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During cardiac arrhythmia, the heart frequency is an important physiological
parameter that can be identified by analyzing electrocardiogram (ECG) signals.
However, the accuracy of the frequency estimation becomes increasingly
challenging as the ECG morphology becomes more complex, for example,
during transitions from tachycardia to fibrillation. In this paper, the authors
compare seven conventional and novel time- and frequency-domain
methods for cardiac arrhythmia frequency analysis, including an algorithm
used in implantable cardioverter defibrillators. The objective of this study is to
identify the approaches that reveal the potential presence of a dominant
frequency and its role in characterizing different arrhythmia types. By
evaluating the strengths and weaknesses of each method, the authors aim to
establish an informative framework for extracting meaningful insights from
electrocardiogram data in the context of cardiac arrhythmia frequency. In
order to ascertain the statistical relevance of the methods, a dataset
comprising 112 ECGs from arrhythmic murine hearts was analyzed.
Additionally, a dataset comprising human arrhythmia data was examined to
validate the techniques presented. The R-library, which contains the
frequency determination algorithms, as well as the murine data set, is made
available to the reader for the purposes of further testing and supplementation.
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1 Introduction

The electrocardiogram (ECG) has been a fundamental tool in the understanding of
cardiac electrophysiology for over a century. However, despite significant technical
advances, the mechanisms initiating and sustaining cardiac arrhythmia remain to be
elucidated. A hallmark of the ECG that differentiates normal sinus rhythm from life-
threatening ventricular tachyarrhythmias is the heart rate (or heart frequency), which
inversely correlates with the cardiac oscillation period or cycle length (CL). As a critical
clinical marker, heart rate monitoring has become essential for diagnosing and managing
cardiac diseases, particularly in identifying pathological rhythms that require immediate
therapeutic intervention. In this regard, the development of algorithms to automatically
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detect heart rate, along with their subsequent integration into
implantable cardioverter-defibrillators (ICDs) and automated
external defibrillators (AEDs), has significantly improved early
detection and treatment of dangerous rhythms, such as
ventricular tachycardia (VT) and ventricular fibrillation (VF)
(Moss et al. (1996), Moss et al. (2002); Weisfeldt et al. (2010)).

The development of ECG mapping technologies (Cakulev et al.,
2021) and optical mapping of intact hearts (George and Efimov,
2019) has significantly contributed to the understanding of
ventricular tachyarrhythmia mechanisms. Optical mapping has
demonstrated that spiral-like activation waves are a primary
driver of ventricular arrhythmia (Gray et al., 1995b), whereas
ECG mapping has revealed re-entrant circuits as a potential
source of VT (Kastor et al., 1972). The combination of these
techniques has enabled the correlation of ECG patterns with
arrhythmia mechanisms, providing a more comprehensive
understanding of the underlying processes. Specifically, studies
have shown that the anchoring of a single spiral wave to a
anatomical or functional heterogeneity can give rise to
monomorphic ventricular tachycardia (mVT) as demonstrated by
Annoni et al. (2017), while the deviation of spirals within the
myocardial substrate can lead to the distinctive morphology of
polymorphic ventricular tachycardia (pVT), which is
characterized by a complex and irregular ECG pattern of
activation (Gray et al., 1995a). Furthermore, ventricular
fibrillation (VF) is marked by a chaotic and disorganized ECG
pattern, originated from multiple, rapidly drifting spiral waves
(Jalife and Gray, 1996).

Early research employed the Fast Fourier Transform (FFT) to
analyze the frequency components of ECG signals during
arrhythmia. This analysis revealed that different arrhythmia
morphologies are associated with distinct frequency spectra
(Nolle et al., 1980; Kinoshita et al., 1992; Clayton et al., 1993). In
particular, multiple peaks in the frequency-domain representation
of ECG signals have been identified, which are linked to the presence
of multiple spiral waves with varying rotation periods (Pandit and
Jalife, 2013). This finding suggests that the frequency components of
ECG signals can provide valuable information about the underlying
mechanisms of arrhythmia.

The determination of arrhythmia frequency also known as
dominant frequency has gained significant importance for
therapeutic approaches, as studies have shown that delivering
multiple low-energy shocks within a specific time frame relative
to the arrhythmia frequency increases the likelihood of successful
defibrillation (Li et al., 2009; Ambrosi et al., 2011). One approach
that leverages this concept and is already employed in clinical
settings is Anti-tachycardia Pacing (ATP). ATP involves
delivering low-voltage pulses at a frequency higher than the
detected heart rate, a technique known as overdrive pacing.
While ATP is often successful in terminating VT, its effectiveness
is limited in the case of VF (Ricci et al., 2001; Maria et al., 2017).
Conversely, other studies have demonstrated that far-field low-
energy overdrive pacing is an effective strategy for the
termination of atrial fibrillation (AF) and VF (Fenton et al., 2009;
Luther et al., 2011; Ji et al., 2017; Hornung et al., 2017).

In the light of the importance of determining the cardiac
frequency of arrhythmia, for both diagnostic and therapeutic
purposes, we have developed an open-source platform for

interspecies ECG arrhythmia frequency analysis. This platform,
implemented in an R-library (Wickham and Bryan, 2023),
provides a flexible and user-friendly tool for researchers to
analyze ECG data. The R-library FibFreq includes three
frequency-domain approaches: (i) the well-established maximum
of the power spectrum, herein referred to as the maximum of the
periodogram (MaxP); (ii) a method to estimate the spectrum via the
correlation function, called Adaptive Variable Period (AVP), which
is a faster version of the algorithm presented by Diaz-Maue and
Nobach (2022); and (iii) a spectrum-fitting method using a Lorentz
distribution (Lorentz), as presented in Diaz-Maue et al. (2022). In
addition, time-domain approaches included in the R-Library
encompass the following methods: (iv) a sinus fit to the time
series (SinFit); (v) distance analysis between succeeding peaks
(M2M); (vi) a zero-crossing algorithm (UZC), both of which can
be considered as CL estimators; and (vii) the Biotronik heart rate
analysis algorithm (ICD) as outlined in Brüggemann et al. (2016).
The authors also provide the dataset utilized for the analysis of
arrhythmia, allowing for further examination by interested
researchers.

