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Introduction: Detecting road boundaries, the static physical edges of the
available driving area, is important for safe navigation and effective path
planning in autonomous driving and advanced driver-assistance systems.
Traditionally, road boundary detection in autonomous driving relies on
cameras and LiDAR. However, they are vulnerable to poor lighting conditions,
such as nighttime and direct sunlight glare, or prohibitively expensive for low-
end vehicles.
Methods: This paper introduces 4DRadarRBD, the first road boundary curve
detection method based on 4D mmWave radar, which is cost-effective and
robust in complex driving scenarios. The main idea is that road boundaries (e.g.,
fences, bushes, roadblocks) reflect millimeter waves, thus generating point cloud
data for the radar. To overcome the challenge that the 4D mmWave radar point
clouds contain many noisy points, we initially reduce noisy points via physical
constraints for road boundaries and then segment the road boundary points from
the noisy points by incorporating a distance-based loss which penalizes for falsely
detecting the points far away from the actual road boundaries. In addition, we
capture the temporal dynamics of point cloud sequences by utilizing each point’s
deviation from the vehicle motion-compensated road boundary detection result
obtained from the previous frame, along with the spatial distribution of the point
cloud for point-wise road boundary segmentation.
Results: We evaluated 4DRadarRBD through real-world driving tests and
achieved a road boundary point segmentation accuracy of 93%, with a
median distance error of up to 0.023 m and an error reduction of 92.6%
compared to the baseline model.
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1 Introduction

Road boundary detection is important for autonomous driving and advanced driver-
assistance systems to prevent collisions. Road boundaries are the static physical edges of
drivable areas, including fences, bushes, and roadblocks, beyond which there is a risk of
collision. Road boundary detection helps reduce the risk of collisions and allows navigation
systems to maintain a safe distance from the road boundary in autonomous driving.

Current sensingmethods for road boundary detectionmainly include RGB cameras and
LiDAR Sun et al. (2019); Kang et al. (2012); Zhang et al. (2015); Chen and Chen (2017);
Wen et al. (2008); Taher et al. (2018). However, RGB cameras lack depth perception and
struggle in poor lighting conditions, such as nighttime and direct sunlight glare. LiDAR
provides accurate distance information but is costly and impractical for lower-end vehicles.
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Thus, autonomous driving systems require a cost-effective and
robust road boundary detection method that performs reliably
across various lighting conditions.

This paper introduces 4DRadarRBD, the first 4DmmWave radar-
based road boundary curve detection system, which is cost-effective
and robust for complex driving scenarios. Themain idea of the system
is that the radar emits millimeter waves, which get reflected by road
boundaries (e.g., fences, bushes, and roadblocks). These reflections are
captured as point clouds, which are then used to detect the road
boundaries. Unlike 3D mmWave radar, which estimates range,
azimuth, and Doppler velocity, 4D mmWave radar introduces
elevation measurement, significantly enhancing its ability to
differentiate between various objects. The inclusion of elevation
data allows the radar to more accurately identify whether an object
is an overhead structure that can be safely passed beneath or a road
boundary that requires maintaining a safe distance.

However, there are two main challenges for road boundary
detection using 4D mmWave radar. Firstly, in complex driving
environments, the 4D mmWave radar point cloud contains a large
number of noisy points from non-road boundary objects (e.g.,
vehicles, overpasses) and random ghost points. Secondly, it is
difficult to capture the temporal dynamics of the point cloud
sequences with the fast vehicle movement (up to 30 m/s) and the
low radar sampling rate (~10 Hz). This results in a large number of
points appearing at the edges of the radar’s sensing range in each
frame, making it challenging to maintain temporal consistency in
boundary estimation.

4DRadarRBD addresses these challenges and achieves road
boundary detection with three modules. In the first module, the
point cloud is preprocessed to extract point-wise features, reduce
noise using physical constraints, and mitigate point cloud sparsity
through frame fusion. In the second module, we segment the road
boundary points from the noisy points and capture the temporal
dynamics of the point cloud. Finally, the third module fits road
boundary curves based on the segmented road boundary points,
providing continuous road boundary estimates for control and
planning tasks. The first challenge is addressed by first utilizing
the physical constraints of the road boundary to reduce noisy points
in the first module and then incorporating a distance-based loss to
penalize points far away from the road boundary for being detected
as road boundaries in the second module. To solve the second
challenge, we capture the temporal dynamics of point cloud
sequences with the deviation of each point in the current frame
from the motion-compensated road boundary points of the previous
frame. The deviation is incorporated as a feature in the point cloud
segmentation framework in the secondmodule, improving temporal
consistency in road boundary detection.

