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Introduction: Breast cancer remains the most frequently diagnosed cancer and a
leading cause of cancer-related death among women globally, emphasising the
urgent need for early, accurate, and interpretable diagnostic tools. While digital
mammography serves as the cornerstone of breast cancer screening, its
diagnostic performance is often hindered by image quality variability, dense
breast tissue, and limited visual interpretability. Furthermore, conventional
Computer-Aided Diagnostic (CAD) systems and deep learning models have
struggled with clinical adoption due to high false-positive rates, difficult
decision-making, and excessive computational demands.

Methods: To address these critical challenges, we introduce ASG-MammoNet,
an Attention-Guided and Streamlined deep learning framework for robust, real-
time, and explainable mammographic breast cancer classification. The
framework is composed of three integrated stages: (1) Data Preparation and
Balanced Feature Representation, which applies advanced preprocessing,
augmentation, and weighted sampling to mitigate data imbalance and
variations across the dataset; (2) Attention-Guided Streamlined Classification,
where an EfficientNet-BO backbone is enhanced by a dual-stage Convolutional
Block Attention Module (CBAM) to selectively emphasise diagnostically relevant
features; and (3) Explainable Inference, in which Gradient-weighted Class
Activation Mapping (Grad-CAM) is employed to provide class-specific
visualisations of lesion regions, supporting interpretability and clinical
decision-making.

Results: ASG-MammoNet is thoroughly validated on three benchmark
mammography datasets, CBIS-DDSM, INbreast, and MIAS, achieving accuracy
above 99.1%, AUC scores exceeding 99.6%, and DIP (Distance from Ideal Position)
scores above 0.99, with an average inference time under 14 milliseconds per
image. The framework exhibits strong generalisability, consistent performance
across data folds, and clinically relevant attention maps, highlighting its readiness
for real-world deployment.

Discussion: The model consistently outperforms or matches recent state-of-
the-art approaches while offering superior balance across sensitivity and
specificity. Its robust generalisability, consistent fold-wise performance,
and clinically meaningful attention visualisations support its practical utility.
By addressing critical limitations such as high computational cost, limited
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interpretability, and precision, ASG-MammoNet represents a practical and
reliable solution for Al-assisted breast cancer diagnosis in modern screening

settings.
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1 Introduction

Breast cancer continues to be a leading cause of mortality
among women worldwide, with recent reports from the World
Health Organisation (WHO) indicating approximately 2.3 million
new diagnoses and over 685,000 deaths annually. This number
continued to be major in 2022, with around 670,000 deaths
assigned to the disease (Breast Cancer, 2025; Cancer, 2025). As
the leading cancer among women, ongoing public health initiatives
and the advancement of early detection protocols are vital for
enhancing patient prognosis and develop effective treatment
modalities and comprehensive patient care worldwide (Youlden
etal,, 2012). The disease is systematically grouped into stages based
on the degree of its spread, which fundamentally guides treatment
decisions. Stage 0 (in situ cancer) represents the earliest form,
involving abnormal cells confined to milk ducts or lobules. Stages
I-Iv
surrounding tissue, with progression marked by increasing

incorporate invasive cancers that have spread into
tumour size, greater lymph node involvement, or even invasion
of the chest wall or skin. In Stage IV (metastatic cancer), the disease
has spread to distant organs. Generally, a lower stage indicates
better prognosis, though other factors such as cancer cell biology
also significantly influence treatment decisions (Akram et al., 2017;
Sharma et al., 2010; Amin et al., 2017).

Empirical evidence consistently demonstrates a strong inverse
correlation between breast cancer stage at diagnosis and 5-year net
survival rates. For instance, data from Canada and the American
Cancer Society reveals that while women diagnosed with Stage I
breast cancer exhibit exceptionally high 5-year net survival rates
(approaching or exceeding 99%), these rates significantly decline
with advancing disease stages, falling considerably for Stages II, III,
and particularly for Stage IV (Ellison and Saint-Jacques, 2023;
Giaquinto et al., 2022). This critical stage-dependent variation in
survival underscores the profound impact of early detection on
prognosis, a trend further supported by studies indicating overall
improvements in survival and declines in mortality rates across all
stages due to treatment advancements and early diagnosis (van der
Meer et al.,, 2021). This stage-dependent variation in 5-year net
survival rates, as reported by Canadian and American Cancer
Society data, is presented in Table 1: Breast Cancer 5-Year Net
Survival Rates by Stage.

TABLE 1 Breast cancer 5-year net survival rates by stage.

Source

With advances in medical imaging and artificial intelligence
(AI), a variety of techniques have emerged, ranging from traditional
screening tools to state-of-the-art deep learning models. A diverse
array of medical imaging modalities is routinely employed for breast
cancer diagnosis, including digital mammography, magnetic
resonance imaging (MRI), Ultrasound, positron emission
tomography (PET), breast thermography, histopathology, and
computed tomography (CT) (Kuhl et al, 2014; Chang et al,
1980; Lee et al, 2010; Veta et al., 2014; Lavayssiére et al., 2009;
Heath et al., 1998). Digital mammography is the primary screening
modality for breast cancer due to its high sensitivity, widespread
accessibility, and proven efficacy in reducing mortality through early
detection (Berg et al., 2004; Ahmed and Nandji, 2024; Mu et al., 2007;
Nandi et al., 2006; Dominguez and Nandi, 2007; Rangayyan et al.,
2010; Rojas-Dominguez and Nandi, 2009; Mu et al, 2008).
Furthermore, it assists in surgical planning by precisely defining
tumour size and location.

Digital mammography offers substantial advantages over
particularly
regarding tumour detection in individuals with dense breast

tissue (Faridah, 2008). Its utility as a critical early detection tool

conventional screen-film mammography (SEM),

extends even to resource-constrained environments (Singh et al.,
2024). Nevertheless, significant challenges remain. Problems such as
false positives, inter-observer variability, and diminished sensitivity
in dense glandular tissue can collectively contribute to diagnostic
delays (Freeman et al., 2021; Madani et al., 2022; Marmot et al.,
2013). Consequently, the development of advanced technologies is
imperative for enhancing diagnostic accuracy, operational
efficiency, and ultimately, patient wellbeing in breast cancer
screening. Recent advancements in Al and automated diagnostic
systems are greatly transforming this field. These systems serve as
effective supporting tools for clinicians, utilising superior learning
and analytical capabilities to enhance diagnostic precision and
operational efficiency. By identifying subtle pathological patterns
that may elude human visual insight, Al-driven systems can
significantly mitigate false positive rates and facilitate more
accurate initial evaluations. Eventually, this capability results in
improved clinical ~decision-making and enhanced patient
management (Gangwal and Gautam, 2023).

The integration of Al into Computer-Aided Diagnostic (CAD)

systems is transforming breast cancer detection. Research indicates

Canada [7] 99.8%

American Cancer Society (2012-2018) [8] >99%
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that these Al-powered systems can significantly boost detection
rates by 7.62%, all while having a minimal impact on recall rates,
which see only a modest increase of 0.93% (Yassin et al., 2018; Topol,
2019; Tang et al., 2009). By employing advanced imaging analysis,
these systems enhance both the accuracy and efficiency of diagnoses,
holding the potential to reduce breast cancer-related mortality and
morbidity. Traditionally, machine learning has helped advance
breast cancer detection through the development of CAD
systems that analyse mammograms. These systems act as helpful
assistants to radiologists, automatically identifying and segmenting
suspicious regions such as masses and calcifications (Hamidinekoo
et al, 2018). For instance, early breast cancer detection on
mammograms often involves various segmentation and
classification techniques. These range from analysing the entire
image without prior segmentation to segmenting breast tissue
based on its distance from the skin.

Accurate segmentations can be achieved using advanced
methods such as Fuzzy C-Means, Fractal Analysis, and Statistical
Analysis. Once the tissue is segmented, its shape and texture are
carefully analysed to extract relevant features. Finally, a Bayesian
which k-Nearest

C4.5 decision trees, is employed for tissue classification (Oliver

framework, combines Neighbours and
et al.,, 2006). This study shows that segmenting the breast using
internal information significantly improves cancer detection.
Particularly, the fuzzy C-Means method demonstrated a notable
enhancement in breast cancer detection, achieving an accuracy of
82% compared to the 62% accuracy achieved with non-
segmentation methods. This highlights the critical importance of
this initial segmentation step in refining breast cancer detection.
Furthermore, a technique utilising the Contourlet transform, which
combines Laplacian Pyramidal and Steerable Gaussian Filters, was
previously proposed for the detection of architectural distortions in
mammograms. This method is meant to analyse textural features for
classification through an Artificial Neural Network (ANN).
However, despite its innovative design, the system exhibited a
significant limitation: a high rate of false positives (1255 out of
1502 regions flagged) (Anand and Rathna, 2013). This emphasises
the critical need for further refinement and development to enhance
the accuracy of such diagnostic tools.

Additionally, an advanced breast cancer identification system
utilising a combination of image processing techniques and neural
networks was proposed to differentiate between benign and
malignant tumours on mammograms. This multi-stage system
starts by enhancing tumour visibility through essential image
processing  steps, conversion,

including grayscale intensity

adjustment, and various filtering techniques. Following
enhancement, segmentation methods, such as thresholding and
morphological operations, are applied to separate the tumour
region. The next stage involves feature extraction, where the
segmented area is comprehensively analysed using the Gray-Level
Co-occurrence Matrix (GLCM) to capture complex textural
properties, alongside direct measurements of shape characteristics
such as asymmetry and roundness. Finally, a neural network
classifier was trained on these extracted features, effectively
distinguishing between benign and malignant tumours, achieving
a 92% identification rate. This high accuracy demonstrates the
efficacy of integrating image processing with a neural network
approach (Helwan and Abiyev, 2016). However, it’s important to
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recognise that these techniques heavily rely on hand-crafted

features, involving morphological, topological, and textural
descriptors. This dependency can make system development
challenging and makes the performance highly restricted to the
quality and relevance of the chosen features.

