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Introduction: Since the onset of the COVID-19 pandemic, extensive research has
focused on developing non-invasive diagnostic approaches of respiratory
syndrome using biomedical signals, particularly cough and speech audio.
Time-frequency representations combined with Machine Learning models
have shown potential in identifying acoustic biomarkers associated with
respiratory conditions. Although many existing approaches demonstrate high
performance, their use may be limited in resource-constrained environments
due to processing or implementation demands.

Methods: In this study, we propose an end-to-end approach for COVID-19
inference based on compressed time-domain audio signals. The method
combines temporal signal compression strategies - Downsampling (DS) and
Compressive Sensing (CS) - with a Convolutional Neural Network (CNN)
trained directly on the waveforms. This design eliminates the need for
handcrafted features or spectrograms, aiming to reduce computational
complexity while preserving classification performance.

Results: To evaluate the proposed structure, we used data from two open-access
datasets, one for coughing and one for speech. Experimental results, assessed
using accuracy and F1-score metrics, indicate that CS outperformed DS in most
scenarios, particularly under high compression rates (e.g., 200 Hz and 100 Hz).
Discussion: These findings support the use of compressed audio-based
classification in real-world embedded and mobile health systems, where
computational efficiency is essential.

KEYWORDS

COVID-19, compressive sensing, downsampling, CNN, cough, speech, embedded
health systems

1 Introduction

COVID-19 (Coronavirus Disease 2019) is an infectious respiratory illness caused by the
SARS-CoV-2 virus, first reported in late 2019. Due to its rapid global spread, the World
Health Organization (WHO) officially classified it as a pandemic on 11 February 2020
(World Health Organization, 2020). The disease quickly became a major health challenge
worldwide, significantly impacting both public health systems and economies. According to
data from 2023 from Johns Hopkins University, COVID-19 has led to millions of infections
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and deaths globally (Johns Hopkins University, 2022). Brazil alone
has reported over 38 million confirmed cases and more than
700,000 deaths (Worldometer, 2024).

Clinically, COVID-19 presents a wide range of symptoms,
including fever, fatigue, respiratory difficulties, cough, and voice
changes. Dysphonia, characterized by changes in voice quality, has
been reported in approximately 25% of patients with mild to
moderate forms of COVID-19. This reflects the systemic nature
of the virus and its impact on respiratory and vocal tract structures,
such as the lungs, larynx, and vocal folds (Rai et al., 2021; Oliveira
et al., 2020).

Given the pronounced respiratory and vocal involvement, audio
signal analysis has emerged as a promising non-invasive tool for
detecting and monitoring COVID-19. Previous studies have
demonstrated that cough, breathing, and speech signals contain
discriminative acoustic patterns correlated with respiratory
conditions (Brown et al,, 2020; Sharma et al., 2022; Pleva et al.,
2022; Pahar et al., 2022). Such audio-based diagnostic methods are
particularly suited to telemedicine and remote patient monitoring
due to their simplicity, affordability, and ease of integration with
mobile and portable platforms (Villa-Parra et al., 2022).

Traditionally, audio-based health diagnostics have relied on
handcrafted acoustic features, such as Mel-Frequency Cepstral
Coefficients (MFCC), Zero-Crossing Rate (ZCR), and Spectral Roll-
off (Pramono et al., 2016; Verde et al.,, 2021). These features, typically
extracted from spectrograms or raw waveforms, serve as input for
classifiers such as Support Vector Machines (SVM), k-Nearest
Neighbors (KNN), and ensemble methods (Sharma et al, 2022;
Casanova et al., 2021). More recently, deep learning architectures
have attracted attention by enabling automatic learning of
discriminative representations from raw or minimally processed
audio signals (Pahar et al, 2022). Despite improved classification
accuracy, these advanced approaches often require substantial
computational resources, limiting their practical deployment in
embedded Real-time
classification in such resource-constrained environments remain

and mobile devices. processing and
significant challenges due to limitations in processing power,
memory, and energy availability (Diab and Rodriguez-Villegas, 2022).

To address these challenges, we have developed the Integrated
Portable Medical Assistant (IPMA), a multimodal platform designed
to automatically acquire and analyze multiple physiological and
acoustic biomarkers (Villa-Parra et al., 2022). The IPMA captures
parameters such as cough, speech, forced breathing, oxygen
saturation, blood pressure, heart rate, and body temperature,
facilitating comprehensive patient screening in remote or
resource-limited environments.

Although such platforms can benefit from cloud-based analytics
and storage, the use of audio signals and physiological data raises
important concerns regarding data privacy and security. Previous
studies have emphasized the need for robust encryption and access
control mechanisms to protect sensitive health information
transmitted over networks (Deepika et al., 2021; Jayaram and
2021).
computation is critical for the real-world applicability of these

Prabakaran, Ensuring secure and privacy-preserving
systems, especially in mobile and telemedicine contexts.