2 Experimental data set

2.1 Mouse data

The first dataset utilized in this study was obtained from a series
of experiments conducted on intact hearts from transgenic mouse
containing the Channel Rhodopsin-2 (ChR2) encoding gene. The
light-sensitive ion channel, ChR2, is expressed exclusively in cardiac
tissue and it enables the elicitation of action potentials through the
use of light at an appropriate wavelength. In comparison to wildtype
mice of the same background, this model exhibited normal electrical
propagation throughout the cardiac tissue (Zaglia et al., 2015). The
induction of arrhythmia was achieved through the delivery of a rapid
series of optical stimuli by an external blue light source as
demonstrated in Diaz-Maue et al. (2022). For this analysis, a
subset of seven adult mice, aged between 91 and 113 weeks,
was selected.

Single-Lead epicardial electrograms were recorded using a
surface electrode positioned at the center of the left ventricle
and a reference electrode placed in close proximity to the wall
of the perfusion reservoir as shown in Figure 1. The acquisition
system is equipped with a low-pass hardware filter with a corner
frequency fLPhw � 35Hz and a high-pass filter with a corner
frequency fHPhw � 0.5Hz. The data set provided in this paper
encompasses Narr � 112 ECG signals, each containing one second
of arrhythmia, sampled at a frequency fs � 1 kHz. In order to
eliminate the power line hum (50 Hz) the ECG time series
underwent digital low-pass filtering with a fifth-order
Butterworth filter with a cutoff frequency of fLPsw � 45Hz (van
Boxtel et al., 2021).

In consideration of the potential loss of information during
signal processing, the preprocessing steps were kept to a minimum.
Hence, no windowing function was used, however, to ensure the
comparability of ECGs, the signal mean was subtracted to eliminate
direct current (DC) components. This step is necessary to account
for any DC offset that may be present in the ECG signals. Four
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examples of the examined mice data are shown in Figure 2, these are
ordered from very regular (top) to irregular (bottom).

2.2 Human data

Three cases of human ventricular arrhythmia were retrieved
from record 420 (VT), 418 (Ventricular flutter (VFlu)) and 422 (VF)
of the MIT-BIH-malignant-ventricular-ectopy-database-1.0.0. For
detailed information, please refer to Moody and Mark (2001) and
Greenwald (1986). The ECG signals were digitized with a 12-bit
Analog-to-Digital Converter (ADC) with a voltage resolution of
200 adu/mV (analog-digital-unit (adu)) and a sampling frequency of
fs � 250Hz. The subsequent analysis was conducted using the
R-Library on recording ECG:0 (see Figure 3). To prepare the
data for further processing, the mean value of the ECG was
subtracted. Subsequently, possible power line interferences were
filtered using a low-pass fifth-order Butterworth filter with a
corner frequency of fLPhum � 20Hz. The removal of all
frequency components with a frequency lower than
fHPhum � 0.5Hz, including baseline wander, was achieved
through the application of inverse Fourier filtering. The presence
of movement artifacts was not detected in the extracted segments.
However, these issues can be effectively mitigated by using Fourier
filtering method as previously outlined.

3 Signal processing methods

We will examine seven techniques for determining arrhythmia
frequency, distinguishing between frequency-domain and time-
domain. In the frequency-domain, we will discuss the Maximum
of the periodogram, the Lorentz fit to the amplitude spectrum and
the Adaptive Variable Period. In addition, we will consider time-
domain methods, including the Sinus Fit to the time series, the
Average Maximum to Maximum Distance, the Average Distance
between upward Zero-Crossings and an algorithm
implemented in ICDs.

The following notations will be applied: the ECG time series xj,
where j � 1, . . . , N with xj representing the ECG at time tj � j · Δ.
The sampling interval is denoted by Δ and the number of time series

elements by N. For the mouse data, the number of time series
elements is N � 1000 and the sampling frequency fs is
1,000 samples per second, corresponding to a sampling interval
of Δ � 1/fs � 1ms; Each human ECG time series comprises N �
1250 data points and is sampled at a frequency of fs � 250Hz which
corresponds to a sampling interval of Δ � 4ms and an observational
interval of 5 s.

3.1 Frequency-domain methods for the
estimation of the arrhythmia frequency

The conversion of a time series into the frequency-domain can
provide a more comprehensive insight into the prominent
frequencies present. Therefore, the analysis of the frequency
content by estimating the power spectrum has become a wide-
spread method. However, it is essential to note that there are
multiple estimators of the power spectrum, which exhibit varying
degrees of estimation error and frequency resolution. In this section,
three methods for the estimation of the frequency spectrum and the
identification of a dominant frequency are presented.

3.1.1 Maximum of periodogram (MaxP)
The simplest estimator of the power spectrum is based on the

discrete Fourier transform (DFT)

Xk � ∑N
j�1

xje
−2πijkN (1)

of the signal xj, j � 1, . . . , N, which can be computed with
fast algorithms, such as the Cooley–Tukey algorithm for FFT
(Cooley and Tukey, 1965).

For real valued time series such as the ECG signals considered in
this study, the entire power spectrum P(fk) is symmetric. Provided
that the signal has no DC component and also no contributions at
half the sampling frequency fs � 1/Δ, it is sufficient to consider the
one-sided spectrum with the frequencies fk � k · fs/N, k �
1, . . . , N/2 − 1 only. That leads to the factor two in the
numerator of the full-scale periodogram

P fk( ) � 2
N2

|Xk|2, (2)

FIGURE 1
The ECG signal from Langendorff-perfused intact mouse hearts was measured using a surface electrode positioned on the left ventricle of the heart
and a reference electrode located near to the reservoir wall. The ECG signal was then amplified and digitized with an acquisition system.
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which is calculated using the squared modulus of the DFT. Then the
sum over the values of the power spectrum ∑P(fk), k �
1, . . . , N/2 − 1 equals the variance of the signal σ2.

If the considered time series can be modeled as a superposition
of harmonic functions from these frequencies fk, then the frequency
fmax that corresponds to the maximum of the power spectrum is the
dominant frequency of the arrhythmia.

In this paper, the fraction of explained variance, denoted by ρ2

will be used as a measure for the goodness of the dominant
frequency estimation and is defined as:

ρ2 � P fmax( )/σ2x � P fmax( )/∑P fk( ) (3)

Where P(fmax) is the power at the dominant frequency. Values of ρ2

close to 1 indicate a good description of the signal, while small values
suggest problems with the concept of dominant frequency for the
considered signal.

The periodogram approach is known to have limitations, such as
spectral leakage and false estimates, particularly in the presence of
trends, non-sinusoidal components, or frequencies that are not
multiples of the fundamental frequency f1. As illustrated in
Figure 4A, the amplitude spectrum of an ECG signal obtained
with the FFT may exhibit multiple frequency peaks, some of
which are attributable to the leakage effect. Despite these

constraints, the periodogram remains a widely used method for
dominant frequency estimation, and it serves as a useful point of
reference for comparison in this study.