While conventional methods for breast cancer diagnosis on
mammography presented great utility, especially when annotated
examples were limited, we have seen a significant movement toward
deep learning (DL). This is a powerful step forward, as DL models
can learn to extract features automatically from unprocessed
This
engineering and enables the model to automatically find and

mammogram images. avoids difficult manual feature
learn to optimise on its own those diagnostic features most
useful for it. This potential offers a huge improvement for breast
cancer diagnosis, potentially resulting in dramatic increases in
accuracy, sensitivity, and specificity. For instance, an early study
presented in (Freeman et al.,, 2021) demonstrated how CNNs can
utilise their power for feature extraction within mammograms.
Here, only the most informative features are selectively chosen
from among various pre-trained CNN models. These extracted
fine-tuned features are then fed into other machine learning
algorithms such as NNs and support vector machines (SVMs).
hybrid
diagnosis accuracy of 92%-96% being obtained on three different
datasets: RSNA, MIAS, and DDSM (Jafari and Karami, 2023).

In (Salama and Aly, 2021), a DL framework for breast cancer

Experimental results using this solution recorded

diagnosis from mammograms is introduced. This framework
segments breast tissue from a modified U-Net structure and
classifies the separated area as benign or cancerous by employing
various CNN networks such as InceptionV3. This framework
utilises transfer learning and data augmentation techniques to
address the issue of minimal data adopted here. Both the cranial
caudal (CC) and mediolateral oblique (MLO) views were also
utilised for enhancing accuracy. This framework has satisfactory
results on the DDSM dataset with an accuracy of 99% and less than
1.2 s processing time. Moreover, a technique based on CNN is
utilised for analysing mammogram and tomosynthesis (3-D
mammography) images for breast cancer diagnosis in (Zhang
et al, 2018). More than 3,000 images with pathology-validated
results are utilised to develop CNN models. Validation results
were encouraging and indicated CNNs’ suitability for breast
cancer diagnosis from mammograms and tomosynthesis
automatically. In addition to this, a Breast Mass Classification
(BMC) system integrating deep learning and ensemble learning
has also been proposed for classifying breast masses on
mammograms. It combines k-means clustering, Long Short-Term
Memory networks, CNNs, Random Forest, and Boosting
algorithms. With segmentation of mammograms and feature
extraction utilising LSTM, CNNs, and pre-trained CNN
networks, it returns accurate results with an overall accuracy of
more than 95% and robust generalisability on various datasets
(Malebary and Hashmi, 2021).

In Saber et al. (2021), transfer learning is utilised for breast
cancer classification and detection by a deep learning model. Pre-
trained CNNs such as Inception V3 are enhanced to examine
Data
preprocessing prepare images. With an overall accuracy of over

mammograms. augmentation,  segmentation, and

98%, it performs efficiently for breast cancer detection from
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mammograms. In Liu et al. (2018), a Fully Connected Layer First
CNN (FCLF-CNN) method is proposed for overcoming limitations
of conventional CNNs on structured data. Fully connected layers
precede convolutions, serving as encoders to map raw data into
localised representations. This architecture considerably enhanced
classification performance, stated by its excellent accuracy (above
98%) and sensitivity/specificity values for two datasets of breast
cancer, ie., the Wisconsin Diagnostic Breast Cancer (WDBC)
database and the Wisconsin Breast Cancer Database (WBCD),
outperforming multi-layer perceptron and pure CNNs.

Building on earlier CNN and transfer learning successes, recent
work has advanced novel architectures to better capture local and
global patterns in mammograms. Ahmed and Nandi (2025)
evaluated MLP-Mixer models as token-based
CNNs, showing state-of-the-art accuracy and 30%-50% faster
CBIS-DDSM, INbreast, and MIAS. Their
method outperformed ResNet and DenseNet by effectively

alternatives to
inference across

integrating local and global features via token-mixing. Further
improving efficiency and accuracy, Ahmed and Nandi (2024)
proposed MoEffNet, which combines EfficientNet with Mixture
of Experts (MoEs) to dynamically extract and route features.
Validated on all three benchmarks, it achieved AUC scores above
0.99. Talukdar et al, also enhanced performance by fusing
EfficientNet-B5 with Xception and attention mechanisms,
achieving 96.88% accuracy on MIAS (Talukdar et al., 2025). In
parallel, attention-based methods have improved lesion localisation
and interpretability. Yan et al. combined multi-autoencoders with
attention, reaching a 95.8% AUC (Yan et al., 2025). Rehman et al.
used a Vision Transformer fused with VGG-16 for detecting
architectural distortion, reporting notable gains in sensitivity and
overall accuracy (Rehman et al,, 2025).

Taken together, these developments highlight how combining
scalable backbone architectures, multi-scale feature fusion, and
adaptive attention mechanisms can significantly enhance the
of Al-driven
mammogram analysis. Such integrated approaches help models

accuracy, robustness, and clinical relevance
detect subtle lesions, localise abnormalities more precisely, and
produce outputs that support radiologists’ trust and decision-
making. Despite these advancements, significant limitations
persist, including a lack of transparency, challenges in accurately
localising small lesions, and high computational demands, which
continue to hinder real-world adoption. In particular, traditional
pretrained CNNs such as ResNet and DenseNet deliver high
accuracy but remain resource-intensive and provide limited
interpretability. Transformer-based architectures have shown
strong potential, yet their reliance on very large datasets and
heavy computational requirements restricts their use in real-time
settings. Ensemble strategies can further enhance classification
performance, but they also increase inference time and system
complexity, making them less practical in clinical workflows.
These challenges highlight the need for models that combine
efficiency, transparency, and robust generalisation across diverse
datasets. These challenges remain widely recognised in recent
literature, with comprehensive reviews highlighting persistent
issues such as dataset imbalance, lack of interpretability,
computational inefficiency, and poor generalisability across
heterogeneous datasets (Nath et al., 2025).
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Motivated by these limitations, this paper introduces ASG-
MammoNet, an Attention-Guided and Streamlined deep learning
framework for high-performance breast cancer diagnosis from
mammograms. Our approach combines an efficient backbone
network, targeted attention modules, and difficult explainability
and evaluation to bridge the gap between high experimental
performance and practical, real-world clinical adoption. The key
contributions of this study are summarised as follows:

= Novel Framework Design: We propose ASG-MammoNet, a
hybrid attention-guided architecture that integrates self-
supervised learning, spatial feature enhancement, and

gradient-based visual explanations for breast cancer
classification in mammography.

- Multi-Dataset Validation: Extensive experiments on CBIS-
DDSM, INbreast, and MIAS datasets demonstrate the
model’s generalisability across diverse clinical scenarios,
with AUC values consistently above 99.6%.

- High Accuracy and Interpretability: ASG-MammoNet achieves
state-of-the-art performance, coupled with Grad-CAM-based
attention maps for visual interpretability and clinical trust.

- Efficiency and Practicality: The model’s low inference time
(<14 ms) and high DIP scores reflect its feasibility for real-time
diagnostic support and integration into clinical workflows.

- Comprehensive Evaluation Metrics: In addition to traditional
metrics (accuracy, precision, recall, F1, AUC), we introduce the
DIP (Distance from Ideal Point) metric to better capture the
trade-offs relevant in clinical decision-making.

ASG-MammoNet

outperforms or matches recent state-of-the-art models

across all benchmark datasets, achieving up to 99.78%

and 09980 AUC on CBIS-DDSM, while

maintaining balanced

- Superior  Comparative  Performance:

accuracy
sensitivity and  specificity. Its
performance advantages are achieved without reliance on
ensembling or computational overhead, highlighting its

suitability for clinical deployment.

The rest of this paper is organised as follows. Section 2 details the
proposed ASG-MammoNet framework. Section 3 presents the
experimental results. Section 4 discusses key findings and
limitations. Section 5 concludes and outlines future directions.

2 The proposed framework

The ASG-MammoNet framework was developed to address

three critical challenges in mammographic breast cancer
classification: high computational cost, limited interpretability,
and poor generalisation across heterogeneous datasets.
Conventional CNNs such as ResNet and DenseNet provide
strong feature extraction but remain computationally heavy and
lack transparency in their decision processes. Transformer-based
models improve global context modelling, yet their resource
demands often make them unsuitable for real-time clinical
applications. Ensemble techniques can boost accuracy but
introduce additional latency and system complexity, reducing

their practicality in deployment.
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FIGURE 1
Overall workflow of ASG-MammoNet framework.

To overcome these limitations, ASG-MammoNet employs a
streamlined, attention-guided architecture that balances accuracy,
interpretability, and efficiency. The overall workflow is shown in
Figure 1, which outlines the three sequential stages:

1. Stage 1: Data and Balanced Feature
Representation: Preprocessing, augmentation, and weighted

Preparation

sampling are applied to standardise input mammograms

10.3389/frsip.2025.1672569

and address class imbalance, ensuring that subtle lesions
remain detectable while reducing bias.

