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Introduction: Nucleus segmentation plays an essential role in digital
pathology,particularly in cancer diagnosis and the evaluation of treatment
efficacy. Accurate nucleus segmentation provides critical guidance for
pathologists. However, due to the wide variability instructure, color, and
morphology of nuclei in histopathological images, automated segmentation
remains highly challenging. Previous neural networks employing wavelet-
guided, boundary-aware attention mechanisms have demonstrated certain
advantages in delineating nuclear boundaries. However, their feature fusion
strategies have been suboptimal, limiting overall segmentation accuracy.
Methods: In this study, we propose a novel architecture—theMulti-ScaleWavelet
Fusion Attention Network (MSWAFFNet)—which incorporates an Attention
Feature Fusion (AFF) mechanism to effectively integrate high-frequency
features extracted via 2D Discrete Wavelet Transform (DWT) from different
Unet scales. This approach enhances boundary perception and improves
segmentation performance. To address the variation across datasets, we apply
a series of preprocessing steps to normalize the color distribution and statistical
characteristics, thereby ensuring training consistency.
Results and Discussion: The proposed method is evaluated on three public
histopathology datasets (DSB, TNBC, CoNIC), achieving Dice coefficients of
91.33%, 80.56%, and 91.03%, respectively—demonstrating superior
segmentation performance across diverse scenarios.
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1 Introduction

In recent years, deep learning has achieved remarkable success and significantly
enhanced medical imaging performance. Beyond improving image quality, deep
learning has also enabled novel capabilities such as image classification, segmentation,
and cross-modality image translation. Numerous studies have leveraged automated
approaches to assist in diagnosis and address specific challenges across various medical
imaging modalities. The rapid advancement of image processing techniques based on
convolutional neural networks (CNNs) has revolutionized both medical diagnostics and
treatment planning. From identifying complex patterns in clinical images to accurately
segmenting lesion areas, neural network–based methods have become indispensable tools
in modern healthcare. Histopathology, as a critical component of medical diagnostics, has
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also benefited substantially from deep learning advancements.
Nevertheless, existing models still require further optimization to
improve generalization and ensure robust performance across
diverse clinical scenarios.

Nucleus segmentation in histopathological images is a crucial
step in the analysis of microscope-acquired data. The quality of these
images and the effectiveness of their processing significantly impact
medical decision-making, enabling earlier diagnoses and potentially
reducing the cost of subsequent treatments (Krupinski, 2000; Galić
et al., 2023). Due to the inherent complexity of this task, automating
the segmentation process remains challenging. In this context, deep
learning frameworks have gained increasing popularity (Xu et al.,
2023). However, nucleus segmentation must address several
difficulties, including variations in image quality across different
microscopes, diverse staining protocols, blurred cell boundaries,
intensity heterogeneity across cancer subtypes, and the close
proximity or overlapping of nuclei in histopathological images
(Mouelhi et al., 2018). Among deep learning–based segmentation
approaches, U-Net architectures remain the most widely adopted
(Al Qurri and Almekkawy, 2023). For instance, U-Net achieves high
accuracy on classical benchmark datasets (Castro et al., 2024), but its
performance degrades considerably on more complex or varied
datasets (Azad et al., 2024). To improve performance, a Fast
U-Net (FU-Net) was proposed in (Olimov et al., 2021), which
redesigned the encoder of the traditional U-Net by introducing
bottleneck convolutional layers into both encoder and decoder
branches, improving computational efficiency and segmentation
accuracy. Nevertheless, accurate nucleus segmentation remains
difficult, particularly in separating clustered or overlapping nuclei
in microscopic images (Gehlot et al., 2020). One major limitation of
U-Net–based networks arises from the downsampling process,
where operations such as max or average pooling often violate
the Nyquist sampling theorem. This can result in the loss of high-
frequency detail and distortion of structural information in the low-
frequency domain (Wang et al., 2024). To preserve image details,
several studies have explored using Discrete Wavelet Transform
(DWT) as a replacement for traditional pooling layers (Williams
and Li, 2018). More recent architectural advancements include
HanNet (H et al., 2021), a hybrid attention nested U-Net
incorporating dense connections for improved feature
representation. In (Vahadane et al., 2021), a dual-encoder
attention U-Net was proposed, introducing a secondary encoder
to better capture attention-relevant features. A multitask U-Net
variant was introduced in (Zhao et al., 2021), where a context
encoding layer was applied after each encoder and its output was
fused with decoder features using attention mechanisms. Another
enhancement was proposed in (Lal et al., 2021), where residual
blocks were added to extract high-level semantic features, coupled
with attention mechanisms to improve decoding. Building upon
these developments, Imtiaz et al. (2023) proposed a boundary-
aware, wavelet-guided network that combines encoder and
decoder information via attention while generating explicit
boundary cues. This approach helped preserve fine structural
details and small nuclei, and the incorporation of wavelet
features led to improved segmentation performance over
prior methods.