3.1.2 Adaptive variable period (AVP)
The leakage of the FFT routine is specifically addressed by this

estimation method. In instances where the signal duration does not
correspond to an exact integer multiple of the fundamental period of
the periodic signal investigated, the FFT spectrum will be sampled at
frequencies that do not align with the fundamental frequency to
be detected.

In order to mitigate this issue, the measured signal can be
shortened by a certain number of samples, and the FFT from the
shorter sequence can be calculated. In the event that the duration of
the shorter sequence becomes a integer multiple of the fundamental
period, the peak in the FFT spectrum will stand out from the other
values in the spectrum and the peaks in all other spectra with wrong
assumptions of the duration, making it easier to identify one
dominant frequency.

The AVP method essentially investigates how good an assumed
fundamental period of the signal matches the observed data. Unlike
the approach described above, the AVP does not require discarding
any samples by shortening the sequence.

FIGURE 2
ECG signals of arrhythmic mouse hearts are displayed in increasing complexity from the top to the bottom. Figure created using the ggplot2 library
of R (Wickham et al. (2019).
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To this end, first the correlation function Rk, k � 0 . . .p − 1 is
derived using the entire sequence withN values, where a p samples
long period, shorter than N, can be assumed in the calculation. In
essence, for each k between 0 and p − 1, all pairs of values xi and xj

that have the appropriate distance k are considered, under the
assumption, the signal would be periodic with a period of p.
Formally, this can be expressed in the following way, where the
indices i and j comply with (j − i − k) ≡ 0modp, if they have the
correct distance.

Rk � 1
Nk

∑N
i�1

∑N
j�1

δ d( )xixj (4)

with

Nk � ∑N
i�1

∑N
j�1

δ d( ) (5)

and

d � j − i − k( ) mod p (6)
and with the discrete Dirac function δ(d) being one if the argument
d is zero and being zero otherwise.

For each assumed period p � 1 . . .N, a corresponding
correlation function Rk is derived with k � 0 . . .p − 1 as
described above. Then, a Fourier transform is applied resulting in
a power spectrum that corresponds to the specific p chosen.

The spectral peaks are identified and the maximum peak is
obtained among all p values investigated. In order to perform a

quantitative comparison of the peak heights between the spectra for
the various values of p, an additional scaling factor is applied to the
spectra. Specifically, all spectra are multiplied by their period length
p, prior to identifying the final maximum fAVP among the
various spectra.

Figure 4B illustrates for three different values p (solid yellow,
solid green and dashed gray), how good a periodic continuation of a
p steps long sequence fits the measured data. Yellow and green
colored boundaries correspond to a bad choice of the sequence
length, while dashed gray color corresponds to a better choice.

The concept of explained variance (see Equation 3) is applied to
quantify the goodness of fit of the dominant frequency, as previously
described for the MaxP algorithm.

3.1.3 Lorentz fit to the amplitude
spectrum (Lorentz)

The two aforementioned methods aim to identify the frequency
with the greatest power within the estimated power spectra.
However, in the context of complex arrhythmia, there may be
multiple frequencies that correspond to the movement of
different rotors around the heart, making it challenging to
identify a single dominant frequency. To address this issue, the
authors propose a methodology that examines the trend of the data
rather than attempting to describe the arrhythmia with a single
frequency. This approach involves fitting a model spectrum to the
calculated amplitude spectrum. In order to achieve this, a model that
accurately reflects the overall trend of the data is necessary, aligning
closely to the peaks obtained from the FFT. The Gaussian, Lorentz,

FIGURE 3
The ECG signals of human origin presented in this study exemplify three instances of ventricular tachyarrhythmia retrieved from the MIT-BIH-
malignant-ventricular-ectopy-database-1.0.0 (Moody and Mark, 2001; Greenwald, 1986), each exhibiting unique characteristics. Figure created using
the ggplot2 library of R (Wickham et al. (2019).

Frontiers in Signal Processing frontiersin.org05

Diaz-Maue et al. 10.3389/frsip.2025.1707422

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1707422


and Voigt functions are useful for modeling spectra, with the Voigt
function being the result of convolving a Gaussian and a Lorentz
function. In this study, the Lorentz function is applied because of its
ability to generate a pronounced peak at the center and elongated
wings, allowing for the inclusion of frequencies with diminished
amplitude in the fitting process. The Lorentz model is defined as:

f |Xk|, A, μL, σL( ) � A

π

σL

|Xk| − μL( )2 + σ2L
( ) (7)

where |Xk| is the amplitude spectrum from the ECG and represents
the data to be fitted, A the amplitude of the fitted peak μL, the center
position of the peak and σL, the half-width at half-maximum
(HWHM). Having defined the model function, the next step is to
utilize the non-linear least-squares method for curve fitting to |Xk|.
In order to promote a more rapid convergence of the algorithm,
initial estimates for the amplitude and center can be provided by
utilizing the peak power P(fmax) of the power spectrum and its
corresponding frequency.

The Lorentz model is fitted using the gslnls algorithm (Chau,
2025), and the estimated ECG dominant frequency is provided by
fLorentz � μL, as shown by the red dot in Figure 4A Additionally, the
width of the resulting Lorentz curve (σL) is related to the frequency
content of the ECG. In the case of VT, the curve is typically narrow
(small values of σL), whereas in the case of VF, it is usually broad
(large values of σL), as demonstrated in Diaz-Maue et al. (2022).

Similar to Equation 3, the explained variance of the Lorentz fit,
as a measure of the goodness of fit, is given by:

ρ2 � ∑
k

f2(|Xk|, A, μL, σL)/|Xk|2 (8)

This quantity ranges between 0 and 1, with values of ρ2L close to
1 indicating that the Lorentz function is a suitable model for the
spectrum of the ECG record under consideration.

3.2 Time-domain methods for the
estimation of arrhythmia frequency

In this section, the methods for estimating the frequency of
arrhythmia as the inverse of the obtained CL, which are included in
the R-Library, will be presented. These methodologies are based on
the morphological analysis of the recorded ECG waveform.