In resource-constrained scenarios, such as embedded or portable
systems like the IPMA, it is essential to adopt strategies that balance
diagnostic accuracy with low computational complexity. In this
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methods
technologies that facilitate the deployment of advanced diagnostic

context, signal compression serve as enabling
algorithms in resource-constrained environments, particularly for
COVID-19 detection in remote or underserved areas. Among
available approaches, Downsampling (DS) and Compressive
Sensing (CS) emerge as compelling solutions that can potentially
preserve diagnostic information while significantly reducing
computational demands. DS directly reduces signal dimensionality
by lowering the sampling frequency, potentially leading to loss of
relevant acoustic information (Bent et al., 2021; Casaseca-de-la
Higuera et al, 2015). Conversely, CS leverages the inherent
sparsity of biomedical signals, enabling compact representations
by projecting the data into a lower-dimensional space through
random measurements (Casaseca-de-la Higuera et al, 2015;
Prabhavathi et al, 2023; Wang et al, 2016). Although both
methods have been extensively explored individually in audio
signal processing, their comparative performance for COVID-19
audio-based detection remains largely unexplored (Casaseca-de-la
Higuera et al., 2015), particularly regarding their ability to maintain
diagnostic accuracy under extreme compression conditions.

have proposed
frameworks for diagnosing various conditions using Deep Neural
Network (DNN) (Jo and Kwak, 2022; Kapoor et al., 2022; Patel et al.,
2022). Among them, Convolutional Neural Networks (CNNs) have
been applied to analyze respiratory audio signals—such as cough
and breathing—to detect diseases like COVID-19 (Kapoor et al.,
2022) and to classify complex audio patterns in areas including

Recent  studies self-regulated  diagnostic

depression diagnosis (Jo and Kwak, 2022), and lung function
prediction (Patel et al., 2022).

In this work, we propose an end-to-end methodology for COVID-
19 inference from respiratory audio signals (cough and speech),
combining temporal signal compression techniques-DS and
CS-with a CNN architecture. Unlike many existing approaches that
operate on spectrograms or require intermediate representations, our
CNN processes compressed time-domain waveforms directly,
maintaining end-to-end efficiency even under extreme compression
conditions. This integration of signal compression with direct
waveform processing creates a particularly streamlined pipeline
suited for resource-constrained environments. Comparing CS with
DS explicitly quantifies the performance advantage of a sparsity-aware
approach over simple downsampling, supporting our hypothesis that
CS can enable accurate classification of cough and speech signals while
maintaining low computational complexity in resource-constrained
systems. To validate this, we evaluate the methodology on two publicly
available datasets, without performing cross-dataset inference.

The remainder of this paper is structured as follows. Section 2
describes the proposed system to infer COVID-19 from cough and
speech signals, detailing the datasets and methods used. Section 3
presents experimental results, followed by their discussion and analyses
in Section 4. Finally, concluding remarks are provided in Section 5.

2 Materials and methods
2.1 Overview of the system

Figure 1 presents the proposed pipeline for COVID-19 detection
using cough and speech audio signals. The process begins with a pre-
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FIGURE 1
Overview of the proposed pipeline for COVID-19 screening using cough and speech signals. The process includes signal pre-processing

(normalization, pre-emphasis, silence removal), data augmentation (SMOTE applied to 1s audio epochs), audio signal compression (using Compressive
Sensing or Downsampling), followed by classification using a CNN.

processing stage that includes normalization, pre-emphasis filtering,
silence removal using Root Mean Square (RMS) energy, and
segmentation of the signal into fixed-length epochs.

Data augmentation is then applied to address class imbalance
during training. The signal is subsequently compressed using either
CS or DS to reduce data volume while preserving relevant
information. The resulting representations are processed by a
CNN that extracts temporal patterns for classification. Inference
is then performed to classify the input as COVID-19 positive or
negative. The following subsections detail each stage of the pipeline.

2.2 Dataset description

This study uses of the INTERSPEECH
2021 Computational Paralinguistics Challenge (ComParE), an

two subsets
open challenge based on speech signals: the ComParE COVID-19
Cough Sub-Challenge (CCS) and the ComParE COVID-19 Speech
Sub-Challenge (CSS) (Schuller et al., 2021). These datasets were
provided by Cambridge University under a mutual agreement for
research purposes, and their use was approved by the Department of
Computer Science and Technology at Cambridge University,
following all the requisite sets by the ethics committee.

The CCS dataset contains cough audio recordings from both
COVID-19 positive and negative subjects. In the same way, the
CSS dataset includes speech recordings from individuals both
infected by COVID-19 and those who are not. The audio data for
both datasets were collected via the “COVID-19 Sounds App”
available on multiple platforms (a webpage, an Android app, and
an iOS app). Participants were asked to provide one to three
forced coughs and to say, “T hope my data can help to manage the
virus pandemic” one to three times. As described by Schuller et al.
(2021), all audio files were manually checked, resampled, and
converted to 16 kHz mono/16 bit format. In addition to the audio
recordings, the dataset also includes demographic and clinical
information provided by the participants. These features include
variables such as sex, age group, presence of symptoms, and
medical history (e.g., asthma, diabetes, valvular heart disease),
allowing further analyses of potential associations between these
variables and COVID-19 status.

For both the CCS and CSS datasets, the original data partitions
were preserved, as proposed by Schuller et al. (2021), ensuring that
our results may be compared with those reported in earlier studies
using the same dataset. Specifically, the CCS dataset comprises
286 samples for training, 231 for validation, and 208 for testing.
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Similarly, the CSS dataset includes 315 samples for training, 295 for
validation, and 283 for testing.

2.3 Signal pre-processing

Pre-processing was applied uniformly to all audio samples to
prepare them for analysis. Prior to any processing, amplitude
normalization was performed on each audio recording to ensure
consistent signal levels across all samples. Following, a first-order
pre-emphasis filter (a =0.97) was applied to amplify high-
frequency components, balancing the audio spectrum and
enhancing features relevant for robust classification by CNN (Shi,
2025). Despite using an end-to-end time-domain approach, this pre-
processing step improves the signal-to-noise ratio, making
important audio characteristics more distinguishable (Shi, 2025).
Preliminary experiments showed that removing pre-emphasis
notably degraded classification performance, confirming its
beneficial role in our methodology. Subsequently, silence removal
was performed using a frame-based energy detection method,
retaining only frames with normalized RMS energy above a fixed
threshold of 0.02 (in the range [0,1], not in decibels). Each recording
was segmented into overlapping frames of 25 ms with a 10 ms
step. To standardize input length and enable epoch-based
processing, zero-padding was applied to ensure the final signal
length was a multiple of the sampling rate, allowing for
segmentation into 1 s epochs. The 1-s epoch duration balances
the time-frequency resolution trade-off: A f = 1/T ensures sufficient
spectral resolution to preserve clinically relevant acoustic cues
(Boashash, 2015).