While feature fusion is widely adopted in deep learning–based
segmentation models, it is not universally suitable across all

scenarios (Dai et al., 2021). Simple fusion strategies such as
direct addition or concatenation often lack adaptability to spatial
variation and semantic heterogeneity, particularly in
histopathological images where nuclei are densely packed or
overlapping. These fixed strategies may dilute critical high-
frequency boundary information or amplify irrelevant noise,
ultimately compromising segmentation accuracy. Previous studies
such as (Li et al., 2019; Zhang et al., 2022) have focused on soft
feature selection within single layers, leaving cross-layer
fusion—especially via skip connections—largely unaddressed.
This limitation also extends to U-Net variants that incorporate
discrete wavelet feature extraction (Imtiaz et al., 2023). Moreover,
in attention-based modules, the success of feature fusion heavily
relies on accurately learning fusion weights across multi-scale
representations. Although wavelet transforms help preserve high-
frequency boundary features, the subsequent fusion and utilization
of these features remain suboptimal in many existing frameworks.

To address the limitations of existing segmentation methods, we
propose a novel architecture called the Multi-Scale Wavelet
Attention Feature Fusion Network (MSWAFFNet). Prior to
feeding data into the network, we apply a comprehensive
preprocessing pipeline designed to mitigate data diversity issues
and normalize color distribution across different image modalities.
In contrast to traditional skip connection strategies and
conventional feature aggregation units, our approach performs
separate fusion of wavelet-based features and boundary-aware
features at multiple scales. This design enhances the model’s
ability to capture fine-grained structural information. To validate
the effectiveness and generalizability of our method, we conducted
extensive experiments on three publicly available datasets. These
datasets encompass a large number of histopathological images from
various organs and disease types, thereby ensuring a robust
assessment of cross-dataset generalization performance.

2 Materials and methods

In this section, the proposed method is described in detail,
including the preprocessing steps, the overall network architecture,
the boundary wavelet attention module, and the feature fusion
module. The model proposed in this paper uses U-Net as the
backbone network and incorporates a boundary wavelet-aware
attention module and a multi-scale attention fusion module to
extract and integrate boundary information into the U-Net
through an attention mechanism. The overall structure is shown
in Figure 1.

2.1 Preprocessing

Since we use several very different datasets, it is necessary to
normalize them using appropriate methods. Effective preprocessing
can significantly improve the prediction results. Due to the
differences between the datasets, it is essential to process them to
have similar characteristics for training.

In the experiments, three main preprocessing steps were
primarily used. First, basic image augmentation techniques were
employed to increase the amount of training data for the supervised
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FIGURE 1
The structure ofMSWAFFNet. The basic U-Net includes three downsampling layers and three upsampling layers. In each downsampling step, DWT is
used to extract wavelet boundary information, which is then fused into boundary information through a fusionmodule. Subsequently, all different wavelet
boundary information is upsampled and fused through an attention fusion mechanism. Finally, the ultimate output is obtained by combining all
the outputs.

FIGURE 2
Example of image preprocessing.
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deep neural network (Maharana et al., 2022). The most common
forms of augmentation include flipping, rotation, adding noise, and
random cropping. By representing a broader range of potential data
points, the augmented data narrows the gap between the training set,
validation set, and any upcoming test sets, thereby enhancing the
performance of the neural network.

