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Introduction: Identifying protein-coding regions in eukaryotic Deoxyribonucleic
acid (DNA) remains difficult due to the sparse and uneven distribution of exons.
Methods: This work focusses into four static encoding schemes—integer, Voss,
paired numeric, and Electron-lon Interaction Potential (EIIP) to improve exon
prediction using genomic signal processing. Two benchmark sequences,
Caenorhabditis elegans Cosmid F56F11.4 and Mouse apolipoprotein A-1V
(M13966.1), were analyzed in MATLAB. A Cauer (elliptic) band-pass filter was
used to isolate the period-3 component, and a Blackman-Harris window was
utilised to reduce spectral leakage. The elliptic filter in conjunction with EIIP-
based encoding achieved the most distinct separation between coding and non-
coding areas among the assessed techniques, identifying every exon segment
with a minimal amount of noise.

Results and discussion: The technique obtained 84% sensitivity, 96% specificity,
and 94% accuracy on the C. elegans Cosmid sequence and 86.5% sensitivity, 93%
specificity, and 91% accuracy on the M13966.1 gene sequence.

Conclusion: These results show that the EIIP, Cauer filter and Blackman-Harris
windowing framework offers a reliable and effective method for identifying
exons.

blackman-harris windowing, cauer filter, deoxyribonucleic acid, electron-ion
interaction potential, exon identification, genomic signal processing, period-3
component, static encoding schemes

1 Introduction

All living things are made up of cells, which serve as the fundamental structural and
functional building blocks for functions including growth, energy conversion, and genetic
information storage. Broadly, cells are classified into two major types: prokaryotic cells and
eukaryotic cells. Prokaryotic cells, like bacteria and archaea, have cytoplasm that freely
contain their genetic material and no membrane-bound nucleus or other organelles.
Eukaryotic cells, by contrast, are more complex, containing membrane-bound
organelles including the nucleus, where a molecule known as DNA resides in the cells
of all living organisms, serving as a blueprint for life that provides instructions on how to
grow, develop, function, and reproduce.

An individual DNA molecule is made up of two chains of nucleotides arranged in a
double helix structure, which has a sugar-phosphate backbone and a nitrogenous base:
adenine (A), thymine (T), guanine (G) and cytosine (C). Within a vast landscape of DNA,
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FIGURE 1
Eukaryotic protein-coding process involving genes
(Kar et al,, 2019).

genes are considered functional units, and these are the segments of
DNA that encode specific instructions for synthesizing proteins
(Sekhar Sahu and Panda, 2011).

Genes are composed of two main types of sequences: exons and
introns. The exons in genes contain the information necessary to
produce proteins, while introns are non-coding regions interspersed
among exons (Fickett and Tung, 1992; Fickett, 1996; Vaidyanathan
and Yoon, 2004). To understand gene expression and regulation, it is
crucial to distinguish between exons and introns. While exons
directly contribute to protein synthesis, introns were thought to
be non-functional “junk” DNA. A key feature of exons is the three-
base periodicity, where nucleotides repeat in codon triplets,
producing a distinct spectral peak at frequency 1/3 that helps
differentiate exons from introns.

As shown in Figure 1, introns are removed from genes during
the splicing process to produce the final set of instructions for the
protein (Kar et al,, 2019). A study of DNA sequences and gene
structures in the field of computational biology and bioinformatics
has led to several encoding methods aimed at representing DNA
sequences in a way that can be analyzed computationally. These
encoding methods range from simple mappings of nucleotides to
integers (Yu et al, 2018; Ahmad et al.,, 2017; Das and Turkoglu,
2016) or binary representations (Mabrouk, 2017; Abbas et al., 2021;
Lio and Vannucci, 2000; Raman Kumar and Kumar, 2019; Deng
et al,, 2021; Zhang et al., 2019) to more sophisticated methods
involving machine learning algorithms (Ranawana and Palade,
2004), and signal processing techniques (Kar et al, 2019).
Encoding methods aim to convert the four-letter DNA alphabet
(A, T, G, C) into numerical or binary representations that can be
processed using algorithms and computational methods
(Anastassiou, 2001; Pasquier et al., 1998; Fickett, 1998). These
encoding methods play a crucial role in various applications,
including sequence alignment (Chao et al, 2022) and gene
prediction (Das et al., 2020; Zheng et al., 2021; Kar and Ganguly,
2023; Hassan et al, 2024; Benarjee and Kumar Vaegae, 2025;
Marhon and Kremer, 2016).

