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Introduction: Since the onset of the COVID-19 pandemic, extensive research has 
focused on developing non-invasive diagnostic approaches of respiratory 
syndrome using biomedical signals, particularly cough and speech audio. 
Time-frequency representations combined with Machine Learning models 
have shown potential in identifying acoustic biomarkers associated with 
respiratory conditions. Although many existing approaches demonstrate high 
performance, their use may be limited in resource-constrained environments 
due to processing or implementation demands.
Methods: In this study, we propose an end-to-end approach for COVID-19 
inference based on compressed time-domain audio signals. The method 
combines temporal signal compression strategies - Downsampling (DS) and 
Compressive Sensing (CS) - with a Convolutional Neural Network (CNN) 
trained directly on the waveforms. This design eliminates the need for 
handcrafted features or spectrograms, aiming to reduce computational 
complexity while preserving classification performance.
Results: To evaluate the proposed structure, we used data from two open-access 
datasets, one for coughing and one for speech. Experimental results, assessed 
using accuracy and F1-score metrics, indicate that CS outperformed DS in most 
scenarios, particularly under high compression rates (e.g., 200 Hz and 100 Hz).
Discussion: These findings support the use of compressed audio-based 
classification in real-world embedded and mobile health systems, where 
computational efficiency is essential.
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1 Introduction

COVID-19 (Coronavirus Disease 2019) is an infectious respiratory illness caused by the 
SARS-CoV-2 virus, first reported in late 2019. Due to its rapid global spread, the World 
Health Organization (WHO) officially classified it as a pandemic on 11 February 2020 
(World Health Organization, 2020). The disease quickly became a major health challenge 
worldwide, significantly impacting both public health systems and economies. According to 
data from 2023 from Johns Hopkins University, COVID-19 has led to millions of infections 
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and deaths globally (Johns Hopkins University, 2022). Brazil alone 
has reported over 38 million confirmed cases and more than 
700,000 deaths (Worldometer, 2024).

Clinically, COVID-19 presents a wide range of symptoms, 
including fever, fatigue, respiratory difficulties, cough, and voice 
changes. Dysphonia, characterized by changes in voice quality, has 
been reported in approximately 25% of patients with mild to 
moderate forms of COVID-19. This reflects the systemic nature 
of the virus and its impact on respiratory and vocal tract structures, 
such as the lungs, larynx, and vocal folds (Rai et al., 2021; Oliveira 
et al., 2020).

Given the pronounced respiratory and vocal involvement, audio 
signal analysis has emerged as a promising non-invasive tool for 
detecting and monitoring COVID-19. Previous studies have 
demonstrated that cough, breathing, and speech signals contain 
discriminative acoustic patterns correlated with respiratory 
conditions (Brown et al., 2020; Sharma et al., 2022; Pleva et al., 
2022; Pahar et al., 2022). Such audio-based diagnostic methods are 
particularly suited to telemedicine and remote patient monitoring 
due to their simplicity, affordability, and ease of integration with 
mobile and portable platforms (Villa-Parra et al., 2022).

Traditionally, audio-based health diagnostics have relied on 
handcrafted acoustic features, such as Mel-Frequency Cepstral 
Coefficients (MFCC), Zero-Crossing Rate (ZCR), and Spectral Roll- 
off (Pramono et al., 2016; Verde et al., 2021). These features, typically 
extracted from spectrograms or raw waveforms, serve as input for 
classifiers such as Support Vector Machines (SVM), k-Nearest 
Neighbors (KNN), and ensemble methods (Sharma et al., 2022; 
Casanova et al., 2021). More recently, deep learning architectures 
have attracted attention by enabling automatic learning of 
discriminative representations from raw or minimally processed 
audio signals (Pahar et al., 2022). Despite improved classification 
accuracy, these advanced approaches often require substantial 
computational resources, limiting their practical deployment in 
embedded and mobile devices. Real-time processing and 
classification in such resource-constrained environments remain 
significant challenges due to limitations in processing power, 
memory, and energy availability (Diab and Rodriguez-Villegas, 2022).

To address these challenges, we have developed the Integrated 
Portable Medical Assistant (IPMA), a multimodal platform designed 
to automatically acquire and analyze multiple physiological and 
acoustic biomarkers (Villa-Parra et al., 2022). The IPMA captures 
parameters such as cough, speech, forced breathing, oxygen 
saturation, blood pressure, heart rate, and body temperature, 
facilitating comprehensive patient screening in remote or 
resource-limited environments.

Although such platforms can benefit from cloud-based analytics 
and storage, the use of audio signals and physiological data raises 
important concerns regarding data privacy and security. Previous 
studies have emphasized the need for robust encryption and access 
control mechanisms to protect sensitive health information 
transmitted over networks (Deepika et al., 2021; Jayaram and 
Prabakaran, 2021). Ensuring secure and privacy-preserving 
computation is critical for the real-world applicability of these 
systems, especially in mobile and telemedicine contexts.

In resource-constrained scenarios, such as embedded or portable 
systems like the IPMA, it is essential to adopt strategies that balance 
diagnostic accuracy with low computational complexity. In this 

context, signal compression methods serve as enabling 
technologies that facilitate the deployment of advanced diagnostic 
algorithms in resource-constrained environments, particularly for 
COVID-19 detection in remote or underserved areas. Among 
available approaches, Downsampling (DS) and Compressive 
Sensing (CS) emerge as compelling solutions that can potentially 
preserve diagnostic information while significantly reducing 
computational demands. DS directly reduces signal dimensionality 
by lowering the sampling frequency, potentially leading to loss of 
relevant acoustic information (Bent et al., 2021; Casaseca-de-la 
Higuera et al., 2015). Conversely, CS leverages the inherent 
sparsity of biomedical signals, enabling compact representations 
by projecting the data into a lower-dimensional space through 
random measurements (Casaseca-de-la Higuera et al., 2015; 
Prabhavathi et al., 2023; Wang et al., 2016). Although both 
methods have been extensively explored individually in audio 
signal processing, their comparative performance for COVID-19 
audio-based detection remains largely unexplored (Casaseca-de-la 
Higuera et al., 2015), particularly regarding their ability to maintain 
diagnostic accuracy under extreme compression conditions.