2. Stage 2: Attention-Guided Streamlined Classification: A
lightweight EfficientNet-BO backbone (5.3M parameters,
0.39 Giga Floating Point Operations per Second (GFLOPs))
extracts hierarchical features efficiently. A dual-stage
Convolutional Block Attention Module (CBAM) then
adaptively emphasises diagnostically relevant spatial and
channel features, improving lesion localisation in dense tissue.

3. Stage 3: Model Explainability through Gradient-Guided Visual
Attribution: Gradient-weighted Class Activation Mapping
(Grad-CAM) is used to generate heatmaps that highlight
the exact regions

influencing predictions, providing

transparent and clinically meaningful explanations.

A more detailed schematic of the framework is presented in
Figure 2, highlighting the role of each module within the three
stages, from input mammograms through attention refinement to
prediction and explainable outputs. Together, Figures 1, 2 provide
both a high-level overview and a clear architectural breakdown of
ASG-MammoNet, ensuring the methodology is presented in a
structured and transparent manner.

In the first stage (Figure 2 top row), ASG-MammoNet processes
raw mammogram images through tailored preprocessing and data

Stage 1: Data
Preparation and
Balanced Feature
Representation

Stage 2: Attention-
Guided Streamlined
Classification

Stage 3: Explainable
Inference and Clinical
Interpretability

FIGURE 2
Detailed architecture of ASG-MammoNet framework.

Enhancing feature
extraction with
attention
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augmentation, followed by class-balanced sampling to address the
significant data imbalance typically present in screening datasets. In
the second stage (Figure 2, middle row, features are extracted using a
pre-trained EfficientNet-BO backbone and refined with a
Convolutional Block Attention Module (CBAM), which
adaptively emphasises diagnostically salient features across spatial
and channel dimensions. A lightweight classification head then
performs the final malignancy prediction. In the third stage
(Figure 2, bottom row), Gradient-weighted Class Activation
Mapping (Grad-CAM)
predictions, which are transformed into clinician-interpretable

generates  visual explanations of
heatmaps. These support alignment between algorithmic outputs
and radiological reasoning. Each module in ASG-MammoNet has
been carefully selected to address key challenges in mammographic
analysis, including, data imbalance, subtle lesion detection, limited
interpretability, computational efficiency, and generalisability across
diverse datasets. The following subsections describe each stage
in detail.

2.1 Stage 1: data preparation and balanced
feature representation

Mammogram images naturally show substantial variability due
to differences in patient positioning, imaging protocols, and
These
confounding factors that degrade model generalisability if left
2021). To address this, ASG-
MammoNet incorporates comprehensive image preprocessing

equipment manufacturers. variations can introduce

unaddressed (Esteva et al,

and augmentation steps that standardise input representations
while preserving critical pathological features. This includes
aspects of ratio-preserving resizing, contrast enhancements and
spatial transformations, all developed to simulate real-world
variability and improve the model’s resilience to real-world
imaging diversity while maintaining the diagnostic integrity of
relevant Additionally, a
strategy is employed
benign-malignant class imbalance in mammography datasets,

clinically features. class-balanced

sampling to address the pervasive
ensuring reasonable representation of both classes during training

and enhancing the model’s sensitivity to malignancies.

2.1.1 Image resizing and normalisation

All mammograms are resized to 224 x 224 pixels to match the
input dimensions of the EfficientNet-BO backbone (Tan and Le,
2019).
microcalcifications and mass margins, the original aspect ratio is
preserved using bilinear interpolation, defined in Equation 1 below:

Iresized(x)y) = Z I(l’])(l - |x—l|(1 - |y_]|) (1)

i,jeN

To prevent distortion of subtle features such as

where N denotes the 2 x 2 neighbourhood around each target pixel.
In this formulation, the interpolated intensity at coordinates (x, y)
is computed as a weighted average of the four neighbouring pixels in
the original image, denoted by N. The weights (1 —|x —i|(1 -
|y — jl) reflect the relative distance between the target pixel and
each neighbour (i, j). This guarantees that closer neighbours
contribute more strongly to the output, resulting in a smooth
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FIGURE 3

[llustration of the mammogram resizing workflow: (a) Original
input image, (b) Aspect ratio maintained with interpolation, and (c)
Final standardised image resized to 224 x 224 pixels (Ahmed and
Nandi, 2024).

Such
important in mammography, as it helps preserve diagnostically
details, including microcalcifications and
boundaries, which are often degraded by simpler rescaling

transition of intensities. interpolation is particularly

critical lesion
methods. If the resized image does not fully fill the target
dimensions, symmetric zero-padding is applied to maintain
spatial consistency and ensure uniform input sizes (Gonzalez,
2009). Figure 3 demonstrates the image resizing procedure
implemented to standardise input dimensions for the EfficientNet
backbone, ensuring that clinically significant details remain intact
during preprocessing.

Following the resizing step, pixel intensities are stanadarised to
zero mean and unit variance to improve the convergence during
training (Goodfellow et al., 2016) (see Equation 2):

Lormatisea = L-w )
o

Here p and o represent the mean and standard deviation
computed over the training set. This normalisation ensures that
all images are brought to a consistent intensity scale, reducing bias
from variations in acquisition settings and enhancing the stability of
gradient-based optimisation.

2.1.2 Geometric augmentations
To simulate realistic positional variations in mammography, we
apply random geometric transformations including:

from 0 € [-10°+10°],
representing minor errors in patient positioning.

a. Rotation: ~Uniformly sampled

b. Translation: Offsets Ax,Ay e [-11,+11] Pixels experience
shifts due to misalignment of the scanner.

c. Scaling: Scale factor s e [0.9,1.0,and1.1] justification for

variations in breast compression or detector distance.

Additionally, horizontal flipping is applied to ensure invariance
to breast laterality (left vs. right).

2.1.3 Photometric augmentations

To increase resilience to variations in acquisition settings,
brightness and contrast are randomly adjusted to aid the model

frontiersin.org
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in learning features less sensitive to brightness variations. This can
be expressed as shown in Equation 3 below.

Iaugmen!ed =ol+ ﬁ (3)

Here o =1.1 controls the contrast and =10 adjusts the
brightness. These values were empirically validated to prevent
unrealistic artefacts (Gonzalez, 2009; Hsieh et al., 2020).

2.1.4 Balanced sampling

Class imbalance in mammography datasets, where benign cases
often vastly outnumber malignant ones, poses a critical challenge, as
it can lead to models with biased decision boundaries and poor
sensitivity to clinically significant findings (Buda et al,, 2018). To
address this, we employ a class-balanced weighted sampling strategy
that ensures each mini-batch maintains a fair representation of both
classes during training. Formally, this is achieved by assigning each
sample a weight inversely proportional to its class frequency, thereby
adjusting  their
construction. Let Ny, and N,, denote the number of benign and

likelihood of selection during mini-batch

malignant samples, respectively, with N > N,,. We define the
sampling weight w, for class ¢ as given in Equation 4 below:

1
w, = — forc € {benign, malignant} (4)

c

Here, N. denotes the number of samples in class c¢. These
weights are normalised into probabilities for sampling, such that
the probability of selecting class c is given in Equation 5 below:

1
— = 5)

pc= =7 1
Lk §tN,

The WeightedRandomSampler then draws samples with
replacement according to p., ensuring that the expected class
ratio in every mini batch is approximately 1:1. This approach
directly addresses the gradient bias observed in imbalanced
training, where the loss L(6) would otherwise be dominated by
the majority class (Huang et al., 2016; Cormode and Yi, 2020) (see
Equation 6):

Lbulumed(e) = % (Nib Z l(fg (X,‘), yt) + I\’L Z l(f9 (xi)’ y1)>

ieDy, ™M €Dy,
(6)

Here, Dy, and D,, represent the sets of benign and malignant
samples, respectively, fg(x;) is the model prediction for sample x;
with 6, and I(.,.) is the binary cross-entropy loss.

This approach rebalances the loss contributions while directly
mitigates the optimisation bias inherent in skewed distributions. To
justify this approach, consider that traditional techniques such as
random undersampling often discard significant portions of the
majority class data, which can impair the model’s ability to
generalise. On the other hand, synthetic oversampling methods
such as Synthetic Minority Over-sampling Technique (SMOTE)
may introduce unrealistic or noisy instances, which can be
particularly problematic in high-dimensional medical imaging
contexts. In contrast, our method addresses these issues by
utilising only real data and adjusting the sampling process in a
statistically sound manner. Recent studies have shown that inverse-
frequency weighting can produce gradient updates that maintain
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important information about minority classes (Walsh and Tardy,
2022). This technique leads to more reliable convergence and
enhances the detection of rare malignancies. By balancing
contributions in each mini-batch, the model enhances sensitivity
to subtle lesions while maintaining specificity. This method helps
avoid the risks of overfitting to synthetic patterns and ensures that
valuable benign data is fully utilised. As a result, the proposed
sampling strategy supports a more reliable diagnostic system that
performs well across various screening populations, enhances early
cancer detection, and reduces missed malignancies, making it
suitable for real-world use in breast cancer triage and
decision support.

With its input data rigorously preprocessed, augmented, and
statistically rebalanced, ASG-MammoNet is now ready for robust
and fair learning across diverse mammography scenarios. The next
step is to transform these optimised inputs into clinically meaningful
predictions. We achieve this through a streamlined classification
pipeline that integrates attention-enhanced mechanisms into an
efficient deep learning backbone. This enables the model to
prioritise diagnostically relevant features. The next section
innovations that facilitate

describes the key architectural

this process.