2.4 Data augmentation

To address class imbalance in the training set, we employed the
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla
et al., 2002), which creates synthetic samples for the minority class
by interpolating between existing instances and their nearest
neighbors. This technique has shown effectiveness in high-
dimensional datasets, including biomedical and audio-based
classification tasks (Wang et al., 2023; Lee and Lee, 2023).

The original class distribution, detailed in Table 1, revealed a
moderate imbalance (approximately 3:1) favoring the negative class.
Although not severe, this imbalance could bias the model toward the
majority class, negatively impacting the performance for the
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TABLE 1 Class distribution: original dataset vs. SMOTE-augmented dataset.

10.3389/frsip.2025.1700044

COVID-19 (+) COVID-19 (-)
Validation Validation
Original CCs 71 48 39 215 183 169
css 72 142 94 243 153 189
SMOTE cCcs 215 48 39 215 183 169
Css 243 142 94 243 153 189

minority class. To mitigate this, we applied SMOTE exclusively to
the training set. Preliminary tests indicated that excluding SMOTE
led to noticeable performance degradation, particularly for the
minority class, confirming the relevance of this strategy
(Joloudari et al., 2023; Lee and Lee, 2023).

Mathematically, the number of synthetic samples generated for
each minority class is determined by the oversampling factor Nj, as
defined in Equation 1 (Chawla et al., 2002):

N, = Ty, M
n;

where ; is the number of original samples in the minority class, and
Mmajority 15 the number of samples in the majority class. The integer
part of N; specifies how many synthetic samples are generated per
original observation, whereas the fractional part is randomly
distributed among a subset of observations to reach the exact
target count. SMOTE generates each synthetic sample by
interpolating between original samples and their k=5
nearest neighbors.

Although SMOTE was originally developed for feature-space
augmentation, recent studies have adapted it to time-series and
waveform-based data (Iwana and Uchida, 2021). In our case, we
treated each 1 s raw audio epoch as a high-dimensional vector and
applied SMOTE directly in the time domain. While the resulting
synthetic waveforms may sound unnatural, the CNN can learn
discriminative patterns from these signals. The objective was not
to produce perceptually realistic audio, but to improve class balance
and model generalization. Experimental results confirmed that
waveform-level SMOTE improved classification performance for

the minority class.

2.5 Signal compression

Signal compression plays an important role in scenarios where
transmission bandwidth, storage capacity, or computational power
are constrained, as commonly observed in embedded biomedical
systems (Casaseca-de-la Higuera et al., 2015; Santos, 2023). These
systems are frequently deployed in real-world health applications
such as portable respiratory monitors, wearable biosensors, and
mobile diagnostic tools, where power supply is limited and data
must be transmitted wirelessly in near real-time. Devices often rely
on low-energy wireless protocols like Bluetooth Low Energy (BLE)
(Santos, 2023), which impose strict constraints on transmission
rates. Transmitting uncompressed, high-resolution biomedical
audio-such as cough or speech signals—-may cause significant
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bottlenecks due
excessive battery drain (Kaur and Singh, 2020). Furthermore,

to increased latency, buffer overflows, or

high sampling rates increase memory demands, making them
unsuitable for microcontrollers with limited RAM and storage.

In this context, reducing the amount of data to be transmitted,
stored, or processed-without compromising critical diagnostic
information-is essential for real-time inference and robust system
deployment. Compression techniques that preserve the
discriminative structure of biomedical signals while reducing
dimensionality offer a promising solution for embedded health

applications.

2.5.1 Downsampling

DS is a temporal compression technique that reduces signal
resolution by resampling the original waveform to a lower number
of samples. While it is computationally efficient and simple to
implement, DS inherently discards part of the original signal,
leading to spectral degradation (Bent et al., 2021; Casaseca-de-la
Higuera et al., 2015). According to the Nyquist-Shannon sampling
theorem, reducing the sampling rate to f; limits the maximum
representable frequency to f,/2, which effectively eliminates all
spectral content above this threshold
Schafer, 1999).

This loss of high-frequency components is a known limitation of

(Oppenheim  and

DS and may be considered when dealing with audio signals, as
cough and speech contain diagnostically relevant information across
a broad frequency range (Sharan, 2022). The effect becomes more
pronounced at aggressive downsampling rates, where significant
portions of mid- and high-frequency content may be lost.

In our experiments, each 1 s audio epoch was downsampled
using linear interpolation to fixed lengths corresponding to target
resolutions (1,000, 500, 200, and 100 Hz). This method was selected
due to its simplicity and served as a baseline for comparison with
Compressive Sensing.

2.5.2 Compressive Sensing

Compressive Sensing (CS) is an advanced signal compression
technique that enables the acquisition and reconstruction of signals
from fewer samples than traditional Nyquist-based methods. CS
exploits signal sparsity or compressibility in specific domains (e.g.,
frequency or wavelet domains) to reconstruct signals from fewer
measurements without substantial information loss (Candeés and
Wakin, 2008; Rivera-Flor et al., 2022).