Recent studies have proposed self-regulated diagnostic 
frameworks for diagnosing various conditions using Deep Neural 
Network (DNN) (Jo and Kwak, 2022; Kapoor et al., 2022; Patel et al., 
2022). Among them, Convolutional Neural Networks (CNNs) have 
been applied to analyze respiratory audio signals—such as cough 
and breathing—to detect diseases like COVID-19 (Kapoor et al., 
2022) and to classify complex audio patterns in areas including 
depression diagnosis (Jo and Kwak, 2022), and lung function 
prediction (Patel et al., 2022).

In this work, we propose an end-to-end methodology for COVID- 
19 inference from respiratory audio signals (cough and speech), 
combining temporal signal compression techniques–DS and 
CS–with a CNN architecture. Unlike many existing approaches that 
operate on spectrograms or require intermediate representations, our 
CNN processes compressed time-domain waveforms directly, 
maintaining end-to-end efficiency even under extreme compression 
conditions. This integration of signal compression with direct 
waveform processing creates a particularly streamlined pipeline 
suited for resource-constrained environments. Comparing CS with 
DS explicitly quantifies the performance advantage of a sparsity-aware 
approach over simple downsampling, supporting our hypothesis that 
CS can enable accurate classification of cough and speech signals while 
maintaining low computational complexity in resource-constrained 
systems. To validate this, we evaluate the methodology on two publicly 
available datasets, without performing cross-dataset inference.

The remainder of this paper is structured as follows. Section 2
describes the proposed system to infer COVID-19 from cough and 
speech signals, detailing the datasets and methods used. Section 3
presents experimental results, followed by their discussion and analyses 
in Section 4. Finally, concluding remarks are provided in Section 5.

2 Materials and methods

2.1 Overview of the system

Figure 1 presents the proposed pipeline for COVID-19 detection 
using cough and speech audio signals. The process begins with a pre- 
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processing stage that includes normalization, pre-emphasis filtering, 
silence removal using Root Mean Square (RMS) energy, and 
segmentation of the signal into fixed-length epochs.

Data augmentation is then applied to address class imbalance 
during training. The signal is subsequently compressed using either 
CS or DS to reduce data volume while preserving relevant 
information. The resulting representations are processed by a 
CNN that extracts temporal patterns for classification. Inference 
is then performed to classify the input as COVID-19 positive or 
negative. The following subsections detail each stage of the pipeline.

2.2 Dataset description

This study uses two subsets of the INTERSPEECH 
2021 Computational Paralinguistics Challenge (ComParE), an 
open challenge based on speech signals: the ComParE COVID-19 
Cough Sub-Challenge (CCS) and the ComParE COVID-19 Speech 
Sub-Challenge (CSS) (Schuller et al., 2021). These datasets were 
provided by Cambridge University under a mutual agreement for 
research purposes, and their use was approved by the Department of 
Computer Science and Technology at Cambridge University, 
following all the requisite sets by the ethics committee.

The CCS dataset contains cough audio recordings from both 
COVID-19 positive and negative subjects. In the same way, the 
CSS dataset includes speech recordings from individuals both 
infected by COVID-19 and those who are not. The audio data for 
both datasets were collected via the “COVID-19 Sounds App” 
available on multiple platforms (a webpage, an Android app, and 
an iOS app). Participants were asked to provide one to three 
forced coughs and to say, “I hope my data can help to manage the 
virus pandemic” one to three times. As described by Schuller et al. 
(2021), all audio files were manually checked, resampled, and 
converted to 16 kHz mono/16 bit format. In addition to the audio 
recordings, the dataset also includes demographic and clinical 
information provided by the participants. These features include 
variables such as sex, age group, presence of symptoms, and 
medical history (e.g., asthma, diabetes, valvular heart disease), 
allowing further analyses of potential associations between these 
variables and COVID-19 status.

For both the CCS and CSS datasets, the original data partitions 
were preserved, as proposed by Schuller et al. (2021), ensuring that 
our results may be compared with those reported in earlier studies 
using the same dataset. Specifically, the CCS dataset comprises 
286 samples for training, 231 for validation, and 208 for testing. 

Similarly, the CSS dataset includes 315 samples for training, 295 for 
validation, and 283 for testing.

2.3 Signal pre-processing

Pre-processing was applied uniformly to all audio samples to 
prepare them for analysis. Prior to any processing, amplitude 
normalization was performed on each audio recording to ensure 
consistent signal levels across all samples. Following, a first-order 
pre-emphasis filter (α � 0.97) was applied to amplify high- 
frequency components, balancing the audio spectrum and 
enhancing features relevant for robust classification by CNN (Shi, 
2025). Despite using an end-to-end time-domain approach, this pre- 
processing step improves the signal-to-noise ratio, making 
important audio characteristics more distinguishable (Shi, 2025). 
Preliminary experiments showed that removing pre-emphasis 
notably degraded classification performance, confirming its 
beneficial role in our methodology. Subsequently, silence removal 
was performed using a frame-based energy detection method, 
retaining only frames with normalized RMS energy above a fixed 
threshold of 0.02 (in the range [0,1], not in decibels). Each recording 
was segmented into overlapping frames of 25 ms with a 10 ms 
step. To standardize input length and enable epoch-based 
processing, zero-padding was applied to ensure the final signal 
length was a multiple of the sampling rate, allowing for 
segmentation into 1 s epochs. The 1-s epoch duration balances 
the time-frequency resolution trade-off: Δf � 1/T ensures sufficient 
spectral resolution to preserve clinically relevant acoustic cues 
(Boashash, 2015).