The second preprocessing step is color intensity level
transformation, which can make datasets from different sources
more uniform, providing users with a comparable view of data from
different studies or modalities (Nan et al., 2022). By transforming
the intensity levels to a similar visual appearance, it reduces the side
effects that might be introduced by different modalities in the model.

Finally, a combination of contrast enhancement and color
inversion techniques was used (Reza, 2004) to produce the final
images for the training set to be fed into the network. Contrast
enhancement increases the contrast between the darkest and
brightest regions of the image, thereby enhancing visibility and
the ability to see fine details. On the other hand, color inversion
describes the reversal of brightness values in the color transitions
within the image. In Figure 2, we provide an example of the effect of
image preprocessing, where different images are transformed into
more consistent black-and-white images, thus reducing the difficulty
of model training.

2.1.1 Intensity level transformation
One of the key issues in the nucleus segmentation task is the

generalization performance of the model to different image
modalities. Due to their variations in visual appearance and
intensity levels, it is challenging to train a universal model that
performs equally well on both modalities. Therefore, we adopted
color intensity transformation to normalize the datasets first,
thereby reducing the difficulty of training the network. To
achieve this, we used the LAB color space transformation scheme
(Gonzales and Wintz, 1987). The LAB color space, defined by the
International Commission on Illumination, represents colors as
three values: L for perceived lightness, and A and B for the four
unique colors in human vision: red, green, blue, and yellow.
Converting all three-channel images to the LAB color space helps
preserve the original structure and maintains similar brightness and
color statistical levels by leveraging the uniformity of data
characteristics.

2.1.2 Contrast enhancement and inversion
Typically, nuclei in cellular space have small regions that may

be overlooked by algorithms. Therefore, contrast enhancement is
a crucial step to improve the visibility of small nucleus regions. In
this method, Contrast-Limited Adaptive Histogram Equalization
(CLAHE) is applied to enhance the contrast of histopathological
images (Reza, 2004). By limiting the contrast, it provides better
equalization and reduces the problem of noise amplification.
Generally, in both modalities, brightfield images are primarily
used in clinical settings. Thus, a color inversion operation is
performed on all images to shift the intensity levels of
fluorescence histopathological images, as their overall intensity
levels are much higher than those of brightfield histopathological
images. The inversion process X for a random pixel xi,j in an
image, using the mean brightness level �X, is represented in
Equation 1.

xi,j � 255 − xi,j if �X> 127
xi,j if �X< � 127

{ (1)

2.2 Boundary wavelet-aware attention

Boundary Wavelet-Aware Attention (BWA) is divided into two
parts: Wavelet Guided Attention Unit (WGAU) and Boundary
Aware Unit (BAU), as shown in Figure 3. This mechanism first
extracts image information at different frequencies using Discrete
Wavelet Transform (DWT). The 2D-DWT uses Multi-Resolution
Analysis (MRA) to transform a 2D signal into a series of wavelet
coefficients at various scales and orientations (Mallat, 1989). Each
level of decomposition receives a set of coefficients as a result of
applying MRA to the rows and columns of the 2D signal. The low-
pass filtered signal is subtracted from the original signal, leaving only
the high-pass filtered signal to produce the wavelet coefficient g.
Second, g is used as a gating vector to guide the network to utilize the
salient regions of the given image. It also includes contextual
information that can cut off lower-level feature responses in
natural image classification tasks. First, a linear transformation is
applied to the gating vector g and the input tensor K using
1x1 convolutional layers, and they are then added together. The
result is passed through a ReLU function σ1, followed by another
1x1 convolution to obtain the gating coefficient gatt,c. Additional
attention is used to obtain this gating coefficient as described in
Equation 2.

gatt,c � φT σ1 w1
Tx + w2

Tg + bg( )( ) + bφ (2)

where w1, w2, and ϕ are linear transformations, and σ1 is the
ReLU activation operator. Then, the attention coefficient is obtained
by applying a Sigmoid activation function sigma2 to gatt,c. Finally,
the output of the wavelet-guided attention block Mw,i is found by
performing element-wise multiplication between the attention
coefficient and the input tensor X. The final output is shown in
Equation 3.