Static and dynamic encoding methods are two broad categories
of encoding methods used in computational biology and
bioinformatics to represent genetic information, particularly
DNA sequences. Every nucleotide in the sequence is given a
constant numerical value in static encoding, regardless of its
location or context. In contrast, dynamic encoding methods
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adapt the numerical assignment based on sequence context,
codon position, structural information, or statistical properties. In
this paper, static encoding methods have been discussed.

Static encoding methods are preferred in genomic signal
processing for their consistency, simplicity, and efficiency
(Mabrouk, 2017; Kwan and Bai Arniker, 2009). They provide a
standardized representation of genetic data, facilitating comparison
Their
straightforward nature ensures computational efficiency and

across studies and minimizing processing errors.

tools, essential for seamless
Static

reproducibility, allowing research findings to be verified, and

compatibility with existing

integration and analysis. encoding also  supports
offers storage efficiency with fixed-length representations, making
large dataset management practical. These techniques are ideal for
real-time applications and systems with limited computational
power, offering good compression for predictable data patterns
and ensuring compatibility across different systems.

Static encoding schemes are fixed mappings or transformations
that convert data into a specific format, which remains constant over
time and context (Das and Turkoglu, 2018). In the context of
computational biology and bioinformatics, static encoding
schemes are used to represent genetic information, such as DNA
sequences, in a consistent and predefined manner. These encoding
schemes typically involve assigning numerical values, binary
representations, or symbolic codes to each element of the data,
allowing for efficient processing and analysis. As static encoding
schemes can be easily implemented and interpreted, they are ideal
for applications where the data representation does not need to
adapt to changing conditions. The goal of static encoding methods is
to encode DNA sequences into numerical or binary formats, thus
simplifying computational analysis, enabling pattern recognition,
and enhancing the efficiency of genetic data storage, retrieval, and
processing.

These methods can vary in their approaches and applications:
The integer encoding method assigns a unique integer to each
nucleotide, with A = 1, G = 3, T = 2, and C = 4 (Tenneti and
Vaidyanathan, 2019). This method is easy to implement and useful
for basic sequence analysis and visualization, though it does not
capture nucleotide relationships or higher-order structures. Binary
vectors representing categorical data are created using the Voss
encoding method, in which each category is represented by a distinct
binary vector with all other bits set to 0 and only 1 bit set to 1 (Voss,
1992). Voss encoding provides a clear distinction between different
nucleotides, making it widely used in machine learning applications
for sequence analysis. However, this method increases the
dimensionality of the data, lead
computational costs, especially for large sequences.

which can to higher

Paired numeric encoding (Das and Turkoglu, 2016) categorizes
nucleotides into purines (A, G) and pyrimidines (C, T), mapping
purines to one and pyrimidines to —1. It simplifies sequence analysis
but loses detailed information about individual nucleotides. Using
the Electron-Ion Interaction Potential (EIIP) encoding, nucleotides
are assigned numerical values based on their electron-ion
interaction potential, such as G = 0.0806, A = 0.1260, T =
0.1335 and C = 0.1340 (Nair et al,, 2006). These methods capture
biochemical properties of nucleotides, making it useful for studying
DNA-protein interactions and other biochemical phenomena.
Although it is less intuitive than simpler encoding schemes and
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Methodology of the Proposed work.

specific to certain types of analyses, EIIP encoding remains a popular
choice due to its ability to incorporate biochemical properties and
provide valuable insights into molecular interactions. The
generalized block diagram for the static encoding methods is
depicted in Figure 2.