2.2 Stage 2: attention-guided streamlined
classification

In the second stage of our proposed framework, we introduce an
attention-guided classification architecture developed to enhance
the representational power of learned features while maintaining
computational efficiency. As illustrated in Figure 4, this stage begins
with feature extraction using EfficientNet-BO, a state-of-the-art
convolutional neural network known for its compound scaling
efficiency. The extracted deep feature maps are subsequently
refined through a Convolutional Block Attention Module
(CBAM), which applies to both channel and spatial attention
mechanisms sequentially. These attention operations selectively
emphasise the most informative aspects of the mammographic
features before passing them to a streamlined classification head
for binary decision-making between benign and malignant cases.

The following subsections detail the technical components
employed in this stage, including the EfficientNet-BO feature
encoder (Section 2.2.1), the channel and spatial attention
(Section 2.2.2), and the final

refinement  mechanisms

classification strategy (Section 2.2.3).

2.2.1 Efficient feature encoding with
EfficientNet-BO

As shown in Figure 4, EfficientNet-BO0 serves as the foundational
feature extractor in the ASG-MammoNet framework, which offers a
well-balanced trade-off between accuracy and computational
efficiency. As a member of the EfficientNet family of
convolutional neural networks (CNNs), EfficientNet-BO benefits
from a principled compound scaling approach that uniformly
scales network dimensions, depth, width, and resolution, based
on a single compound coefficient. This technique contrasts with
traditional architectures, which often scale these parameters
independently, resulting in

suboptimal  performance and
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Layer-wise architecture of EfficientNet-BO highlighting convolution and MBConv blocks for feature extraction (Ahmed and Nandi, 2024).

increased resource demands (Tan and Le, 2019). Figure 5 illustrates
the layer-wise configuration of EfficientNet-B0, composed of mobile
inverted bottleneck convolution (MBConv) blocks with kernel sizes
of 3 x 3 and 5 x 5 and expansion ratios of either 1 or 6. These
MBConv layers, first introduced in MobileNetV2, were designed to
maintain representational capacity while minimising computational
overhead. By combining depthwise separable convolutions, linear
bottlenecks, and shortcut connections, MBConv blocks capture both
local textures and high-level semantic patterns efficiently (Ahmed
and Nandi, 2024).

The EfficientNet architecture was developed through a Neural
Architecture Search (NAS) that produced a highly optimised
baseline network structure. This baseline was subsequently scaled
using a novel compound scaling method that uniformly adjusts the
network’s depth, width, and resolution with a single coefficient,
resulting in the EfficientNet family of models from BO to B7. Each
variant introduces progressively higher accuracy and complexity
while preserving computational For
EfficientNet-B7 achieves a top 1 accuracy of 84.4% on ImageNet,
outperforming larger models such as GPipe, yet with significantly
fewer parameters and FLOPs.

efficiency. example,
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In the context of our study, EfficientNet-BO offers an ideal
balance between performance and resource efficiency. With
approximately 5.3 million parameters and 0.39 billion Floating
Point Operations per Second (FLOPs), it enables real-time
analysis on high-resolution mammograms without compromising
diagnostic  accuracy or interpretability. This lightweight
configuration is ideally suited for medical imaging workflows,
where speed, reproducibility, and model transparency are crucial.
In our framework, we employ the pre-trained ImageNet weights of
EfficientNet-B0 to initialise the backbone. These weights offer a
strong foundation of generalised low-level feature detectors (e.g.,
edges, textures), which are then fine-tuned on the mammography
dataset to specialise in detecting subtle indicators of malignancy
such as macrocalcifications, spiculated masses, and architectural
distortions.

While EfficientNet-BO effectively captures a rich hierarchical
representation of mammographic features, its output feature maps
remain broadly generalised. In high-stakes diagnostic contexts,
particularly those involving dense breast tissue or subtle
abnormalities, such generalisation may overlook critical lesion-

specific cues. To mitigate this, we incorporate a Convolutional
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Block Attention Module (CBAM) at the final stage of the feature
This
recalibration of feature responses by selectively emphasising the

extraction backbone. enhancement enables adaptive
most informative channels and spatial regions. The next subsection
details our attention-guided refinement strategy, which integrates
CBAM to improve the localisation and discrimination of

diagnostically relevant features.

2.2.2 Attention-guided feature refinement via
CBAM: channel and spatial adaptation

EfficientNet-BO excels at capturing complex hierarchical
features from mammographic images, making it a powerful tool
for medical image analysis. However, despite its strengths, the
model’s outputs may still contain redundant or less informative
features, especially in challenging scenarios such as dense breast
tissue or subtle lesion patterns that may be difficult to detect. To
enhance the model’s ability to focus on diagnostically significant
areas and improve its overall performance, we introduce CBAM.
This advanced mechanism serves as an adaptive refinement tool,
integrated at the final stage of EfficientNet-B0’s feature extraction
pipeline. This integration, as depicted in Figure 4, aims to enhance
the model’s focus on areas of interest, thereby increasing the
accuracy and reliability of mammographic assessments.

CBAM is a lightweight plug-and-play module designed to
enhance deep feature representations through sequential dual-
attention mechanisms, channel-wise and spatial. By adaptively
recalibrating the feature maps along these two complementary
dimensions, CBAM enables the network to focus on what
features are most informative (e.g., spiculated masses) and where
they are located (e.g., irregular lesion boundaries). This refined
attention improves the network’s ability to localise subtle
abnormalities and suppress less informative regions, particularly
in challenging mammographic scenarios such as dense tissue (Woo
et al,, 2018). Using CBAM improves the accuracy of diagnoses and
increases confidence in classification. It also keeps computing
efficient, making it great for real-time medical imaging.

2.2.2.1 Channel attention: Learning “what” to focus on
The channel attention mechanism in CBAM addresses a critical
challenge in mammographic analysis: not all feature channels
contribute equally to lesion detection. While EfficientNet-B0
extracts rich hierarchical features, its intermediate representations
may include redundant or noisy channels that obscure diagnostically
relevant signals, particularly in dense breast tissue or subtle
malignancies such as microcalcifications or spiculated masses.
CBAM’s
representation

channel attention module enhances feature

by  dynamically channel-wise

responses. It achieves this by modelling the interdependencies

recalibrating

between channels. To capture a comprehensive global context,
the module aggregates information using both global average-
pooled (GAP) and global max-pooled (GMP) features across
spatial dimensions. These pooled descriptors are passed through
a shared multilayer perceptron (MLP), which captures channel-wise
importance. The resulting attention weights are fused and
normalised using a sigmoid activation to generate the final
channel attention map M, (F) as given in Equation 7 below:

M, (F) = 0 (MLP(AvgPool (F)) + MLP(MaxPool (F)))  (7)
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Here, F is the input feature map, ¢ is the sigmoid function, and
M, denotes the learned channel-wise attention weights. These
weights are then multiplied elementwise with the original feature
map, effectively amplifying relevant channels and suppressing noisy
or non-informative activations. While channel attention identifies
diagnostically significant feature patterns, precise lesion localisation
requires complementary spatial refinement, addressed by CBAM’s
subsequent spatial attention module, which locates where these
critical features manifest within the mammographic landscape.

2.2.2.2 Spatial attention: learning “where” to focus
Building on the channel-refined features, the CBAM spatial
attention module enhances the precise localisation of
diagnostically relevant regions, effectively distinguishing subtle
lesions from complex anatomical backgrounds in mammograms.
This mechanism identifies spatially relevant areas such as irregular
lesion boundaries or microcalcification clusters, while controlling
irrelevant tissue patterns (e.g., uniform adipose tissue). Spatial
attention is computed through a multi-scale pooling and
convolution pipeline. CBAM performs average-pooling and max-
pooling across the channel dimensions and then concatenates the
resulting two spatial maps, and applies a convolution operation to

generate a spatial attention map as defined in Equation 8 below:

M, (F") = o (£ ([AvgPool (F'); MaxPool (F')])) (8)

Here, F' is the output from the channel attention stage, and f7*7
denotes a convolution with a 7 x 7 kernel and [;] indicates the
concatenation operation. The resulting spatial attention map is
applied through element-wise multiplication to guide the
network’s focus to suspicious regions within the mammogram.
This targeted focus enhances the localization of subtle lesions
while reducing interference from surrounding anatomical
structures, thereby improving overall diagnostic reliability. In
ASG-MammoNet, CBAM is integrated after the final MBConv
block of EfficientNet-BO, and the refined feature map F” is
computed through sequential channel-spatial attention (see

Equation 9 below):
F" = M,(M.(F)® F) ® (M. (F) ® F) )

Here, ® denotes element-wise multiplication, M. (F) and M, (.)
represent the channel and spatial attention maps, respectively.
Channel attention selectively emphasises feature maps that capture
diagnostically relevant patterns (e.g., tissue density variations),
while spatial attention highlights specific regions within the
mammogram where suspicious lesions may occur. By
sequentially applying both mechanisms, the model improves
localisation of subtle abnormalities and reduces the influence of
irrelevant background regions. This dual-attention scheme
enhances both the discriminability and interpretability of the
extracted features with minimal overhead, adding only ~0.03M
parameters and minor latency (~0.012 s per image). This makes it
particularly suitable for real-time or near-real-time clinical
applications. Table 2 provides a clinical justification of how the
dual-attention mechanisms in CBAM, channel and spatial
attention align with radiological reasoning to enhance lesion
detection ASG-

and diagnostic accuracy within the

MammoNet framework.
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TABLE 2 Clinical rationale for dual attention integration in ASG-MammoNet.

