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This article proposes a novel mutual information (Ml)-based beamforming
framework for integrated sensing and communication (ISAC) systems in the
Internet of Vehicles (loV). The framework addresses the challenges posed by
diverse optimization criteria and the suboptimal performance degradation often
resulting from normalization methods. We first analyze a time-division
multiplexing (TDM) signal model that facilitates both target detection and
communication. Subsequently, we introduce a general signal model with
integrated beamforming, where communication users simultaneously function
as sensing targets. For each model, we formulate an optimization problem to
maximize the system Ml under a total power constraint. For the TDM model, we
propose a Joint Optimization Dual Gradient Ascent algorithm. This method
involves constructing an augmented Lagrangian function, computing the
gradients for sensing and communication Ml separately, and iteratively
updating the beamforming vectors using gradient ascent. For the more
complex general model, which presents an NP-hard problem, we tackle the
non-convex objective function via the Minorization—Maximization (MM)
algorithm, obtaining a solution through numerical optimization. Numerical
results demonstrate that the proposed framework effectively evaluates the
system’s sensing-communication performance trade-off and outperforms
classical water-filling algorithms. This work thus provides a new and effective
paradigm for ISAC system optimization.

integrated sensing and communication, mutual information, beamforming, adaptive
weight, optimization

1 Introduction

The synergistic development of 5G-IoT and impending 6G networks is precipitating a
spectrum crunch. Integrated sensing and communication (ISAC) is a key technology to
address this challenge by enabling radar sensing and communication functions to jointly
occupy the same spectral resources, thus attracting great attention (Liu et al., 2023; Zhang
J. A. et al, 2021). Consequently, research has advanced from foundational radar and
communication coexistence (RCC) frameworks to sophisticated dual-function radar and
communication (DFRC) systems. A central research thrust involves the optimization of
waveforms and beamforming vectors to achieve an optimal performance trade-off tailored
to specific scenario requirements (Zhang A. et al., 2021).
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TABLE 1 Notation.

10.3389/frsip.2025.1700979

Symbol Type/Dimension Description

M, Scalar (Integer) Number of transmit antennas

M, Scalar (Integer) Number of receive antennas

K Scalar (Integer) Number of communication users (and radar targets)

L Scalar (Integer) Total number of time slots (signal observation length)
x(I) Vector (CM1) Integrated transmit waveform vector at the I-th time slot
B, Matrix (CMe<Mry Radar sensing beamforming matrix

B, Vector (CM1) Beamforming vector for the i-th radar target

B. Matrix (CM>K) Communication beamforming matrix

B.; Vector (CM*1) Beamforming vector for the i-th communication user

H Matrix (CM~Mr Composite channel fading matrix

H,; Matrix (CM-*Mr) Channel matrix for the i-th radar target

H.; Matrix (CMMr) Channel matrix for the i-th communication user

MI, Scalar (bits/s/Hz) Total radar sensing mutual information

MI. Scalar (bits/s/Hz) Total communication mutual information

a B Scalar ([0,1]) Sensing/communication weighting factors, a + f§ = 1

p, Scalar (W) Total transmit power constraint

P Scalar (Positive real) Penalty parameter in the augmented Lagrangian function
R Rey Matrix (CM~Mr) Interference-plus-noise covariance matrix at the radar/communication receiver

Waveform design constitutes a critical paradigm for achieving
spectrum sharing in ISAC systems. The methodology often draws
heavily on radar waveform design, involving optimization for
metrics such as mean-square error subject to a set of practical
constraints encompassing transmission codes, system energy, peak-
to-average power ratio (PAPR), and similarity (Shi et al,, 2011;
Huang et al., 2015; Naghsh et al., 2017). These methods are also
applied in the waveform design of the ISAC system. Y. Liu
considered the design of system transmission and reception,
where a single station radar transmitter is used both for target
classification and as a communication transmitter, which can
achieve good detection and communication transmission in the
ISAC system (Liu et al,, 2017). On this basis, F. Liu explored
constructive multiple interferences and used multi-user
interference power as a compromise to reduce transmission
power to achieve effective power transmission (Liu et al., 2018).
X. Liu also proposed a joint transfer beamforming model with
respect to the beam pattern of dual-function, multiple-input
(MIMO) MIMO
communication transmitter, verifying the effectiveness of the
integrated system’s beamforming design (Liu et al, 2020). L.
Chen defined the achievable performance of DFRC systems and

multiple-output radar and multi-user

optimized them using radar-centric and communication-centric
approaches, which can also achieve good system performance for
the design system beamforming (Chen et al., 2022). On this basis, F.
Dong proposed a waveform design framework for communication-
assisted sensing in 6G sensing networks (Dong et al., 2023).

Frontiers in Signal Processing

In addition to the optimization methods mentioned above,
mutual information (MI), an important indicator in information
theory, has received great attention not only in radar systems but
also in ISAC systems. A. Bazzi et al. investigated waveform design
for dual-functional radar-communication (DFRC), a key technology
for 6G. They proposed a novel scheme based on the alternating
direction method of multipliers (ADMM) that features tunable
peak-to-average power ratio (PAPR). A significant advantage of
this approach is its robust performance under imperfect channel
state information (CSI) (Bazzi and Chafii, 2023). MI was first applied
in radar systems to solve the problem of radar waveform design for
target detection. Y. Yang proposed a waveform design method that
maximizes the impulse response of random targets and the
reflection waveform MI by using the MI as the objective function
(Yang and Blum, 2007). Based on this, M. Bica et al. considered
constructing an optimization problem that maximizes system
sensing MI while satisfying communication and power
constraints (Bica et al., 2016). G. Sun chose the system MI as the
design metric to reduce the influence of adjacent range cells and
enhance detection performance (Sun et al., 2021). J. Qian proposed a
novel optimization framework for RCC system design based on MI.
With the constraints of system power, radar waveform similarity,
and the effective power of radar interference, the communication MI
is maximized (Qian and Lu, 2020). Then, T. Tian derived the MI
between the target and received signal in noise and the
communication sum rate that the system can reach, and the
successive interference cancellation scheme was adopted with
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superior performance based on the RCC system framework (Tian
et al.,, 2019).