In this work, two benchmark sequences, namely, F56F11.4 and
M13966.1 from National Center for Biological Information (NCBI)
are used. A combination of static encoding methods, Cauer filter
followed by Blackman Harris windowing technique are introduced.
The various encoding methods used in this work are integer, paired
numeric, Voss and EITP. These methods are used to identify protein-
coding regions, by highlighting their respective characteristic
properties of coding sequences.

A Cauer filter is a type of digital filter used to isolate specific
frequency components in a signal help to distinguish protein-coding
regions by filtering out irrelevant frequency noise from genetic data.
This is followed by the Blackman-Harris window which minimizes
spectral leakage, enhancing the clarity of frequency components in
genetic sequences. This is useful for identifying protein-coding
regions more accurately. The performance characteristics, mainly
accuracy, specificity, sensitivity, and AUC values are evaluated for
each combination, and the best combination is inferred.

In this paper, the following sections are presented: Section 1
introduces static encoding methods. Section 2 describes the
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proposed methodology, whereas Section 3 outlines simulation
results using MATLAB and Section 4 provides the conclusion
of the work.

2 Methodology

Figure 3 depicts the generalized block diagram for the prediction
of coding regions. The methodology consists of obtaining data from
NCBI resources, applying static type of encoding to convert the
character sequence of data to the numerical form. The data filtered
by Cauer filter to obtain the power spectrum. This is followed by
Blackman Harris windowing to reduce edge effects and finally
perform thresholding to isolate significant data points. Each step
was carefully designed to ensure the integrity and quality of the data,
enabling robust and reliable analysis.

2.1 NCBI resource

This paper focuses on static encoding methods for the prediction
of protein-coding regions. For analysis, a dataset of Caenorhabditis
elegans Cosmid F56F11.4 (with accession number FO081497) (NIH,
2022) and Mouse apolipoprotein A-IV gene (M13966.1) (NCBI,
2025) were collected from the NCBI resource. The information
regarding the gene sequences listed in Table 1.

2.2 Static encoding methods

To ensure consistent and reliable data processing, a static
type of encoding was applied to the datasets. This method
involves converting biological sequences or numerical data
into a fixed encoding scheme that maintains uniformity across
all samples. In this paper four static types of gene encoding
methods were considered: Voss encoding, integer, paired-
numeric and EIIP. The types of static encoding techniques
and assigned numeric values to the nucleotides are listed
in Table 2.

2.3 Elliptic or cauer filter

In order to filter the signals, an elliptic or Cauer filter was used.
Cauer filters are distinguished by their minimum ripple in the
passband and stopband, as well as their sharp cutoff characteristics.

This filter was created with certain parameters (such as
attenuation levels, ripple, and cut-off frequencies) that were
adapted to the needs of the data being examined.

Removing undesired noise (Kar and Ganguly, 2022) and
enhancing the signal quality were the main goals of applying the
Cauer filter. Table 3 presents specifications of the Cauer filter.

2.4 Blackman-Harris windowing (BH)

Blackman-Harris windowing is used in digital signal processing
to reduce spectral leakage during Fourier transforms. The general
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TABLE 1 The details of the database.

Organism Name

)

Caenorhabditis elegans Cosmid F56F11.4 (

10.3389/frsip.2025.1679555

Mouse Apolipoprotein A-1V gene (
)

Accession No. FO081497 M13966.1
Actual exon regions (CDS) = 928-1039 542-587
2528-2857 848-974
4114-4377 1644-2655
5465-5644
7255-7605
Sequence Length 42799 base-pair 3020 bp
But only 7021-15020 bp are considered
No. of exons 5 3
Exon length (Average) 246 394

TABLE 2 Details of static encoding methods.