The main contributions of 4DRadarRBD consist of:

• We introduce 4DRadarRBD, the first 4D mmWave radar-
based road boundary curve detection system, which is cost-
efficient and robust to complex driving scenarios.

• We mitigate the effects of noisy points and capture the
temporal dynamics of point cloud sequences for robust
road boundary detection.

• We evaluate the 4DRadarRBD system through real-world
driving tests in complex scenarios and achieve accurate and
robust road boundary detection results.

2 Related works

LiDAR and RGB cameras are mainly used for road boundary
detection in autonomous driving. LiDAR systems provide high-
resolution three-dimensional point clouds of the driving
environment Medina and Paffenroth (2021); Sun et al. (2019),
which contain rich environmental information, enabling effective
road boundary detection. However, LiDAR sensors are expensive
and not feasible for widespread deployment, particularly in low-cost
vehicles. RGB cameras are widely used for road boundary detection
due to their affordability and wide availability in autonomous vehicles
Chen andChen (2017);Wen et al. (2008); Taher et al. (2018). Cameras
capture extensive environmental details to identify lane markings,
road edges, and barriers. Nonetheless, cameras are vulnerable to
occlusions from dirt and perform poorly under challenging
lighting and weather conditions, such as nighttime or fog.

Previous studies have made preliminary attempts at mmWave
radar-based road boundary detection methods Xu et al. (2020);
Kingery and Song (2024); Patel and Elgazzar (2022); Guo et al.
(2014); Patel and Elgazzar (2024); Mandlik et al. (2021); Popov et al.
(2022). Xu et al. (2020); Kingery and Song (2024); Guo et al. (2014)
employ RANSAC or Hough Transform algorithms to fit parametric
curves representing road boundaries. However, these techniques rely
on predefined curve models, limiting their robustness in complex or
irregular boundary geometries. Other studies treat road boundary
detection as a free-space segmentation task, generating bird’s-eye-
view (BEV) maps that delineate drivable areas Popov et al. (2022);
Liu et al. (2024); Southcott et al. (2023); Li et al. (2018). This
formulation is flexible to diverse boundary shapes but often
results in abrupt frame-to-frame temporal inconsistencies.
Mandlik et al. (2021) addresses both arbitrary geometries and
temporal consistency by maintaining a point cloud buffer of
previous frames. Nonetheless, it provides the road boundary
detection results as disconnected short line segments rather than
continuous boundary curves, which limits its ability to reconstruct
complete boundaries for downstream path-planning tasks.
Therefore, a robust method is needed that accommodates diverse
boundary geometries and captures the temporal dynamics of
mmWave radar point clouds, providing smooth and consistent
road boundary curve estimation for downstream path planning
in real-world driving scenarios.

In the road boundary point segmentationmodule, 4DRadarRBD
uses the PointNet++ structure, a point-based segmentation method
suitable for the sparse 4D point cloud generated by 4D mmWave
radar. Point cloud segmentation methods fall into three categories:
point-based Zhu et al. (2021); Zhang et al. (2022); Wu et al. (2019),
voxel-based He et al. (2021); Park et al. (2023), and projection-based
Lang et al. (2019); Sun et al. (2024). Point-based methods, like
PointNet++, directly use point cloud data as input. Voxel-based
methods convert point clouds into a 3D voxel grid, enabling the use
of 3D CNNs to learn spatial features. Projection-based methods
transform 3D point clouds into depth images or 2D projections,
allowing for standard 2D CNNs. While voxel-based and projection-
based methods are good at capturing spatial details, they are less
effective for sparse 4D mmWave point clouds, often resulting in
many empty voxels or pixels at greater distances. Point-based
methods, which directly process point clouds without altering
their structure, are better suited for our road boundary
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segmentation task. Therefore, a point-based framework is used for
road boundary segmentation.

3 4DRadarRBD system

In this section, we introduce the 4DRadarRBD system which
detects road boundaries using point cloud data from 4D mmWave
radar. The system mainly includes three modules: 1) point cloud
preprocessing, 2) point-wise road boundary segmentation, and 3)
curve-wise road boundary shape fitting (see Figure 1).

