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Abstract

Of the numerous anthropogenic pressures that are being exerted on ecosystems

globally, plastic pollution and climate change are potentially the most pressing.

This is particularly true when they co-occur as joint stressors. These are

interlinked with respect to their root cause (the overconsumption of finite

resources) and their effects in natural and anthropogenic systems and

processes. This review focuses on a growing area of research into how climate

change can, by transforming plastic pollution from a reversible to a poorly

reversible contaminant, exacerbate the abundance, distribution, exposure, and

impacts of plastics and associated chemicals in our waters, soils, biota, and

atmosphere. There is a growing body of evidence suggesting that climate change

and plastic pollution can have significant and often interactive ecological effects,

particularly among the higher trophic levels within the food web. The rational

response to confront these effects is to address the pollution at source by rapidly

and meaningfully reducing emissions into the environment. We discuss

challenges but also solutions, through future research, policies and public

awareness, that must harness the same enthusiasm that made plastic a

fundamental cornerstone of the modern world in the first place. The threat

that plastics produced, used and discarded today could cause global-scale

impacts in the future is compelling motivation to take appropriate action now.
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Key points

• Ample evidence now exists that climate change
conditions are contributing to the abundance,
distribution, exposure, and impacts of plastic in
the environment.

• Investigations into the ecotoxicity of plastic pollution
under climate change are still in their infancy, but
studies have already demonstrated interactive effects on
terrestrial, freshwater and marine biota and ecosystems,
suggesting that these become stronger at higher
trophic levels.

• While large, long-lived aquatic organisms high in the food
chain may be among the most vulnerable species to
intensifying plastic pollution under climate change,
thereby representing promising bioindicators of the
impacts of both stressors, species lower in the food web
appear much less sensitive to both stressors and many
even exhibit positive responses.

• Impacts of climate–plastic interactions within terrestrial
ecosystems are typically more complex and harder to
predict than those in aquatic ecosystems, with evidence
ranging from antagonistic to additive and
synergistic effects.

• The integration of micro- and nanoplastic pollution with
climate stressors offers a way to steer, coordinate and
prioritize research and monitoring, along with policy
and action.
Fro
Introduction

Anthropogenic climate change and plastic pollution constitute

major and growing global threats, and both are novel stressors that

first arose in the 20th century due to the consumption of fossil fuels

(Figure 1). The former is already affecting every region of the world,

with consequences that include rising temperatures, intense droughts,

wildfires, rising sea levels, melting polar ice and catastrophic storms

that are causing widespread ecological and socioeconomic harm and

impacting human health (4, 5). Plastic pollution constitutes highly

persistent waste that is accumulating rapidly in both managed

systems and the natural environment, with ecological impacts that

can span multiple levels of biological organization—from genes to

ecosystems (6, 7). Although both stressors have traditionally been

treated as two distinct issues and, at times, have vied for public and

policy attention (8, 9), there is growing recognition that they are in

fact closely interlinked, with respect to their ultimate origin,

increasing threat level, and the potential for (non-additive)

synergistic impacts to arise in combination. The magnitude of

plastic production, use, and disposal is such that it is considered,

alongside the climate crisis, an exemplar of the Anthropocene, with

the potential to breach the “planetary boundaries” that define the safe

operating space for humanity (10).

To date, research, media, and policy discussions on the

relationship between these stressors have primarily focused on
ntiers in Science 02
how plastics contribute to climate change (11–13): over 98% of

plastics are made from chemicals sourced from fossil fuels (coal, oil

and natural gas) (14), with current manufacturing accounting for

12% of global oil consumption (15). Moreover, greenhouse gases

(GHGs) are emitted at every stage of the plastic life cycle, from the

extraction and transportation of fossil fuel feedstocks through

production to end-of-life processes (16). In 2019, GHG emissions

across the plastics life cycle were estimated to be 1.8 gigatons (Gt) of

carbon dioxide (CO2) equivalents—approximately 3.7% of global

GHG emissions and higher than the total net emissions of the

majority of the individual countries (17). The contribution of pre-

production phases to plastics’ total carbon footprint includes

emissions associated with land clearance, release of methane

during gas extraction, and transportation of feedstocks to

production facilities. The greatest fraction of GHG emissions

(approximately 90%) comes from energy-intensive production

processes such as cracking, which breaks down saturated

hydrocarbons into smaller, often unsaturated ones that are made

into plastic resins. The carbon footprint associated with plastic

manufacturing has doubled since 1995 (18). End-of-life processes

account for the remaining 10% of plastics’ GHG emissions (16).

Incineration is considered to have the greatest climate impact,

accounting for approximately 70% of all end-of-life GHG

emissions, followed by recycling and landfill (16). Of the plastics

tested, polyethylene is the highest emitter of GHGs, methane and

ethylene, during degradation and weathering processes, in addition

to being the most produced and discarded synthetic polymer

globally (19). Investigations into the direct radiative effects of

airborne microplastics have also begun (20). Other types of

atmospheric aerosols, such as mineral dust and sulfates, scatter

radiation and thus exert a cooling effect, whereas black carbon

absorbs radiation and warms the atmosphere. Initial calculations,

based on pure (i.e., non-colored) fragments and fibers and a global

mean concentration of one microplastic particle per cubic meter,

revealed that the influence of airborne microplastics on the global

climate is currently small and that a cooling effect dominates.