Static Integer based ( Paired-Numeric (

encoding

methods

Nucleotides | A 1 [1,0,0,0] 1 0.1260
T 2 [0,1,0,0] -1 0.1335
G 3 [0,0,1,0] 1 0.0806
C 4 [0,0,0,1] -1 0.1340

form for the symmetric four-term Blackman-Harris window is given
in Equation 1.

(n) = (27m>+ (47111)
w(n) = ay — a, cos N-1 a, cos

61N
—as cos(N —

Using Equation 2, we can determine the periodic four-term
Blackman-Harris window of length N.

2nn 4nn 6n
w(n) =ay—a, COS(W) +a, cos(w> —a;s cos(w), 0<n<N
-1
(2)

Where n is a sample index, N refers to total number of
samples, and ao, a;, a, and as are coefficients that define the
window’s shape. In this paper, after mapping DNA sequences
using static encoding methods and applying Cauer filter for noise
reduction, the BH window is used to further minimize
spectral leakage.

A BH window of length 61 was applied to the elliptic-filtered
signal to smooth the power spectrum. The window effectively slides
across the signal at each nucleotide position, creating smooth
transitions between adjacent points, which is equivalent to full
overlap. This smoothing emphasizes the period-3 component of
coding regions while reducing noise from non-coding regions. The
window length was chosen to balance smoothing and resolution. A
longer window would further reduce noise but might blur short
exons, while a shorter window could preserve sharp features but
allow more fluctuations.

Frontiers in Signal Processing

TABLE 3 The filter specifications for exon prediction.

Filter
name

Filter specification

Cauer filter Filter order N = 3, [0.664,0.672] are the lower and upper pass

band frequencies [0.659,0.678] are the lower and upper stop
band frequencies

Passband ripple (R,) = 0.4 dB and

Stopband attenuation (R,) = 20 dB

The BH window was selected for its low side-lobe characteristics,
minimizing spectral leakage and preserving exon boundaries better
than simpler windows such as rectangular or Hamming. While the
BH window is not universally superior, but in combination with the
Elliptic filter, it provides the clearest distinction between coding and
non-coding regions for our mapped signal data.

2.5 Thresholding (Th)

Thresholding is the last phase in the methodology, which is a
mechanism for locating important characteristics or data points in
the processed signal. A threshold percentile range between 1% and
99% was used to compare parameters of implemented methods
(Kumar Hota and Srivastava, 2010; Zhang et al., 2014).

Thresholding was performed by setting a predefined threshold
value of 0.2, above which data points are considered significant and
below which they are discarded as noise or insignificant variations.
The threshold value of 0.2 was chosen based on Equation 3 to
distinguish between coding and non-coding regions in the genomic

frontiersin.org
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TABLE 4 Confusion matrix in the context of classification.

Predicted_Positive

Predicted_Negative

Actual_Positive True_Positive (TP) False_Negative (FN)

Actual_Negative False_Positive (FP) True_Negative (TN)

signal, metrics like

and accuracy.

optimizing  for sensitivity, specificity

_ (mean Ps; + mean Ps, + std)

T
2

©)

The period three values derived from introns and exons are
denoted by Ps; and Ps,, respectively, where as T, is the threshold
value and std stands for standard deviation.

2.6 Performance metrics

In the context of genomic signal processing (GSP), especially for
DNA exon-intron classification or exon prediction, we deal with four
outcomes: True_Negative (TN), True_Positive (TP), False_Positive
(FP), and False_Negative (FN). Table 4 shows a clear summary
explaining these concepts in context of classification. TP (True
Positive) presents correctly predicted exon positions and FP (False
Positive) measures incorrectly predicted exon positions. TN (True
Negative) interprets correctly predicted intron positions and FN
(False Negative) measures missed exon positions.