3.1 Module 1: Point cloud preprocessing

We first preprocess the point cloud obtained from 4DmmWave
radar to extract point-wise features for the road boundary

segmentation task while reducing noisy points and mitigating the
sparsity of the point cloud.

3.1.1 Point-wise feature extraction for radar
point clouds

The point-wise features of the point cloud are extracted from 4D
mmWave radar signals and onboard sensors (GPS, IMU), including
position coordinates (x, y, z), Doppler velocity, signal-to-noise ratio,
range, vehicle velocity, and yaw rate. Among them, the first four
features are derived from 4D mmWave radar, while vehicle velocity
and yaw rate are obtained from GPS and IMU sensors. The position
(x, y, z) is defined with respect to a coordinate system originating at
the location of 4D mmWave radar, which is typically mounted near
the front license plate of the vehicle. In this coordinate system, the
x-axis extends to the right-hand side of the vehicle, the y-axis points
forward along the vehicle’s driving direction, and the z-axis points
upward. Position and range indicate the object’s location, while the

FIGURE 1
4DRadarRBD system overview.
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signal-to-noise ratio provides insight into the material and surface
properties of the object. Additionally, vehicle speed, yaw rate, and
Doppler velocity collectively describe the object’s motion. These
features contain critical information about the object reflecting
millimeter waves and are important for accurately segmenting
road boundary points.

3.1.2 Noise reduction using physical constraints
We apply physical constraints to filter out noisy points by

excluding those that exceed the expected height or velocity range
of static road boundaries. Since 4DRadarRBD is designed for
standard vehicles, which typically do not exceed 3 m in height,
points above 3 m (typically from overhead structures such as
streetlights or overpasses) are excluded to reduce noise.
Additionally, given typical mmWave radar mounting heights
of 0.6–1.2 m above the ground, points below −1.5 m are
filtered as they likely result from elevation measurement
instability or multipath artifacts (ghost points). To further
reduce noisy points, velocity-based filtering is applied to
eliminate the points whose Doppler velocity significantly
deviates from that of static road boundaries. Since road
boundaries are stationary, points with substantial motion are
unlikely to represent valid boundary detections. The velocity
deviation is calculated as the difference between the measured
Doppler velocity of a point and the expected Doppler velocity of a
static object at the same position, derived from the vehicle’s
velocity. Points with a deviation exceeding 1 m/s are excluded as
noisy points. This threshold value is selected to compensate for
uncertainties in Doppler velocity and azimuth measurements
while effectively rejecting slow-moving vehicles. As shown in
Figure 2, this filtering effectively removes noisy points, enhancing
the clarity and detectability of road boundary features. The
distance loss is particularly high for these false positive points,
which helps mitigate the false positive detections. By jointly

optimizing the BCE and distance losses (see Equation 2), the
network effectively mitigates false-positive detections and
enhances the robustness of boundary segmentation.

3.1.3 Point cloud sparsity mitigation by multi-
frame fusion

To mitigate the sparsity of the 4D mmWave radar point cloud,
we fuse point clouds from three consecutive frames. First, we apply
motion compensation by transforming the point cloud data from
previous frames into the world coordinate system and then
converting it back to the self-coordinate system of the current
frame. The necessary transformation and rotation matrices for
this conversion are obtained from the vehicle’s GPS sensor. In
addition, during the fusion process, we introduce an index in the
point-wise features to indicate the frame origin of each point: 0 for
the current frame, 1 for the previous frame, and 2 for the frame
before that. This index preserves temporal information for road
boundary segmentation task.

3.2 Module 2: Point-wise road boundary
segmentation

The point-wise road boundary segmentation module aims to
distinguish road boundary points from noisy points. The
segmentation is based on the PointNet++ framework, which
efficiently captures the spatial distribution of point clouds and
point-wise features Qi et al. (2017). The main innovations of our
method are: 1) we reduce the false positive detections (i.e., falsely
detecting non-road boundary points) by incorporating a distance-
based loss, which penalizes detected points far away from the road
boundary as road boundaries into the PointNet++ segmentation
network and 2) we capture the temporal dynamics of the point
cloud sequences by adding the vector representing point’s

FIGURE 2
Comparison of point cloud data before and after filtering. (a) Raw data includes points frommoving vehicles and street signs within the roadway. (b)
After applying noise reduction based on physical constraints, non-road features are removed, enhancing the clarity of road boundary points.
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deviation from the motion-compensated road boundary detection
result obtained from the previous frame into the point-
wise features.