2.4 Data augmentation

To address class imbalance in the training set, we employed the 
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla 
et al., 2002), which creates synthetic samples for the minority class 
by interpolating between existing instances and their nearest 
neighbors. This technique has shown effectiveness in high- 
dimensional datasets, including biomedical and audio-based 
classification tasks (Wang et al., 2023; Lee and Lee, 2023).

The original class distribution, detailed in Table 1, revealed a 
moderate imbalance (approximately 3:1) favoring the negative class. 
Although not severe, this imbalance could bias the model toward the 
majority class, negatively impacting the performance for the 

FIGURE 1 
Overview of the proposed pipeline for COVID-19 screening using cough and speech signals. The process includes signal pre-processing 
(normalization, pre-emphasis, silence removal), data augmentation (SMOTE applied to 1s audio epochs), audio signal compression (using Compressive 
Sensing or Downsampling), followed by classification using a CNN.
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minority class. To mitigate this, we applied SMOTE exclusively to 
the training set. Preliminary tests indicated that excluding SMOTE 
led to noticeable performance degradation, particularly for the 
minority class, confirming the relevance of this strategy 
(Joloudari et al., 2023; Lee and Lee, 2023).

Mathematically, the number of synthetic samples generated for 
each minority class is determined by the oversampling factor Ni, as 
defined in Equation 1 (Chawla et al., 2002): 

Ni �
nmajority

ni
− 1, (1)

where ni is the number of original samples in the minority class, and 
nmajority is the number of samples in the majority class. The integer 
part of Ni specifies how many synthetic samples are generated per 
original observation, whereas the fractional part is randomly 
distributed among a subset of observations to reach the exact 
target count. SMOTE generates each synthetic sample by 
interpolating between original samples and their k � 5
nearest neighbors.

Although SMOTE was originally developed for feature-space 
augmentation, recent studies have adapted it to time-series and 
waveform-based data (Iwana and Uchida, 2021). In our case, we 
treated each 1 s raw audio epoch as a high-dimensional vector and 
applied SMOTE directly in the time domain. While the resulting 
synthetic waveforms may sound unnatural, the CNN can learn 
discriminative patterns from these signals. The objective was not 
to produce perceptually realistic audio, but to improve class balance 
and model generalization. Experimental results confirmed that 
waveform-level SMOTE improved classification performance for 
the minority class.

2.5 Signal compression

Signal compression plays an important role in scenarios where 
transmission bandwidth, storage capacity, or computational power 
are constrained, as commonly observed in embedded biomedical 
systems (Casaseca-de-la Higuera et al., 2015; Santos, 2023). These 
systems are frequently deployed in real-world health applications 
such as portable respiratory monitors, wearable biosensors, and 
mobile diagnostic tools, where power supply is limited and data 
must be transmitted wirelessly in near real-time. Devices often rely 
on low-energy wireless protocols like Bluetooth Low Energy (BLE) 
(Santos, 2023), which impose strict constraints on transmission 
rates. Transmitting uncompressed, high-resolution biomedical 
audio–such as cough or speech signals–may cause significant 

bottlenecks due to increased latency, buffer overflows, or 
excessive battery drain (Kaur and Singh, 2020). Furthermore, 
high sampling rates increase memory demands, making them 
unsuitable for microcontrollers with limited RAM and storage.

In this context, reducing the amount of data to be transmitted, 
stored, or processed–without compromising critical diagnostic 
information–is essential for real-time inference and robust system 
deployment. Compression techniques that preserve the 
discriminative structure of biomedical signals while reducing 
dimensionality offer a promising solution for embedded health 
applications.

2.5.1 Downsampling
DS is a temporal compression technique that reduces signal 

resolution by resampling the original waveform to a lower number 
of samples. While it is computationally efficient and simple to 
implement, DS inherently discards part of the original signal, 
leading to spectral degradation (Bent et al., 2021; Casaseca-de-la 
Higuera et al., 2015). According to the Nyquist–Shannon sampling 
theorem, reducing the sampling rate to fs limits the maximum 
representable frequency to fs/2, which effectively eliminates all 
spectral content above this threshold (Oppenheim and 
Schafer, 1999).

This loss of high-frequency components is a known limitation of 
DS and may be considered when dealing with audio signals, as 
cough and speech contain diagnostically relevant information across 
a broad frequency range (Sharan, 2022). The effect becomes more 
pronounced at aggressive downsampling rates, where significant 
portions of mid- and high-frequency content may be lost.

In our experiments, each 1 s audio epoch was downsampled 
using linear interpolation to fixed lengths corresponding to target 
resolutions (1,000, 500, 200, and 100 Hz). This method was selected 
due to its simplicity and served as a baseline for comparison with 
Compressive Sensing.

2.5.2 Compressive Sensing
Compressive Sensing (CS) is an advanced signal compression 

technique that enables the acquisition and reconstruction of signals 
from fewer samples than traditional Nyquist-based methods. CS 
exploits signal sparsity or compressibility in specific domains (e.g., 
frequency or wavelet domains) to reconstruct signals from fewer 
measurements without substantial information loss (Candès and 
Wakin, 2008; Rivera-Flor et al., 2022).

The suitability of speech and cough signals for CS is rooted in 
their inherent sparsity within specific domains. CS leverages this 
property, where a signal can be reconstructed from fewer 

TABLE 1 Class distribution: original dataset vs. SMOTE-augmented dataset.