The performance metrics used to assess the effectiveness of gene
encoding methods are presented in Table 5. The true positive rate
(TPR) is a proportion of true exon bases/regions correctly predicted.
It is given as

TP

TPR = ———
TP+ FN

The false positive rate (FPR) is a proportion of intronic bases/

regions that are wrongly predicted as exons. It is given as
Fp

FPR = ———
FP+TN

Specificity (S) = 1-FPR = 1- 7375 = 7.7p

3 Results

In this section, the results are presented for (a) F56F11.4 (b)
M13966.1 (c) Using DSP filters and (d) HMRI195 dataset
respectively.

TABLE 5 Performance metrics and its description.

10.3389/frsip.2025.1679555

3.1 Using F56F11.4 gene sequence

In this work, the four static gene encoding schemes are applied
to the gene sequence of F56F11.4, and the output spectrum was
represented as peaks by three-base periodicity (TBP) regions. Dotted
lines show the actual location of exons; continuous lines show the
predicted locations of exons and introns.

In Figure 4, it can be observed that the integer encoding method
failed to detect the first peak properly corresponding to nucleotide
positions 928-1039, because the predicted exon was shifted right
and has more number of introns. In the Voss encoding method, the
five predicted exons are above the x-axis and also has more introns
which are present above the threshold T,,. In Paired-numeric
method, except third predicted exon, all exons are above the
x-axis and has less number of introns when compared to integer
and Voss methods. The EIIP method has detected all the five peaks
properly and has a lesser number of introns when compared to
other methods.

It’s inevitable that every mapping method has extra peaks at
undesired places in the spectrum due to noise from non-coding
regions (introns). Eliminating noise can make the approach more
accurate. The mathematical descriptor used in the EIIP method has
suppressed the noise and detected all the five coding regions. From
the output spectrum, it can be concluded that out of the four
encoding methods, the EIIP method provides the best
mathematical description and classification of exons and introns.
Step by step simulation results of our proposed work using
F56F11.4 as shown in Figure 5.

The step-by-step process of the proposed method (EIIP + Cauer
filter + BH windowing) is presented as:

1. Raw sequence visualization-A small portion (15 bases out of
~8,000 bp in F56F11.4) is plotted to show the nucleotide
arrangement. This gives a simple visual of the DNA
character string.

2. Numerical mapping (EIIP) - The nucleotide sequence is
converted into a numerical signal using EIIP values
(G = 0.0806, T = 0.1335, C = 0.1340, A = 0.1260). This
enables digital signal processing.

3. Ground-truth exon regions—The EIIP signal is displayed with
annotated coding regions (CDS) taken from NCBI for the
F56F11.4 gene. This provides a biological reference for
validation.

4. Elliptic (Cauer) filter spectrum-The numerical signal is
processed with an elliptic band-pass filter centered at the
period-3 frequency. The resulting spectrum highlights
periodicity associated with coding regions.

Metrics Formula Description
Sensitivity (S,) (Kar et al., 2019) ﬁ Measures the success of identifying actual positives
Specificity (S,) (Raman Kumar and Vaegae, 2020) % A measure of correct identification of actual negatives

(TP+TN)

Accuracy (AC) (Jayasree et al., 2024) PN

Analyse the model’s overall correctness

Frontiers in Signal Processing 05 frontiersin.org
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Spectrums of a gene sequence C. Elegans (F56F11.4) using various static encoding schemes. (a) Voss method (b) Integer method (c) Paired-Numeric

and (d) EIIP mapping method (Proposed method).
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5. Blackman-Harris windowed spectrum-A power spectrum is
computed with a BH window to improve frequency resolution
and reduce spectral leakage. This forms the proposed method’s
feature spectrum.

6. Smoothed final spectrum-The BH output is smoothed to
emphasize true peaks while

corresponding to exons

suppressing noise, yielding the final exon prediction profile.