Mw,i � σ2 gatt,c( ) ·X (3)

The second part, BAU, adds a side branch to the output that has
been processed through summation and attention mechanisms, to
additionally output a boundary information map. Since aggregation
modules are added at different levels of the U-Net, each level outputs
a boundarymap at a different scale. Therefore, upsampling is used to
fuse these maps and obtain the final boundary-aware map.

However, when the BAU block fuses the multi-scale boundary-
aware maps, it uses a very simple summation method. Although this
simple attention-based approach can achieve improved perception
of multi-scale features and better results after feature fusion, it still
has several drawbacks.

2.3 Multi-Scale Boundary Fusion Module

To address the limitations of traditional fusion strategies—such
as direct addition or concatenation—which often fail to adaptively
integrate multi-scale features, Dai et al. (2021) proposed the
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Attention Feature Fusion (AFF) mechanism. AFF has since shown
strong performance in various vision tasks by extending attention-
based fusion from same-level to cross-level scenarios, including both
short and long skip connections (Fu et al., 2022). Motivated by these
advances and the need to better preserve boundary information, we
adopt and further enhance the AFF framework in our model.
Specifically, after extracting high-frequency boundary cues
through the Boundary-Aware Wavelet (BAW) module, we apply

AFF to adaptively fuse multi-scale features rather than relying on
fixed operations such as addition or concatenation. In our
implementation, global channel attention is obtained via global
average pooling, while local channel attention is captured using
point-wise convolutions. These two attention maps are then
combined to generate adaptive fusion weights that guide the
integration of boundary-aware and wavelet-enhanced features.
This design enables our model to better emphasize discriminative
regions, particularly around cell contours. The complete structure of
the AFF-based boundary fusion module is shown in Figure 4.

3 Results and discussion

In this section, we introduce the datasets used in the experiments
and their sources, and then present the experimental setup
conditions and results.

3.1 Dataset

To validate the effectiveness of the proposed algorithm, three
public available datasets were used. The first is the Data Science Bowl
(DSB-2018) dataset, released by Kaggle for competition purposes
(Caicedo et al., 2019). This dataset contains over 37,000 manually
annotated nuclei from more than 30 experiments across different
samples, cell lines, microscopy instruments, imaging conditions,
operators, research facilities and staining protocols. The annotations
were manually made by a team of expert biologists. It is one of the
earlier and well-annotated datasets with a significant amount of
data, and many networks have been tested on this dataset, often
achieving good results. The training set of this dataset includes
670 images, with 546 being fluorescence and the rest brightfield. The
test set contains 65 images.

The second dataset is the Triple-Negative Breast Cancer (TNBC)
dataset (Naylor et al., 2018), which consists of 50 images with a total
of 4022 annotated cells, including normal epithelial and
myoepithelial breast cells, invasive cancer cells, fibroblasts,
endothelial cells, adipocytes, macrophages, and inflammatory
cells. The image size is 500× 500. Due to the limited amount of

FIGURE 3
Structure of boundary wavelet-aware attention module.

FIGURE 4
Structure of multi-scale boundary fusion module.
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data, we extensively used random cropping to augment the dataset
(into 256× 256 size). This was possible because of the larger image
size, and in the cropping process, we used a stride (at least 50 pixels)
to ensure the coverage of every entire image.

The third dataset is the CoNIC(Lizard dataset) dataset (Graham
et al., 2021), which comes from the CoNIC challenge. It includes
histological image regions of colon tissue from 6 different dataset
sources, with complete segmentation annotations for different types
of nuclei. They provided 4,981 patches of size 256× 256 extracted
from the original Lizard dataset. It is currently the largest publicly
available nucleus-level dataset, containing approximately
500,000 labeled nuclei across six different types of cells.

For all datasets, we divided the datasets into training, validation,
and testing sets in an 8:1:1 ratio. The DSB dataset provided additional
test data, which is also evaluated. Data augmentation techniques, such
as rotation, flipping, translation, and cropping, were applied to all
datasets. The data used for each dataset is listed in Table 1.