3.2.1 Segmentation model training with
distance-based loss

To reduce false positive detections of noisy points, we
incorporate a distance-based loss into the PointNet++
segmentation network to penalize such false positive
detections. The PointNet++ network is selected as the basic
structure of the point segmentation module due to its
effectiveness in extracting hierarchical features and its
adaptability to various spatial scales Qi et al. (2017). The
original PointNet++ network uses only binary cross-entropy
loss for point segmentation, which is inadequate for our task.
This limitation arises because, after point cloud preprocessing,
most noisy points are filtered out, leaving only a small fraction of
distant noisy points compared to road boundary points.
Consequently, their influence on the loss function is minimal.
However, if these distant noisy points are misclassified as road
boundary points (false positive detections), they can significantly
degrade the boundary fitting process. To this end, we calculate
the average Euclidean distance between each detected road
boundary point and its nearest actual road boundary point as
the distance loss (see Figure 3a). The distance loss is defined in
Equation 1. Here, P denotes the set of points classified as road
boundaries by the model, Q represents the ground truth
boundary points, and |P| is the number of points in P. The
distance loss is particularly high for these false positive points,
which helps mitigate the false positive detections.

Ldist �
∑pi∈Pminqj∈Q‖pi − qj‖2

|P| (1)
Ltotal � LBCE + αLdist (2)

3.2.2 Model updating to capture
temporal dynamics

To capture the temporal dynamics of the point cloud sequences,
we augment each point’s feature representation with a deviation
vector, which encodes its direction and distance relative to the road
boundary points detected in the previous frame. For each point in
the current frame, this deviation vector is defined as the shortest
vector originating from amotion-compensated road boundary point
in the previous frame and terminating at the current point (see
Figure 3b). P1, P2, and P3, along with their respective deviation
vectors a1, a2, a3, illustrate three typical cases in the point cloud data
(1) newly observed road boundary points (e.g., P1, a1): that appear
in the current frame but were absent in the previous frame due to the
vehicle’s forward motion, (2) noisy points that only appear in the
current frame (e.g., P2, a2), and (3) consistent road boundary points
that appear in both the current and previous frames (e.g., P3, a3).
The deviation vectors exhibit different patterns for each of these
three point types. For newly appearing points (e.g., P1), the deviation
vector typically points in the direction of the road boundary line. For
noisy points (e.g., P2), the deviation vector usually points
perpendicular to the general road boundary direction. For the
nearby road boundary points (e.g., P3), the vector is usually
small in magnitude since the road boundary tends to be static
and continuous. These deviation vectors (a1, a2, a3 in Figure 3b)
provide crucial spatial and temporal information, aiding in
consistent road boundary segmentation. Existing point-based
methods for processing point cloud sequences often capture
temporal dynamics by grouping points or aggregating
information from neighboring points to track movements across
frames Liu et al. (2019); Wei et al. (2022); Fan et al. (2021). However,
in autonomous driving scenarios focused on road boundary
detection, temporal changes in point clouds are primarily due to
the continuous appearance of new points at the edge of the sensor’s
range as the vehicle moves forward, rather than the movement of
individual points, since road boundaries are static. Consequently,

FIGURE 3
(a) Distance loss is calculated as the Euclidean distance between the detected and the actual road boundary points, which has a large value for the
noisy points far away from the road boundaries; (b) The deviation vectors for each point in the current frame (e.g., a1 , a2 , a3 for P1 ,P2 ,P3 respectively) are
calculated as the shortest vector from the motion-compensated road boundary points detected in the previous frame to the point in the current frame
(e.g., P1, P2, P3).

Frontiers in Signal Processing frontiersin.org05

Wu and Noh 10.3389/frsip.2025.1667789

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1667789


these methods may struggle to effectively handle newly appeared
points, making them less suitable for this specific application.