Attention module

Clinical analogy

10.3389/frsip.2025.1672569

Channel Attention Radiologist’s feature

prioritization

Spatial Attention Clinician’s regional focus

Function in mammographic interpretation

Amplifies diagnostically salient patterns (e.g., spiculated masses, high-contrast edges) while suppressing
redundant or non-informative tissue features

Highlights spatial arrangements indicative of malignancy (e.g., asymmetric densities, clustered

microcalcifications) in dense breast regions

Building on the refined features generated through CBAM, the
final stage of our attention-guided classification pipeline involves
aggregating these enhanced representations to perform binary
diagnosis, distinguishing between benign and malignant findings.

2.2.3 Diagnostic decision layer: binary
classification head

The diagnostic decision layer constitutes the final stage of ASG-
MammoNet, transforming CBAM-refined feature representations
into clinically actionable predictions. Following attention-guided
enhancement via the CBAM, this layer performs robust binary
classification, distinguishing between benign and malignant
mammographic cases, utilising an efficient and optimised three-
stage structure. Given the spatially and channel-wise refined feature
maps F" € RE*TW output by CBAM, ASG-MammoNet applies
GAP to convert each feature map into a scalar (see Equation
10 below):

1 H W

fe=trew 2.2 Fess

i=1 j=1

Y.e{l,...,C}  (10)

This operation produces a compact channel-wise descriptor
f € RC, which offers three key benefits. First, it retains high-
level semantic features that are essential for distinguishing
malignant from benign patterns, especially when enhanced by
attention mechanisms such as CBAM. Second, Global Average
Pooling (GAP) significantly reduces the number of trainable
parameters compared to flattening by approximately 90% for
typical 7 x 7 spatial maps, helping to prevent overfitting in
medical imaging tasks (Lin et al, 2013). Third, by aggregating
spatial information into a single vector per channel, GAP

removes irrelevant positional variance, promoting better
generalisation across diverse mammographic cases (Zhou
et al., 2016).

The pooled feature vector f is processed through a fully
connected (dense) layer as given in Equation 11 below:

p = softmax(Wf +b) (11)

Here, so ftmax (.) denotes the SoftMax activation function, W is
the weight matrix of the classification layer, p € R* represents the
predicted probability distribution over the two classes, i.e., benign and
malignant, and b is the bias term in the final fully connected layer of
the classification head. The final prediction is determined by selecting
the class with the highest probability (see Equation 12 below):

Class = argmax (p) (12)

Having established the classification pipeline and optimisation
strategy, we now focus on enhancing the transparency of ASG-
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MammoNet’s decision-making process through gradient-guided
visual attribution techniques.

2.3 Stage 3: model explainability through
gradient-guided visual attribution

In the final stage of ASG-MammoNet, we introduce a
principled mechanism for visual explanation to support the
interpretability and transparency of diagnostic decisions. This
stage complements the classification step by enabling human-
understandable insights into what spatial features the model
considered most relevant when predicting malignancy. We
adopt Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al., 2017), a widely utilised post hoc
interpretability method, to generate heatmaps that locate the
key discriminative regions in mammograms contributing to
the model’s output. Grad-CAM requires no modification of the
model architecture and works by utilising the gradients of the
target class flowing into the final convolutional layer of the
These
weighted combination of the feature maps, producing a

network. gradients are used to compute a

class-discriminative localisation map as given in Equation
13 below:

» ) 1 9y
[Gred-CAM _ ReLU(Zk:txkAk)u’here“fc =7 z ZJ: aAE (13)

i

Here, A is the kth feature map from the last convolution layer,
y¢ is the score for class ¢ (malignant or benign), e, represents the
importance weight of each feature map A¥, and Rectified Linear Unit
(ReLU) is an activation function.

In ASG-MammoNet, Grad-CAM is applied specifically to the
CBAM-enhanced EfficientNet-B0O backbone after prediction scores
are generated. These visual attributions are computed per image and
overlaid as colour-coded heatmaps onto the original grayscale
mammograms. Importantly, the interpretability module operates
on both correctly and incorrectly classified cases to assist in model
validation and clinical feedback. As shown in Figure 2, this process
forms a critical bridge between algorithmic output and human
decision-making: prediction scores are first computed through
Grad-CAM  then
saliency maps that highlight anatomical structures as the most

attention-guided  classification; generates

influential to the model’s decisions; and finally, these maps are

overlaid to create clinician-interpretable heatmaps. This
explainability layer serves three essential functions: (1) it
enhances transparency by localising regions that drive

predictions, (2) improves accountability by facilitating error
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(b)

FIGURE 6

Typical examples from the MIAS mammogram dataset: Illustrating (a) normal, (b) benign, and (c) malignant cases.

analysis through visualisation of model biases or blind spots, and (3)
promotes clinical alignment by confirming that the model focuses
on diagnostically relevant areas such as masses or
microcalcifications.

To assess the diagnostic effectiveness, generalisation capacity,
and interpretability of ASG-MammoNet, we conducted a series of
experiments across multiple benchmark datasets, as detailed in the

following section.

3 Experimental results

3.1 Datasets

This section presents the comprehensive evaluation of our

proposed framework, ASG-MammoNet, for breast cancer

diagnosis using mammographic imaging. We validate its
performance on three widely used and publicly available datasets:
Mammographic Image Analysis Society (MIAS), Curated Breast
Imaging Subset of the Digital Database for Screening
Mammography (CBIS-DDSM), and INbreast. These datasets
encompass a broad spectrum of breast tissue types, imaging
qualities, and pathological variations, robust
the accuracy,

generalisability, and resilience to real-world clinical variability.

providing a

benchmark to assess model’s  diagnostic
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3.1.1 Mammographic Image Analysis Society (MIAS)

The Mammographic Image Analysis Society (MIAS) database is
a widely used benchmark for evaluating breast cancer detection
algorithms. Developed by UK research institutions, it comprises
322 digitised mammograms from 161 patients, including both left
and right mediolateral oblique (MLO) views. Each image is
annotated as normal (207), benign (63), or malignant (52), with
lesion type and location provided where applicable (Suckling et al.,
2015). The images were digitised using a high-precision scanning
microdensitometer at 50 ym x 50 ym resolution and 8 — bit depth,
then downsampled to 200 um for computational use. Stored in
1024 x 1024 PGM format, MIAS supports
standardised evaluation of image-based diagnostic models and

reproducible,

remains a critical resource in mammography research. Figure 6
depicts a selection of images from the MIAS dataset. For this study,
the “normal” and “benign” samples were merged and treated
collectively as the “Benign” class to maintain a consistent binary
classification scheme of “Benign” versus “Malignant” across the
three datasets.

3.1.2 Curated breast imaging subset of the digital
database for screening mammography
(CBIS-DDSM)

The CBIS-DDSM is a standardised and enhanced version of the
original DDSM, designed to improve accessibility and utility for

frontiersin.org


https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1672569

Ahmed and Nandi

10.3389/frsip.2025.1672569

FIGURE 7

Examples from the CBIS-DDSM Dataset: Full and Cropped Mammograms for Malignant (a,c) and Benign Masses (b,d).

computer-aided diagnosis (CAD) research. It offers decompressed,
full-field mammograms in DICOM format, accompanied by lesion
masks and pathology-confirmed annotations reviewed by expert
radiologists (Heath et al, 1998; Lee et al,, 2017). CBIS-DDSM
includes 1,644 cases divided into four categories: benign/
malignant masses and benign/malignant calcifications. For this
study, we focus exclusively on mass lesions to reduce
heterogeneity. The training subset comprises 355 benign and
336 malignant mass cases, while the testing subset includes
117 benign and 83 malignant cases. The dataset’s high-resolution
images, expert-reviewed segmentation masks, and structured
diagnostic labels make it a valuable benchmark for deep learning-
based breast cancer detection. Figure 7 shows representative samples

from the CBIS-DDSM dataset.

3.1.3 INbreast dataset

The INbreast dataset is a high-quality, full-field digital
mammography (FFDM) resource that plays a pivotal role in the
development and evaluation of computer-aided diagnosis (CAD)
systems for breast cancer. Collected at the Centro Hospitalar de S.
Jodo in Porto, Portugal, the dataset comprises 410 mammographic
images from 115 cases, captured using a Siemens Mammomat
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Inspiration system with 70um pixel pitch and 14-bit depth
(Moreira et al., 2012). What sets INbreast apart is its meticulous,
expert-driven annotation protocol. Each case includes precise
radiologist-delineated contours for various lesion types, including
masses, calcifications, asymmetries, and architectural distortions,
ensuring reliable ground truth for both detection and classification
tasks. Annotations are provided in structured XML format,
facilitating straightforward integration into machine learning
pipelines. Beyond its technical precision, INbreast captures a
broad spectrum of mammographic presentations, from normal
cases to diverse pathological abnormalities. This diversity makes
it particularly suitable for developing and benchmarking deep
learning models aimed at early and accurate diagnosis. Figure 8
shows representative samples from the INbreast dataset.

3.2 Evaluation strategy and
performance metrics

This section outlines the evaluation strategy used to assess the
of the proposed ASG-MammoNet
framework. To ensure comprehensive validation, we perform

diagnostic effectiveness
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FIGURE 8

Typicalimages from the INbreast dataset: (a) Craniocaudal (CC) and (b) mediolateral oblique (MLO) views of both breasts (Ahmed and Nandi, 2024).

systematic experiments across three benchmark mammographic
datasets, MIAS, INbreast, and CBIS-DDSM, capturing a broad
range of imaging conditions and diagnostic challenges.