3.2 Experimental setup

For the DSB dataset, where the image sizes are not uniform, all
images were first resized to 256× 256. For the TNBC dataset, the
original image size is 500× 500, and we crop them into 256× 256. For
the CoNIC dataset, the original image size is already standardized at
256× 256. For all images, we applied data augmentation techniques,
including rotating the original images by 30 and 60°, horizontal flipping,
mirroring, and cropping. Additionally, due to inconsistencies in color
spaces across the datasets, we normalize the color of the images to make
the images more consistent when feed into the network.

To enable our proposed model to perform the nucleus
segmentation task more effectively, different hyperparameters
were selected based on empirical analysis. Our model was
implemented in TensorFlow 2.15 (Pyhton 3.9) on a Windows
system with an NVIDIA GeForce RTX 4090 GPU. And the core
code can be obtained from https://gitee.com/hu_yang_sheng/
mswaffnet.git. To reduce the network’s loss, a learning rate of 0.
01 was chosen, along with an SGD optimizer with weight decay
values of 5 × 10−4 and 1 × 10−4, and a momentum of 0.9. The
training was conducted for 1000 epochs on each dataset.
Additionally, a composite loss function was used, incorporating
Dice, BCE Dice, and Dice loss functions at the stages of wavelet
boundary attention feature extraction, boundary fusion, and final
output, respectively. These loss functions were combined to form the
overall loss function for evaluating the training results. Finally,
several standard evaluation metrics were used to assess the
performance of the proposed model. These metrics are well-
known and widely used in biomedical image analysis (Zhao et al.,
2022; Kha et al., 2022), and are described in Equation 4.

Dice � 2TP
2TP + FP + FN

IOU � TP

TP + FP + FN

Precision � TP

TP + FP

Recall � TP

TP + FN

Accuracy � TP + TN

TP + TN + FP + FN

(4)

Where the TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative predictions, respectively.
We trained and tested our model on the three datasets and
compared it with state-of-the-art segmentation networks.

3.3 Segmentation and analysis

3.3.1 Ablation study
In proposed network, the traditional U-Net architecture is used

as the backbone network. Additionally, two modules were
incorporated, and their individual and combined performances
were compared. In Table 2, we evaluate using the Dice metric.
After analyzing the table, it was found that there is an improvement
across all three datasets. The preprocessing steps allow for the
reduction of intensity variations between cell subtypes and enable
the model to distinguish between nucleus and non-nucleus features.
When using Boundary Wavelet-Aware Attention, the attention
mechanism guides spatial features from the frequency domain
information of DWT, which helps in effectively representing
features by combining spatial and frequency level information,
providing feature maps with fine-scale details. Secondly, the
wavelet boundary information is fused using AFF.

3.3.2 Quantitative analysis
To demonstrate the effectiveness of our proposed method,

comparative analyses for the TNBC, DSB, and CoNIC datasets
are presented in Tables 3–5, respectively. Compared to existing

TABLE 1 The number of training sets, validation sets, and test sets for each dataset.

Dataset Total Argumentation Training Validation Testing

DSB 650 3900 3510 390 65

TNBC 50 750 600 75 75

CoNIC 4981 4981 3985 498 498

TABLE 2 Ablation study result of proposed network.

Prepr. BWAA AFF DSB TNBC CoNIC

× × × 81.63% 72.58% 86.59%

✓ × × 85.25% 76.49% 87.74%

✓ ✓ × 90.05% 77.66% 88.45%

✓ ✓ ✓ 91.33% 80.56% 91.03%
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TABLE 3 Comparison with existing networks on TNBC.

Network Dice (%) IOU (%) Precision (%) Recall (%) Accuracy (%)

U-Net (Ronneberger et al., 2015) 68.61 52.92 65.94 72.54 74.41

HoverNet (Graham et al., 2019) 74.32 57.13 68.91 80.61 78.97

BAWGNet (Imtiaz et al., 2023) 78.57 61.90 73.45 81.90 82.94%

Ours 80.56 75.47 80.71 82.46 83.16%

TABLE 4 Comparison with existing networks on DSB.

Network Dice (%) IOU(%) Precision (%) Recall (%) Accuracy (%)

U-Net (Ronneberger et al., 2015) 86.75 76.97 85.55 87.98 92.58

HoverNet (Graham et al., 2019) 89.42 80.14 87.92 90.97 95.86

BAWGNet (Imtiaz et al., 2023) 90.82 82.43 88.56 98.65 82.94

Ours 91.33 82.86 87.89 98.08 98.45

TABLE 5 Comparison with existing networks on CoNIC.