Additionally, we incorporate the road boundary probability of
the closest detected road boundary point from the previous frame
(the starting point of the deviation vector) as a point-wise feature.
This probability serves as a confidence measure in road boundary
segmentation process. Without this confidence information, if a
noisy point far away from the road boundaries is mistakenly
detected as a road boundary point in one frame, it can lead to
error propagation in subsequent frames. However, we observe that
in such cases, incorrectly detected points generally have a lower road
boundary probability than actual boundary points, indicating lower
confidence in the segmentation result. By incorporating this
probability, the model gains confidence awareness, effectively
suppressing the propagation of false detections across frames.

3.3 Module 3: Curve-wise road boundary
shape fitting

Point-wise road boundary segmentation only provides discrete
points representing road boundaries. However, control and planning
tasks in autonomous driving usually require continuous road boundary
curves. To this end, we first identify the continuous curves from the
detected road boundary points by clustering, and then fit the road
boundary curves for each of the identified point cloud clusters.

3.3.1 Curve identification by road boundary
points clustering

We employ the DBSCAN clustering method Ester et al. (1996) to
identify continuous road boundary curves from the detected road
boundary points. DBSCAN is chosen because it does not require a
predefined number of clusters, which is suitable for situations where the
number of road boundaries is uncertain. It is also capable of clustering
road boundaries of various shapes, which is crucial in complex driving
scenarios. Due to the short Euclidean distance between the left and right
road boundaries, the algorithm often incorrectly clusters them into one
cluster. To solve this problem, we divide the y-coordinate (representing
the forward direction of vehicle motion) of the point cloud by a factor
before clustering. This scaling factor is set to 5 based on empirical
analysis of point cloud sparsity, which balances the trade-off between
boundary fragmentation and over-merging. Smaller factors result in
over-segmentation due to point sparsity, while factors exceeding 5 cause
incorrect merging of opposite-side boundaries at intersections. Since
road boundaries usually follow the direction of vehicle motion, this
scaling helps the algorithm better cluster the road boundary curves.
Without this scaling, the algorithm may incorrectly cluster left- and
right-parallel road boundary curves into a single cluster due to their
close Euclidean distance or split a single road boundary into multiple
clusters due to the variation in the distance along the y-axis.

3.3.2 Road boundary curve fitting

We take subsamples from each cluster identified by the
DBSCAN algorithm and use Gaussian Process Regression (GPR)

to fit road boundary curves and provide 95% confidence intervals for
each curve Williams and Rasmussen (1995). The subsampling step
aims to reduce the GPR fitting time. GPR is a nonparametric method
that does not assume a specific functional form and is therefore
suitable for modeling road boundaries with various shapes. We use a
Matérn kernel with a ] value of 10 to avoid fitting unrealistic road
boundary curves with large gradients. To prevent misconnections at
intersections, where two boundary curves on opposite sides of an
intersection are mistaken for a single cluster, we introduce a
condition that if the point cloud data is missing along the y-axis
(the forward direction of vehicle movement) for a gap of more than
6 m (approximately the width of an urban intersection), the fitted
curves will be split into two segments. In addition, if the 95%
confidence interval exceeds 2 m, indicating uncertain
identification of road boundary curves, we re-cluster the points
within this cluster and fit each new cluster independently. This
strategy effectively reduces the number of nearby road boundaries
that are grouped into a single curve.

4 Evaluation with real-world
driving test

We conducted a real-world driving test and collected a dataset
comprising 30,424 frames of 4D mmWave radar point clouds from
Changping District, China, for field evaluation.

4.1 Driving test and dataset description

The real-world driving dataset consists of 50 data clips, each
approximately 40 s in duration, totaling 30,424 frames. During the
driving tests, RGB cameras, 4D millimeter-wave (mmWave) radar,
LiDAR, GPS, and IMU sensors are used to capture detailed driving
scenario information. The 4D mmWave radar used in this study
operates in a dual-bandmode covering 76–79 GHz, comprising both
long-range (76–77 GHz) and short-range (77–79 GHz) channels.
The long-range channel provides extended detection capability with
a narrower bandwidth, while the short-range channel offers higher
resolution for near-field sensing. The horizontal field of view (FoV)
of the radar is ±60°, and the vertical FoV is ±12°. The angular
resolutions are 2° in the horizontal plane and 4° in the vertical plane,
enabling fine spatial discrimination of detected targets. The radar
achieves a range resolution of 0.4 m and a Doppler velocity
resolution of 1 km/h, allowing precise estimation of target
distance and radial velocity. RGB cameras and LiDAR capture
detailed road scenarios for ground truth information. The GPS
and IMU sensors provide the vehicle location, velocity, and yaw rate.
For point-wise road boundary segmentation training, the training
set includes 40 data clips, with 24,291 point cloud frames. To
enhance model performance, data augmentation is applied by
horizontally flipping the frames along the x-axis based on the
left-right symmetry of the vehicle. With the data augmentation,
the training set is expanded to 48,582 frames. Both the validation
and test sets contain 5 data clips each, with 3,076 frames in the
validation set and 3,057 frames in the test set. The dataset covers
diverse driving scenarios, including highways, urban areas, and
winding roads. The ground truth labels of road boundaries are
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inferred from LiDAR point clouds using the PointPillars method
Lang et al. (2019).