However, this will be strongly dependent upon the geographical

and vertical distribution of microplastics in the atmosphere, which

is currently not well understood (20). Further uncertainties due to

the current lack of data include the influence of microplastic–cloud

interactions and the wavelength-dependent refractive index, which

depend on properties such as composition and color resulting from

pigments and other additives that are bound to the polymer, along

with organic coatings that can accumulate in the environment. The

current global mean concentration of microplastics in the

atmosphere is low, but given projections of a doubling of plastic

waste over the coming decades, their abundance and impact on

Earth’s climate system will continue to increase. Indeed,

microplastics may already be influencing local/regional climate in

urban environments, where concentrations are in the order of

hundreds to thousands of microplastic particles per cubic meter

(21, 22).

How climate change contributes to plastic pollution and

ecological hazards, by exacerbating its abundance, distribution,

exposure, and impacts has received less attention. Nevertheless,
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this is not only a growing area of research, but it is also subject to

international negotiations advocating for integrated approaches

that recognize the relationship between plastic production and

climate change, highlighting the necessity of comprehensive

global action and policies to mitigate their combined impacts

(23). Here we review the current evidence and identify key

knowledge gaps that will need to be addressed on a future Earth

that will be both warmer and more polluted.
About plastics

Plastics are complex, highly heterogeneous, synthetic or semi-

synthetic materials comprising a carbon-based polymer backbone

composed of hundreds or thousands of monomers that are linked

by strong covalent bonds. They are usually mixed with a wide range

of additives to introduce color, flexibility, stability, water repellence,

flame retardation, and ultraviolet resistance (24). However, many of

these additives are highly toxic and include carcinogens,

neurotoxicants and endocrine disruptors. The unique properties

of plastics include a high strength-to-weight ratio, high moldability,

impermeability to liquids, and affordability, making it versatile,

durable and the signature material of the modern age (25). Its ability

to substitute for other materials (e.g., glass, wood, metal, and natural

fibers) has supported significant advances in construction, vehicle

parts, electronics, aerospace, and medicine, and thus plastics are

both ubiquitous and essential for society, the economy and our

everyday lives. In fact, the benefits of plastics, such as lightweighting

and reducing food spoilage through product packaging, play a vital
Frontiers in Science 03
part in reducing GHG emissions and thus mitigating climate

change (26, 27).
Production

Annual plastic production volume has grown from under 2

million tons (Mt) in 1950, when large-scale manufacturing began,

to over 400 Mt in 2023 (3). Emerging economies have largely driven

the significant growth in recent global plastic production: more than

half of all plastics ever produced (equating to 8.3 billion tons) have

been made since 2002 (28). Single-use plastics currently account for

35% of current plastic production and are the most rapidly growing

manufacturing sector (29). The versatility of plastics stems from the

vast array of polymers that can be produced, with polypropylene

(16%), fibers (e.g., polyester and nylon; 13%), high-density

polyethylene (12%), and low-density polyethylene (12%)

predominating (30). Demand continues to accelerate with

production predicted to triple to 1,231 Mt by 2060 (31).
Disposal and recycling inefficiencies

Plastic disposal strategies include controlled and uncontrolled

landfilling, open burning, thermal conversion, and exporting from

high- to low-income countries that often have poor management

systems. The three traditional strategies to reduce, reuse, and recycle

for waste management programs have proven highly effective for

glass, paper and aluminum, but have largely failed for plastics.

Aluminum, container glass, and paper achieve global recycling rates
FIGURE 1

Comparison of global mean temperature [orange (1)], carbon dioxide emissions [blue (2)] and plastic production [turquoise (3)].
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of approximately 76%, 68% and 32%, respectively. While the former

two are infinitely recyclable without loss of quality, paper can be

recycled 5 to 7 times and for all three materials, less energy is needed

to recycle a product versus creating one de novo. Plastics, however,

cannot be recycled repeatedly as they quickly degrade in quality,

and in many cases recycling is more costly and energy-intensive

than creating them from raw materials. These challenges contribute

to recycling rates as low as 9%, which, in combination with the rapid

growth in production, results in an estimated 22 Mt of plastic waste

(the majority of which has a short life span or is single-use) entering

our environment each year. Due to their longevity, plastics

accumulate, adding to the 6 billion tons of plastic pollution that

have accumulated in our soils, surface waters, biota, and

atmosphere since 1950 (28), and in addition it is often

transformed from large macroparticles into progressively smaller

particles and breakdown products that are more mobile and

potentially much more biologically harmful.
Transport, weathering and accumulation of
plastics in the natural environment

Plastic pollution from this overspill can originate at sites where

litter is directly deposited, such as roadsides, beaches, oceans,

riverbanks, and urban estuaries. Theoretically, this type of

pollution is reversible as it can be physically removed through

local cleanup actions and littering can be reduced through public

campaigns and improved waste collection infrastructure. Visible

plastic waste at landfill sites can also be curtailed by improving site

management to protect the environment (e.g., by dumping at high

depths). However, in the absence of removal, plastic waste becomes

a poorly reversible pollutant because rather than readily

decomposing, it undergoes a slow process of environmental

weathering that causes fragmentation into macro-, micro-, and

nanoplastic particles. This creates new and potentially more

harmful forms of pollution that can interact with other

environmental stressors, including climate change.