3.2.1 Experimental setup

To validate the efficacy of ASG-MammoNet across diverse
mammographic datasets, we implemented a unified experimental
framework grounded in reproducibility and aligned with real-world
clinical imaging scenarios. All experiments were conducted using
PyTorch 2.2 on a machine equipped with a 13th Gen Intel” Core™
i9 processor, 64 GB RAM, and an NVIDIA GeForce RTX
4090 Laptop GPU to ensure sufficient computational resources
for high-resolution mammographic analysis.

As described in Section 2.1, all input mammograms were
resized to 224 x 224 pixels using aspect-ratio-preserving
bilinear interpolation, followed by symmetric zero-padding to
maintain spatial consistency. This step ensured uniform input
dimensions compatible with the EfficientNet-B0 backbone, while
safeguarding subtle features such as mass margins and
microcalcifications. Each image was then normalised to zero
mean and unit variance, using statistics computed from the
training dataset, to enhance optimisation stability. During
training, we applied a robust set of geometric and photometric
augmentation techniques to improve model generalisability and
simulate the variability encountered in real-world mammographic
imaging. Specifically, random affine transformations included
rotations within +10°, translations up to *11 pixels in both
horizontal and vertical directions, and scaling by factors of 0.9,
1.0, and 1.1 to simulate variations in breast positioning and
compression. Additionally, random horizontal flipping was
applied to account for left-right breast laterality. Photometric
augmentation involved brightness—contrast jittering using the
transformation Iaygmentea = &I+, where a=1.1 controls
contrast and = 10 adjusts brightness, enhancing robustness to
variations in imaging conditions without distorting diagnostic
features. These augmentations were empirically validated to
preserve diagnostic reliability while enhancing robustness to
and

artefacts, patient

For

imaging positioning  differences,

acquisition  settings. evaluation, only resizing and

normalisation were applied to maintain deterministic conditions.
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Each dataset (MIAS, INbreast, and CBIS-DDSM) was split into
80% for training and 20% for testing, using a fixed random seed to
ensure reproducibility. Within the training split, we adopted a
balanced sampling strategy, as introduced in Section 2.1.4, to
A WeightedRandomSampler ~was
employed to ensure that benign and malignant cases were equally

mitigate class imbalance.
represented in each training batch without modifying the
loss function.

The model was trained for up to 50 epochs, with training and
validation losses monitored at each epoch. Early stopping was
applied once the validation loss plateaued, ensuring stable
convergence and preventing overfitting. Training was repeated
10 times per dataset to ensure statistical robustness. For
optimisation, we used the Adam optimiser with a learning rate
of le-5. The cross-entropy loss function was selected due to its
suitability for binary classification tasks. A batch size of 16 was
used, balancing memory efficiency and stable gradient updates
during training. Performance was evaluated using a separate test
set after each training session. Key metrics, accuracy, precision,
recall, Fl-score, AUC, and Distance from the Ideal Position
(DIP), were computed at each run. Inference time per image
and training duration were also recorded. To enhance
interpretability, Grad-CAM heatmaps were generated for both
correctly and incorrectly classified examples. These were overlaid
on the original grayscale mammograms and saved as part of a
visual diagnostic report.

3.2.1.1 Software and computational environment

All experiments were conducted on a Windows 11 workstation.
The software environment was managed using the Anaconda
distribution (Python 3.10). GPU acceleration was enabled via an
NVIDIA GeForce RTX 4090 with CUDA 12.x and cuDNN 8. x. The
core deep learning framework used was PyTorch 2.2, along with
torchvision 0.17.

The implementation utilised several supporting libraries
that facilitated model development, evaluation, and reporting.
For model architecture, we employed timm, which provided
access to EfficientNet backbones. Numerical operations and
performance metrics were supported by NumPy (v1.26), SciPy
(v1.12), and scikit-learn (v1.4). Data handling and results
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logging were managed through pandas (v2.2), while
visualisation of outcomes was carried out using matplotlib
(v3.8) and seaborn (v0.13). Additional utilities included
tqdm (v4. x) for progress monitoring during training,
captum (v0.7) for generating Grad-CAM visual explanations,
and python-docx (v1. x) for automated reporting. Additionally,
a fixed random seed (42) was set for Python, NumPy, and
PyTorch. The environment variable KMP_DUPLICATE_LIB_
OK

conflicts on Windows.”

TRUE was configured to prevent OpenMP library

3.2.2 Performance metrics

To evaluate the diagnostic performance of ASG-MammoNet in
breast cancer classification, we adopted a diverse set of evaluation
metrics that collectively assess accuracy, robustness, and clinical
relevance. These include accuracy, specificity, precision, recall
(sensitivity), Fl-score, area under the ROC curve (AUC), and
distance from the ideal position (DIP). Each metric offers a
distinct lens on model behaviour, allowing a balanced analysis of
predictive capability, error types, and diagnostic safety (Ahmed and
Nandi, 2025). All metrics were computed using the standard
confusion matrix components:

o True Positives (TP): Correctly identified malignant cases

« False Negatives (FN): Malignant cases misclassified as benign
o True Negatives (TN): Correctly identified benign cases

« False Positives (FP): Benign cases misclassified as malignant

Based
were computed:

on these, the following evaluation measures

. Accuracy: Measures the overall proportion of correctly

classified instances across both classes as defined in
Equation 14 below:
A N TP+TN (14)
CUraY = TPy TN + FP+ FN

. Specificity (True Negative Rate): Assesses the ability to
correctly identify benign cases, helping minimise false
positives. This can be expressed as shown in Equation
15 below.

TN

. Precision: Quantifies how many of the positively predicted
cases are truly malignant, reflecting reliability in cancer
detection. This can be expressed as shown in Equation

16 below.
TP
Precision = ——— 16
recision TP+ FP (16)
d) Recall (Sensitivity): Measures how effectively the model

captures actual malignant cases, critical for early cancer
detection. This can be computed using Equation 17 below.

TP

Recall = ——
= TP Y FN

(17)
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TABLE 3 Performance summary of ASG-MammoNet across datasets.

Metric MIAS CBIS-DDSM  INbreast
Accuracy (%) 99.15 + 0.42 99.78 + 0.09 99.64 + 0.19
Precision (%) 98.54 + 0.74 99.82 £ 0.09 99.79 £ 0.29
Recall (%) 99.20 + 0.53 99.78 £ 0.11 99.68 £ 0.18
Specificity (%) 99.13 + 0.43 99.78 £ 0.11 99.55 + 0.61
F1-Score (%) 98.87 + 0.56 99.80 + 0.08 99.73 £ 0.14
AUC (%) 99.63 + 0.22 99.93 £ 0.05 99.93 £ 0.12
DIP Score 0.9901 + 0.0047 0.9980 £ 0.0007 0.9965 £ 0.0025
Inference Time (s) 0.0089 0.0092 0.0137

e. F1-Score: The harmonic mean of precision and recall, offering
a single score that balances both sensitivity and specificity. This
can be expressed as shown in Equation 18 below.

Precision x Recall

F1 - score =2 (18)

X ——————
Precision + Recall

. AUC-ROC: Captures the model’s ability to distinguish between
malignant and benign classes, by plotting true positive rate
against false positive rate across thresholds. AUC values closer
to 1 indicate stronger discrimination.

. Distance from the Ideal Position (DIP): DIP offers a composite

measure that reflects overall model closeness to optimal

performance. It is defined in Equation 19 below:

YN (1 - m;)?
D1P=1——Z’=‘( )

N (19)

Here m; denotes the ith metric value and N is the total number
of metrics considered. DIP ranges from 0 to 1, with values near one
indicating superior performance (Nandi, 2023). In this study, the
value of N is 2 for Precision and Recall.

This comprehensive evaluation framework ensures both
statistical rigour and clinical interpretability, which are essential
for the real-world deployment of Al-assisted diagnostic systems.

3.2.3 Results

To evaluate the diagnostic effectiveness of the proposed ASG-
MammoNet framework for breast cancer detection, we conducted
extensive experiments on three widely recognised benchmark
mammography datasets: CBIS-DDSM, INbreast, and MIAS. As
described in section 3.1, these datasets encompass diverse
imaging characteristics, ranging from variations in breast density
to differences in resolution and annotation quality, providing a
comprehensive basis for assessing the model’s generalisability,
robustness, and clinical applicability across heterogeneous
mammographic scenarios.

Table 3 presents a detailed summary of the quantitative
performance of ASG-MammoNet across eight key evaluation
metrics, clearly demonstrating its high diagnostic efficacy in
mammogram classification. The model consistently delivers
robust results across all three benchmark datasets, highlighting its

strong generalisability and resilience to varying data distributions.
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FIGURE 9
Accuracy across 10 independent training runs on (a) MIAS, (b) CBIS-DDSM, and (c) INbreast datasets. The red dashed line represents the mean

accuracy. The plots confirm ASG-MammoNet's robust and consistent performance across datasets of varying complexity and size.

Among the datasets, CBIS-DDSM, the largest and most complex,  99.82% # 0.09%, and Fl-score of 99.80% + 0.08%. These results
ASG-MammoNet achieved the strongest results, with the model  indicate ASG-MammoNet’s ability to extract discriminative features
achieving an exceptional accuracy of 99.78% + 0.09%, precision of  even in the presence of significant inter-patient variability and
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challenging clinical conditions. Similarly, performance on the
INbreast dataset was outstanding, with an accuracy of 99.64% =+
0.19% and a DIP score of 0.9965 + 0.0025, suggesting a well-
calibrated balance between sensitivity and specificity, both of
which are critical for dependable decision-making in clinical
screening settings.