To enhance spectrum sharing capability, B. Tang considered
system bandwidth compatibility constraints and exploited the
system radar MI between the target reflections and responses of
the target as the system optimization metric (Tangand Li, 2019). Y.
Liu designed robust orthogonal frequency division multiplexing
(OFDM) integrated radar and communication waveforms based
on information theory, considering the MI between random target
pulse response and received signal, as well as the data information
rate of frequency selective fading channels (Liu et al., 2019). On
this basis, Z. Zhang designed the system waveform for the
integrated OFDM radar-communication system in Gaussian
mixture clutter based MI (Zhang et al., 2020). In addition, A.
Bazzi and Chafii (2025) proposed an orthogonal pilot design for
ISAC systems. By formulating a multi-objective optimization
problem aimed at maximizing both communication and sensing
mutual information, their method achieves an effective trade-off
between these two performance metrics while delivering
significant performance gains. Y. Cui maximized the system
communication rate and the radar MI, satistfying the system
power constraints for beamforming design (Cui et al., 2020). X.
Chen considered a robust interference waveform design algorithm
in a fuzzy colored noise environment, which is established in a
hierarchical game model between the radar and jammer, aiming to
minimize the MI of the radar echo signal and the target impulse
response (Chen et al., 2020).

Subsequent research has focused on maximizing mutual
information (MI) in ISAC systems: He et al. separately optimized
radar and communication MI in a multi-user MIMO DFRC system
(He et al, 2021). Gao tailored enhanced transceivers with the
optimization objective function of maximizing MI (Gao et al,
2021). Yuan studied the optimal spatiotemporal power mask
design for a joint MIMO system of communication and sensing
downlink to maximize system MI (Yuan et al., 2021). Based on this
point, Qian presented a novel spectral sharing framework aiming at
maximizing the radar MI and considered a cooperative design for a
radar-communication spectral sharing system with MIMO structure
based on MI optimization (Qian et al., 2022).

Although prior optimizations of ISAC systems have leveraged
various metrics—including signal-to-interference-plus-noise ratio
(SINR), (MD)—
collectively, they constitute a disparate set of solutions that lack a

beam pattern, and mutual information
cohesive and scalable framework. This article addresses this
limitation by introducing a unified optimization framework
grounded in MI theory. This article decomposes the system MI
into sensing and communication components for joint waveform
optimization and balancing using two transmit signal models
(time-division and general). The associated beamforming
optimization problems were derived subject to a power budget.
To dynamically control the performance trade-off, adaptive factors
are incorporated, leading to the proposal of three beamforming
algorithms: joint, Minorization-Maximization (MM), and First-
order Taylor (FOT). A salient advantage of our framework is its
inherent avoidance of normalization steps, thereby offering a
simpler solution. Extensive results confirm that our method
outperforms the conventional water-filling algorithm in terms

of overall system performance.
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The remainder of this article is structured as follows. The system
model framework of the ISAC system in IoV, including the time-
division signal and general signal model, which provides a detailed
description of the radar MI and communication MI, is presented in
Section 2. Section 3 outlines the solution process for optimizing the
time-division model and the general model, respectively. The
numerical simulation analysis is conducted in Section 4. Finally,
Section 5 summarizes the innovative contributions of this article and
offers prospects for future work.

Notations: I}, denotes the L x L identity matrix, E(.) denotes the
statistical expectation, diag(.) denotes diagonalization of elements,
R denotes a real numbers set, vec(.) denotes the vectorization
operator and |.] donates downward rounding, mod(.) denotes
the modular operation [.], and represents round up. To facilitate
clear expression of the mathematical symbols used in the text, their
abbreviations and corresponding meanings are shown in Table 1.

2 System model and problem
formulation

2.1 Time-division signal model

As shown in Figure 1, we considered the DFRC system equipped
with M, transmit antennas and M, receive antennas, which serves K
downlink single-antenna users while detecting targets. The most
common DFRC system signal model can be considered at the I-th
time slot expressed as follows:

x(I) = B,s()e* s 4 B c (e 4 1 =0,.. ., L, (1)

where fg: Doppler frequency shift, calculated as fy = *<%0f
where v is the vehicle speed, 0 is the angle between the direction
of travel and the signal propagation direction, ¢ is the speed of light,
and f. is the carrier frequency. T,: time slot duration. x(I) =
[(x1 (D),....xpm, (D] € cMed represents the system transmitting
waveform, where B=[B,,B,] e CM*M+K) o the system
oy Ber ] € (CMtXM‘
denotes the beamforming matrix for radar waveform, and B, =
[Bei,..., B ] € CMEis  the
communication symbol.

beamforming matrix. Note that B, = [B,,..

beamforming matrix for

x() = [s[],c[l]]" € CMeHFO )

where s(I) = [s;(]),..
radar waveforms, and c(I) = [¢; (]),..