Plastics are weathered through abiotic (physiochemical) and

biotic (biofouling) mechanisms, both of which can be accelerated by

warming, microbial metabolism, and mechanical degradation (e.g.,

abrasion during storm events and runoff, and transportation

through terrestrial and aquatic ecosystems) (6). The long and

highly uncertain half-lives of plastic pollution in the environment

depend strongly on its properties (e.g., polymer chemistry, surface

area/volume ratio, and the presence of stabilizers) and

environmental conditions (32, 33). Physical weathering changes

bulk structure via cracking, embrittlement, and flaking, while

chemical degradation induces bond cleavage by the hydrolysis

and oxidation of long polymer chains to form lower molecular

weight polymer fragments and polar functional groups (e.g.,

carboxyl and carbonyl groups) (34–36), which decreases surface

hydrophobicity (37). These changes, together with mineralization

by microbes (38, 39), increase susceptibility to further iterations of

mechanical fragmentation (32). The relative increase in surface area

during fragmentation facilitates (i) the leaching of the chemical
Frontiers in Science 04
additives incorporated during plastic production (32), in addition

to chemical by-products of plastic degradation (40) and (ii) the

adherence of potentially harmful microbes (41) and environmental

contaminants such as metals (42), pesticides, and other persistent

organic pollutants, including “forever chemicals” of concern such as

polyfluorinated alkyl substances (PFAS) (43, 44).
Macro-, micro- and nanoplastics

Fragmentation of plastics occurs when a product is being used,

for example in synthetic textiles, and vehicle tires (45), during

mechanical recycling (46), and as described above, while degrading

following disposal. Macroplastic debris refers to plastic items larger

than 5 mm, and their fragmentation can generate millions of

smaller (secondary) microplastic fragments, fibers, films, foams,

and beads (1 mm to 5 mm), which in turn degrade into nanoplastics

(<1 mm) (47). Since the majority of micro- and nanoplastics stem

from the degradation of a wide variety of larger plastics, they have

many different morphologies and compositions that include an

array of polymers and additives (48). In contrast to these derivative

forms, primary microplastics (MPs) and nanoplastics are particles

that are intentionally manufactured to be small from the outset (e.g.,

abrasives, cosmetic exfoliants, synthetic textiles, liquid detergents,

and air-blasting media). Small-particle plastic pollution represents a

ubiquitous and often persistent suite of chemicals and

morphologies that is invisible to the human eye, but which can

account for contamination of and harm to aquatic (freshwater,

estuarine, and marine), terrestrial (soil), and atmospheric

environments at local-to-global scales (49, 50). The global leakage

of MPs into the environment in 2019 was estimated to be 2.7

Mt (30). Major sources included road transport (tire abrasion 0.7

Mt; brake wear: 0.1 Mt; eroded road markings: 0.2 Mt), dust from

the abrasion of shoe soles, paint wear, construction and demolition

activities, household textiles (0.8 Mt), and wastewater sludge (0.8

Mt). Plastics are now so prevalent in the environment that they are

considered an integral, albeit unnatural, component of the Earth’s

carbon cycle (33). The small size and often low density of MPs make

them vulnerable to mobilization from soil surfaces (51) and aquatic

ecosystems, after which they can then be easily carried for

considerable distances by ocean currents or entrained into wind-

or sea spray (52, 53). This interconnected transportation and

transformation via terrestrial, aquatic, and atmospheric systems

echoes the natural biogeochemical cycles of other elements and

compounds. Studies have demonstrated the release of MPs from

rivers into the marine environment (54, 55) and back onto land,

once aerosolized through wind and wave action (56), highlighting

the cumulative role of historic plastic sources in the

atmosphere (57).
Potential impacts of global plastic pollution

Currently, the biotic hazards, risks, and impacts of MPs are

relatively poorly understood, partly due to their heterogeneous and
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complex composition, combined with the host of potential direct

and indirect impact pathways through the food web. Toxicity can

arise from the physical (e.g., particle size and shape) and chemical

properties of the polymer, leaching of chemicals from the plastic

matrix (e.g., monomers, plasticizers, flame retardants, and UV

stabilizers), the sorbing of environmental toxins, and varying

degrees of weathering (32, 58). Gauging the bioavailability and

impact of MPs is hindered by a lack of standardized methods

for quantifying exposure concentrations and debated vector

effects (59, 60), and the fact that ecotoxicological experimental

studies tend to use high concentrations of laboratory-grade pristine,

homogeneous particles of a pre-determined size, rather than the

highly diverse, naturally weathered micro- and nanoplastic debris

encountered in the environment.

Recent studies have unearthed a growing range of microplastic

impacts, from altered soil and plant ecology on land (61–64) through to

modified nutrient cycles in freshwater and marine ecosystems (65–67).

Direct impacts via the ingestion of MPs by biota can lead to physical

injury and compromised vital rates, including impaired physiology,

feeding, growth, reproduction, and oxygen consumption (68, 69). The

impacts then become increasingly indirect following the trophic

transfer of microplastics and associated chemical contaminants along

aquatic (70) and terrestrial (71) food chains. These impacts range from

the actual physical transfer of pollutants (e.g., biomagnification)

to more subtle effects such as reduced prey availability or habitat

loss (72, 73).