Although the MIAS dataset is comparatively smaller and less
diverse, ASG-MammoNet still demonstrated excellent performance,
achieving an accuracy of 99.15% + 0.42% and a recall of 99.20% *
0.53%. The marginally lower precision (98.54% + 0.74%) may reflect
the simpler imaging characteristics and potential label noise within
MIAS. Nonetheless, the F1-score of 98.87% =+ 0.56% confirms the
model’s consistency in managing trade-offs between precision
and recall.

In terms of discriminative ability, AUC values exceeded 99.6%
across all datasets, reaching 99.93% + 0.05% for CBIS-DDSM,
99.93% + 0.12% for INbreast, and 99.63% + 0.22% for MIAS.
These results demonstrate the model’s reliability in distinguishing
between benign and malignant cases with high confidence. The DIP
metric, which evaluates proximity to an ideal operating point in
ROC space, remained high for all datasets, peaking at 0.9980 +
0.0007 for CBIS-DDSM, highlighting ASG-MammoNet’s suitability
for clinical decision support systems. From a computational
standpoint, ASG-MammoNet is also highly efficient, offering
average inference times well below 14 milliseconds per image.
The fastest inference was observed with MIAS (0.0089 s) due to
its lower resolution and reduced complexity, followed by CBIS-
DDSM (0.0092 s) and INbreast (0.0137 s), the latter influenced by
higher image resolutions and dense tissue patterns.

In summary, ASG-MammoNet consistently achieves state-of-
the-art performance in mammographic image classification,
coupling high diagnostic accuracy, excellent generalisability, and
low computational overhead. These attributes make it a promising
candidate for deployment in real-world screening workflows,
particularly in settings demanding both precision and efficiency.

Figure 9 illustrates the classification accuracy across the
independent runs using stratified random splits for (a) MIAS, (b)
CBIS-DDSM, and (c) INbreast. For the MIAS dataset (Figure 9, a),
ASG-MammoNet maintained high performance with a mean
accuracy of 99.15%. Despite the smaller dataset size, which
typically introduces higher variance, the results remain tightly
standard deviation of +0.42%,
confirming the model’s stability across training folds. For CBIS-
DDSM (Figure 9, b), the model demonstrated outstanding
robustness, with an average accuracy of 99.78% and very narrow

clustered with a minimal

variability across runs. This consistency, even on a large and
complex dataset, highlights ASG-MammoNet’s resilience to data
imbalance and heterogeneity. On the INbreast dataset (Figure 9, c),
the model achieved a mean accuracy of 99.64%, also exhibiting low
variation (+0.19%) across runs. These results suggest strong
generalisation and minimal sensitivity to initialisation conditions
or partitioning randomness. Overall, the low inter-run variance
across all three datasets further strengthens the case for deploying
ASG-MammoNet in clinical settings where model reliability is
critical. To ensure robust generalisation and prevent overfitting,
model training was carefully monitored using early stopping based
on validation loss trends. The convergence behaviour across datasets
remained consistent, with training and validation losses following
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parallel trajectories and showing no signs of divergence. As
illustrated in Figure 9, the validation accuracy remained stable
across ten independent runs for each dataset, demonstrating the
model’s reliability and reproducibility. The minimal variance
observed between runs further confirms that ASG-MammoNet’s
superior performance results from true generalisation rather than
overfitting.

To further illustrate the classification reliability of ASG-
MammoNet, Figure 10 presents representative confusion matrices
for each of the three benchmark datasets. These matrices visually
highlight the model’s classification outcomes, showcasing the
number of true positives, true negatives, false positives, and false
negatives. For the MIAS dataset, the confusion matrix shows
502 true negatives and 261 true positives, with only five
misclassifications in total (4 false positives, one false negative),
affirming high recall and specificity even in smaller datasets. In
the CBIS-DDSM matrix, which corresponds to the most complex
dataset, the
performance with 1177 true negatives and 1450 true positives,

and largest model demonstrates remarkable
and only three errors, indicating a near-perfect classification
boundary. For the INbreast dataset, the matrix reveals 495 true
negatives and 1027 true positives, with a slightly higher number of
false negatives (n = 8), suggesting a conservative bias in
classification. Still, the complete absence of false positives
highlights the model’s robustness in avoiding over-diagnosis.
These visual outcomes support the earlier metric-based findings
and confirm that ASG-MammoNet effectively balances sensitivity
and specificity across datasets with varying size, complexity, and
annotation standards.

To further assess the interpretability and lesion localisation
capability of the proposed ASG-MammoNet framework, we
employed Gradient-weighted Class Activation Mapping (Grad-
CAM) to visualise class-specific discriminative regions for benign
and malignant cases across all three benchmark datasets. As shown
in Figure 11, representative examples from MIAS, CBIS-DDSM, and
INbreast datasets are presented, where the original mammograms
(left) are paired with their corresponding Grad-CAM heatmaps
(right) for both benign (left columns) and malignant (right columns)
findings. The heatmaps reveal that ASG-MammoNet consistently
focuses on clinically relevant regions associated with lesions, such as
dense masses and spiculated structures. In benign cases, the
attention regions tend to be more localised and less intense,
whereas malignant cases typically exhibit broader and more
intense activation patterns, indicative of the model’s ability to
differentiate aggressive tissue characteristics. Importantly, these
visualisations demonstrate the model’s strong interpretability and
confirm that its high classification performance is aligned with
meaningful anatomical and pathological cues, reinforcing its
potential utility in clinical decision support systems.

3.2.4 Comparison with state-of-the-art methods

Table 4 summarises the performance of ASG-MammoNet against
leading methods across the MIAS, CBIS-DDSM, and INbreast
datasets, using accuracy, sensitivity, specificity, and AUC as key
metrics. Across all datasets, ASG-MammoNet delivers consistently
strong and well-balanced results with low variability.

On MIAS, ASG-MammoNet achieved 99.15% + 0.42% accuracy,
outperforming classical approaches such as (Beura et al., 2015),
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FIGURE 10

Confusion matrices illustrating the classification performance of ASG-MammoNet across three benchmark mammography datasets: MIAS (left),

CBIS-DDSM (middle), and INbreast (right).

which lacked specificity, and earlier deep learning models such as
(Chaudhary and Pachori, 2024; Elmoufidi, 2022), which showed
imbalanced metrics. While (Ahmed and Nandi, 2024) reported a
slightly higher accuracy (99.40%), it lacked model interpretability
and efficiency. ASG-MammoNet bridges this gap through its
lightweight design and Grad-CAM-based explainability. On
CBIS-DDSM, ASG-MammoNet achieved 99.78% =+ 0.09%-0.11%
across all core metrics and an AUC of 0.9980, surpassing previous
methods such as (Zhang et al., 2020; Azour and Boukerche, 2022) in
both accuracy and consistency. Transformer-based models such as
(Salama and Aly, 2021) showed strong AUC but with higher
complexity. In contrast, our model offers better generalisation
with faster inference and no reliance on large ensembles, making
it suitable for real-world clinical deployment. For INbreast, ASG-
MammoNet achieved 99.64% + 0.19% accuracy and an AUC of
0.9965, closely matching (Ahmed and Nandi, 2024) while offering
superior explainability and efficiency. It significantly outperformed
models such as (Chougrad et al, 2018), which reported lower
accuracy and AUC, and (Adedigba et al., 2022), which lacked
complete metric reporting.

Furthermore, unlike several existing approaches optimised for
single datasets, ASG-MammoNet consistently demonstrated robust
performance across three heterogeneous mammography
benchmarks (CBIS-DDSM, INbreast, and MIAS). The consistent
results across datasets with varying imaging protocols, resolutions,
and population characteristics indicate strong generalisability,
reinforcing the framework’s potential for clinical deployment in
diverse real-world settings. Overall, ASG-MammoNet demonstrates
state-of-the-art accuracy, robust generalisation, and clinical
readiness through its efficient architecture and explainable
outputs, offering a compelling solution for automated breast
cancer detection.

4 Discussion

The experimental results across CBIS-DDSM, INbreast, and
MIAS datasets demonstrate that ASG-MammoNet consistently
achieves high diagnostic accuracy, robust generalisability, and low
inference latency, marking a significant advancement in
mammographic classification systems. The integration of self-
supervised learning, attention-guided modelling, and Grad-CAM

explainability collectively contributes to the model’s superior
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performance. Remarkably, the model achieved the highest
performance on CBIS-DDSM, a dataset known for its large size
and imaging heterogeneity. This indicates that ASG-MammoNet
not only scales well with complex clinical data but is also capable of
extracting nuanced representations despite inter-patient variability
and dense breast tissue. The results on INbreast, which contains
high-resolution, expertly annotated full-field digital mammograms,
confirm that the model preserves its efficacy in more refined imaging
contexts. Although MIAS has fewer samples and lower-resolution
images, ASG-MammoNet maintained competitive performance,
highlighting its resilience to domain shifts and limited training data.

From a clinical standpoint, the high AUC and DIP scores across
all datasets suggest a reliable balance between sensitivity and
specificity, a critical requirement for reducing false positives and
negatives in screening workflows. The ability of ASG-MammoNet to
operate with sub-15ms inference time further strengthens its real-
world applicability, particularly in point-of-care and cloud-assisted
diagnostic settings. Furthermore, the confusion matrices and Grad-
CAM visualisations provide compelling evidence of the model’s
decision transparency and localisation accuracy. These visual
explanations enhance clinical trust, offering radiologists intuitive
insight into the model’s focus areas and increasing interpretability,
especially in borderline or ambiguous cases.