COVID-19 (+) COVID-19 (−)

Train Validation Test Train Validation Test

Original CCS 71 48 39 215 183 169

CSS 72 142 94 243 153 189

SMOTE CCS 215 48 39 215 183 169

CSS 243 142 94 243 153 189
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measurements if it has a sparse representation (few significant 
coefficients) in a suitable basis (Kodrasi and Bourlard, 2020; 
Candès and Wakin, 2008). Speech signals are known for their 
spectro-temporal sparsity, meaning their energy is concentrated 
in specific frequency bands and time instances (Kodrasi and 
Bourlard, 2020). This characteristic, arising from phenomena like 
formant transitions and pauses, makes speech highly compressible 
and thus well-suited for CS. Cough signals, sharing physiological 
similarities with speech, also exhibit sparsity in frequency domains, a 
property exploited by techniques like Mel-frequency Cepstral 
Coefficients (MFCCs) for feature extraction (Sharan et al., 2018). 
This inherent sparsity in both signal types allows CS to enable 
efficient data acquisition and high-quality reconstruction, proving 
particularly advantageous for biomedical and health monitoring 
applications.

Mathematically, given an audio signal vector x ∈ RN, where N
represents the number of original time-domain samples in a 1 s 
recording (N � 16, 000 at 16 kHz), CS compresses the original signal 
into a smaller representation. First, a random matrix A ∈ RS×N is 
generated, where S<N is the number of compressed measurements 
or compressed samples (Rivera-Flor et al., 2022). Subsequently, a 
single Gaussian random orthonormal measurement matrix 
Φ ∈ RS×N is computed, as defined in Equation 2: 

Φ � orth AT( 􏼁
T (2)

Using this matrix, the compressed signal representation 
y ∈ RS×1 is obtained by projecting the original signal, as shown 
in Equation 3: 

y � Φx (3)

Here, (·)T denotes the matrix transpose, and orth(·) indicates 
the orthonormalization of matrix rows. The variable S directly 
controls the compression ratio, with a smaller S corresponding to 
higher compression but potentially increased information loss 
(Rivera-Flor et al., 2022). The compressed signal representation 
facilitates signal transmission, storage, and processing (Casaseca- 
de-la Higuera et al., 2015), which is particularly advantageous in 
embedded systems for biomedical applications, such as automated 
cough or speech-based respiratory monitoring.

While CS reconstruction may be computationally intensive, our 
approach integrates CS directly with a CNN, avoiding explicit signal 
reconstruction. This end-to-end paradigm minimizes 
computational overhead, enabling a real-time processing on 
embedded devices (Xiao et al., 2019; Machidon and Pejović, 
2023). Beyond effective data reduction, CS preserves critical 
information at sub-Nyquist rates (Candès and Wakin, 2008), 
beneficial for applications with limited bandwidth or storage 
capabilities. The random nature of CS measurements may 
provide a degree of privacy protection for sensitive biomedical 
data, although this should not be interpreted as a formal or 
quantified privacy guarantee (Djelouat et al., 2018).

In this work, the CS process was implemented in the time domain 
using a single orthonormal measurement matrix, generated once per 
experimental run. This matrix was applied uniformly to all 1 s signal 
epochs in the dataset. Each epoch was individually projected into a 
lower-dimensional space defined by the desired compression size, 
producing compressed representations with fixed length.

2.5.3 Visual analysis of compression strategies
To illustrate the impact of each compression method, Figures 2, 3

present waveform and spectrogram views of a COVID-19 positive 
cough signal from the CCS dataset at different compression levels.

In CS-based compression (Figure 2), the waveform changes 
progressively with increasing compression. However, core temporal 
structures remain present, and the spectrograms still exhibit coarse 
spectral patterns and low-frequency components. This suggests that, 
despite the loss of high-frequency detail, CS preserves enough 
discriminative structure to support classification–particularly for 
cough signals, which often contain relevant information in lower 
spectral bands.

In contrast, DS (Figure 3) exhibits progressive removal of high- 
frequency information as the sampling rate decreases. At 500 Hz, the 
spectrogram displays only the lowest spectral bands, as content 
above 250 Hz is inherently discarded due to the Nyquist limit. This 
spectral truncation, combined with reduced waveform resolution, 
results in a simplified temporal structure that may limit the 
classifier’s ability to extract discriminative features.

These visual differences qualitatively support the motivation for 
comparing CS and DS as compression strategies, especially in 
scenarios where embedded audio processing demands both 
efficiency and preservation of discriminative information.

2.6 Experimental tests

Based on the datasets described above (CCS and CSS), we 
conducted a series of experimental tests to assess the impact of 
signal compression strategies on the classification of COVID-19 
from biomedical audio. Cough and speech recordings were analyzed 
separately to assess the robustness of the proposed pipeline under 
different vocal conditions. All experiments were conducted 
separately for each dataset (CCS and CSS), and cross-dataset 
generalization was not assessed in this study.

Both CS and DS were applied to compress each 1 s signal epoch 
to predefined lengths. The resulting representations were used 
directly as input to the classification model, allowing for a 
systematic comparison between methods under same training 
conditions.

Four compression levels were tested: S � {1000, 500, 200, 100}, 
covering a range of temporal resolutions (Casaseca-de-la Higuera 
et al., 2015). The uncompressed baseline corresponds to 
S � N � 16000 samples (1 s at 16 kHz). The corresponding 
compression ratios are therefore 
S/N � {0.0625, 0.03125, 0.0125, 0.00625}. All other experimental 
parameters, including model architecture and training setup, 
were kept fixed to ensure fair and reproducible comparisons.

It is worth noting that the inclusion of 200 Hz and 100 Hz 
sampling rates, despite being close to the lower limit of human 
hearing, was an intentional choice to explore the feasibility of 
extreme compression levels for applications in resource- 
constrained environments. Previous studies have shown that 
important diagnostic information related to respiratory diseases 
is often concentrated in low-frequency bands (Ghrabli et al., 
2024). Therefore, even under aggressive compression, relevant 
acoustic cues remain accessible to the classifier, supporting the 
viability of low-rate processing for audio-based health screening.
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2.7 Classification and evaluation

The compressed audio signals were directly input into a 
compact time-domain CNN. The proposed architecture 
(Figure 4) is a compact CNN designed for classification of 

compressed time-domain audio signals (Abdoli et al., 2019; Lee 
et al., 2022).