As with climate change, a major concern about plastic

pollutants is that their legacy effects may be difficult to reverse,

even long after any direct toxic effects of the stressor itself have been

removed from the system (32, 74). Perturbations can take a long

time to play out and our ability to predict them is inversely related

to the complexity of the system, in terms of both drivers and biotic

responses (75). Direct effects on individual health are typically the

easiest to observe and predict. However, the biggest knowledge gaps

remain at larger scales and higher organizational levels, where our

ability to audit and predict the full spectrum of plastic–climate

interactions is still in its infancy.

In terms of the wider environmental impacts, the “global

toxicity debt”, whereby plastics in the environment become more

toxic over time due to fragmentation and chemical leaching,

represents a potentially significant but still largely unquantified

threat to ecosystem health (76).
Impact of climate change on the
generation and distribution of plastic
pollution

Similar to plastic pollution, climate change is a complex

phenomenon that operates across multiple spatial and temporal

scales, via a combination of pulsed extreme events (e.g., wildfires,

droughts, floods, and storms) overlain on more gradual progressive

changes (e.g., global warming and ocean acidification). Its impact
Frontiers in Science 05
also spans all levels of chemical and biological organization, from

molecules to ecosystems and ultimately the entire global biosphere,

with significant scope for interactions with plastic pollution, both in

terms of the latter’s generation and distribution, but also in terms of

modulating its biological impact (Figure 2), as discussed in the

following sections.

Increased temperature, UV intensity, and humidity in a

warming climate will intensify weathering by accelerating

polymer degradation via oxidation, photodegradation, and

hydrolysis (77–79), which enhance embrittlement and surface

cracking, accelerating fragmentation and MP release (80, 81).

A 10°C rise in temperature could double plastic degradation rates

(82), with humidity and UV exposure further accelerating polymer

degradation (82–84). Increased irradiation can accelerate the

leaching of hazardous products (85), while warming can enhance

the sorption and potential mobilization of contaminants into/from

plastics (86–92). These interactions are often scale-dependent, and

commonly interlinked with the level at which biological impacts are

manifested: at larger temporal and spatial scales there is often a

corresponding increase in biocomplexity, with larger-scale drivers

and responses coming increasingly into play as we move from

individual organisms to entire ecosystems (93) (Figure 2).

Within terrestrial habitats and ecosystems, at local to regional

scales, droughts and wildfires are widely predicted to increase in

frequency, duration, and intensity under climate change (94, 95).

These extreme events have the potential to release large amounts of

polymeric materials and toxicants from urban areas (96), many of

which are also situated on floodplains. The latter ecotones are

important terrestrial–aquatic conduits that ultimately connect with

the global ocean, and MPs will be transformed by and interact with

a wide range of biota and abiotic variables as they move across space

and time and through the food web.

At the other extreme of the hydrological gradient associated

with climate change, storms and floods operate at a similar scale to

wildfires and have the potential to generate and mobilize plastic

pollution via aquatic ecosystems. The rate of input and

fragmentation of plastic debris from terrestrial and freshwater

systems into coastal and oceanic regions, and vice versa, can be

dramatically amplified by extreme storm events (97–99). For

example, beach sediment concentrations in Hong Kong increased

nearly fortyfold after a typhoon (100), and inshore freshwater

(55, 101–103) has also exhibited marked increases following

heavy rainfall (55, 102).

Flooding associated with extreme weather events and longer-term

sea-level rise can (re)mobilize plastic debris trapped in coastal

sediments (29, 104–109). The majority of discarded plastics end up

in landfills and open dumps (110), which are especially susceptible to

flooding and erosion as they are commonly positioned on low-value,

low-lying flood or coastal plains close to urban centers (111). A study in

the United Kingdom predicted that the erosion of just one waste cell

could release up to 3,860 tons of plastics into the Thames estuary (111).

The (re)mobilization of MPs is therefore likely to be especially

prevalent in populous, low-lying regions dominated by floodplains

(112, 113): for instance, in a recent study, Bangladesh was found to
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have the highest (>40 times) increase in plastic mobilization during

floods (113). Novel plastic-rock complexes, which are thought to have

been generated following a major flood in China (114), were identified

as hotspots for further microplastic generation, with rates 4−5 orders of

magnitude higher than those in landfills (115).

Moving further out to sea and increasing in scale over time and

space, persistently stronger winds and changes in ocean currents

and circulation patterns in a warming atmosphere (116, 117) will

affect the abundance, transport, and redistribution of microplastic

particles (118). High wind speeds and stronger waves increase the

vertical mixing of plastic debris within the upper water column

(52, 119), while previously settled debris in coastal sediments may

be remobilized in the pelagic zone (120). Correlations between wind

speed and the abundance of coastal MPs have been reported

recently at local to regional scales (121), while surface circulation

and field data have revealed the transfer of debris at oceanic

scales (122).

In the global ocean, long-term sea-ice formation scavenges and

concentrates man-made particulates from the water column (123).

This creates a significant historic microplastic sink (124, 125),

which could ultimately switch to becoming a major source as the
Frontiers in Science 06
ice melts due to global warming (126–129), although the scale of

these potential future inputs is still unknown (105).