The suitability of speech and cough signals for CS is rooted in
their inherent sparsity within specific domains. CS leverages this
property, where a signal can be reconstructed from fewer
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measurements if it has a sparse representation (few significant
coefficients) in a suitable basis (Kodrasi and Bourlard, 2020;
Candes and Wakin, 2008). Speech signals are known for their
spectro-temporal sparsity, meaning their energy is concentrated
in specific frequency bands and time instances (Kodrasi and
Bourlard, 2020). This characteristic, arising from phenomena like
formant transitions and pauses, makes speech highly compressible
and thus well-suited for CS. Cough signals, sharing physiological
similarities with speech, also exhibit sparsity in frequency domains, a
property exploited by techniques like Mel-frequency Cepstral
Coefficients (MFCCs) for feature extraction (Sharan et al., 2018).
This inherent sparsity in both signal types allows CS to enable
efficient data acquisition and high-quality reconstruction, proving
particularly advantageous for biomedical and health monitoring
applications.

Mathematically, given an audio signal vector x € RY, where N
represents the number of original time-domain samples in a 1 s
recording (N = 16,000 at 16 kHz), CS compresses the original signal
into a smaller representation. First, a random matrix A € RSN ig
generated, where S < N is the number of compressed measurements
or compressed samples (Rivera-Flor et al., 2022). Subsequently, a
single Gaussian random orthonormal measurement matrix
@ e RSN g computed, as defined in Equation 2:

@ = orth (A7)" 2

Using this matrix, the compressed signal representation
y € R®! is obtained by projecting the original signal, as shown
in Equation 3:

y = ®x (3)

Here, (-)7 denotes the matrix transpose, and orth (-) indicates
the orthonormalization of matrix rows. The variable S directly
controls the compression ratio, with a smaller S corresponding to
higher compression but potentially increased information loss
(Rivera-Flor et al.,, 2022). The compressed signal representation
facilitates signal transmission, storage, and processing (Casaseca-
de-la Higuera et al., 2015), which is particularly advantageous in
embedded systems for biomedical applications, such as automated
cough or speech-based respiratory monitoring.

While CS reconstruction may be computationally intensive, our
approach integrates CS directly with a CNN, avoiding explicit signal
This
computational overhead, enabling a real-time processing on
embedded devices (Xiao et al., 2019; Machidon and Pejovic,
2023). Beyond effective data reduction, CS preserves critical

reconstruction. end-to-end  paradigm  minimizes

information at sub-Nyquist rates (Candes and Wakin, 2008),
beneficial for applications with limited bandwidth or storage
capabilities. The random nature of CS measurements may
provide a degree of privacy protection for sensitive biomedical
data, although this should not be interpreted as a formal or
quantified privacy guarantee (Djelouat et al., 2018).

In this work, the CS process was implemented in the time domain
using a single orthonormal measurement matrix, generated once per
experimental run. This matrix was applied uniformly to all 1 s signal
epochs in the dataset. Each epoch was individually projected into a
lower-dimensional space defined by the desired compression size,
producing compressed representations with fixed length.

Frontiers in Signal Processing
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2.5.3 Visual analysis of compression strategies

To illustrate the impact of each compression method, Figures 2, 3
present waveform and spectrogram views of a COVID-19 positive
cough signal from the CCS dataset at different compression levels.

In CS-based compression (Figure 2), the waveform changes
progressively with increasing compression. However, core temporal
structures remain present, and the spectrograms still exhibit coarse
spectral patterns and low-frequency components. This suggests that,
despite the loss of high-frequency detail, CS preserves enough
discriminative structure to support classification-particularly for
cough signals, which often contain relevant information in lower
spectral bands.

In contrast, DS (Figure 3) exhibits progressive removal of high-
frequency information as the sampling rate decreases. At 500 Hz, the
spectrogram displays only the lowest spectral bands, as content
above 250 Hz is inherently discarded due to the Nyquist limit. This
spectral truncation, combined with reduced waveform resolution,
results in a simplified temporal structure that may limit the
classifier’s ability to extract discriminative features.

These visual differences qualitatively support the motivation for
comparing CS and DS as compression strategies, especially in
scenarios where embedded audio processing demands both
efficiency and preservation of discriminative information.

2.6 Experimental tests

Based on the datasets described above (CCS and CSS), we
conducted a series of experimental tests to assess the impact of
signal compression strategies on the classification of COVID-19
from biomedical audio. Cough and speech recordings were analyzed
separately to assess the robustness of the proposed pipeline under
different vocal conditions. All experiments were conducted
separately for each dataset (CCS and CSS), and cross-dataset
generalization was not assessed in this study.

Both CS and DS were applied to compress each 1 s signal epoch
to predefined lengths. The resulting representations were used
directly as input to the classification model, allowing for a
systematic comparison between methods under same training
conditions.

Four compression levels were tested: S = {1000, 500, 200, 100},
covering a range of temporal resolutions (Casaseca-de-la Higuera
et al, 2015). The uncompressed baseline corresponds to
S§=N =16000 samples (1 s at 16 kHz). The corresponding
compression ratios are therefore
S/N ={0.0625,0.03125,0.0125,0.00625}. All other experimental
parameters, including model architecture and training setup,
were kept fixed to ensure fair and reproducible comparisons.

