in the previous section.
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(64 x 64 MIMO, Ngr =8, N =4, p=0.01, and T = 100); step size p =
0.007 lies within the analytical bound (Equation 27).
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MSE vs. iterations for MCC and hyperparameter-free MCC

(64 x 64 MIMO, Ngr =8, N=5, p=0.01, and I = 100); step size py =
0.007 lies within the analytical bound (Equation 27).

Consequently, in Figures 3, 4 we investigate the settings of
Scenario 2 for (p =0.01) and T = 100. Figures 3, 4 display the
MSE vs. iterations for SNR levels of 20 dB, 25 dB, and 30 dB for both
32 x 32 and 64 x 64 MIMO configurations. Once again, as in Figures
1, 2, we observe the achievement of hyperparameter-free MCC to the
analytical noise floor in (Equation 30).

In Scenario 3, Figures 4-6 analyse the effect of channel sparsity
on the analytical MSE bound by varying the number of propagation
paths as N = {2, 4, 5} while maintaining the same angular spread.
The results indicate that as the number of paths increases
(i.e., sparsity decreases), the steady-state MSE remains nearly
constant, validating the robustness of the analytical bound under
different sparsity levels. Furthermore, we examine the impact of the
step-size parameter on convergence behaviour in Figure 7, which
presents the MSE versus iteration performance for step sizes chosen
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MSE vs. SNR for MCC and hyperparameter-free MCC (32 x 32

MIMO, Ngr = 8,and N = 2); step size p = 0.003 lies within the analytical
bound (Equation 27).

within the bound, near the boundary, and outside the bound as
defined by the analytical condition in (Equation 27). The results
clearly demonstrate that the algorithm converges smoothly when y
lies within the derived range, exhibits marginal stability near the
boundary, and diverges when p exceeds the upper limit, thereby
confirming the validity of the theoretical step-size stability criterion.'
In summary, the effectiveness of the suggested analysis is underlined
by the close agreement between the simulated and analytical error
floor, enforcing the generality of these results.

1 We have noticed this trend for various values of p,T, N, which we do not

show in this manuscript for conciseness of presentation.
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MSE vs. SNR for MCC and hyperparameter-free MCC (32 x 32
MIMO, Ngr = 8,and N = 2); step size p = 0.003 lies within the analytical
bound (Equation 27).
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FIGURE 10

MSE vs. SNR for MCC and hyperparameter-free MCC (32 x 32
MIMO, Ngr = 8, and N = 2); step size py = 0.007 lies within the analytical
bound (Equation 27).

5.2 MSE vs. SNR for different (u)

For u = 0.003, Figures 8, 9 show the MSE performance. Figures
8,9 reveal that the MSE falls as the SNR rises. Particularly at reduced
SNRs, the figures for various gamma values (I' = 10, 50, 100) indicate
that at low/moderate SNR, the hyperparameter-free MCC achieves
improved performance compared to the derived bound in Equation
30. This artefact is clearly visible as we vary (p = 0.1,0.05,0.01) and
change y = 0.007 in Figures 10, 11. The close match of the analytical
MSE with the simulated MSE at high SNR regime validates the
theoretical analytical result in (Equation 30) (in other words,
(Equation 30) is a max-entropy upper bound for a given
covariance ((1 - p)o2, + pI'e? (Cover and Thomas, 1991)).
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MSE vs. SNR for MCC and hyperparameter-free MCC (64 X 64
MIMO, Ngr = 8,and N = 2); step size p = 0.007 lies within the analytical
bound (Equation 27).

6 Conclusion

This paper analyses the convergence of hyperparameter-free
MCC techniques for channel estimation for mmWave MIMO
systems. Using computer simulations and convergence analysis,
the hyperparameter-free MCC is found to be a better channel
estimation technique for next-generation communications with
This
hyperparameter-free MCC a promising solution for channel

impairments due to impulsive noise. makes the

estimation over practical mmWave MIMO deployments.
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