Compared to a broad range of existing models in the literature,
ASG-MammoNet  demonstrates
comparable performance across all key evaluation metrics. On
the CBIS-DDSM dataset, it achieves a new state-of-the-art with
99.78% accuracy and a near-perfect 0.9980 AUC, surpassing high-

consistently  superior  or

capacity and ensemble-based approaches while maintaining
lightweight, explainable inference. On the MIAS and INbreast
datasets, ASG-MammoNet closely matches the best-reported
results in accuracy while offering greater balance across
highlight the
framework’s ability to generalise across different mammography

sensitivity and specificity. These outcomes
sources and reinforce its value in real-world clinical applications.
Compared with state-of-the-art pretrained and transformer-based
models, ASG-MammoNet demonstrates three distinct advantages.
First, it is computationally efficient, achieving high performance
with fewer parameters and lower GFLOPs, ensuring feasibility for
real-time screening. Second, its attention-guided refinement enables
improved localisation of subtle lesions, particularly in dense breast
tissue, addressing a key limitation of conventional CNNs. Third, the

integration of Grad-CAM explanations provides interpretable
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FIGURE 11

Representative Grad-CAM visualisations from MIAS, CBIS-DDSM, and INbreast datasets, highlighting lesion-focused regions for benign (left) and

malignant (right) mammograms.

outputs that align with clinical decision-making. While ensemble
and transformer-based approaches often report marginally higher
accuracy, their computational demands and lack of transparency
limit real-world adoption. ASG-MammoNet offers a more practical
trade-off, combining accuracy (>99.1%), explainability, and
efficiency into a deployable diagnostic solution.

Moreover, a key strength of ASG-MammoNet is its
computational efficiency. The framework attains state-of-the-art
performance while maintaining a compact design of

approximately 5.3 million parameters, derived from the

EfficientNet-B0 backbone with only minimal additions from the
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attention and explainability components (Tan and Le, 2019). This
size is considerably smaller than widely adopted CNNs used in
mammography tasks, including VGG16 (~138M), ResNet50
(~25.6M), and DenseNetl2l (~8M), as reported in recent
benchmarking studies (Ahmed and Nandi, 2025). It is also
substantially lighter than Transformer-based models such as ViT-
B/16 (~86M) (Amangeldi et al., 2025). The lightweight nature of
ASG-MammoNet enables rapid inference (<14 ms per image) and
reduces hardware requirements, making it highly suitable for real-
time clinical environments where computational resources are
constrained.
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TABLE 4 Comparative performance of ASG-MammoNet and state-of-the-art models on MIAS, CBIS-DDSM, and INbreast datasets using accuracy,
sensitivity, specificity, and AUC metrics.

Dataset References Accuracy (%) Sensitivity (%) Specificity (%)
MIAS Chaudhary and Pachori (2024) 96.20 96.02 98.48 0.96
Elmoufidi (2022) 98.04 98.12 98.31 0.9817
Beura et al. (2015) 94.20 100.00 90.00 0.95
Saber et al. (2021) 98.96 97.83 99.13 0.995
Ahmed and Nandi (2024) 99.40 99.20 99.20 0.992
ASG-MammoNet (ours) 99.15 + 0.42 99.20 + 0.53 99.13 + 0.43 0.9901
CBIS-DDSM Chaudhary and Pachori (2024) 99.06 98.48 99.74 0.99
Elmoufidi (2022) 98.62 98.60 98.65 0.9818
Zhang et al. (2020) 90.91 82.96 98.38 0.983
Roubhi et al. (2015) 96.47 96.87 95.94 —
Azour and Boukerche (2022) 96.05 — — —
Petrini et al. (2022) 92.98 85.13 85.13 0.9344
Salama and Aly (2021) 98.87 98.98 — 0.9888
Ahmed and Nandi (2024) 99.60 99.50 99.50 0.995
ASG-MammoNet (ours) 99.78 + 0.09 99.78 + 0.11 99.78 + 0.11 0.9980
INbreast Elmoufidi (2022) 98.26 97.60 98.21 0.9823
Adedigba et al. (2022) 99.80 — — —
Chougrad et al. (2018) 95.50 — — 0.97
Ahmed and Nandi (2024) 99.80 99.80 99.70 0.997
ASG-MammoNet (ours) 99.64 + 0.19 99.68 + 0.18 99.55 + 0.61 0.9965
While the results highlight the strengths of ASG-MammoNetin  preserve computational efficiency (<14 ms/image, 5.3M

terms of accuracy, efficiency, and interpretability, it is equally
important to acknowledge the framework’s current limitations
and outline directions for future work.

4.1 Limitations and future work

Despite the strong performance and efficiency of ASG-
MammoNet, several limitations should be acknowledged. First,
the framework was evaluated exclusively on three publicly
available mammography datasets (CBIS-DDSM, INbreast, and
MIAS). While these datasets are widely used in research, they do
not fully capture the diversity of imaging protocols, population
demographics, and acquisition hardware encountered in real-world
practice. Furthermore, the annotations in these datasets are subject
to inter-observer variability, which may affect model robustness.
Prospective validation in multi-centre clinical environments
remains essential to establish generalisability and real-world
deployment readiness.

Second, although the integration of EfficientNet-B0 with CBAM
attention enhances local and mid-range feature representations, it
does not capture very long-range dependencies as effectively as full
Transformer-based architectures. This trade-off was intentional to

Frontiers in Signal Processing

19

parameters), but it may limit sensitivity to highly subtle or
globally distributed patterns. Future work will explore hybrid
CNN-Transformer ASG-MammoNet’s
efficiency with broader contextual modelling of Transformer-
based methods.

Third, performance varied slightly across datasets, with

designs to combine

reduced precision observed on the MIAS dataset, likely due
to label noise and limited sample diversity. Additionally,
challenges remain in detecting microcalcifications and
architectural distortions, which often require finer-grained
multi-scale representations. Further optimisation of feature
possibly
mechanisms, could address these issues. Future research will

granularity, through  multi-scale  attention
extend the framework to support multi-view mammography,
temporal analysis, and multimodal integration (e.g., clinical
metadata), which could provide richer diagnostic context and
stronger generalisability.

Finally, while Grad-CAM-based visual explanations enhance
their integration into
requires further

incorporate uncertainty quantification, calibration mechanisms,

interpretability, routine radiological

workflows validation. Future work will

and prospective user studies with radiologists to assess human-AI
collaboration in real-world.
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5 Conclusion

This study presents ASG-MammoNet, which is a novel deep
learning framework purposefully designed to address longstanding
limitations in mammographic breast cancer diagnosis, the difficulty
in understanding how diagnostic decisions are made, suboptimal
lesion localisation, class imbalance, and clinical scalability. Through
the integration of efficient backbone networks, attention-guided
feature refinement, and post hoc visual explainability, ASG-
MammoNet achieves high diagnostic performance while
maintaining low computational cost and high transparency,
essential requirements for clinical adoption. The framework’s
architecture is built upon three stages. First, input mammograms
undergo comprehensive preprocessing and photometric/geometric
augmentation, followed by class-balanced sampling to counteract
the prevalent malignant-to-benign ratio imbalance found in clinical
datasets. Second, the EfficientNet-BO backbone is enhanced via
CBAM, a dual attention mechanism that adaptively learns to
amplify channel-specific and spatially salient features, resulting in
more robust detection of breast cancer. Finally, Grad-CAM
visualisation is applied to highlight the model’s regions of
interest, producing clinician-aligned heatmaps that validate and
interpret diagnostic predictions.

Experimental results across three datasets, CBIS-DDSM,
INbreast, and MIAS, demonstrate
classification performance. The model achieves up to 99.78%
accuracy, 99.93% AUC, and DIP values above 0.996, all while

keeping the inference time below 14 milliseconds per image.

consistent, near-perfect

These results validate ASG-MammoNet’s ability to generalise
across diverse imaging conditions and patient populations, while
its attention maps and confusion matrices demonstrate high
interpretability and decision reliability. Extensive evaluation
confirms that ASG-MammoNet consistently achieves state-of-the-
art performance across multiple mammography benchmarks.
Unlike prior models that sacrifice efficiency or interpretability for
performance, our framework balances all three, delivering high
robust visual

diagnostic  accuracy,

explainability. These qualities position ASG-MammoNet as a

generalisation, and

promising and practical candidate for Al-assisted breast cancer
screening workflows.

From a clinical perspective, ASG-MammoNet offers significant
value including:

- High
malignancies and false positives.

sensitivity and specificity for reducing missed

- Sub-second inference latency for integration into real-time
screening and triage workflows.

- Clinician-friendly interpretability to support diagnostic trust

and second-opinion use.

Nonetheless, several challenges remain. The system’s precision
on small and ambiguous lesions (e.g., architectural distortions or
scattered microcalcifications) requires further enhancement. While
retrospective  validation ~shows promising generalisability,
prospective trials in clinical settings are essential to assess real-

world deployment readiness. Future research will focus on
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integrating multi-view mammograms, patient metadata (e.g., age,

family history), and wuncertainty quantification to enable

personalised risk stratification and improve confidence in
borderline cases.

In conclusion, ASG-MammoNet advances the state of Al in
breast cancer diagnosis by offering a highly accurate,
transparent, and clinically deployable solution that bridges
and routine

the gap between deep research

radiological practice.
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