It is worth noting that the inclusion of 200 Hz and 100 Hz
sampling rates, despite being close to the lower limit of human
hearing, was an intentional choice to explore the feasibility of
extreme compression levels for

applications in resource-

constrained environments. Previous studies have shown that
important diagnostic information related to respiratory diseases
is often concentrated in low-frequency bands (Ghrabli et al,
2024). Therefore, even under aggressive compression, relevant
acoustic cues remain accessible to the classifier, supporting the

viability of low-rate processing for audio-based health screening.
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FIGURE 2
Example of a COVID-19 positive cough signal under different CS compression levels. Top: waveforms. Bottom: spectrograms. Despite reduced
spectral detail at lower resolutions, coarse temporal and low-frequency patterns remain observable.
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FIGURE 3
Example of a COVID-19 positive cough signal under different compression levels using DS. Top: waveforms. Bottom: spectrograms.
2.7 Classification and evaluation compressed time-domain audio signals (Abdoli et al., 2019; Lee
et al., 2022).
The compressed audio signals were directly input into a The CNN comprises three convolutional blocks. The first

compact time-domain CNN. The proposed architecture  block used 64 filters with a kernel size of 5, followed by batch
(Figure 4) is a compact CNN designed for classification of  normalization, ReLU activation, and max pooling. The second
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FIGURE 4

Detailed architecture of the CNN used for binary classification of compressed audio signals. Each convolutional block includes a Conv2D layer, Batch
Normalization, ReLU activation, and Max Pooling. The figure also shows the number of filters, kernel sizes, and dropout rate. Output tensor shapes at each

stage are also indicated.

and third blocks employed 128 and 256 filters, respectively, both
with kernel size 3, and included the same normalization,
activation, and pooling steps. After flattening, the output
passed through a fully connected layer with 64 units, ReLU
activation, and dropout (p =0.6) to reduce overfitting. The
final layer used softmax for binary classification. A total of
40 training epochs were used, with the Adam optimizer
(learning rate = 107%, batch size = 64), and L2 regularization
(A =0.001) applied to improve generalization. The original
dataset splits provided by the ComParE challenge were
preserved across all experiments, ensuring consistency in
evaluation.

Experiments were repeated 30 times with random shuffles to
ensure robustness. Performance was evaluated using Accuracy
(ACC) and weighted F1-score (F1-weighted).

2.8 Statistical analysis

To evaluate associations between qualitative variables, we
employed the Chi-squared (y?) statistical test, as it provides a
reliable measure to detect significant differences between
observed and expected frequencies within categorical variables
(McHugh, 2013). Differences in group means for quantitative
variables were also assessed at a significance level of p <0.05.

Before conducting further statistical tests, we verified the
normality of data distributions using the Shapiro-Wilk test, since
normality influences the selection of appropriate statistical
methods (Mishra et al., 2019). Given that most of our datasets
exhibited non-normal distributions, we applied non-parametric
tests. Specifically, the Wilcoxon signed-rank test was used for
comparisons involving two related samples, and the Friedman
test was applied when multiple related groups required
comparison (Demsar, 2006). When significant differences were
identified by the Friedman test, post hoc pairwise comparisons

were conducted using Dunn’s test with Bonferroni correction to
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adjust for multiple comparisons, thereby controlling the family-
wise error rate. For all statistical analyses, a threshold of p <0.05
was utilized to indicate statistical significance.

3 Results
3.1 CCS dataset

3.1.1 Demographic and clinical characteristics of
participants in CCS

As mentioned, the CCS dataset comprises cough audio signals
and clinical variables such as gender, age group, smoking habits,
symptoms, and medical history. Using this dataset, we analyzed the
association between these variables and COVID-19 infection
through the Chi-squared test.

A total of 725 subjects were included (without data
augmentation), of whom 158 (21.79%) tested positive for
COVID-19 (+), and 567 (78.21%) tested negative (—), as shown
in Table 2. Among the positive cases, 86 (54.43%) were female, 69
(43.67%) male, and 3 (1.90%) did not disclose their gender.
Significant associations with COVID-19 positivity were observed
for sex (p =0.0326), age group (p = 0.0034), and the presence of
symptoms (p < 0.05). In particular, higher proportions of COVID-
19 positive cases were observed among females and younger adults
aged 20-49 years. No significant associations were found for
smoking habits (p = 0.9815) or medical history (p = 0.0793).
These results suggest that symptomatic presentation, female sex,
and age may be relevant factors in COVID-19 detection based on
cough analysis.

3.1.2 Baseline performance in CCS

Figure 5 presents the classification results of the CNN model
using uncompressed cough signals from the CCS dataset, sampled at
16,000 Hz. Boxplots summarize Accuracy (ACC) and weighted F1-
score across 30 independent runs. The model achieved a mean ACC
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TABLE 2 Association of sex, age, and clinical characteristics with COVID-19
infection using the CCS dataset (before data augmentation).

COVID-19 (+) COVID-19 (-) p-value
n = 158 n = 567
Sex 0.0326*
F 86 242
M 69 322
Unspecified 3 3
Age 0.0034"
0-19 4 10
20-29 33 50
30-39 37 131
40-49 37 120
50-59 33 106
60-69 5 104
70-79 8 42
80-89 0 2
>90 0 1
Unspecified 1 1
Smoking 0.9815*
Never 90 352
Ex 44 123
1to 10 13 50
11 to 20 5 23
21+ 1 4
Unspecified 5 15
Medical history 0.0793*
No 115 358
Yes 43 209
Symptoms «0.057
No 29 302
Yes 129 265

# Significant values p <0.05.
* Chi-squared test.

of approximately 78% and a weighted Fl-score close to 0.75,
with low variability. Outliers were rare, and the baseline
configuration was thus adopted as a reference for subsequent
comparisons.