sy, (D] € CMY includes M, individual
Sk eC™ s a K x1
vector including K parallel communication symbol streams. The
system received signal model can be represented as

y(D) = Hx(]) + z,, (3)
Note that He CM"M: is the channel fading matrix,
x() = [x; (D), ..., xp, (D] € CMY, where z, € CM™! represents

the complex additive white Gaussian noise with zero mean and
variance of 0,24, which can be represented as

Y = HB,S + HB,C + Z. (4)

where S = [s;(1),...,8y, (L)] € CM*L C=[c; (1),...,cx (L)] €
C%. Note that E(SS) =Ty, tE(CCT)=1Ic. H;=7a,
(Hi)atT(G,-), d;: distance between the i-th user/target and the base
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FIGURE 1
The ISAC system model.

station. y: path loss exponent, «;: a coefficient representing either the
target’s radar cross section (RCS) or the small-scale fading of the
user channel. In practical processing, for simplicity, the ratio of path
loss to the propagation loss factor can be treated as a constant
without affecting the final analysis. Note that Z € CM** is an
additive white Gaussian noise (AWGN) matrix with the variance
of each entry being 2. The radar transmitting and receiving steer

vectors are expressed as follows:

1 L . )
a, (6) - o [l’eﬂrsmﬁ’. . .,eﬂr(M,—l)sme]T’ (Sa)
1 o . .
a, (6) — \/_M_[l)e]nsmﬂ) . _’e]n(M,—l)sme:IT' (5b)
t

Next, we will introduce the system model of radar sensing and
communication transmission in detail.

2.1.1 Radar sensing model

The echo of the dual-function signal transmitted by the base
station (BS) reflected by the target at the I-th time slot can be
represented as

y, (D =Hx(]) +z,, (6)

Note that z, € CM! denotes the complex AWGN with zero mean
and variance of o2. The radar received signal model is given by

K K
Y, =HB.S + ) HB:S+) HB.C+Z, (7
i=1,itk i=1
where Z, € CM*L is an AWGN matrix with the variance of each

entry being ¢?. From the above received signal model that can be
known, the system interference plus noise can be formulated as

K
Z/= ) H(B.S+B.C)+HByCi+Z,. ®)
i=Litk

We calculate the covariance of system interference plus noise,
which can be expressed as

R, =E(z/2]")

K K
= > H(B,B])H/' + ) H;(B,B)H + 071y, ©9)
i=Litk i=1

Thus, the probability density of system interference plus noise Z,
can be represented as
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exp(—tr(R,,,)_llr'Z,'H)

abMr det™ (R,,)

p(Z)) = , (10)

Toward this end, the differential entropy corresponding to system
interference plus noise Z, can be formulated as

H(z)) = [ -p(@)og p(2))d2!
=M, (Llogm + L +1og_det(R,,)). (11)

The probability density function (PDF) of the system detecting
targets can be expressed as

M,
pOLIX) = [ [ p(v7iX)

i exp(-ys; (FHBBILHY (6 + R,.) 'yY,)
- ntdet(oc?H;BBTH +R,,)

i=1
exp(~tr (o}H;B,BZH! +R,,) Y, Y)

, 12
Mt det™ (o2H;B,BRH +R,,) (12)

Furthermore, its corresponding differential entropy can be
formulated as
H(Y, %) = [ =p (Y, 1 X)log p (Y, [ X)d,

= M, (log_det(H;B;BZH” +R,,) + Llogm + L).  (13)

In summary, the system detection of MI is given by
ML = H(Y,|X) - H(Z/)
= M, log_det(H;B;BH" + R,,,) - M, log_detR,,
= M, log_det(R;'H;B BSH +1). (14)

The system total MI of the radar detection can be expressed as

K
MI, = M, ) log det(R; H;BB,H;" +1I). (15)

k=1

We will introduce the system communication MI next.

2.1.2 Communication transmission model

When the system communicates with the communication
users, the system signal received at the [-th time slot can be
expressed as

y.(I) = Hx(]) + z., (16)
where z, € CM™! denotes the complex AWGN with zero mean and

variance of a2. When considering the full time slot, the mathematical
model of the system can be formulated as

K K
Y. =HB.Ci+ ) HB.C+) HB.S +Z,  (17)
i=1,i#k i=1

Note that Z, € CM™ denotes an AWGN matrix with the variance of
each entry being o2. For convenience, the interference-plus-noise
signal can be represented as

K
Z'= ) H;(B,Ci +B,S)+HB,S +Z, (18)

i=1,i¢k
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Furthermore, the interference-plus-noise variance matrix is
expressed as
. K
R, = E( 7.'7! ) z H: BaBI?HfI + zHiBriBgHzH + GfIM,.
i=Litk i=

(19)

Thus, the PDF of the system interference plus noise can be
represented as

exp(—tr(Rm)_IZC'ZC’H)

Z!) = R 20
p(Z) nMrdet” (R.,) 20
Therefore, the communication interference plus noise
corresponding differential entropy can be formulated as
H(2!) = [ -p(2!)log p(2!)a¥

= L(M,logm+ M, +log_det(R.,)). (21)

Similarly, the system communication user PDF is given by

M.
p(Yck | Hk, Bck) = HP()’Z,'HM Bck)
i=1

M, exp(—y;’; (HchkBchkH + ch)_ly:i)
n'det (HyB4BFHY +R,,)

i=1
exp(—tr (HByBIH + Ryi) Y, YY)
~ aMldet™ (HiB4BIHY +R,,)

(22)

To this end, the corresponding differential entropy can be
expressed as

H(Y,|X,) j —p(Ye | Xo)log p (Y | X)dY

= L(M,logm+ M, +log_det(H;B CkBiH +Ry)).
(23)