3.2.1 Sinus fit (SinFit)
As shown in Section 3.1.1, a given signal can be decomposed into

a sum of sine and cosine signals by converting it to the frequency-
domain using the FFT. Here, the investigated ECG time series is
modeled as a sinusoidal function:

f t, a0, a1, a2, a3( ) � a0 + a1 · sin 2πa2t + a3( ) (9)
where a0 represents an offset, a1 the amplitude of the ECG, a2 the
modeled frequency and a3 the phase shift. For each test frequency
a2, the parameters a0, a1 and a3 are optimized by linear regression,
i.e., by minimizing the squared distance between the ECG signal and
the sinusoidal model (see Equation 9). The frequency a2 that
corresponds to the maximum explained variance ρ2 �
σ2(f(t, a0, a1, a2, a3))/σ2x (i.e., the time-domain representation of
Equation 3) is considered the best fitting frequency fSinFit with
respect to the chosen set of test frequencies.

For the analysis of the murine ECGs, the value of the frequency,
a2, can be constrained to 15 Hz < a2 < 40 Hz, as this arrhythmia
frequency interval has been previously observed in the mouse heart
(Kass et al., 1998; Betsuyaku et al., 2004). In contrast, the frequency
range for frequency analysis of the human arrhythmia is 2 Hz < a2 <
7 Hz. In the case of quasi-sinusoidal-shaped ECGs, the explained
variance is ρ2 � 1. Moreover, if the test frequencies a2 are equal to

FIGURE 4
Illustration of seven techniques for estimating the arrhythmia
frequency: (A) Spectral Techniques: maximum of the periodogram
(blue curve) at fMaxP (blue dashed vertical line) and maximum of the
Lorentz fit to the Fourier amplitudes at fLorentz (red dashed vertical
line). (B) Adaptive Variable Period (AVP) technique: shown are the ECG
(blue curve) and three periods (indicated by vertical lines of different
colors). The period that corresponds to the grey dashed vertical lines
matches best the oscillation. (C) Time-domain techniques: shown is
the ECG (blue curve) and (i) the best fitting sinusoidal model (light blue
thick line), (ii) the maxima identified by the sensing algorithm
implemented in ICDs (beige squares), (iii) the maxima identified by the
M2M algorithm (green filled circles) and (iv) upward zero-crossings
(ocher filled triangles) of the filtered ECG. Figure created using the
ggplot2 library of R (Wickham et al., 2019).
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the frequencies obtained from the MaxP algortihm, the best fitting
frequency fSinFit coincides with the frequency that corresponds to
the maximum of the periodogram.

3.2.2 Average Distance between upward zero-
crossings (UZC)

Another intuitive frequency estimation method is based on the
analysis of upward (or downward respectively) zero-crossings. Since
the signal pre-processing includes mean value subtraction there are
multiple zero-crossings. We identify the time points of upward zero-
crossings tn1, tn2, . . . tnk (illustrated as ocher-colored filled triangles in
Figure 4C). These correspond to return intervals Ti � tni+1 − tni. In
the case of a periodic signal with a frequency f, these return intervals
are equal to 1/f. In the more general case of irregular oscillations the
frequency estimator can be expressed as the inverse of the average
return interval:

fUZC � 1
k − 1

∑k−1
i�1

Ti
⎛⎝ ⎞⎠−1

(10)

In contrast to the SinFit method, this technique is applicable to a
broader range of non-sinusoidal and periodic signals. However,
challenges may arise when dealing with polymorphic
tachyarrhythmia that are modeled as superpositions of periodic
signals. To quantify the uncertainty associated with this method, the
coefficient of variation cv for the intervals between upward zero-
crossings is suggested

cv � σ T( )/μ T( ) (11)
with σ(T) being the standard deviation and μ(T) being the mean of
the return intervals. Small values of cv indicate that the time series
has a dominant frequency.

3.2.3 Average Maximum-to-Maximum
Distance (M2M)

The arrhythmia time series can be considered as a smooth and
oscillating signal, and therefore, the local maxima (or minima,
respectively) tn1, tn2, . . . tnk and the resulting return intervals Ti �
tni+1 − tni, i � 1, . . . , k − 1 can be identified with peak finding
algorithms (illustrated as green filled circles in Figure 4C). In this
study, the peaks routine of the R-library splus2R (Constantine and
Hesterberg, 2024), was applied with the parameters (span=11,
strict=TRUE, endbehavior=0). In the context of a
sinusoidal signal with frequency f, these maxima are equidistant,
with a distance of 1/f.

Consequently the inverse value of the average temporal distance
between succeeding local maxima, fM2M, which equation is similar
to Equation 10, is defined as an additional estimator of arrhythmia
frequency. The coefficient of variation cv is also calculated as a
quantitative measure for the M2M uncertainty. In the presence of
irregular signals such as pVT or VF, cv will yield large values.

3.2.4 ICD algorithm (ICD)
In order to facilitate a comparison with a clinically utilized

algorithm, the authors implemented the sensing algorithm used by
Biotronik in ICDs (Brüggemann et al., 2016), and included it in the
provided R-Library. A notable advantage of this method is its
versatility, as it can be applied to both sinus rhythm and to

arrhythmia cases. The ICD algorithm similar to the M2M
method, is based on the determination of the maximum values of
the ECG. However, it constrains the maxima to those that have a
minimum distance to the preceding maximum and a maximum
height of at least a certain percentage of the height of this
preceding maximum.

As a brief description of the method, the algorithm involves the
use of distinct threshold levels, which are calibrated dynamically in
relation to the peak amplitude of the signal over predefined time
periods (refractory period). The local maximum of the ECG is
measured and employed to establish the upper and lower
thresholds. The upper threshold is initially set to 50% of the
detected peak and maintained for a specified refractory period.
Subsequent to this interval, the lower threshold is set to 25% of
the measured peak for an additional defined period. Subsequently,
the algorithm proceeds to decrease the sensing threshold by 12.5%
for the stipulated period. This process continues until either the
minimum threshold is reached or a new maximum value is
encountered. More details can be found in the original
publication by Brüggemann et al. (2016).

Similar to the M2M and UZC techniques the time intervals
between the identified maxima (illustrated as beige filled squares
in Figure 4C) will be determined and used to compute the
frequency fICD and its uncertainty cv. The strength of this
technique lies in the incorporation of a refractory period,
during which no maxima will be detected. Consequently, a
reduced number of identified maxima in complex arrhythmia
are observed in comparison to the M2M and UZC techniques,
resulting in a lower frequency fICD.

4 Benchmarks

A comparative analysis of seven distinct algorithms for
determining arrhythmia frequency was conducted in this work.
Three of the algorithms operate in the frequency-domain using
Fourier techniques, while the remaining four exploit the
morphological properties of the ECG in the time-domain.