Table 6 provides a comparison of the numerical mapping
methods used in this work. It demonstrates that the proposed
approach provides specificity 96%, sensitivity 84%, accuracy 94%
and Area under Curve (AUC) 95%, while other mapping methods
give lower metrics. Figure 6 gives the Receiver Operating
Characteristics (ROC) plots of static encoding methods for the
gene sequence F56F11.4. The nucleotide ranges for exon

Frontiers in Signal Processing

measured using EIIP mapping method for the
F56F11.4 at a threshold of 0.2 is tabulated in Table 7.
AUC and ROC were adopted to validate a classification of
introns and exons in gene sequences (Fawcett, 2006). In terms of
False_Positive, ROC curve is 1-Specificity for a threshold of used for
classification. AUC values close to one are supposed to provide good

sequence

classification accuracy. From Table 6 it can be observed that the
proposed method shows a better AUC value of 95% for the
classification of exons.

Sensitivity, specificity, accuracy and AUC values of the proposed
method are compared with other existing encoding methods are listed
in Table 8. Performance metrics of proposed method using different
windowing techniques like rectangular, Hamming, Hanning and BH
are listed in Table 9. Compared to existing windowing strategies, our
proposed method yields better performance metrics.
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TABLE 6 Comparison of various static encoding methods using
F56F11.4 gene sequence.

Static encoding methods

Integer mapping 0.62 0.91 0.81 0.80
Voss encoding 0.80 ‘ 0.845 ‘ 0.92 0.91
Paired Numeric 0.65 ‘ 0.94 ‘ 0.86 0.86
EIIP (Proposed method) 0.84 ‘ 0.96 ‘ 0.94 0.95

3.2 Using M13966.1 gene sequence

Similarly, the four static gene encoding methods are applied to
the gene sequence of M13966.1 for cross validation of our proposed
approach. The output spectrum is represented as shown in Figure 7.
ROC curves of static encoding methods using M13966.1 gene
sequence is shown in Figure 8 and Table 10 gives the
performance metrics using M13966.1 gene sequence.

3.3 DSP tools

The effectiveness of various DSP filtering techniques that were
simulated to enhance the identification of protein-coding areas in
DNA sequences is displayed in Figure 9.

Each filter was designed with specific parameters to optimize
frequency response and minimize spectral noise. The Parks-
McClellan filter (order = 216, passband ripple = 0.4 dB, stopband
attenuation = 30 dB) provides an equiripple response with
reasonably clear peaks, although some residual noise persisted.
The Least Squares filter (order = 231, stopband cutoff = [0.65,
0.68]) tries to minimize the mean squared error in the frequency
domain, but exhibited broader, less distinct peaks, indicating limited
localization accuracy.

10.3389/frsip.2025.1679555

Similarly, the Butterworth filter (order = 6, passband ripple =
0.4 dB, stopband attenuation = 30 dB) offers a smooth frequency
response, but the resulting signal showed reduced peak sharpness
and contrast. The Short-Time DFT using a rectangular window and
Singular Value Decomposition (SVD) approaches were employed to
capture transient signals and reduce noise, respectively; however,
both methods led to dispersed or attenuated peaks, suggesting lower
discriminative capability.

The Chebyshev Type II filter (order = 4, passband cutoff = [0.664,
0.672]) produces relatively sharp peaks, but with some misalignment
and moderate noise leakage. In contrast, the Elliptic filter (proposed
method) demonstrates superior performance, producing sharp, well-
defined peaks with precise alignment with the annotated coding
regions (red dashed lines). This filter’s ability to maintain low
passband ripple and sharp transition bands contributed to its
effectiveness in isolating biologically relevant signals.

Opverall, the proposed method proved to be the most effective
among the other DSP methods, achieving high fidelity in identifying
coding regions while effectively suppressing non-coding noise.

Performance metrics of DSP tools are listed in Table 11 and
ROC curves are given in Figure 10. Table 12 gives the AUC value of
DSP methods. The proposed method exhibits superior performance
compared to all existing methods.