3.1.3 Comparison between Compressive Sensing
and downsampling strategies in CCS

Figure 6 illustrates the model’s classification performance on
compressed cough signals from the CCS dataset at sampling
frequencies of 1,000, 500, 200, and 100 Hz. Two compression
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strategies were evaluated: CS and DS. Results for ACC and
weighted Fl-score are shown across 30 independent runs.

Across all frequencies, CS vyielded higher accuracy and F1-score
values than DS. At 1,000 Hz, CS reached a median accuracy close to
80%, whereas DS remained around 75%. As the frequency decreased,
performance declined for both methods, but the drop was substantially
more pronounced in DS. CS maintained better classification outcomes
across all conditions, with lower variability between runs.

To statistically validate these differences, the Shapiro-Wilk test
was first applied to assess normality. Since the distributions were
non-normal, the Wilcoxon signed-rank test was used to compare CS
and DS at each frequency. In all cases, the null hypothesis was
rejected (p <0.05), confirming the superiority of CS. These findings
highlight CS as a more robust strategy for signal compression in
embedded systems, capable of preserving classification performance
even under severe temporal reduction.

3.1.4 Statistical comparison between compressed
signals and baseline performance in CCS

Figure 7 presents the statistical comparisons between the baseline
condition (16,000 Hz) and compressed sampling frequencies for both
CS and DS, using the Friedman test followed by post hoc pairwise
analysis. The heatmaps show the p-values for each frequency pair;
darker colors indicate lower p-values, and asterisks (*) denote
statistically significant differences (p <0.05), adjusted using the
Bonferroni correction to account for multiple comparisons.

Results indicate that, for CS, performance at all tested
frequencies was statistically equivalent to the baseline
(16,000 Hz), suggesting that classification accuracy was preserved
even under high compression levels. In contrast, DS exhibited
statistically significant differences from the baseline in almost all
evaluated frequencies. This finding suggests that DS fails to maintain
classification performance, even at moderate compression rates,
resulting in notable degradation in both accuracy and F1-score.

These findings reinforce the suitability of CS as a compression
strategy for cough signals. Preservation of statistical equivalence with the
uncompressed baseline, especially at moderate sampling rates, supports
its integration into resource-constrained or embedded systems.

3.2 CSS dataset

3.2.1 Demographic and clinical characteristics of
participants in CSS

As in Section 3.1, a demographic and clinical analysis was
conducted on the CSS dataset, which contains speech audio
recordings from 893 individuals labeled as COVID-19 positive
(+) or negative (—). Among the participants, 308 (34.49%) tested
positive, while 585 (65.51%) tested negative, as summarized in
Table 3. These figures correspond to the original dataset, prior to
any data augmentation.

The Chi-squared test was applied to evaluate associations
between COVID-19 status and clinical variables. In the COVID-
19 positive group, 134 (43.51%) were female, 173 (56.17%) male, and
1 (0.32%) unspecified. No statistically significant association was
found between sex and infection status (p = 0.9751). In contrast,
significant associations were observed for age group, medical
history, and symptom presence (all p <0.05).
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Baseline performance of the CNN model using uncompressed cough signals (16,000 Hz, CCS dataset).
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Boxplots show accuracy (top) and F1-score (bottom) of the CNN model on the CCS dataset. Asterisks (*) indicate statistically significant differences
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Consistent with findings from the CCS dataset, the presence of
symptoms remained a strong discriminator of COVID-19 positivity,
reinforcing its diagnostic relevance across both cough and speech
modalities.

3.2.2 Baseline performance in CSS

Figure 8 shows the baseline performance of the CNN model
using uncompressed speech signals from the CSS dataset, sampled at
16,000 Hz. The results were obtained from 30 independent
executions using the original data partitions and balanced
training set.

The model reached a median accuracy of approximately 69%
and a weighted Fl-score close to 0.66, with low variability across
runs. Most results are concentrated in a narrow range, indicating
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that the model was able to generalize consistently under this
configuration. A few outliers were observed, but without strong
impact on overall performance metrics.

Compared to the CCS dataset, the baseline performance for
speech signals was slightly lower, which may be explained by the
more complex and heterogeneous nature of speech compared to
cough sounds. These results serve as a reference for evaluating the
effects of signal compression in the next sections.

3.2.3 Comparison between Compressive Sensing
and downsampling strategies in CSS

Figure 9 presents the classification performance of CS and DS at
four compression levels (1,000, 500, 200, and 100 Hz) on the CSS
dataset. Each configuration was evaluated over 30 independent runs,

frontiersin.org


https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1700044

Silva et al.

10.3389/frsip.2025.1700044

Compressive Sensing

16000

1000

Reference Frequency (Hz)
200 500

100

16000

1000 500 200 100

Compared Frequency (Hz)

Downsampling

16000 1000 500 200 100

Compared Frequency (Hz)

L T T

0.0 0.1 0.2

FIGURE 7

0.3 0.4 0.5

p-value

Statistical analysis of performance differences between CS and DS against the baseline (uncompressed signals at 16,000 Hz). The heatmap shows
p-values from the Friedman test, with asterisks (*) indicating statistically significant differences (p <0.05).

and the distributions of accuracy and weighted Fl-score
boxplots. As in the CCS dataset, the
Shapiro-Wilk test indicated non-normal distributions, and the

are shown as

Wilcoxon signed-rank test was used to compare CS and DS at
each frequency.

At 1,000 Hz, no statistically significant difference was observed
between the methods. From 500 Hz and below, CS achieved superior
results in both metrics, with statistically significant differences
(p<0.05). While performance declined for both strategies at
lower frequencies, CS maintained higher median values in
accuracy and Fl-score at 500, 200, and 100 Hz. At 1,000 Hz, DS
produced a slightly higher median F1-score, whereas CS achieved
better accuracy.