In this section the statistical properties of the seven frequency
estimators will be studied by applying them to model data with well-
known properties. To this end, two sets of model time series have
been generated, one exhibiting regular and the other both regular
and irregular oscillations. To ensure the comparability of the model
data to the considered murine ECGs, the model data will contain
1,000 data points each.

The first class of model time series contains sinusoidal functions
with frequencies f in the range from 15.0Hz to 30.0Hz. The
evaluation of these data demonstrated that all seven techniques
achieved the expected result within the limits of accuracy of the
specific estimator, e.g., the MaxP technique will result in the integer
value closest to the frequency of the model time series. The explained
variances of the spectral techniques are equal to or close to 1.
Furthermore, the coefficients of variation for the time-domain
techniques are close to 0.

The second class of model time series encompasses regular and
irregular oscillations, which have been modeled as stochastic
oscillations (Gardiner, 2009; Pikovsky et al., 2003). Stochastic
oscillators are described by stochastic differential equations. In
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this instance, the following system has been integrated by applying
an Euler–Maruyama (Maruyama, 1955; Kloeden and Platen,
1992) scheme:

€x t( ) � −γ _x t( ) − ω2
0x t( ) + σζ t( ) (12)

with ω0 denoting the average angular frequency, σ the amplitude
of the stochastic force and γ the strength of the damping, which is
controlling the irregularity of the oscillation.

A total of 1,000 time series have been generated with a frequency
of f* � 22Hz, a noise amplitude σ � 1, and a uniformly distributed

FIGURE 5
Results of the seven frequency estimators applied to model time series with irregular oscillations. All time series have a frequency of f* � 22Hz. (A)
Boxplots vizualise results of the individual techniques: The frequency estimates are represented by gray dots. Each of the boxes gives the mean value
(diamond symbol), the median (horizontal line in middle of the box) as well as 25th and 75th percentiles of the estimated frequencies (upper and lower
edges of the box). Significance brackets present the results (adjusted p-values) of pairwise t-tests: * stands for p<0.05, ** for p<0.01, *** for
p<0.001 and **** for p<0.0001. (B) Pairwise comparison of the seven estimators of arrhythmia frequency: The histograms of the results of the seven
techniques are shown along the diagonal. Bland-Altman plots of pairwise arrhythmia frequency estimates are presented in the upper right triangular part
of the matrix and the Pearson correlation coefficients with their levels of statistical significance and their graphical representation are given in the lower
left triangular part. Figure created using the ggplot2 library of R (Wickham et al. (2019)
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γ value within the interval (0,15). The length of the time series length
was set to 1 s and the sampling frequency to fs � 1 kHz. Moreover,
to ensure optimal compatibility with the ECG data, the model data
underwent filtering using identical bandpass filter settings.
Depending on the value of γ, the oscillations may exhibit slight
or moderate irregularity, as shown in Supplementary Figure S1
(Supplementary Material), which presents three exemplary time
series for reference.

The frequency estimation results for the seven algorithms are
graphically presented in Figure 5, where panel A shows boxplots of
the estimated frequencies along with the results for the statistical
tests. Here, the median frequency (i.e., horizontal line inside the box)
of all estimators, with the exception of M2M, is found to be
approximately 22 Hz. The height of the boxes represents the
random error of the estimation techniques in terms of the inter-
quartile range, which is particularly large for the M2M and the ICD
estimator and small for the Lorentz fit. It is noteworthy that the
MaxP algorithm exhibits a coarser resolution, a consequence of the
spectral resolution attained with N � 1000 points.

A series of statistical tests (Fisher, 1925; Montgomery, 2017),
were applied to determine the significant differences between the
outcomes derived from the seven techniques. Initially, a repeated
measures analysis of variance (ANOVA) with a Greenhouse-Geisser
correction was conducted. This analysis indicated statistically
significant differences between the frequency estimators
(p< 10−4). Given the findings of the Shapiro–Wilk test, which
indicated violations of the normality assumption for all
estimators, a nonparametric Friedman test was performed as a
complement. This additional analysis yielded a value of p< 10−4,
thereby confirming the results of the ANOVA test.

Subsequently, pairwise t-tests with Bonferroni corrections were
conducted, to enable a comparison between the individual frequency
estimators. The results (see Figure 5A) demonstrated that the
spectral estimators, in conjunction with FitSin, did not differ
significantly from one another. However, a significant difference
was observed between the group of frequency-domain estimators
and FitSin, and the UZC, M2M, and ICD estimators. Additionally,
the latter three estimators were also found to be mutually distinct.
These findings were then corroborated by pairwise Wilcoxon
signed-rank tests.

The pairwise agreement between the estimators was visualized
using Bland-Altman plots (upper triangular matrix of Figure 5B).
Here, each scatter point represents the difference between the paired
measurements plotted against the average value derived from the
identical time series. The horizontal lines in each Bland-Altman plot
represent the mean and the 95% confidence intervals of the
differences (calculated as the 2.5th and the 97.5th percentile). In
the event that all points were situated along the x-axis, the two
considered techniques would exhibit a high degree of agreement.
With the exception of a few outliers, this is the case when a
comparison is made between AVP and FitSin. An offset in the
Bland-Altman plot is indicative of a systematic difference or fixed
bias between the considered techniques, as evidenced in all
comparisons to M2M.

Finally, the Pearson correlation coefficients for pairwise
techniques were calculated and are presented in the lower
triangular matrix of Figure 5, panel B. All correlation coefficients,
with the exception of the one between M2M and ICD, are

determined to be significantly positive (p-values based on
bootstrapping).

Large correlation coefficients between the spectral estimators
indicate that they result in higher (or lower, respectively) than
average frequencies when applied to the same model time series.
In contrast, small correlation coefficients are indicative of more
independent frequency estimation results, as evidenced for all pairs
of frequency-domain techniques and UZC, M2M, and ICD.

In summary, the performance of the frequency estimators was
benchmarked, and it was demonstrated that in case of regular
oscillations all techniques yielded the expected outcome within
the limits of the accuracy of the specific estimator. In the context
of time series with irregular oscillations, the application of the
frequency-domain estimators in conjunction with the FitSin
method ensures the absence of bias, while exhibiting a high
degree of inter-correlation. Notably, the Lorentz-fit approach
exhibits the smallest random error among all considered
methods. Additionally, it was also demonstrated that the UZC,
M2M and ICD techniques are weakly correlated with the spectral
techniques and FitSin.