Hence, the MI of the k-th communication user can be
formulated as

MIck = H(Yk | Hckr Bck) - H(Zc,)
= L(log_det (HB4B/ Hf +R,,) — log_detR,,)

= Llog_det (R;'H;B,BIHY +1), (29)

The system total MI of the communication users can be
represented as

K
ML = L ) log_det (R HB.Bl H} +1). (25)

k=1

2.1.3 Optimization problem formulation

In the DFRC system, we comprehensively consider the
detection and communication performance of the system
through ML
optimization problems, it is essential to address the influence of

Therefore, when constructing the system

radar and communication MI simultaneously. The system
optimization problem objective function can be formulated

as follows:

f = aMI, + ML, (26)
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where « and 8 are the radar detection weight factor and the
communication weight factor, respectively, and can be utilized to
adjust the system performance of the sensing and communication.
When discussing system sensing and communication performance,
it is essential that the system satisfy the basic power requirements,
P(l) = [x (D], and the average power P = %Zszlp(l)- Hence, the
power constraints of the system can be expressed as

IX|2 = tr (B,B” + B.B”) < P,. (27)

Thus, the system optimization problem can be represented
as follows:
max aMI, + SMI,

BB, (28)
st. tr(B,BY) + tr(B.B7) < P,,

When we substitute Equations 15, 25 into Equation 28, the system
optimization problem can be expressed as

max Z alog_det(R'H;B,BYH/ +1)

+ Z Blog_det(R;'H;B,BI'H +I)s.t. tr(B,B!)

+1tr(B.B) <P, (29)

Due to the typical concave form of the log_det in the objective
function and the coupling between the radar beamforming
matrix and the communication beamforming matrix, it is
difficult to directly solve this
optimization methods. The detailed analysis will be discussed

expression using convex

in the next chapter. If the ISAC system considers the detection
target as user communication, the system beamforming matrix
will degenerate from the joint communication beamforming
matrix and sensing beamforming matrix to the system
beamforming matrix, which can achieve detection and
communication, so the general signal model is presented in

the next subsection.

2.2 General signal model

2.2.1 System model
In the general that the

communication user and detection target are the same object in

signal model, we assumed
this system, without losing generality. In that case, the system signal
model can be recast as

K
Y.=) HBX +Z,, (30)

i=1
[x; (1), ..., xp, (L)] € CME B, € CMoMe s the system
beamforming matrix, H; € CMM is the system channel fading

matrix, and Z; € CM™L is an AWGN matrix with the variance of
each entry being 2. The system signal can be represented as

where X; =

K
Y=HBX.+ ) HBX +Z.
i=1,itk

(1)

For convenience, the interference-plus-noise signal can be
represented as

frontiersin.org
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K
Z!= ) HBX+Z, (32)
i=1itk
Note that %E (XXH) = Iy,. Furthermore, the variance matrix of

the interference plus noise is expressed as

R,, = E(Z! Z’H) Z H,;B;B/H[! + 0’I,y,, (33)

j=Lj#k

Thus, the PDF of the system interference plus noise can be
represented as

exp(~tr (Ry,)'Zi2!"
p(Z) = (LM T ) (34)
nl*Mrdet” (Ry,)
Therefore, the communication interference plus the noise
corresponding differential entropy can be formulated as
H(2!) = [ -p(@)iog p(2Day,
= L(M,logm+ M, + log_det(R,,)). (35)

Similarly, the system communication user PDF is given by

M,
P (Yo | He B) = [ | p(v51He Bi)

i=1
M, exp(—y;} (HkBkBkHHkH + Rsn)ilysT)i)
n"det (HBBfH +R,,)

i=1
exp(—tr (HBB'HY +R,,)” Y, Y})

36
Ml det™ (HyBxBI'HY +R,,) (36)

Hence, it corresponds to the differential entropy, which can be
expressed as

HY, 10 = [ =p (Y. 1 X)log p (Y, | X0

= L(M, logm + M, +log_det(HkBkBHH +Ry,)).
(37)

2.2.2 Optimization problem formulation

In the DFRC system, we comprehensively consider the detection
and communication performance through MI. Thus, when we
construct the system optimization problems, it is essential to trade
off the effect on radar and communication MI simultaneously.
Therefore, the system objective function in the optimization
problem and the MI of the system can be formulated as follows:

MI; = H (Y, | Hy, By) - H(Z{)
= L(log_det (H;B,BJH{ + R,,) - log_detR,,)

= Llog_det (R;'H;B;BI'Hf +1). (38)

It is a necessary prerequisite for the system to satisfy the basic
power requirements, so the system’s power constraints can be

expressed as
tr(BB") < P,. (39)

To this end, the optimization problem can be represented
as follows:
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maxlog_det (I+BHIR'H;By)

(40)
s.t. tr(BB") < P,,

In the following section, we will discuss and analyze the solution
of the optimization problem in detail.