4.2 Performance evaluation metrics

We evaluate the 4DRadarRBD system using point-wise road
boundary segmentation accuracy, Chamfer distance (CD) error, and
Hausdorff distance (HD) error between the detected and actual road
boundaries. Chamfer distance and Hausdorff distance are calculated
as the average and maximum closest point distance, respectively,
between the sets of detected and actual road boundary points
Borgefors (1986); Rockafellar and Wets (2009).

4.3 Evaluation results and ablation study

4DRadarRBD achieves 93% accuracy for point-wise road
boundary segmentation, with a median Chamfer distance error of
0.023 m and a median Hausdorff distance error of 2.34 m (see
Figure 4). The confusion matrix for road boundary point
segmentation is shown in Figure 4A. For comparison, state-of-
the-art mmWave radar-based methods achieve approximately
80 % accuracy with a 0.11 m estimation error Kingery and Song
(2024); Xu et al. (2020). LiDAR-based approaches attain around
90% accuracy but rely on more expensive sensors Xu et al. (2025);
Wang et al. (2020); Suleymanoglu et al. (2024). Additionally, fusion
methods combining cameras with mmWave radar report a precision
of about 80% Patel and Elgazzar (2022). In contrast, our
4DRadarRBD system achieves higher accuracy and lower distance
error for road boundary detection while relying on lower-cost
sensors compared to LiDAR and offering greater robustness to
adverse weather and lighting conditions than RGB camera-
based methods.

To evaluate the effectiveness of 4DRadarRBD, two ablation tests
are conducted, including: 1) using the model without updating with

the deviation vector obtained from the previous frame’s detection
results (baseline model) and 2) using the model trained without the
incorporation of distance loss. All model architectures, training
procedures, and hyperparameters remain identical to our method
except for the specified ablations. By updating the model with the
deviation vector, 4DRadarRBD reduces the median Chamfer
distance error by 92.6% and the Hausdorff distance error by
62.2% (see Figure 4B). 4DRadarRBD reduces the median
Chamfer distance error by 30.3% and the Hausdorff distance
error by 13.0% by incorporating a distance loss to penalize false
detections of points away from the road boundary (see Figure 4C).
These results show that the proposed method of distance loss and
updating the model with deviation vectors is effective.

4.4 Evaluation of system robustness

In this section, we evaluate the robustness of the 4DRadarRBD
system to varying numbers of road boundary curves, varying types
of noisy points, varying road boundary curve shapes, and the
system’s temporal stability over driving time.

4.4.1 Effect of varying numbers of road
boundary curves

4DRadarRBD is robust to varying numbers of road boundary
curves. Figure 5 shows the road boundary detection results for three
typical complex driving scenarios, including a highway situation
with 2 road boundary curves (top), a fork road situation with 3 road
boundary curves (middle), and a complex urban area situation with
multiple road boundary curves (bottom). The left figures show the
top view of the point cloud and the corresponding detection results,
with the red dots representing the detected road boundary points
and the blue dots representing the detected non-road boundary
points. The right figures represent the corresponding RGB images.

FIGURE 4
Overall Performance of 4DRadarRBD. (a) Confusion matrix for road boundary (RB) point segmentation (accuracy = 93%), (b) Median Chamfer
distance error of 4DRadarRBD (our method) and ablation tests without model updating and without distance loss, (c)Median Hausdorff distance error of
4DRadarRBD (our method) and ablation tests without model updating and without distance loss.

Frontiers in Signal Processing frontiersin.org07

Wu and Noh 10.3389/frsip.2025.1667789

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2025.1667789


The 4DRadarRBD system can automatically detect varying numbers
of road boundary curves and accurately fit the road boundary curves.
Notably, in the third scenario, 4DRadarRBD successfully separates
the two road boundary curves at the intersection instead of
connecting them.