5 Results

The performance of the seven algorithms for measured data was
evaluated using a set of 112 ECGs from perfused arrhythmic murine
hearts and was further applied to a short set of human arrhythmia.

5.1 Mouse data

The results for the frequency estimation of the mouse data are
summarized in Figure 6 in the same manner as the results for the
benchmarks were visualized in Figure 5. Figure 6A presents boxplots
for the results of the seven frequency estimation techniques and the
results of the corresponding statistical tests. The estimated
frequencies range from 7.5Hz to 36.5 Hz with the results of the
M2M technique being consistently larger than those obtained by the
other six techniques: The main frequency �fM2M � 26.0Hz is at least
3Hz (equivalent to 13%) higher than the mean frequencies observed
in the other estimators. The Lorentz fit yielded the smallest mean
frequency of �fLorentz � 21.2Hz. The ANOVA test yielded p-values of
p< 10−4, indicating statistically significant differences between the
seven methods. Subsequently, pairwise t-tests were performed,
whose results are displayed as test brackets above the
corresponding boxplots. The t-test results indicate similarities in
the mean values of the frequency-domain estimators MaxP, AVP,
Lorentz, and the FitSin (�fMaxP � 22.2Hz, �fAVP � 22.5Hz, �fLorentz �
21.2Hz and �fFitSin � 22.5Hz), whereas the mean values of the
remaining estimators are significantly different (�fUZC � 23.04Hz,
�fM2M � 26.0Hz and �fICD � 23.1Hz). In addition, the interquartile
range, as illustrated by the height of the boxes in Figure 6A,
demonstrates that the ICD technique yields the least dispersion
among the seven examined techniques, with a value of 5.81Hz. The
two spectral techniques MaxP, AVP and the time-domain method
FitSin yield almost identical results for the majority of ECGs.

Figure 6B shows the distribution of the estimated frequencies for
each method along the diagonal, Bland-Altman plots, which are
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used to assess the agreement between methods, are displayed above
the diagonal, and Pearson’s correlation coefficients and their
visualizations are shown below the diagonal. As previously
discussed, the three frequency-domain methods and the FitSin
exhibit strong agreement as the points in the Bland-Altman are

grouped horizontally around the line y � 0 with only a few outliers.
In instances where a method from the frequency-domain or SinFit is
compared against time-domain techniques, a proportional bias is
observed, manifesting as a downward or upward slope of the scatter
plot points.

FIGURE 6
Results of the seven frequency estimators applied to the dataset with 112 ECGs of arrhythmic murine hearts. (A) Boxplots of the seven techniques:
The frequency estimates are represented by gray dots. Each of the boxes gives themean value (diamond symbol), themedian (horizontal line inmiddle of
the box) as well as 25th and 75th percentiles of the estimated frequencies (box upper and lower edges of the box). Significance brackets present the
results (adjusted p-values) of pairwise t-tests: * stands for p<0.05, ** for p<0.01, *** for p<0.001 and **** for p<0.0001. (B) Pairwise comparison of
the seven estimators of arrhythmia frequency: The histograms of the results of the seven techniques are shown along the diagonal. Bland-Altman plots of
pairwise arrhyhtmia frequency estimates are presented in the upper right triangular part of the matrix and the Pearson correlation coefficients with their
levels of statistical significance and their graphical representation are shown in the lower left triangular part. Figure created using the ggplot2 library of R
(Wickham et al. (2019).
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In agreement with the results shown in Figure 6A, the analysis in
Figure 6B further demonstrates that the M2M algorithm estimates
larger frequencies fM2M than the six other techniques. This is
evidenced by a fixed systematic bias as displayed by the
horizontal solid cyan line, which is shifted toward the negative
direction in subpanel 6g, otherwise shifted in the positive direction
for all subpanels in column f. In addition, the M2M method
exhibited good alignment with UZC and ICD, demonstrating low
variability, narrow limits of agreement, and elevated correlation
coefficients (0.79 and 0.81). On the other hand, the limits of
agreement are more extensive in comparison with those of
MaxP, AVP, Lorentz, and FitSin. This discrepancy is further
confirmed by the low correlation coefficients observed in the
respective cases.

Figure 6B also shows a strong correlation (0.83) between the
MaxP, AVP, and FitSin methods, suggesting they use related
information in the recorded signals, specifically a dominant
harmonic oscillation. The AVP and FitSin methods have Bland-
Altman plots where all means align at 0 and the correlation
coefficient is 1, indicating that these two methods can be used
interchangeably.

In contrast, when comparing these techniques with the Lorentz
fit, a stronger variability is observed. Furthermore the Lorentz fit
tends to yield larger frequency estimates for fFitSin < 15.0Hz and
smaller frequencies fLorentz for fFitSin > 20.0Hz. The Bland-Altman
plots 1c, 2c, and 3d reveal a substantial number of dots along zero,
indicating that the results are generally similar, except in complex
cases where the signal contains multiple frequencies. In such
instances, the assumption of a single dominant frequency is
inappropriate. Consequently, the MaxP, AVP, and FitSin
algorithms fail to handle the superimposed combination of
multiple frequencies, while the Lorentz algorithm can effectively
address this challenge by using a wider distribution of the function
fitted to the amplitude spectrum. Notably, the correlation
coefficients between the Lorentz fit and the other three methods
are lower, with values of 0.79 and 0.78, respectively.

A direct performance comparison of frequency- and time-
domain techniques reveals a moderate degree of correlation
between the frequency-domain techniques, the FitSin and the
ICD technique, with values of 0.76 and 0.81. Notably, the ICD
method and the Lorentz fit showed the strongest correlation among
the aforementioned methods, with a correlation coefficient of 0.84.
Furthermore, the UZC technique, which is relatively simple, also
shows high correlation coefficients with the spectral techniques,
FitSin, and the ICD estimator. However the Bland-Altman plots
show a proportional bias against all other methods. Conversely, the
M2M time-domain technique exhibits lower correlations with
spectral techniques, with all corresponding coefficients
falling below 0.63.

The performance of the seven estimators was further analyzed
for the murine ECGs with less complex arrhythmia, such as
ventricular tachycardia (VT). Here, the identification of the
arrhythmia frequency can be achieved with a high degree of
precision through the application of both time- and frequency-
domain methods. The 36 ECG time series with high values of the
explained variance with respect to the MaxP estimator (ρ2 > 0.5)
were identified, and the correlation coefficients exceeded 0.95 for all
pairs of techniques, with the exception of the M2M method. A

similar set of results was obtained in 31 ECG time series, in which
the time intervals between the maxima identified by the ICD
algorithm exhibited a low coefficient of variation (cv < 0.2).
Consequently, the CLs exhibited a high degree of similarity, with
all correlation coefficients exceeding 0.90. This finding confirms the
results achieved for sinusoidal functions (Section 4).