Compared to the CCS dataset, overall accuracy and Fl1-score
values were slightly lower in CSS across all configurations, possibly
reflecting the acoustic variability of speech signals. Still, the
comparative advantage of CS over DS remained consistent,
particularly under high compression.

3.2.4 Statistical comparison between compressed
signals and baseline performance in CSS

Figure 10 shows the pairwise statistical comparisons between the
baseline (16,000 Hz)
Compressive Sensing and Downsampling on the CSS dataset.

and the compressed versions using

The Friedman test followed by post hoc analysis was applied, and
the heatmaps display the p-values between each pair of sampling
frequencies. Asterisks indicate significant differences (p < 0.05), and
darker shades represent lower p-values.
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For CS, only the 100 and 1,000 Hz configurations showed
This
indicates that performance was preserved at 500 and 200 Hz,

statistically ~significant differences from the baseline.

even under compression. On the other hand, DS showed
significant differences at most part of tested frequencies,
including 500 Hz, suggesting that even moderate downsampling
led to performance degradation in speech classification.

Overall, the results reinforce the robustness of CS in speech-
based classification, particularly under higher compression rates.

4 Discussion

Since the onset of COVID-19, several studies have investigated
non-invasive screening methods based on audio biomarkers,
particularly cough and speech signals. Traditional acoustic
features such as MFCC, Zero-Crossing Rates (ZCR), and Spectral
Entropy have been widely employed, often in combination with
classical Machine Learning (ML) or Deep Learning (DL) models
(Brown et al., 2020; Sharma et al., 2022; Pahar et al., 2022; Villa-Parra
et al, 2022). For example (Sharma et al., 2022), reported high
classification accuracy using textural features, while (Pahar et al.,
2022) demonstrated that could achieve Receiver Operating
Characteristic Area Under the Curve (AUC-ROC) scores above
0.90 in COVID-19 detection tasks using cough and speech.

Beyond the specific context of COVID-19, audio biomarkers
have gained increasing relevance in biomedical signal processing.
Speech, in particular, has been investigated for diagnosing various
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TABLE 3 Association of sex, age, and clinical characteristics with COVID-19
infection using the CSS dataset (before data augmentation).

COVID-19 (+) COVID-19 (=) p-value
n = 308 n = 585
Sex 0.9751*
F 134 251
M 173 330
Unspecified 1 4
Age <« 0.05"
0-19 8 9
20-29 35 50
30-39 53 137
40-49 114 124
50-59 80 112
60-69 10 105
70-79 8 43
80-89 0 3
>90 0 1
Unspecified 0 1
Smoking 0.2680*
Never 219 367
Ex 65 126
1to 10 12 51
11 to 20 7 21
21+ 1 4
Unspecified 4 16
Medical history «0.05™
No 257 373
Yes 51 212
Symptoms «0.057
No 64 312
Yes 244 273
# Significant values p <0.05.
* Chi-squared test.
diseases, including Parkinson’s, depression, and respiratory

syndromes (Botelho et al, 2024). These findings highlight the
growing clinical potential of audio signals and motivate further
exploration of efficient signal processing techniques for healthcare
applications (Cauzinille et al., 2024).

In this study, we compared two temporal compression
strategies—-DS and CS-applied directly to raw audio signals.
Instead of relying on handcrafted features, we used an end-to-
end Convolutional Neural Network (CNN) architecture that
processes the compressed waveforms as input. This approach
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simplifies the processing pipeline and reduces computational
load, which is beneficial for deployment in embedded or portable
systems (Kaur and Singh, 2020; Santos, 2023).

The proposed end-to-end methodology, processing compressed
time-domain audio signals directly with a CNN, offers advantages
for deployment in resource-constrained environments compared to
approaches requiring extensive signal reconstruction or feature
engineering. Operating directly on compressed measurements
reduces computational overhead, a critical benefit for embedded
systems demanding high computational efficiency and low latency
(Pietrotaj and Blok, 2024). Furthermore, integrating signal
compression techniques, specifically CS, not only facilitates
effective data reduction but also preserves essential discriminative
information. This characteristic is particularly beneficial for
applications constrained by bandwidth or storage limitations
(Saeed et al.,, 2025), thereby enhancing the practical applicability
and accessibility of our diagnostic approach.

CS demonstrated superior performance compared to DS,
especially under aggressive compression levels (e.g., 200 Hz and
100 Hz). These results are consistent with previous findings showing
that CS is effective at preserving relevant information in compressed
biomedical signals (Casaseca-de-la Higuera et al., 2015; Prabhavathi
etal., 2023; Wang et al., 2016). By exploiting the underlying sparsity
of audio signals, CS retains key temporal patterns that are essential
for robust classification.