The CNN comprises three convolutional blocks. The first 
block used 64 filters with a kernel size of 5, followed by batch 
normalization, ReLU activation, and max pooling. The second 

FIGURE 2 
Example of a COVID-19 positive cough signal under different CS compression levels. Top: waveforms. Bottom: spectrograms. Despite reduced 
spectral detail at lower resolutions, coarse temporal and low-frequency patterns remain observable.

FIGURE 3 
Example of a COVID-19 positive cough signal under different compression levels using DS. Top: waveforms. Bottom: spectrograms.
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and third blocks employed 128 and 256 filters, respectively, both 
with kernel size 3, and included the same normalization, 
activation, and pooling steps. After flattening, the output 
passed through a fully connected layer with 64 units, ReLU 
activation, and dropout (p � 0.6) to reduce overfitting. The 
final layer used softmax for binary classification. A total of 
40 training epochs were used, with the Adam optimizer 
(learning rate = 10−4, batch size = 64), and L2 regularization 
(λ � 0.001) applied to improve generalization. The original 
dataset splits provided by the ComParE challenge were 
preserved across all experiments, ensuring consistency in 
evaluation.

Experiments were repeated 30 times with random shuffles to 
ensure robustness. Performance was evaluated using Accuracy 
(ACC) and weighted F1-score (F1-weighted).

2.8 Statistical analysis

To evaluate associations between qualitative variables, we 
employed the Chi-squared (χ2) statistical test, as it provides a 
reliable measure to detect significant differences between 
observed and expected frequencies within categorical variables 
(McHugh, 2013). Differences in group means for quantitative 
variables were also assessed at a significance level of p< 0.05.

Before conducting further statistical tests, we verified the 
normality of data distributions using the Shapiro-Wilk test, since 
normality influences the selection of appropriate statistical 
methods (Mishra et al., 2019). Given that most of our datasets 
exhibited non-normal distributions, we applied non-parametric 
tests. Specifically, the Wilcoxon signed-rank test was used for 
comparisons involving two related samples, and the Friedman 
test was applied when multiple related groups required 
comparison (Demšar, 2006). When significant differences were 
identified by the Friedman test, post hoc pairwise comparisons 
were conducted using Dunn’s test with Bonferroni correction to 

adjust for multiple comparisons, thereby controlling the family- 
wise error rate. For all statistical analyses, a threshold of p< 0.05
was utilized to indicate statistical significance.

3 Results

3.1 CCS dataset

3.1.1 Demographic and clinical characteristics of 
participants in CCS

As mentioned, the CCS dataset comprises cough audio signals 
and clinical variables such as gender, age group, smoking habits, 
symptoms, and medical history. Using this dataset, we analyzed the 
association between these variables and COVID-19 infection 
through the Chi-squared test.

A total of 725 subjects were included (without data 
augmentation), of whom 158 (21.79%) tested positive for 
COVID-19 (+), and 567 (78.21%) tested negative (−), as shown 
in Table 2. Among the positive cases, 86 (54.43%) were female, 69 
(43.67%) male, and 3 (1.90%) did not disclose their gender. 
Significant associations with COVID-19 positivity were observed 
for sex (p � 0.0326), age group (p � 0.0034), and the presence of 
symptoms (p< 0.05). In particular, higher proportions of COVID- 
19 positive cases were observed among females and younger adults 
aged 20–49 years. No significant associations were found for 
smoking habits (p � 0.9815) or medical history (p � 0.0793). 
These results suggest that symptomatic presentation, female sex, 
and age may be relevant factors in COVID-19 detection based on 
cough analysis.

3.1.2 Baseline performance in CCS
Figure 5 presents the classification results of the CNN model 

using uncompressed cough signals from the CCS dataset, sampled at 
16,000 Hz. Boxplots summarize Accuracy (ACC) and weighted F1- 
score across 30 independent runs. The model achieved a mean ACC 

FIGURE 4 
Detailed architecture of the CNN used for binary classification of compressed audio signals. Each convolutional block includes a Conv2D layer, Batch 
Normalization, ReLU activation, and Max Pooling. The figure also shows the number of filters, kernel sizes, and dropout rate. Output tensor shapes at each 
stage are also indicated.
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of approximately 78% and a weighted F1-score close to 0.75, 
with low variability. Outliers were rare, and the baseline 
configuration was thus adopted as a reference for subsequent 
comparisons.

3.1.3 Comparison between Compressive Sensing 
and downsampling strategies in CCS

Figure 6 illustrates the model’s classification performance on 
compressed cough signals from the CCS dataset at sampling 
frequencies of 1,000, 500, 200, and 100 Hz. Two compression 

strategies were evaluated: CS and DS. Results for ACC and 
weighted F1-score are shown across 30 independent runs.

Across all frequencies, CS yielded higher accuracy and F1-score 
values than DS. At 1,000 Hz, CS reached a median accuracy close to 
80%, whereas DS remained around 75%. As the frequency decreased, 
performance declined for both methods, but the drop was substantially 
more pronounced in DS. CS maintained better classification outcomes 
across all conditions, with lower variability between runs.

To statistically validate these differences, the Shapiro–Wilk test 
was first applied to assess normality. Since the distributions were 
non-normal, the Wilcoxon signed-rank test was used to compare CS 
and DS at each frequency. In all cases, the null hypothesis was 
rejected (p< 0.05), confirming the superiority of CS. These findings 
highlight CS as a more robust strategy for signal compression in 
embedded systems, capable of preserving classification performance 
even under severe temporal reduction.