3 System optimization problem solving
3.1 Time-division model optimization

Due to the radar and communication beamforming matrix B,
and B, and the interference covariance matrix R., and R,, in the
objective function, the optimization problem based on the time-
division model is non-convex and an NP-hard problem.
Nevertheless, this problem can be solved by the primal-dual sub-
gradient ascent algorithm. In the process of constructing system
problems, we comprehensively considered the constraints of system
power. However, in reality, due to the influence of users (targets),
power constraints for individual users or detection targets should be
Individual constraints (tr(Bc,,-Bfi)s Peti>
tr(B,, jij) <prj) are introduced to ensure robustness and

discussed separately.

fairness across all sensing and communication functions.
Therefore, the power constraint conditions p, and p,, can be
introduced to represent the constraints on individual users or
targets.
through augmented Lagrange relaxation sub-problems by

updating {Bci}ﬁl,{B,i}fil. To this end, the stack variable I

The optimization problem can be deal with the

represents the dual variable, I'A = [Ay,... A, Arts - - Mx]', and
the power factor Pté [pt,cb oo pt,cK> Pt,rb v pt,rK]T>
bA = [tr{BYB,}, ... tr{BH Bk}, tr{BE B, } . . . tr{B B,x}]”. Thus,

the argument Lagrange (Equation 29) can be constructed as

F (B;B,;T) = aMI, + BMI, + T (b, - M,p,) + gn (b, - M,p,)I
K — —
Zalog'I+R i LHH
i=1
+ z /\C, (tl’ Mtpc,i)
i=1
K —
+ Z i (tr (Bri) = My pr;)

Il
—

K
§Z[Ad (tr (Ba) =M pes) At (tr (Bi) - M pr)’]
(41)
For convenience, let B;=BfB,, B, =BIB,, H, =H.B,

H,; :Hr,,»BfiI, respectively, where p.; and p,; represent the
maximum transmit power for the communication user and the
radar detection target, respectively. p is the penalty parameter, which
can be adjusted according to design requirements. Due to the
coupling between the noise covariance matrix R, and R,, in
communication MI and sensing MI with respect to the
beamforming B in transmission, it is difficult to directly
perform the gradient calculation. Therefore, it is converted into a
more easily processed form. In this case, the augmented Lagrangian
function can be formulated as
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=

F=

i

[(log|¥.| —log|Rc,) + (log|¥,| — log|R,.|)]

+I (bt - Mtpt) + g" (bt - Mtpt)||2> (42)

where
K
Y. = ) H;B,BH/, + H;;B, BH + &I, |.  (43)
j=1

Actually, when the system detects the target, the remaining users
are considered interference, and when the system communicates
with the user, the remaining targets are also considered interference
in this model. Therefore, the system detection, interference, and
communication covariance matrix can be represented as ¥, = ¥..

3.1.1 Communication beamforming matrix update

The system communication beamforming matrix is determined
for each k € {1,...,K}. We optimize the solution by finding the
gradient of the MI expression to apply a first-order sub-gradient
ascent algorithm. In the next subsection, we derive the derivative
with respect to B, and B,;. Considering that log det(.), the
expression of the differential of MI. and MI, with respect to B,
can be represented as

K

d(ML) = ) [d (log|'¥.|) - d (log|R.,I)]

-

™M

2tr(BILHIW, ' H,,d (By))

i

K
= > 2tr(BLH R Hiyd (By)). (44)

i#k

Similarly, the differential of Equation 25 with respect to B, can
be represented as

K

d(ML) = ) [d(log|¥,|) - d (log[R,,|)]

—_

™

2tr(BEHE (¥, - R} )Hiud (Buy))-

n

(45)

In summary, by combining the partial derivatives of the
communication covariance matrix (Equation 44) and the
detection covariance matrix (Equation 45), the gradient of the
augmented Lagrangian function with respect to By can be
further represented as

Viee®)F = 20¢vec<(
K
+2fvec Z H[ (¥,' -R)H;; |By
i=1

+ (2M4 + p(tr (BEEBy) — pMi poi))vec (Boy).

K K
Z 2HEWI'H, - z 2HIRH, )Bck>

i=1 itk

3.1.2 Radar beamforming matrix update
Similarly, for each k € {1,...,K} radar sensing beamforming
matrix, we consider calculating the gradient of the MI expression to
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apply a first-order sub-gradient ascent algorithm to optimize the
system optimization problem. In the next subsection, we derive the
derivative with respect to B, and B,. Considering that, the
expression of differential of MI. and MI, with respect to B, can
be reformulated as

K

d(ML) = )" [d (log|'¥,|) - d (logIR.,|)]

™M

2tr(BH[ (¥, -~ R_})Hxd (Byy) ). (47)

i

Similarly, the differential of Equation 25 at approximately B, can
be expressed as

K

d(ML) = Y [d (log|'¥,|) - d (log|R,)]

—_

™M~

I
—_

2tr(BIHIL Y, Hyyd (By) )

i

K
Y 2u(BYHIR Hyud (B,y) ).

itk

(48)

The gradient of Equation 42 regarding B, can be expressed as

K
Vyee®,0F = 2ﬁvec<<z H (¥, - R)H;x )B,k>
i=1

|

+ (2 + p(tr (BEB,i) — pM.: pry ) )vec(Boi).

K K
Z 2HAW,'H,, - z 2HARHj )B,k)

i=1 ik

(49)

The corresponding gradient is obtained after the above
derivation. This model utilizes the dual variable sub-gradient
descent idea, uses the Lagrange multiplier algorithm to construct
the corresponding gradient function, and then iteratively updates it
to obtain the corresponding optimization solution. See the
Supplementary Appendix for the detailed concavity proof.

Through the above analysis, the system optimization solution
can be obtained by using the augmented Lagrangian multiplier
method. However, the selection of penalty parameter p in the
augmented Lagrangian multiplier method has a significant
influence on the convergence and stability of the algorithm. In
general, the value of p should gradually increase in order to better
approximate the constraints of the original problem. At the same
time, the value of p should also take into account the scale and
difficulty of the problem to avoid the situation of algorithm
oversolving or non-convergence. In addition, in the system
optimization problem, the system perception and communication
performance  are  balanced and  analyzed  through
corresponding weights.