When comparing these results to prior studies, it is clear that
several models in the literature reported a better performance. For
instance (Shati et al.,, 2023; Aytekin et al., 2023), achieved AUC
values above 0.80 using cough and speech signals. These studies rely
on spectrogram-based inputs and sophisticated architectures such as
Hierarchical Spectrogram Transformers (HST) or use high-
dimensional handcrafted features combined with classical ML
classifiers. Similarly (Sharma et al, 2022), achieved ACC of
989% in a binary task and 722% in a five-class task by
employing textural features like Local Binary Patterns (LBP) and
Haralick on spectrograms. Likewise (Pahar et al., 2022), reached
AUC-ROC values of 0.98, 0.94, and 0.92 for cough, breath, and
speech, respectively, leveraging deep learning models. In contrast,
our pipeline intentionally adopts a waveform-based end-to-end
approach with aggressive temporal compression, aiming to

prioritize  computational efficiency and simplicity over
classification performance. This naturally imposes a different
performance ceiling. Our models exhibited lower AUC,

sensitivity, and specificity but this outcome aligns with the
study’s primary objective: to investigate whether compressed
waveform representations can retain sufficient discriminative
information for lightweight, embedded applications. Additionally,
most state-of-the-art methods rely on curated datasets with manual
validation of cough segments, complex segmentation, or high-
resolution spectral inputs, which are not feasible in real-time or
constrained environments (Schuller et al., 2021; Casanova et al.,
2021; Aytekin et al,, 2023; Pahar et al., 2022). Our pipeline avoids
such steps, focusing on robustness, simplicity, and operational
viability for embedded systems.

These comparisons reinforce the trade-off embedded in our
design choice: while spectrogram-based models with sophisticated
architectures yield higher absolute performance, our work
demonstrates the potential viability of a simplified waveform-
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Baseline performance of the CNN model using uncompressed speech signals (16,000 Hz, CSS dataset).
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(p<0.05).

based pipeline operating directly on aggressively compressed

signals—a relevant contribution for deployment scenarios
constrained by bandwidth, memory, or processing power.
Notably, our approach remained promissor even at sampling
rates as low as 200 Hz and 100 Hz. Although these values are
close to the lower limit of human hearing, prior studies have
shown that cough signals contain diagnostically relevant
information within these low-frequency bands. Sharan (2022)
observed that coughs present spectral components starting
around 80 Hz, while (Ghrabli et al., 2024) identified specific
low-frequency patterns linked to respiratory pathologies. These
findings reinforce the feasibility of low-rate audio analysis, with

our results indicating that the core discriminative information
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needed for classification is preserved despite aggressive
compression-thereby validating this approach for bandwidth-
constrained applications.

It is important to highlight that cough and speech signals
responded differently to compression. Cough signals maintained
higher classification performance even at low sampling rates, which
may be attributed to their broadband spectral characteristics that are
more easily preserved under compression. In contrast, speech
signals—characterized by more complex and fine-grained
temporal dynamics—were more sensitive to compression-induced
distortion, particularly under DS. Similar behavior was observed by
(Shen et al., 2024), which also reported better performance when

using compressed cough signals for COVID-19 detection.
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Statistical analysis of performance differences between CS and DS against the baseline (uncompressed signals at 16,000 Hz). The heatmap shows
p-values from the Friedman test, with asterisks (*) indicating statistically significant differences (p <0.05).

Recent studies, however, have raised important concerns
regarding the clinical robustness of cough-based COVID-19
detection. For instance (Kim et al, 2024), demonstrated that
model performance may deteriorate significantly across viral
variants, with AUC values dropping from 0.93 for Alpha to
0.55 for Omicron. Similarly (Coppock et al., 2024), reported that
when controlling for confounding factors, audio-based classifiers
provided limited diagnostic value beyond simple symptom
questionnaires, with AUC decreasing from 0.85 to 0.62. It is
important to note that the dataset used in our study was
collected in 2020, before the emergence of variants of concern
such as Alpha, Delta, or Omicron. Therefore, the samples
primarily correspond to the original Wuhan strain (He et al,
2023). Our results indicate that cough-based detection should not
be interpreted as a definitive clinical diagnostic tool, but rather as a
computational approach that may offer value in specific scenarios
rapid
monitoring, or resource-limited deployments where access to

such as screening, self-assessment, population-level
laboratory diagnostics is limited. Accordingly, the findings
presented study should be interpreted within a
methodological scope, with the feasibility of compressed

waveform analysis being emphasized rather than the clinical

in our

conclusiveness of cough-based detection.

Although the experiments were conducted offline, the results
reinforce the feasibility of using compressed audio representations
in real-time health monitoring. Processing directly in the time
domain, without relying on handcrafted features, may reduce
system complexity and enable deployment on constrained
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platforms such as embedded or mobile devices (Kaur and Singh,
20205 Santos, 2023). Furthermore, the consistent performance of CS
under aggressive compression conditions highlights its practical
relevance for real-time health monitoring applications with
limited computational resources.

5 Conclusion

This study investigated the effects of temporal signal
compression  techniques-Downsampling and  Compressive
Sensing-on the performance of a CNN for COVID-19 detection
from cough and speech audio signals. The proposed end-to-end
approach operates directly on compressed waveforms, enabling a
classification pipeline that may reduce computational and
memory demands.

Our findings show that Compressive Sensing consistently
outperformed Downsampling under higher compression levels
(200 Hz and 100 Hz), particularly for cough signals. This
suggests that CS better preserves
information and that cough may be a more suitable modality for
audio-based screening.

The proposed strategy simplifies signal processing by avoiding

essential discriminative

explicit feature engineering and may reduce computational and
memory requirements, favoring implementation in embedded
systems. As a limitation, this study was conducted offline using
fixed-length segments and dataset-specific audio, which may limit
generalizability due to speaker variability, viral evolution, and the
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lack of real-time evaluation. While our experiments have focused on
COVID-19 detection, future work will investigate the method’s
applicability to other respiratory conditions with similar acoustic
signatures, and evaluate performance across emerging SARS-CoV-
2 variants. Future work will also focus on evaluating the method in
real-time scenarios to assess performance and generalization in
practical applications, including deployment on microcontroller-
based platforms. Additional directions include adaptive audio
segmentation, integration with mobile devices, and broader
validation across diverse populations and environments.
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