There is clearly scope for complex feedback loops to emerge

between the biotic and abiotic drivers and responses to these

stressors: for instance, suspended plastic particles in the global

ocean, through interactions with phytoplankton and microbes,

could have further potential impacts on climate by compromising

carbon sequestration from the atmosphere (130), with some

evidence suggesting that materials leached from plastic particles

can indeed impair the photosynthetic efficiency of microalgal

species (131, 132). Interactions with microbes in the lipid-rich sea

surface layer could modify CO2 uptake in the ocean (133) and

change the rate of carbon export to the deep sea as a consequence of

more buoyant fish-produced fecal pellets containing plastic

particles (134). Changes in both surface and deep-water ocean

circulation predicted under future climate change could therefore

have far-reaching implications for plastic pollution and how it

interacts with biota on large scales in time and space. Given that

plastic pollution impacts are concentration-dependent, it is unlikely

that the full scope of potential impacts is already manifesting at

current levels, but rather it is probable that these impacts are
FIGURE 2

Schematic of the three dimensions across which climate change and plastic pollution operate. An illustrative figure showing the general pattern of
how spatial and temporal scaling and organizational complexity commonly co-vary in most studies to date. These tend to be small and simple, with
far fewer that capture the relevant scales and levels of biocomplexity in the field. These three dimensions (i.e., space, time and biological
organization) are often strongly correlated (as shown by the exemplars denoted by the triangle symbols), although exceptions can potentially arise
under certain conditions (e.g., the localized but long-term impacts of bioaccumulation on long-lived sedentary organisms in urban hotspots).
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concentrated in hotspots, with the potential to exceed thresholds

more widely in the future under business-as-usual scenarios.
Climate–plastic interactive effects

We now know that climate change stressors, individually and in

combination, can have profound implications for (and feedback

with) biological systems. The last 20 years have focused particularly

on how warming alters individual metabolism, which ultimately

sets the pace for life and drives biological processes from the

molecular to the ecosystem levels of organization. A large body of

metabolic theory, underpinned by growing empirical and

experimental evidence, has identified temperature as a master

variable that sets the pace of life, and this is now relatively well

understood (75, 135). Traits that make certain types of organisms

and systems especially vulnerable to warming appear to align with

those associated with plastic pollution, with the strongest effects

often seen among larger organisms high in the food web and in

aquatic ecosystems (136).

However, how climate change interacts with other stressors,

and plastics in particular, is less well understood. Nevertheless,

there is growing evidence that such interactions will probably be

commonplace and rarely simply additive. Antagonistic or

synergistic effects, which are less or more than the sum of their

parts, respectively, appear to be the rule rather than the exception

(137). In the case of interactions with plastics, climate change may

affect their bioaccumulation and (eco)toxicity to biota due to

weathering, leaching, the emission of transformation products

and the provision of novel substrates. The impacts of micro- and

nanoplastics in the context of climate change has focused on lower

organizational levels (individuals and populations) versus

multispecies systems (communities, food webs, and ecosystems)

and under laboratory rather than field conditions (138). However,

as with the physical and chemical interconnections between climate

change and plastic pollution, biotic impacts will also be strongly

dependent on temporal and spatial scales and will differ between

aquatic and terrestrial systems.
Combined impacts of climate change and
plastic pollution on terrestrial and aquatic
ecosystems

Agricultural systems and crop yield
In agricultural systems, heat stress (139) and microplastic

pollution from mulch films can impair nitrogen cycling and

reduce crop yields (140). The combination of heatwaves and MPs

was found to reduce rice production and quality and increase

leaching of MPs in soil, causing impaired nitrogen metabolism

(141). In another study, the combined effects of elevated CO2 and

plastic pollution were found to inhibit the nutrient uptake of rice

(142). In a laboratory study involving soil inoculated with different

fungal strains, warming combined with the addition of plastic

microfibers was found to decrease the percentage of water-stable
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aggregates and eliminate the positive effects of rising temperature in

80% and 60% of strains respectively (143). Another study suggested

that although MPs can affect maize health, soil quality, and

ecosystem multifunctionality, these effects are not necessarily

exacerbated by warming (144). Moreover, plastic microfibers were

not found to amplify the negative effects of drought on the

productivity of natural plant communities in temperate grassland

ecosystems (145), the above-ground biomass of Allium cepa (146),

or soil ecosystem functions (147). There may therefore be a level of

contingency linked to crop type—possibly linked to underlying

species-specific thermal performance curves—that merits

further investigation.

Freshwater ecosystems
The interactive effects of MPs and other global warming factors

have the potential to be especially potent in freshwater, an ecosystem

that is already particularly vulnerable to the individual effects of both

climate change and pollution (135, 148). A recent study at the base of

the food web revealed that tire-derived leachate and warmer

temperatures, both separately and in combination, enhanced the

growth of duckweed and microbes in its microbiome but at the same

time disrupted the underlying plant–microbiomemutualism (149). A

comprehensive study of the freshwater alga Scenedesmus obliquus

used full-factorial screening, with multiple concentrations of

nanoplastics, CO2, temperature and light intensity to evaluate 2000

+ combinations across current, predicted future, and extreme

conditions (150): concentration-dependent inhibition of growth

was consistent in the presence of nanoparticles but this was

attenuated by elevated CO2 and warmer temperatures. With

combined exposure to global warming events and microplastic

pollution on carbon and nitrogen storage of the marine diatom,

Phaeodactylum tricornutum revealed enhanced growth and increased

rates of nitrogen uptake (151): metabolomics and transcriptomic

analyses of this model species revealed that MPs and warming mainly

promoted fatty acid metabolism, the urea cycle, glutamine and

glutamate production, and the tricarboxylic acid cycle due to

increased 2-oxoglutarate levels.