3.1.4 Statistical comparison between compressed 
signals and baseline performance in CCS

Figure 7 presents the statistical comparisons between the baseline 
condition (16,000 Hz) and compressed sampling frequencies for both 
CS and DS, using the Friedman test followed by post hoc pairwise 
analysis. The heatmaps show the p-values for each frequency pair; 
darker colors indicate lower p-values, and asterisks (*) denote 
statistically significant differences (p< 0.05), adjusted using the 
Bonferroni correction to account for multiple comparisons.

Results indicate that, for CS, performance at all tested 
frequencies was statistically equivalent to the baseline 
(16,000 Hz), suggesting that classification accuracy was preserved 
even under high compression levels. In contrast, DS exhibited 
statistically significant differences from the baseline in almost all 
evaluated frequencies. This finding suggests that DS fails to maintain 
classification performance, even at moderate compression rates, 
resulting in notable degradation in both accuracy and F1-score.

These findings reinforce the suitability of CS as a compression 
strategy for cough signals. Preservation of statistical equivalence with the 
uncompressed baseline, especially at moderate sampling rates, supports 
its integration into resource-constrained or embedded systems.

3.2 CSS dataset

3.2.1 Demographic and clinical characteristics of 
participants in CSS

As in Section 3.1, a demographic and clinical analysis was 
conducted on the CSS dataset, which contains speech audio 
recordings from 893 individuals labeled as COVID-19 positive 
(+) or negative (−). Among the participants, 308 (34.49%) tested 
positive, while 585 (65.51%) tested negative, as summarized in 
Table 3. These figures correspond to the original dataset, prior to 
any data augmentation.

The Chi-squared test was applied to evaluate associations 
between COVID-19 status and clinical variables. In the COVID- 
19 positive group, 134 (43.51%) were female, 173 (56.17%) male, and 
1 (0.32%) unspecified. No statistically significant association was 
found between sex and infection status (p � 0.9751). In contrast, 
significant associations were observed for age group, medical 
history, and symptom presence (all p< 0.05).

TABLE 2 Association of sex, age, and clinical characteristics with COVID-19 
infection using the CCS dataset (before data augmentation).

COVID-19 (+) COVID-19 (−) p-value

n = 158 n = 567

Sex 0.0326*,a

F 86 242

M 69 322

Unspecified 3 3

Age 0.0034*,a

0–19 4 10

20–29 33 50

30–39 37 131

40–49 37 120

50–59 33 106

60–69 5 104

70–79 8 42

80–89 0 2

>90 0 1

Unspecified 1 1

Smoking 0.9815a

Never 90 352

Ex 44 123

1 to 10 13 50

11 to 20 5 23

21+ 1 4

Unspecified 5 15

Medical history 0.0793a

No 115 358

Yes 43 209

Symptoms ≪ 0.05*,a

No 29 302

Yes 129 265

p Significant values p< 0.05.
a Chi-squared test.

Frontiers in Signal Processing frontiersin.org08

Silva et al. 10.3389/frsip.2025.1700044

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1700044


Consistent with findings from the CCS dataset, the presence of 
symptoms remained a strong discriminator of COVID-19 positivity, 
reinforcing its diagnostic relevance across both cough and speech 
modalities.

3.2.2 Baseline performance in CSS
Figure 8 shows the baseline performance of the CNN model 

using uncompressed speech signals from the CSS dataset, sampled at 
16,000 Hz. The results were obtained from 30 independent 
executions using the original data partitions and balanced 
training set.

The model reached a median accuracy of approximately 69% 
and a weighted F1-score close to 0.66, with low variability across 
runs. Most results are concentrated in a narrow range, indicating 

that the model was able to generalize consistently under this 
configuration. A few outliers were observed, but without strong 
impact on overall performance metrics.

Compared to the CCS dataset, the baseline performance for 
speech signals was slightly lower, which may be explained by the 
more complex and heterogeneous nature of speech compared to 
cough sounds. These results serve as a reference for evaluating the 
effects of signal compression in the next sections.

3.2.3 Comparison between Compressive Sensing 
and downsampling strategies in CSS

Figure 9 presents the classification performance of CS and DS at 
four compression levels (1,000, 500, 200, and 100 Hz) on the CSS 
dataset. Each configuration was evaluated over 30 independent runs, 

FIGURE 5 
Baseline performance of the CNN model using uncompressed cough signals (16,000 Hz, CCS dataset).

FIGURE 6 
Performance comparison between Compressive Sensing (CS, dark blue) and Downsampling (DS, light blue) across multiple sampling frequencies. 
Boxplots show accuracy (top) and F1-score (bottom) of the CNN model on the CCS dataset. Asterisks (*) indicate statistically significant differences 
(p<0.05).
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and the distributions of accuracy and weighted F1-score 
are shown as boxplots. As in the CCS dataset, the 
Shapiro–Wilk test indicated non-normal distributions, and the 
Wilcoxon signed-rank test was used to compare CS and DS at 
each frequency.

At 1,000 Hz, no statistically significant difference was observed 
between the methods. From 500 Hz and below, CS achieved superior 
results in both metrics, with statistically significant differences 
(p< 0.05). While performance declined for both strategies at 
lower frequencies, CS maintained higher median values in 
accuracy and F1-score at 500, 200, and 100 Hz. At 1,000 Hz, DS 
produced a slightly higher median F1-score, whereas CS achieved 
better accuracy.

Compared to the CCS dataset, overall accuracy and F1-score 
values were slightly lower in CSS across all configurations, possibly 
reflecting the acoustic variability of speech signals. Still, the 
comparative advantage of CS over DS remained consistent, 
particularly under high compression.

3.2.4 Statistical comparison between compressed 
signals and baseline performance in CSS

Figure 10 shows the pairwise statistical comparisons between the 
baseline (16,000 Hz) and the compressed versions using 
Compressive Sensing and Downsampling on the CSS dataset. 
The Friedman test followed by post hoc analysis was applied, and 
the heatmaps display the p-values between each pair of sampling 
frequencies. Asterisks indicate significant differences (p< 0.05), and 
darker shades represent lower p-values.