Network Dice (%) IOU (%) Precision (%) Recall (%) Accuracy (%)

U-Net (Ronneberger et al., 2015) 80.75 75.17 82.55 84.98 90.08

HoverNet (Graham et al., 2019) 88.43 86.64 89.52 88.66 93.89

BAWGNet (Imtiaz et al., 2023) 89.52 87.43 85.73 90.63 95.65

Ours 91.03 91.22 90.65 91.32 96.77

FIGURE 5
The proposed network visually compares the nucleus segmentation performance of each network in three datasets.
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networks, our network exhibits better performance in the nucleus
segmentation task. The robustness and effectiveness of the proposed
network are confirmed by high scores in other metrics that can verify
the accuracy of nucleus region determination. The proposed
network’s capability is enhanced by the additional wavelet
domain information provided by wavelet, which is fused using
the attention mechanism in attention fusion. Furthermore, with
the help of the boundary-aware unit, it can effectively capture small
nucleus regions, thereby improving precision and recall. We report
the mean and 95% confidence interval of Dice scores based on
5 independent runs. In addition, paired t-tests between our method
and baselines show statistically significant improvements (p < 0.01).

Quantitative analysis alone does not always determine the
effectiveness and superiority of a method. Figure 5 shows the
segmentation performance of different networks, including our
proposed network, in some challenging cases. It is evident from
the segmentation performance of other networks that all of them
struggle with these issues. On the other hand, our proposed method,
through its effective utilization of spatial and frequency level
information along with boundary information, significantly
addresses these challenges and demonstrates its performance
notably in the challenging nucleus segmentation task.

3.3.3 Limitations and future work
Although our model demonstrates superior performance

compared to previous methods across the evaluated datasets, it is
important to note that these datasets were carefully curated and
annotated by expert pathologists. In real-world clinical scenarios,
issues such as noise contamination, low-contrast images, and out-of-
focus artifacts may still occur. While such conditions may be
excluded during model development, they represent inevitable
challenges for clinical deployment. Although we employed
preprocessing techniques to normalize image
appearance—primarily to address differences between
fluorescence and H&E stained images—these methods were not
specifically designed to handle more complex visual degradations.
Another emerging trend is the widespread application of large-scale
models (Hörst et al., 2024). Recent studies have begun to explore the
use of such models in histopathological image analysis, showing
promising progress. In our future work, we plan to build upon these
advances and further improve the performance of large models in
this domain. And for clinical work, we plan to actively collaborate
with hospitals and further investigate advanced preprocessing
strategies to enhance the model’s robustness and practicality in
real-world clinical environments. In the future, we plan to
strengthen collaboration with hospitals, and our follow-up work
will focus on two main directions:

1. Refining and improving model performance using real clinical
data. Data from different hospitals often exhibit domain-
specific variations, which may differ significantly from
public datasets. Incorporating such data will help enhance
the robustness and generalizability of the model.

2. Engineering integration into real-world clinical workflows. We
aim to design a practical deployment pipeline that allows the
model to be embedded into pathologists’ routine diagnostic
processes, making it easier for clinicians to evaluate and
validate the quality of the segmentation results in real time.

4 Conclusion

Accurate nucleus segmentation can provide valuable reference
information for pathologists. Although this challenging task has
been addressed through various techniques, neural networks based
on wavelet-guided boundary-aware attention have shown certain
advantages in identifying nucleus boundaries, but their feature
fusion performance has not been ideal, limiting the accuracy of
segmentation. In this study, we propose a Multi-Scale Wavelet
Fusion Attention Network that effectively fuses high-frequency
2D Discrete Wavelet Transform features using an Attention
Feature Fusion mechanism to achieve more precise identification
of nucleus regions. Additionally, considering the differences
between different datasets, we ensured the consistency of training
data by transforming them to have similar color statistics. Through
experiments conducted on three publicly available pathological
datasets, the main performance metrics demonstrate the
superiority of our method in accurately segmenting nuclei in
cellular microscopic images compared to existing architectures.
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