However, it is difficult to simultaneously satisfy the optimal
performance of sensing and communication in reality. Therefore, it
is necessary to comprehensively consider the trade-off between
system sensing and communication performance and introduce
two parameter factors & and f for dynamic adjustment. The
adoptive factor will be analyzed in the next section. Furthermore,

to provide an intuitive understanding of the solution process for the
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joint optimization problem, the algorithm flow is illustrated in the
Algorithms 1. The effectiveness of the proposed method and scheme
will be analyzed and discussed in the following section.

Input: M., M¢, K, L, pr, Hix, Hrx 02, 0%, step;

Output: By, B ;

Repeat :

1: Constructed the Lagrange function argument through
Equation 41;

2: Calculate the differential of MI. by Equation 45;

3: Calculate the gradient of communication Vyecs,)F by
Equation 46;

4: Calculate the differential of MI, by Equation 48;
5:Calculate thegradient of radar Vyec(s,,)F by Equation49;
6: Update communication beamforming B by Bi}' = BL +
step* Vvec (s, )F ;

7: Update radar beamforming B, by B.' =BlL.+ step=
Vvec®0)F

8: Until the convergence conditions are satisfied;

Algorithm 1. JOINT optimization algorithm for solving Equation 30.

Another form of signal besides time-division multiplexing,
which directly treats the system signal as an integrated signal,
was considered. The optimization process under this model will
be explained in detail in the next subsection.

3.2 General model optimization

It is difficult to solve the system problem due to the non-
convexity of the objective function in the optimization problem
(Equation 40). Therefore, utilizing the equivalent function to replace
considered, and the classic
(MM)

waveforms are applied. Next, we will briefly introduce the basic

the objective function is

Minorization-Maximization algorithms to  design
principles of MM, which can be divided into a minorization step and
a maximization step.

Minorization step: find a surrogate function F(x,x®) to
minorize f (x), where F(x,x") is called the minorizer of f(x),

which can be satisfied as follows:
Fx)2F(x;x),Vx € X, f(xP) = F(x®; x), (50)

where x(*) is the system variable update status at the ¢-th iteration.

Maximization step: To solve the maximization problem
MM
monotonically increasing trend between variables and the

max F (x;x®), because the algorithm  exhibits a
objective value during the iterations, the detailed relationship is

as follows:
F(x) 2 F(x™: x> F(x @ x0) = £(x©),  (51)

holds,
step,

Because f(x)>F(x;x?”),Vxe X in Equation 50
F(x®W;x®) is the result of the

viz. f(x®) = argmax F (x; x®).

maximization

First, to make the expression of the formula more compact, let
Ry = HHY. At the same time, to facilitate representation, the
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objective function in the optimization problem can be
represented as
log_det(I+BH{R;'H;B;) = log_det(1 + X(B)), (52)

in Equation 52 X(B) = RI2C(B)RY?, where C(B) = B'R_'By.
Next, after completing the preliminary deformation processing of
the objective function, we will further discuss the surrogate function
in the MM algorithm and analyze the surrogate function in both
quadratic and logdet linear forms. For the detailed concavity proof,
see the Supplementary Appendix.

3.2.1 A quadratic function of B

The MM algorithm must find its surrogate function, which can
be approximated by its function margin. In order to facilitate
processing, it is first equivalently transformed into the following
form. The relevant detailed proof can be found in Naghsh
et al. (2017).

log_det (I + RyB"R_'B) = log ((Q(B)) "), (53)
where j = [1, 0y 0m,x1] and

I R}*BY

) 4
BR/* R,, + BRyB" (54)

Q(B) =

In addition, the objective function (Equation 53) can be
equivalently transformed into

log_det (I + RyBPR_'B) = log_det (I + R}/*C(B)R}?)
= log_det (J(Q(B))"'J"), (55)

where  J = [Iyvipme Omoamexine]. It is noteworthy  that
log_det(J (Q " (B))J) is convex; thus, we can obtain that

log_det (J (Q(B))'J") 2 log_det(J ((Q(B))") 'J")
+tr (U ((Q(B)) - (Q(B)))), (56)

The gradient of the log_det(](Q(B))_llH) at (Q(B))" can be
represented as

u® = -Q (B(t))*IIH(] (Q (B(t)))fIIH)fII (Q (B(t)))*l, (57)

In the meantime, transforming U® into matrix form can be
expressed as

() (t)
(0 —
Ut _[Ug) Ug)]. (58)

Consequently, as U® is fixed, the objective function in the ¢-th
iteration transformed into

tr(UYQ(B)) = tr (UY + UYR,) + Re (tr (RiUYB))

+tr (UYBRyB™). (59)

After the First-order Taylor expansion processing,
the first and second terms on the right side of the
equation in the original objective function are

constant terms, and we neglect the constant terms. At this
point, the original optimization problem can be equivalently
recast as
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max Re(tr(R}*Uf;'B)) + tr(U}; BRy;B")
stbb<P,.

Due to b=vec(B), tr(ATB)=vec'(A)vec(B) and
tr (ABCD) = tr (DCAB) = vec” (B) (D ® AT)vec(CT), the
objective function in the optimization problem (Equation 60) can
be equivalently transformed into the following form:

tr (UYBRyB") = vec(B”) (R ® UY)vec(B), (61)
tr (RIZUYB) = vec' (B)vec (UYRY?). (62)

. . ~(
For the convenience of representation, we let T = Ri ® UL,

and g\ zvec((Ul(tz))HRll{/Z). Hence, Equations 61, 62 can be
expressed as follows:

tr(UYBRy;B") = b T"'b, (63)
2Re (tr (RUYB)) = zRe(B”g“)), (64)

The objective function of the optimization problem can be
reformulated as

b "% + 2Re(b”g<’>) = b"TOb + 2Re(bg®), (65
where b=Ab, A, =E®I,, g = Alg® and T® = A{f’i‘(t)Ab,
—Bua ]’ B, i=1,2,. MM,
where except for the (i,ic)th element, which is 1, all other

among then E = [E},E,,.

elements equal 0, where i, = 1 + mod (i — 1, My), i. = {ﬁ]- Hence,
the optimization problem (Equation 60) can be equivalently recast
as follows:

max b"T®b + 2Re (b"g")

(66)
st. bb<P,.