For CS, only the 100 and 1,000 Hz configurations showed 
statistically significant differences from the baseline. This 
indicates that performance was preserved at 500 and 200 Hz, 
even under compression. On the other hand, DS showed 
significant differences at most part of tested frequencies, 
including 500 Hz, suggesting that even moderate downsampling 
led to performance degradation in speech classification.

Overall, the results reinforce the robustness of CS in speech- 
based classification, particularly under higher compression rates.

4 Discussion

Since the onset of COVID-19, several studies have investigated 
non-invasive screening methods based on audio biomarkers, 
particularly cough and speech signals. Traditional acoustic 
features such as MFCC, Zero-Crossing Rates (ZCR), and Spectral 
Entropy have been widely employed, often in combination with 
classical Machine Learning (ML) or Deep Learning (DL) models 
(Brown et al., 2020; Sharma et al., 2022; Pahar et al., 2022; Villa-Parra 
et al., 2022). For example (Sharma et al., 2022), reported high 
classification accuracy using textural features, while (Pahar et al., 
2022) demonstrated that could achieve Receiver Operating 
Characteristic Area Under the Curve (AUC-ROC) scores above 
0.90 in COVID-19 detection tasks using cough and speech.

Beyond the specific context of COVID-19, audio biomarkers 
have gained increasing relevance in biomedical signal processing. 
Speech, in particular, has been investigated for diagnosing various 

FIGURE 7 
Statistical analysis of performance differences between CS and DS against the baseline (uncompressed signals at 16,000 Hz). The heatmap shows 
p-values from the Friedman test, with asterisks (*) indicating statistically significant differences (p<0.05).
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diseases, including Parkinson’s, depression, and respiratory 
syndromes (Botelho et al., 2024). These findings highlight the 
growing clinical potential of audio signals and motivate further 
exploration of efficient signal processing techniques for healthcare 
applications (Cauzinille et al., 2024).

In this study, we compared two temporal compression 
strategies–DS and CS–applied directly to raw audio signals. 
Instead of relying on handcrafted features, we used an end-to- 
end Convolutional Neural Network (CNN) architecture that 
processes the compressed waveforms as input. This approach 

simplifies the processing pipeline and reduces computational 
load, which is beneficial for deployment in embedded or portable 
systems (Kaur and Singh, 2020; Santos, 2023).

The proposed end-to-end methodology, processing compressed 
time-domain audio signals directly with a CNN, offers advantages 
for deployment in resource-constrained environments compared to 
approaches requiring extensive signal reconstruction or feature 
engineering. Operating directly on compressed measurements 
reduces computational overhead, a critical benefit for embedded 
systems demanding high computational efficiency and low latency 
(Pietrołaj and Blok, 2024). Furthermore, integrating signal 
compression techniques, specifically CS, not only facilitates 
effective data reduction but also preserves essential discriminative 
information. This characteristic is particularly beneficial for 
applications constrained by bandwidth or storage limitations 
(Saeed et al., 2025), thereby enhancing the practical applicability 
and accessibility of our diagnostic approach.

CS demonstrated superior performance compared to DS, 
especially under aggressive compression levels (e.g., 200 Hz and 
100 Hz). These results are consistent with previous findings showing 
that CS is effective at preserving relevant information in compressed 
biomedical signals (Casaseca-de-la Higuera et al., 2015; Prabhavathi 
et al., 2023; Wang et al., 2016). By exploiting the underlying sparsity 
of audio signals, CS retains key temporal patterns that are essential 
for robust classification.

When comparing these results to prior studies, it is clear that 
several models in the literature reported a better performance. For 
instance (Shati et al., 2023; Aytekin et al., 2023), achieved AUC 
values above 0.80 using cough and speech signals. These studies rely 
on spectrogram-based inputs and sophisticated architectures such as 
Hierarchical Spectrogram Transformers (HST) or use high- 
dimensional handcrafted features combined with classical ML 
classifiers. Similarly (Sharma et al., 2022), achieved ACC of 
98.9% in a binary task and 72.2% in a five-class task by 
employing textural features like Local Binary Patterns (LBP) and 
Haralick on spectrograms. Likewise (Pahar et al., 2022), reached 
AUC-ROC values of 0.98, 0.94, and 0.92 for cough, breath, and 
speech, respectively, leveraging deep learning models. In contrast, 
our pipeline intentionally adopts a waveform-based end-to-end 
approach with aggressive temporal compression, aiming to 
prioritize computational efficiency and simplicity over 
classification performance. This naturally imposes a different 
performance ceiling. Our models exhibited lower AUC, 
sensitivity, and specificity but this outcome aligns with the 
study’s primary objective: to investigate whether compressed 
waveform representations can retain sufficient discriminative 
information for lightweight, embedded applications. Additionally, 
most state-of-the-art methods rely on curated datasets with manual 
validation of cough segments, complex segmentation, or high- 
resolution spectral inputs, which are not feasible in real-time or 
constrained environments (Schuller et al., 2021; Casanova et al., 
2021; Aytekin et al., 2023; Pahar et al., 2022). Our pipeline avoids 
such steps, focusing on robustness, simplicity, and operational 
viability for embedded systems.

These comparisons reinforce the trade-off embedded in our 
design choice: while spectrogram-based models with sophisticated 
architectures yield higher absolute performance, our work 
demonstrates the potential viability of a simplified waveform- 

TABLE 3 Association of sex, age, and clinical characteristics with COVID-19 
infection using the CSS dataset (before data augmentation).