At the next trophic level, keystone primary consumers that

shape the “green pathways” in freshwater food webs, such as the

zooplankter Daphnia magna, manifested exacerbated toxicity

following exposure to microplastic pollution under thermal stress

(152–154). The responses of this model species included increased

mortality, reduced fecundity and reduced population growth

rates, and these impacts generally increased with temperature

(152, 154). Another study showed how warming impacts can

switch from masking (antagonistic) effects to amplification as

plastic concentrations rise (155). Others found limited or no

thermal impacts on microplastic toxicity in D. magna (156–158).

Within the detrital “brown pathways” of the food web warming

can alter the effect of MPs on the metabolic rate of benthic

invertebrate detritivores (159). Other studies on primary

consumers at the base of the food web (such as deposit-feeding

midge larvae and filter-feeding mussels) reported that climatic

stressors (e.g., elevated temperatures and salination) (160, 161)

can interact antagonistically with MPs.
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Given the potential for both stressors to have stronger effects on

larger organisms, we might expect to see more intense effects higher

in the food web. Indeed, the increased toxicity of nano- and MPs at

warmer temperatures was recently reported in freshwater fishes

(162–164). Synergistic responses between nanoplastics and

temperature can increase toxicity via histopathological changes

and DNA damage (162), alter circadian rhythm, and cause brain

damage (163). In Nile tilapia, a common tropical fish species and a

major aquaculture resource for human consumption, warmer

temperatures were found to increase both ingestion of and

toxicity from MPs (164).

Marine ecosystems
Marine ecosystems share many of the features of freshwater that

also shape responses to warming and plastic pollution, including

size-structured food webs dominated by ectotherms and the ability

of consumers, resources, and pollutants to move across three

dimensions (165, 166). There are also some important differences,

however, in terms of ecosystem size, the potential for thermal

inertia, pollutant dilution, and nutrient limitation, all of which are

typically far more pronounced in the marine realm (93). Large-scale

oceanic circulation patterns, along with the greater size and

longevity of organisms at the top of the food web (typically

several orders of magnitude greater than in freshwater), affect

sensitivity to climate change and plastic pollution. Even within

marine ecosystems the biotic, chemical, and physical environments

differ markedly among habitat types and across latitudes, with

shallow tropical reefs having orders of magnitude more

biodiversity and productivity than the deep open ocean. At higher

trophic levels, sensitivity to multiple stressors, including MPs

combined with warming, can also differ among even closely

related organisms within coral reefs (167–171): for instance,

increased heterotrophy was seen in some coral species following

thermal stress, and subsequent bleaching affected MP ingestion but

was not evident in other species (168). Reduced photosynthetic

activity in Acropora spp. exposed to microplastic fibers at ambient

temperature showed no additional response under warming (169),

whereas plastic pollution when combined with ocean warming and

acidification led to upregulation of immunity in another coral

species (171). Laboratory experiments demonstrated that sea

anemones can ingest a range of plastic microfibers (172) and

these are retained longer in consumers that have been bleached (a

stress response to warming). Higher still in the food web, a recent

study found that the survival of coral reef fish declined with

exposure to either MPs or dead coral, but there was no evidence

of synergistic effects in this case study (138).

At higher latitudes, the exposure of pteropod “sea snails,” which

ultimately transport carbon to the interior of the Southern Ocean

(173, 174), to nanoplastics compromised their ability to counteract

ocean acidification (OA stress), leading to elevated mortality (175).

In Northern temperate waters, sea urchins are keystone species in

kelp forests (176, 177), echoing their functional significance in

tropical coral ecosystems (176), and experiments with the former

(Paracentrotus lividus) exposed to decreased pH (178) and

increased temperature (179) revealed that MPs aggravate the
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suppression of growth and development caused by climate

stressors. In contrast, microbial taxa (bacteria and algae) species

that are lower in the food web appeared to be relatively insensitive

to microplastic pollution under OA (178). Our understanding of the

full scope of responses of these taxa and their associated plant or

animal holobionts is currently limited, but new technologies suggest

that they have great potential as bioindicators of multiple

stressors (180).

Filter-feeding marine mussels were found to be very effective at

concentrating particulates extracted from the water column, with

these intermediate consumers providing a gateway into the wider

food web and acting as another form of ecosystem engineer (181).

The combination of MPs and OA was found to significantly inhibit

their digestive enzymes (182), with polystyrene nanospheres

impairing digestion (183), metabolic rate, and immune

competence under hypoxia (184).

At higher trophic levels, MP-induced mortality among gobies

quadrupled with a rise of just 5°C in water temperature (185).

Microplastic levels in predatory Atlantic cod, which sit above

smaller fishes such as gobies in the food web, reflected a shift in

diet from fish to benthic invertebrates under differing levels of

hypoxia: the proportion of cod with MPs in their digestive tract

more than doubled when switching from feeding on the latter to the

former, suggesting a potential biomagnification pathway mediated

by climate change and plastic pollution (186).