4.4.2 Effect of noisy points in complex
driving scenario

The 4DRadarRBD system successfully achieves robust road
boundary detection with various environmental noisy points. On

FIGURE 5
4DRadarRBD successfully detects road boundaries (referred to as RB) with varying numbers of road boundary curves in: a simple scenario with two
curves (top), a forked road intersectionwith three curves (middle), and a complex urban environment withmultiple curves (bottom). In the complex urban
area, 4DRadarRBD successfully detects the intersection.
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a highway with multiple overpasses and moving vehicles, we achieve
up to 94% accuracy for point-wise road boundary segmentation and
a median Chamfer distance as low as 0.025 m (see examples
in Figure 6).

4.4.3 Effect of road boundary curve shapes

4DRadarRBD is robust to various shapes of road boundary
curves. Under the twisting driving conditions of mountainous roads,
we achieve a point-wise road boundary segmentation accuracy as
high as 91.2% and successfully fit various shapes of the road
boundaries with a median Chamfer distance of 0.11 m (see an
example in Figure 7).

4.4.4 Sytem temporal stability

Overall, 4DRadarRBD is robust with consistently high accuracy and
low Chamfer and Hausdorff distance errors over continuous driving
time. As illustrated in Figure 8, during approximately 20 min of
continuous monitoring, the method achieves stable low error
metrics for most of the duration. Around frame 85, a temporary
drop in accuracy and an increase in distance errors occur due to the

ground truth system (based on a LiDAR sensor) failing to capture the
right-hand road boundary, as confirmed by manual inspection of the
corresponding RGB images and point clouds. Notably, even under these
circumstances, 4DRadarRBD correctly identifies the road boundaries.

5 Discussion and future work

Our 4DRadarRBD system achieves promising performance in
road boundary detection across most evaluated scenarios with a
road boundary point segmentation accuracy of 93% and the median
distance error of 0.023 m. However, we identify several failure cases
that warrant further investigation in future work.

Occlusion by vehicles: When the road boundary is occluded by
other vehicles, especially large ones such as trucks, the radar signal is
reflected back before reaching the road boundary. Consequently, the
detected road boundary curve becomes segmented into two parts
due to the absence of point cloud data in the occluded region. A
potential solution is to develop a predictive model that leverages
information from previous frames.

Interference from other radar sources: Another observed failure
case occurs when nearby vehicles emit millimeter-wave (mmWave)
signals. When such vehicles pass by, the interference generates
spurious points in the point cloud with Doppler velocities

FIGURE 6
4DRadarRBD successfully segments road boundary (RB) points with the noisy points from overpasses andmoving vehicles, proving its robustness in
complex driving scenarios.
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FIGURE 8
4DRadarRBD consistently achieves (a) high segmentation accuracy, (b) low Chamfer distance error, and (c) low Hausdorff distance error for road
boundary detection over time.

FIGURE 7
4DRadarRBD achieves robust detection performance for various road boundary curve shapes.
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characteristic of static objects. These artifacts may be misclassified as
road boundaries, resulting in false detections.

For future work, we aim to extend our experiments to a broader
range of driving environments and corner cases to assess system
generalization. Additionally, integrating mmWave radar data with
other sensingmodalities, such as RGB cameras or LiDAR, represents a
promising direction for enhancing robustness and reliability.
Furthermore, improvement in radar hardware that provides denser
and more precise point clouds with reduced ghost reflections is
expected to further improve boundary detection accuracy.

6 Conclusion

In this paper, we introduce 4DRadarRBD, the first 4D mmWave
radar-based road boundary detection system that is cost-efficient
and robust for complex driving scenarios. We reduce the noisy
points by filtering via physical constraints and then segmenting the
road boundary points with a distance-based loss. In addition, we
capture the temporal dynamics of the point cloud using the vector
representing the deviation of the current point from the motion-
compensated road boundary detection result from the previous
frame. To evaluate 4DRadarRBD, we conducted a real-world
driving test in Changping District, China. 4DRadarRBD achieves
accurate and robust road boundary detection in various complex
driving scenarios with 93% accuracy for road boundary
segmentation and a median Chamfer distance error of 0.023 m.
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