COVID-19 (+) COVID-19 (−) p-value

n = 308 n = 585

Sex 0.9751a

F 134 251

M 173 330

Unspecified 1 4

Age ≪ 0.05*,a

0–19 8 9

20–29 35 50

30–39 53 137

40–49 114 124

50–59 80 112

60–69 10 105

70–79 8 43

80–89 0 3

>90 0 1

Unspecified 0 1

Smoking 0.2680a

Never 219 367

Ex 65 126

1 to 10 12 51

11 to 20 7 21

21+ 1 4

Unspecified 4 16

Medical history ≪ 0.05*,a

No 257 373

Yes 51 212

Symptoms ≪ 0.05*,a

No 64 312

Yes 244 273

p Significant values p< 0.05.
a Chi-squared test.
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based pipeline operating directly on aggressively compressed 
signals—a relevant contribution for deployment scenarios 
constrained by bandwidth, memory, or processing power.

Notably, our approach remained promissor even at sampling 
rates as low as 200 Hz and 100 Hz. Although these values are 
close to the lower limit of human hearing, prior studies have 
shown that cough signals contain diagnostically relevant 
information within these low-frequency bands. Sharan (2022)
observed that coughs present spectral components starting 
around 80 Hz, while (Ghrabli et al., 2024) identified specific 
low-frequency patterns linked to respiratory pathologies. These 
findings reinforce the feasibility of low-rate audio analysis, with 
our results indicating that the core discriminative information 

needed for classification is preserved despite aggressive 
compression–thereby validating this approach for bandwidth- 
constrained applications.

It is important to highlight that cough and speech signals 
responded differently to compression. Cough signals maintained 
higher classification performance even at low sampling rates, which 
may be attributed to their broadband spectral characteristics that are 
more easily preserved under compression. In contrast, speech 
signals–characterized by more complex and fine-grained 
temporal dynamics–were more sensitive to compression-induced 
distortion, particularly under DS. Similar behavior was observed by 
(Shen et al., 2024), which also reported better performance when 
using compressed cough signals for COVID-19 detection.

FIGURE 8 
Baseline performance of the CNN model using uncompressed speech signals (16,000 Hz, CSS dataset).

FIGURE 9 
Performance comparison between Compressive Sensing (CS, dark blue) and Downsampling (DS, light blue) across multiple sampling frequencies. 
Boxplots show accuracy (top) and F1-score (bottom) of the CNN model on the CSS dataset. Asterisks (*) indicate statistically significant differences 
(p<0.05).
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Recent studies, however, have raised important concerns 
regarding the clinical robustness of cough-based COVID-19 
detection. For instance (Kim et al., 2024), demonstrated that 
model performance may deteriorate significantly across viral 
variants, with AUC values dropping from 0.93 for Alpha to 
0.55 for Omicron. Similarly (Coppock et al., 2024), reported that 
when controlling for confounding factors, audio-based classifiers 
provided limited diagnostic value beyond simple symptom 
questionnaires, with AUC decreasing from 0.85 to 0.62. It is 
important to note that the dataset used in our study was 
collected in 2020, before the emergence of variants of concern 
such as Alpha, Delta, or Omicron. Therefore, the samples 
primarily correspond to the original Wuhan strain (He et al., 
2023). Our results indicate that cough-based detection should not 
be interpreted as a definitive clinical diagnostic tool, but rather as a 
computational approach that may offer value in specific scenarios 
such as rapid screening, self-assessment, population-level 
monitoring, or resource-limited deployments where access to 
laboratory diagnostics is limited. Accordingly, the findings 
presented in our study should be interpreted within a 
methodological scope, with the feasibility of compressed 
waveform analysis being emphasized rather than the clinical 
conclusiveness of cough-based detection.

Although the experiments were conducted offline, the results 
reinforce the feasibility of using compressed audio representations 
in real-time health monitoring. Processing directly in the time 
domain, without relying on handcrafted features, may reduce 
system complexity and enable deployment on constrained 

platforms such as embedded or mobile devices (Kaur and Singh, 
2020; Santos, 2023). Furthermore, the consistent performance of CS 
under aggressive compression conditions highlights its practical 
relevance for real-time health monitoring applications with 
limited computational resources.

5 Conclusion

This study investigated the effects of temporal signal 
compression techniques–Downsampling and Compressive 
Sensing–on the performance of a CNN for COVID-19 detection 
from cough and speech audio signals. The proposed end-to-end 
approach operates directly on compressed waveforms, enabling a 
classification pipeline that may reduce computational and 
memory demands.

Our findings show that Compressive Sensing consistently 
outperformed Downsampling under higher compression levels 
(200 Hz and 100 Hz), particularly for cough signals. This 
suggests that CS better preserves essential discriminative 
information and that cough may be a more suitable modality for 
audio-based screening.

The proposed strategy simplifies signal processing by avoiding 
explicit feature engineering and may reduce computational and 
memory requirements, favoring implementation in embedded 
systems. As a limitation, this study was conducted offline using 
fixed-length segments and dataset-specific audio, which may limit 
generalizability due to speaker variability, viral evolution, and the 

FIGURE 10 
Statistical analysis of performance differences between CS and DS against the baseline (uncompressed signals at 16,000 Hz). The heatmap shows 
p-values from the Friedman test, with asterisks (*) indicating statistically significant differences (p<0.05).

Frontiers in Signal Processing frontiersin.org13

Silva et al. 10.3389/frsip.2025.1700044

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1700044


lack of real-time evaluation. While our experiments have focused on 
COVID-19 detection, future work will investigate the method’s 
applicability to other respiratory conditions with similar acoustic 
signatures, and evaluate performance across emerging SARS-CoV- 
2 variants. Future work will also focus on evaluating the method in 
real-time scenarios to assess performance and generalization in 
practical applications, including deployment on microcontroller- 
based platforms. Additional directions include adaptive audio 
segmentation, integration with mobile devices, and broader 
validation across diverse populations and environments.
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