Above the food web level of organization, the functioning of

estuarine and marine ecosystems, which support significant cycling

of carbon, nitrogen, and phosphorus (187–191), can be sensitive to

the interactive effects of plastic pollution and climate change. For

instance, high concentrations of plastic pollution were found to

slow decomposition rates of coastal kelp and eelgrass detritus,

whereas the opposite was observed at higher seawater

temperatures (192). Decomposition rates in the presence of ocean

warming, when combined with plastic pollution, did not differ from

control conditions, i.e., both had strong individual effects, but

masking occurred in combination.

Impact summary
Although there is still a shortage of studies quantifying the

interactive impacts of climate change and microplastic pollution

that span both spatiotemporal scales and organizational levels,

some broad patterns appear to be emerging. For instance, certain

traits of species and ecosystem types have the potential to

experience exacerbated impacts when both stressors occur

together, especially among large, long-lived organisms at the top

of (aquatic) food webs. The metabolic constraints, together with

the capacity for bioconcentration, bioaccumulation, and

biomagnification of toxins (and of associated compounds that

adsorb to particulate surfaces), as well as the strong correlation

between body size and trophic status, and the prevalence of top-

down control in many aquatic food webs, suggest that apex

predators could suffer the most from the joint effects of these

stressors. These species are also the most sensitive to extreme

events, in addition to the more incremental effects of global

warming. Thus, again, there is good reason to expect a
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convergence of impacts. In aquatic systems in general, and

especially in the pelagic zone, food webs are largely structured

based on gape-limitation constraints on the size of particles (or

prey) ingested by consumers (93, 166)—so MPs and smaller

particles have the potential to enter via multiple direct and

indirect pathways. Some filter-feeding species, such as bivalves,

are very effective “bioconcentrators” at intermediate trophic levels

and act as conduits for pollutant transfer between pelagic and

benthic habitats. Many bivalves, similar to top predators, are also

often keystone species or ecosystem engineers that shape species

interactions and habitats in which they operate, so any impairment

to their functional roles has the potential to ripple through the wider

food web. Species of global conservation concern tend to be even

higher up the food chain and have a longer lifespan than either

invertebrates or fish (e.g., Orcinus orca and other marine

mammals), and these may be among the most vulnerable species

on the planet to intensifying plastic pollution and climate change.

The combination of both strong response and effect traits indicates

that these species are likely to be especially promising bioindicators

of the impact of both stressors. In contrast, species lower in the food

web appear much less sensitive to these stressors and some even

exhibit positive responses (e.g., via elevated nutrient turnover and

increased surface areas favoring microbial biofilm growth, or via

release from top-down control by larger consumers).

In terms of broader ecosystem-level processes driven by more

basal species, such as microbial primary productivity and

decomposition rates, there also appears to be some scope for

masking to occur, with warming accelerating overall vital rates via

elevated metabolism, but with plastic pollution exerting a retarding

effect. The underlying impacts of plastic pollution may be obscured

here, such that net effects may be antagonistic to those driven by

elevated temperatures. This requires further study, but recent meta-

analyses have suggested that warming can indeed mask the effects of

other local stressors (137).

The majority of ecological concerns have focused on aquatic

systems because this is where these plastics were first detected as

pollutants. Having already been exposed to repeated breakdown and

fragmentation processes prior to reaching aquatic ecosystems, the

smallest plastic particles are particularly prevalent, relative to larger

fragments, and hence should be more readily available for direct

uptake into the food web. In terrestrial ecosystems, the impacts may

therefore be markedly different and potentially much weaker (for a

given total plastic concentration), although this is where most plastic

pollution originates. If particles are less mobile and larger, they

should be less prone to direct consumption by multiple consumers

within the food web. Since chemical, physical, and microbial

processing and in situ transformation are more likely to

predominate here, understanding the processes at the base of the

food web will likely be especially critical for predicting future impacts.

The combined impacts of pollution and climate change in

terrestrial ecosystems are likely to be far more contingent and

difficult to predict than in aquatic systems, where simpler sets of

ecological rules seem to apply. Terrestrial ecosystems are typically

more complex, with a greater range of species interactions and

habitat types, and responses are therefore harder to predict,
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plastic pollution have also been heavily modified under

agriculture or urbanization. A growing body of research has

revealed that climate change–plastic interactions range from

antagonistic to additive and synergistic, but more work needs to

be done to disentangle how, when, where and why these different

impacts are manifested and whether there are clear typologies

associated with artificial (agricultural and urban) versus natural

systems and with the aquatic versus terrestrial realms.
Discussion

Of the numerous anthropogenic pressures that are being

exerted on ecosystems globally, plastic pollution and climate

change are potentially the most pressing, particularly, when they

co-occur as joint stressors. Ample evidence now exists that climate

change conditions are contributing to the conversion of plastics into

highly persistent and ubiquitous contaminants that are continually

accumulating in the natural environment. The potential impacts of

this are far-reaching, encompassing geophysical and biological

systems. Investigations into the ecotoxicity of plastic pollution

under climate change are still in their infancy, but there is a

plethora of studies that have already demonstrated interactive

effects in terrestrial, freshwater, and marine ecosystems, and they

suggest that these become stronger at higher trophic levels.
Solutions

The rational response to confront the potential for poorly

reversible negative impacts to occur through the increased

generation, mobility and toxicity of MPs is to rapidly and

meaningfully reduce the emissions of plastic pollution into the

environment. The efforts required to achieve this are extraordinary

and require significant societal, economic, and commercial shifts (193).