Q(B®) is positive definite, and during the derivation process,
it can be seen that U® and UYY) are negative semidefinite. Thus,
T® ®
T  and T

optimization problem in Equation 66 is convex second-order

are also negative semidefinite. Hence, the

cone programming, and the optimal solution can be obtained in
polynomial time.

3.2.2 A logdet of the linear function of B

The essence of the MM algorithm is to find a replacement
function that is equivalent to the original optimization objective
function. Therefore, the form of equivalent replacement is not
limited to one form. In the previous section, we discussed a
quadratic function form of the replacement function. At the
same time, considering the characteristics of the optimization
objective function itself, we further analyze the linear form of
the logarithmic determinant of the replacement function.

Because R} is positive definite, we have
Hyy— . .-
(B-BYRI(B-BYW)>0. Using the decomposition
calculation, we obtained that
C(B) =B"R_'B > G(B; B"), (67)

. _ Hp- Hp- Hp—
G(B;BY) = (B)"R_'B + B"R;'B® - (BW)"R !B
The t-th iteration system value can be represented as

where

Gy (B;B") = Ri°G(B; B“)R}. (68)
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Note that from the properties of the logarithmic determinant, it
can be inferred that when the independent variable function is
positive semidefinite, that is, X > 0, logdet(X) is a monotonically
increasing function with respect to X. To this end, it can be easily
demonstrated that

log_det (I + X (B)) 2log_det (I + Gy (B; B")),log_det (I + X (B"))
=log_det(I+ Gy (B®;B®)).
(69)

Hence, the objective function surrogate function can be
expressed as follows:

£1(B;BY) =log_det(I+ Gy (B; B")), (70)
The system optimization problem can be equivalently
reformulated as
maxlog_det(I + Gy (B; B®
xlog_det(+ Gy (B:B) o

sttr(BBF)< P,

It is obvious that the processed optimization problem has a
typical convex optimization solution form that is easier to solve and
can be directly obtained using a numerical toolbox. This value is still
the global optimal solution.

3.2.3 The MM convergence analysis

To demonstrate the performance of the MM algorithm, the
convergence of the alternative function is discussed here, as the
influence of iteration is taken into account in the system
optimization solution.

logdet(T+X(B“")) > f; (B, BY)

> fi (B(t); B(t))
=log — det(I+ X (B®)).

(72)

It can be clearly seen from the above equation that as the number
of iterations t increases, the update value at ¢ + 1 will be the same as
the value at the previous time t. Thus, the system value will tend
to converge.

The algorithm flow is illustrated in the Algorithms 2 to provide
an intuitive understanding of the solution process for the joint
optimization problem. The effectiveness of the proposed method
and scheme will be analyzed and discussed in the following section.

Input: M., M, K, L, Ry, Pr, Hiy, Hoy 02, o2, t;

Output: B;

1: Calculate the surrogate function matrix Q(B) by
Equation 54;

2: Calculate the systemgradient matrix U'® by Equation 58;
3: Reconstructed theobjective functionusing Equation 59;
4: Update the system beamforming using Equation 66;

5: Calculate the system surrogate function matrix
f1(B;B™) using Equation 70;

6: Update the system beamforming using Equation 71;

Algorithm 2. MM algorithm for solving Equation 40.

To complement the convergence analysis discussed previously,
we now present a comprehensive evaluation of the computational
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TABLE 2 Comparison of algorithm computational complexity.

Algorithm Overall computational complexity

Proposed JOINT algorithm O((MK +M?))

Proposed MM algorithm O((M; + M?))

Water-filling algorithm O(M;KlogM,)

WMMSE algorithm O((M?K? + M2))

SCA algorithm O(M;K?)

complexity. A comparative analysis of the proposed JOINT and MM
algorithms against classical water-filling, WMMSE, and Successive
Convex Approximation (SCA) algorithms is performed, with the
key results presented in the Table 2.

4 Numerical simulation

In this section, the proposed algorithm is verified by simulation,
and the numerical experiment parameters are set. For the
consider two

convenience of analysis and understanding,

communication users for communication without loss of
generality. The total system power budget is 20 W. It is assumed
that the communication channel and radar channel obey the
complex Gaussian distribution, with variances of o, =0, =1,
respectively. The noise variance is 02 = ¢ = 0.01. The number of
communication BS transmitting antennas and radar transmitting
and receiving antennas are M; = M, = 5, respectively. For a clear
illustration of the simulation parameters, they are presented in the
following table in Table 3.

The beamforming matrix B,x and By in the algorithm was
initialized using random unitary matrices. The typical water-filling

algorithm is considered the baseline comparison algorithm. The

TABLE 3 Simulation parameter configuration.
Parameter category Parameter name

SyStEm parameters

Number of transmit antennas (M)

10.3389/frsip.2025.1700979

convergence of the system was analyzed in this process, and the
convergence of different methods was simulated and verified. The
simulation results are shown in the Figure 2.