5.2 Human data

The analysis of human arrhythmia data revealed frequencies of
fVT � 2.61pm0.04Hz, fVFlu � 3.53pm0.03Hz, and fVF �
4.82pm0.82Hz for events of VT, VFlu and VF respectively. It is
noteworthy that all methods produced nearly identical results for the
instances of VT and VFlu (as shown in Table 1), while the inter-
method variability was markedly higher for VF. In this case, M2M
yielded the largest frequency estimate.

In the case of VT, the low coefficient of variations for the time-
domain methods (cv < 0.04), and the high explained variances for
the frequency-domain methods and the SinFit ρ2 > 0.8 suggest the
presence of a single dominant frequency. The analysis of VFlu
demonstrates high degree of agreement between methods while
the findings in Table 1 substantiate the single dominant frequency
hypothesis as well. Accordingly, as stated by Viskin et al. (2003),
VFlu is characterized by sinusoidal morphology, which is driven by a
rotating spiral with a defined frequency (Davtdenko, 1993; Comtois
et al., 2005; Lim et al., 2006). Conversely, the frequency estimates for
VF range from 4.2 Hz to 6.35Hz, while the explained variances fall
below 0.27 and the coefficient of variation increases to more than
0.26. These findings suggest that the arrhythmia may not be
adequately defined by a single dominant frequency.

6 Discussion

The analysis of ECG signals from arrhythmic hearts often
requires the identification of heart rates, dominant frequencies or
cycle lengths for diagnostic or therapeutic purposes. Arrhythmic
ECGs exhibit dynamic, repeating, and non-repeating patterns that
can be analyzed using the algorithms presented in this study. These
algorithms are designed to quantify the periodicity of ECG patterns,
thereby yielding a numerical value that represents the dominant
frequency or dominant period. A thorough examination of the
mouse dataset revealed that the algorithms presented herein
yielded distinct outcomes, particularly when applied to complex
signals. This divergence does not necessarily imply an issue with the
performance of the algorithms. Rather, it highlights a more
fundamental question: Does the information contained within the
ECG data genuinely correspond to a single dominant frequency
or period?

To illustrate this point, consider a signal that initially comprises
two harmonic frequencies (f1 and f2 � 2f1) with the same
amplitude. In this case, the waveform will exhibit a clear
repeating pattern, and the identified frequency will
unambiguously correspond to a fundamental period (T1 � 1/f1).
This phenomenon can be attributed to the repetitive nature of the
signal pattern, which resumes after a specific interval, T1. This
characteristic is commonly observed in VT, particularly in cases of
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mVT. The frequency-domain techniques previously introduced will
identify the nature of the signal, one of the two frequencies will be
identified. In contrast, some of the time-domain techniques
previously examined will lead to f2 as dominant frequency. In
particular, we find fM2M � f2 and fUZC � f2. Now, introducing a
third frequency, f3, to the original signal, which is not in resonance
with f1 but has a comparable amplitude, would significantly alter
the overall waveform. This phenomenon manifests, for instance,
when a stationary spiral begins to meander within the cardiac
substrate, as it is observed in pVT. Consequently, the new
dominant period determined with the presented algorithms
would shift to a rational multiple of the previous T1. The
presence of intermittent dynamic patterns, such as those
observed during ventricular fibrillation, complicates further the
determination of a dominant frequency from an ECG signal.

In this study, we also proposed two quantitative measures for
identifying the presence of a dominant frequency. The first involves
the computation of the explained variance, denoted by ρ2, for the
three spectral techniques and the sinus fit method. Values of ρ2 that
are close to one represent ECG signals which can be accurately
modeled by sinusoidal functions and can be therefore represented by
a single repeating pattern. In contrast, non-sinusoidal ECG signals,
despite their periodicity, will result in lower values of ρ2. Therefore, it
is also crucial to consider the second quantitative measure, the
coefficient of variation cv of the time interval lengths between the
maxima of the ECG signal, as it is calculated for the M2M, ICD and
UZC methods. A narrow range of these interval lengths
demonstrates a regular oscillation and thus the presence of a
dominant frequency even in the case of non-sinusoidal
oscillations. In this context, the assumption of a single dominant
frequency is challenged by complex rhythms, such as atrial
fibrillation (AF), which are characterized by multifrequency
spectra resulting from multiple interacting rotors (Sanders et al.,
2005; Gadenz et al., 2017). The usage of the two independent
quantitative measures presented in this work enables the rigorous
evaluation of the validity of the single dominant frequency
assumption in any given ECG segment. By considering both ρ2

and cv, a robust framework is provided to determine when a single
frequency is a suitable descriptor for the arrhythmia segment,
thereby strengthening the interpretation of the results beyond a
simple frequency estimation. This approach is essential, given the
morphological variability observed in cardiac arrhythmia.

It was also observed that time-domain-based algorithms show a
substantial dispersion of frequency estimates, resulting in a more
pronounced mutual deviation when compared to the frequency-
domain methods. This discrepancy is attributable to their ability to
identify localized patterns within the ECG, while neglecting the
overall course of the signal. As discussed in Section 5, the M2M
algorithm results in the largest frequency estimate for the time-
domain methods. This can be explained as follows: Each threshold
crossing is associated with a local maximum; however, because
multiple local maxima may occur above the threshold and
multiple local minima may occur below it, the total number of
local maxima can exceed the number of threshold crossings.
Therefore, the frequency estimates derived from M2M are larger
than or equal to the UZC-based estimates. The frequency estimate
derived from the ICD techniques excludes maxima, which occur
during the refractory period, resulting in a value that is smaller than
or equal to the M2M estimate.