3.4 Using HMR195 dataset

Additionally, we are using the HMR195 dataset to validate our
proposed approach. With a distribution of 103 human, 82 mouse,
and 10 rat sequences, the HMR195 dataset (Sanja Rogic, 2008)
includes 195 genomic sequences from human, mouse, and rat
species. These sequences length  of
7,096 base pairs (bp).

With 152 multi-exon genes and 43 single-exon genes, the

have an average

collection contains both types of genes. There are typically
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Receiver Operating Characteristic plots of various static encoding methods for the gene sequence F56F11.4.
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TABLE 7 Range of nucleotides in coding areas utilising the EIIP mapping
approach (F56F11.4 gene sequence).

Exon NCBI ranges Proposed method ranges
1 928-1039 (111 bp) 911-1088 (178 bp)
2 2528-2857 (329 bp) 2471-2948 (478 bp)
3 4114-4377 (263 bp) 4042-4416 (375 bp)
4 5465-5644 (179 bp) 5483-5627 (145 bp)
5 7255-7605 (350 bp) 73617699 (339 bp)

TABLE 8 Comparison of the proposed method with existing encoding
methods based on performance metrics.

Static encoding methods Sh Sp AC AUC
OBNE (Voss, 1992) 0.90 0.93 0.92 0.80
TBNE (Ranawana and Palade, 2004) 0.63 0.76 0.74 0.67
FBNE (Borries and Guangwen, 1991) 0.59 0.75 0.73 0.59
IBNE (Tenneti and Vaidyanathan, 2019) 0.68 0.71 0.70 0.70
TCNE (Das et al., 2019) 057 087 082 0.72
ACBNE (Shubham and Raunak, 2019) 0.70 0.71 0.71 0.66
Proposed method 0.84 0.96 0.94 0.95

4.86 exons per gene. All the sequences put together have a length
of about 1,386,021 bp. ROC analysis was used to assess the
proposed method’s performance on the HMR195 dataset. This
can be seen in Figure 11. The AUC values of the suggested
approach are compared with those of other static methods
in Table 13.

10.3389/frsip.2025.1679555
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FIGURE 8
ROC curves of static mapping methods using M13966.1
gene sequence.

4 Discussion

In bioinformatics, accurately analyzing and interpreting DNA
sequences is crucial for understanding genetic functions and
variations. To facilitate this analysis, DNA sequences are often
converted into numerical formats using encoding methods.
Among various methods, static encoding schemes are widely
used due to their simplicity and consistency.

Static encoding methods for DNA sequences assign fixed
numerical values to nucleotides, making the encoding process
straightforward and consistent. These methods do not change
based on the sequence context, ensuring uniformity across
different analysis. Examples include the integer method (Tenneti
and Vaidyanathan, 2019), which assigns unique integers to each
nucleotide, Voss method (Voss, 1992), which encodes DNA
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TABLE 9 Performance metrics of different windowing techniques using
F56F11.4 gene sequence for proposed method.

Windowing techniques

Rectangular 0.79 0.92 0.893 0.94
Hamming 0.73 0.932 ‘ 0.901 ‘ 0.925
Hanning 0.73 0.934 ‘ 0.913 ‘ 0.937
Proposed method 0.84 0.96 ‘ 0.94 ‘ 0.95

TABLE 10 The following table shows a comparison of various numerical
mapping methods using M13966.1 gene sequence.

Static encoding methods

Integer 0.768 0.923 0.90 0.89

Voss 0.755 0.905 0.87 ‘ 0.88
Paired-Numeric 0.753 091 0.84 ‘ 0.86
EIIP (Proposed method) 0.865 0.93 091 ‘ 0.94

sequences using numerical values based on the occurrence of specific
nucleotides.