From the simulation results, it can be clearly seen that the joint
optimization algorithm and the MM algorithm can converge in
fewer iterations, while the First-order Taylor (FOT) expansion
method requires more iterations to complete convergence. In
addition, the system performance of the joint optimization is
better than that of the MM algorithm and the FOT expansion
algorithm. The reason for this is that in the two different
optimization modes of the system, both the MM algorithm and
the FOT expansion approximate the system optimization problem,
which results in performance degradation.

There are certain shortcomings in analyzing the superiority of
various methods solely based on the convergence of system
algorithms. In the system optimization process, changes in
system power can have a significant impact on the performance
of various aspects of the system. As an important indicator in the
ISAC system, the variation of system power will directly affect
system performance. Therefore, based on this, we will consider
the impact of system power variation on system performance, and
comprehensively analyze the specific performance of the classic
water injection algorithm and the MM, FOT, and JOINT methods
mentioned in the article with the variation of system power. Further
analysis of the changes in system power with the increase of power is
shown in the simulation results in Figure 3.

From the graph, it can be seen that as the system transmission
power increases, the system MI gradually increases. In the
simulation comparison, we use the typical water injection power
allocation algorithm as the benchmark algorithm. The graph shows
that the joint optimization has the best effect, followed by the MM
algorithm, and the FOT expansion has the worst effect. The
performance of the water injection algorithm is between the MM
algorithm and the FOT expansion method, which further confirms
that the joint optimization has the best effect. Similarly, due to the

Value/Setting

2,3,4,5,6,7, 8 (for antenna-number)

Number of users (K)

Number of receive antennas (M,)

5

2 (default), 1, 3, 4 (for user-number)

Number of time slots (L)

100

Channel Path loss exponent (y) 3.5 (urban scenario)
Rician K-factor (K) 10
Noise variance (0?) 0.01

Algorithm Initial step size (step) 0.1
Initial penalty parameter (p,) 0.01

Convergence threshold (e)

Simulation setup Monte Carlo trials

107° (stop objective <e)

500

Programming environment

Optimization toolbox

Frontiers in Signal Processing

MATLAB R2022b

CVX (for convex optimization)
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FIGURE 3
System optimization of Ml vs. the system power.

approximate scaling of the MM and FOT expansion methods in
solving system optimization problems, both have a certain
performance loss. However, compared to the FOT expansion, the
MM algorithm still has better performance, indicating that MM can
better solve optimization problems in the approximation process
than the FOT expansion. Due to the discussion of two different
scenarios of time-division signal and general signal models during
system modeling, which have different requirements for system
communication users, further analysis was conducted on the impact
of different numbers of users on system MI performance. The
simulation results are shown in Figure 4.

As can be seen from Figure 4, as the number of communication
users increases, the system weighted MI increases accordingly,
showing an overall increasing trend. Due to the correlation
between the system MI and the number of communication users
during the communication transmission process, the system MI
naturally shows an increasing trend as the number of system users
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FIGURE 5
System optimization of Ml vs. the number of antennas.

increases. In addition, the system MI under various optimization
methods always shows the best joint optimization effect, followed by
MM, and the FOT expansion is the worst. The water injection
algorithm is between MM and the FOT expansion. The reason for
this is similar to the performance mentioned above, both of which
are due to the approximation involved in the processing of MM and
the FOT expansion. In addition to the change in the number of
communication users, the number of transmitting antennas also
affects the power allocation of the system. Therefore, the simulation
results of the system performance changing with the number of
antennas are shown in Figure 5.

From the simulation picture, it can be seen that as the number of
antennas increases, the system MI also gradually increases. Although
the overall performance of the system also maintains the best JOINT
performance, the FOT expansion is the worst, and it is the same with
the trend of increasing the number of communication users. When
the number of communication users in the system increases, several
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optimization algorithms show a significant increase. When the
number of antennas in the system changes, the change in system
MI is relatively gentle when the number of antennas is small. When
the number of antennas is large, the increase in MI is more obvious.
This further indicates that both the number of communication users
and antennas in the system will affect system MI, but the impact of
communication users is more obvious.

Due to the significant influence of weight factors in the process
of system performance balancing optimization, in order to further
analyze the impact of weight factors on system perception and
the MI,
communication MI, and jointly optimized MI that vary with

communication performance, system perception
weight factors are discussed and analyzed. In the aforementioned
analysis, it is mentioned that weight factors must be adjusted
according to the dynamic changes in system performance. Based
on continuous changes in weight factors, relevant simulation results
are obtained, and the simulation effect is shown in Figure 6.
Based on the above analysis, only the joint optimization of the
system was discussed in the weight factor analysis. The simulation
results show that as the weight factor increases, the performance of
the system’s sensing and communication varies. The radar
performance shows a decreasing trend with the increase of the
weight factor, while the communication MI increases with the
increase of system weight. On the other hand, the system
weighted MI generally shows an upward trend, which also
that  the
performance can achieve relative balance with the change of the

indicates system sensing and communication
system weight factor. The overall trend of change also satisfies the
law of system performance changes, once again proving the

effectiveness of the algorithm.

5 Conclusion

This article investigates two distinct ISAC signal frameworks,
unified under a mutual information (MI) performance metric. To
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solve the resulting optimization problems, a dual sub-gradient
method (MM)
algorithm are developed. The use of MI from information theory

ascent and a Minorization-Maximization
offers a more general and fundamental approach to system
optimization than direct SINR-based modeling. The proposed
signal model incorporates not only sensing-oriented waveform
design but also time-division structural characteristics, providing
an integrated system representation. Simulation results demonstrate
that the proposed framework achieves strong overall performance
and effectively balances sensing and communication capabilities.
Future work will focus on advanced co-design methodologies for

sensing-communication performance trade-offs.
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