In the frequency-domain methods, Fourier analysis has been
incorporated into the MaxP algorithm, as this method has a long
history of application in ECG frequency determination (Nolle et al.,
1980; Herbschleb et al., 1980; Caldwell et al., 2007). In this case it is
important to consider that when a segment of a continuous signal
undergoes Fourier analysis, there is a high probability that the
selected segment will contain incomplete periods. It is inevitable
that incomplete periods will result in leakage effects, which, in turn,
will lead to a widened Fourier spectrum. Consequently, pinpointing
a single sharp peak corresponding to a dominant frequency becomes
challenging. In previous studies, alternative methods such as the
Organization Index (Everett et al., 2001), Organization Analysis
(Barquero-Perez et al., 2010), Spectral Flatness (Eftestøl et al., 2000),
and Ensemble Average (Ciaccio et al., 2011) have been employed to
address this issue. While the application of a window function is
another recognized method applied for mitigating the leakage effect,
we opted against it to avoid the introduction of an additional
amplitude modulation effect. We also present a novel method for
addressing the aforementioned problem, namely, the AVP
algorithm, which can handle an assumed fundamental period of
the signal under investigation independent of the duration of the
signal recorded, calculating corresponding FFTs for various signal
periods assumed. This process identifies the maximum peak of the
spectrum that corresponds to an integer multiple of the fundamental
period, and consequently to the dominant frequency.

TABLE 1 Frequency estimates and the corresponding dispersions (explained variance and coefficient of variation) for the three examples of human
arrhythmic ECGs shown in Figure 3.

Arrhythmia fMaxP fAVP fLorentz fFitSin fUZC fM2M fICD

VT 2.6 2.62 2.53 2.63 2.62 2.64 2.64

VFlu 3.6 3.51 3.54 3.52 3.51 3.53 3.53

VF 4.2 4.21 4.44 4.21 5.46 6.35 4.87

ρ2 ρ2 ρ2 ρ2 cv cv cv

VT 0.80 0.83 0.91 0.84 0.04 0.04 0.04

VFlu 0.36 0.54 0.96 0.56 0.06 0.07 0.07

VF 0.27 0.27 0.77 0.27 0.28 0.41 0.26
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The SinFit and Lorentz algorithms were developed based on
fitting techniques. While the dispersion of the frequency values
found with the SinFit algorithm appears to perform equally to the
MaxP and AVPmethods, it was observed that the frequencies found
with the Lorentz technique are more similar to the time-domain
techniques in particular to the ICD and UZC methods. This is
because the fitting can better manage the superposition of two or
more frequencies in the ECG signal.

Within the time-domain methods, the developed R-library
includes an algorithm for identifying heart rate, based on the
ICD algorithm used by Brüggemann et al. (2016). Here it is
important to note that the intracardiac electrogram (EGM)
obtained via an intravenous catheter exhibits a distinct frequency
spectrum (Requena-Carrión et al., 2013) when compared to the
frequency observed in surface ECGs. Consequently, it is necessary to
apply proper signal preconditioning to EGM data, including
bandpass filtering (different settings for unipolar and bipolar
EGMs), and under certain circumstances rectification (Ng and
Goldberger, 2007), prior to applying the remaining six algorithms
presented in this study. ECG data from arrhythmic hearts can be
analyzed directly using the ICD method and the other algorithms
presented. Although the pre-processing of surface ECG varies
slightly between species, these variations do not impede the
direct application of the aforementioned methods.

The remaining two time-domain methods M2M and UZC are
particularly well-suited for scenarios where low computational
power is a prerequisite, such as in lower-architecture
microcontroller-aided applications. As demonstrated in our
results, the dominant period obtained is of a diminished
duration, leading to a dominant frequency that exceeds those
yielded by the alternative algorithms. Nonetheless, these two
methods have been shown to provide rapid performance and a
reasonably accurate estimate of the dominant frequency.

In instances where the estimation of a dominant frequency is
necessary prior to the application of a particular arrhythmia therapy,
such as overdrive pacing (for VT (Ellenbogen et al., 2008), for VF
(Luther et al., 2011)) or multistage therapies (Li et al., 2009), our
findings suggest that the utilization of both time- and frequency-
domain algorithms ensures a more precise frequency estimation for
complex arrhythmia. However, a critical consideration is that the
ECG signal of an arrhythmic heart undergoes constant changes.
Therefore, it would be prudent to consider the implementation of
the presented algorithms within sliding windows, thereby facilitating
the monitoring of dynamic changes.

The present study is constrained to the statistical comparison of
the seven methods for frequency estimation that are currently or
that could be employed in real-time, low-power processing
environments, such as those found in implantable cardioverter-
defibrillators (ICDs). These life-critical embedded systems require
algorithms that are mathematically simple, highly reliable, and
computationally efficient. Nonetheless, the implementation of
alternative signal analysis techniques, such as wavelet analysis
(Grossmann and Morlet, 1984; Daubechies et al., 2011; Zhuravlev
et al., 2025), which offer powerful capabilities for characterizing
non-stationary events and the dynamic frequency components
associated with complex arrhythmia transitions, remains a
promising avenue for future research. In addition, recent studies
have demonstrated the efficacy of advanced signal processing

methodologies, such as machine learning (ML) algorithms,
empirical mode decomposition (EMD), and sophisticated
autoregressive models, in the domain of biosignal processing
(Mohanty et al., 2021; Ahmadi and Ekhlasi, 2019; Baselli et al.,
1985). Subsequent research endeavors will involve the integration
and comparison of other analysis approaches within this
analytical framework.

7 Conclusion

The objective of this study was to provide interested readers and
the scientific community with a comparative analysis of algorithms
that determine the dominant frequency of ECGs of arrhythmic
hearts. We have investigated seven time- and frequency-domain
techniques, which are made available in the R-library FibFreq. The
R-library has been demonstrated to be suitable for the analysis of
both an experimentally obtained mouse ECG dataset and a human
dataset (MIT-BIH-malignant-ventricular-ectopy-database-1.0.0).
Despite the awareness that heart rates vary significantly among
different species (Schüttler et al., 2020), we have demonstrated that
by employing the appropriate pre-processing techniques and
utilizing our R-Library, it is possible to ascertain a reliable
estimate for the dominant frequency for less complex
arrhythmia. Moreover, the R-Library can be also applied to other
oscillatory phenomena, as demonstrated in Supplementary
Material for the frequency determination of sunspots.

In addition to providing a frequency estimate, the algorithms
under consideration also yield secondary quantities that can be used
to evaluate whether the given signal can be adequately modeled
using a single periodic pattern. These are the explained variance for
all frequency-domain techniques and the SinFit, and the coefficient
of variation of the identified time intervals for the three time-domain
techniques. The data analysis presented herein indicates that a low
coefficient of variation or an explained variance that approaches to
one are indicative of a signal that is essentially periodic and can be
described using a single dominant frequency. Therefore, in order to
ascertain the presence of a single dominant frequency in an ECG
time series, it is recommended that both time-domain and
frequency-domain techniques be applied.
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