The paired numeric method (Das and Turkoglu, 2016), considers
pairs of nucleotides for encoding and the EIIP method (Nair et al.,
2006), uses electron-ion interaction potentials to represent nucleotides
numerically. These methods are simple to implement and provide a
foundation for more complex analyse. These methods are particularly
useful for initial stages of DNA analysis.

The comparative analysis of different numerical mapping
techniques—Integer mapping, Voss mapping, Paired-Numeric

10.3389/frsip.2025.1679555

mapping and the proposed EIIP mapping reveals notable
differences in their ability to accurately identify protein-
coding regions in DNA sequences. In both the datasets
shown, the proposed method (Figures 4D, 7D) exhibits clear
and more distinct peaks that align closely with the known
coding regions, marked by red dashed lines. Unlike the
Integer and Voss mappings, which often produce spurious or
low-amplitude peaks in non-coding regions, the EIIP approach
minimizes such noise, thereby improving the signal-to-noise
ratio. The Paired-Numeric mapping, while producing multiple
peaks, lacks clarity and selectivity in comparison to the EIIP
method. These findings suggest that EIIP mapping with Cauer
filter and BH windowing offer enhanced discriminatory power
for identifying biologically significant regions in genomic
sequences, making it a more reliable method for gene
prediction and related bioinformatics applications.

5 Conclusion and future scope

In this work, the performance of four static gene encoding
schemes mainly integer, Voss, paired-numeric and EIIP was
the F56F11.4  of
Caenorhabditis elegans and Mouse apolipoprotein A-IV gene
(M13966.1) The spectral analysis of EIIP encoding method,
combined with the Cauer filter and BH windowing technique,

evaluated using both gene sequences:

demonstrated superior performance in identifying exon regions
by
interference. This combination proved more effective than other
encoding methods in distinguishing coding from non-coding
regions. Also, the proposed method is validated with other DSP

enhancing spectral resolution and minimizing noise

techniques and HMRI195 dataset. Future work could focus on
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TABLE 11 Performance metrics of DSP tools using F56F11.4 gene sequence.

DSP Tools Sh Sp AUC
Parks-Macllelan Filter 0.82 0.95 0.95
Least-Squares Filter 0.79 0.95 0.95
Butterworth Filter 0.84 0.95 0.94
STDFT- Rectangular 0.83 0.94 0.96
SVD 0.82 0.94 0.96
Chebyshev-II Filter 0.74 0.94 091
Proposed method 0.85 0.96 0.97
ROC Curves
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FIGURE 10
ROC curves of DSP tools using F56F11.4 gene sequence.

TABLE 12 AUC value of Proposed method using F56F11.4 gene sequence
against other DSP tools.

DSP tools AUC
ANF (Vaidyanathan and Yoon, 2002) 0.72
S-G filter (Singh and Srivastava, 2021) 0.87
EMD based ANC (Sahu and Panda, 2011) 0.94
SAVMD (Raman Kumar and Kumar, 2019) 0.90
Fractional digital ANC (Lehilahy and Ferdi, 2022) 0.93
MGWT (Mena-Chalco et al., 2008) 0.8456
Walsh + MGWT (Raman and Vaegae, 2020) 0.8707
Proposed method 0.95

further improving prediction accuracy by integrating additional

structural and chemical features. Exploring the method’s
application to other genomic areas, such as gene origin
prediction and hotspot detection, could also provide

valuable insights.
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ROC curves of static encoding methods using HMR195 dataset.

TABLE 13 Comparison of AUC value of Proposed method with other
existing methods using HMR195 dataset.

Static encoding methods AUC
OBNE (Voss, 1992) 0.81
TBNE (Ranawana and Palade, 2004) 0.80
FBNE (Borries and Guangwen, 1991) 0.68
IBNE (Tenneti and Vaidyanathan, 2019) 0.69
TCNE (Das et al.,, 2019) 0.70
ACBNE (Shubham and Raunak, 2019) 0.68
Proposed method 0.84
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