Therefore, it is reassuring that the consensus is that this is a largely

avoidable environmental problem, insofar as the benefits of plastics to

the environment and society can be retained without the need for end-

of-life plastics to accumulate in the environment (194). This requires an

international and coordinated approach, encompassing the

manufacturing industry, sectors (including consumers) using plastics,

waste management services, environmental organizations, activists,

regulatory authorities, governments, world leaders, investors, and the

research community in both plastics and the environment (Figure 3).

The world is already responding on an impressive scale, with examples,

including grassroots action (195), globally active charities, for example

the Ellen MacArthur Foundation (196), national-level product bans

(197), initiatives to support the management of hazardous plastic waste

(198) and public–private partnerships for waste management,

including the Alliance to End Plastic Waste. However, the biggest

achievement and greatest hope for success would be to establish an

international, legally binding Global Plastics Treaty to end plastic

pollution by transforming the way it is sourced, produced, used, and

disposed of (23). Unfortunately, the latest round of negotiations in
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Geneva in August 2025 failed to produce the Treaty, as deep

disagreements, particularly over whether to cap plastic production

and regulate toxic additives, led to a breakdown of consensus despite

the presentation of two draft texts. Negotiations were adjourned, to be

resumed at an undetermined future date (199).

Key policies and solutions to achieve systemic change must

harness the same enthusiasm that made plastics into a core material

of the modern world in the first place. This not only includes the

three Rs—reduce, reuse, and recycle—advocated on the first Earth

Day in 1970, but also more recent Rs, such as redesign, rethink, and

refuse (as in to say “no”), alongside eliminate, innovate, and

circulate. These stem from the transition from a linear take-

waste-make model to a more circular economy for plastics (Ellen

MacArthur Foundation, 200, 201; Figure 4). All these terms call for

a reduction or elimination of unnecessary single-use plastics, in

addition to setting global limits on the production and consumption

of virgin plastics, i.e., the most efficient and cost-effective solutions

to microplastic pollution (202). Similar to cleaning up an oil spill,

prevention by curtailing plastic production and promoting

circulation of products that cannot be eliminated is best, followed

by containment before it reaches the environment and finally

cleanup of legacy litter and ecological restoration. However,

reducing demand for virgin polymers is being challenged by the

fossil fuel industry. Oil companies are confronting the clean energy/

transportation transition by shifting investment toward

petrochemicals to produce more plastics (203).

A recent perspective laid out ways to identify and uproot the deep-

seated lock-ins [i.e., “technological, institutional, and behavioral
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phenomena that collectively hinder transformative change” (13)]

designed to sustain the petrochemical industry (13). Priority must

also be given to the creation of globally aligned standards for

commodity plastics that are practically safe (i.e., eliminating

hazardous chemicals), and reusable and recyclable by design, to keep

them in the economy and out of the environment. Policies also call for

the development and scaling of internationally coordinated strategies

and targets for plastic processing, recycling technologies, and waste

management. However, transformative shifts must take a

multidimensional approach based on robust scientific evidence to

evaluate any negative impact they may have on economies, social

justice, the environment and human health (204). Waste-to-energy

processing, despite reducing plastic waste volumes, increases GHG

emissions and may cause human health impacts via toxic emissions,

thereby creating social injustice (205, 206). The environmental

implications, including the hindering of efforts to tackle climate

change, of replacing conventional plastics with alternatives, be they

non-plastic materials (26, 27), biodegradable formulations (207), or

products made from plastic waste collected from the environment,

must be carefully considered alongside possible advantages.

Efforts to contain plastics and cleanup of legacy litter have spawned

numerous remediation technologies, ranging from household

wastewater filters and laundry balls to large-scale booms, receptacles,

and watercraft vehicles (208–210). While these efforts may have value

in key hotspots including heavily polluted harbors, and beaches, crucial

knowledge gaps remain regarding the state, transport, and fate of

plastics (211, 212), along with concerns and challenges. Concerns

include environmental consequences during collection and subsequent
FIGURE 3

Key stakeholders in the transformation of the way plastics are produced, consumed and disposed of.
frontiersin.org

https://doi.org/10.3389/fsci.2025.1636665
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Kelly et al. 10.3389/fsci.2025.1636665
disposal, equity, and justice; scientific validation; greenwashing; and

distraction from efforts to stem the flow of waste at the source (208–

210). There is also the danger of more plastics being discarded into the

environment if local communities wrongly perceive that cleanup

technologies are solutions to remove them. Challenges include

deployment location, scalability, efficiency, and associated costs when

attempting to combat such a vast and complex problem. These issues

have called for standardized, science-based assessment criteria and

legislation to monitor the environmental impact and associated costs of

these technologies (213) in addition to a framework to help

stakeholders choose the most efficient and sustainable cleanup

system (214).

Bioremediation, which leverages the biology of naturally occurring

organisms to degrade MPs, represents a potentially more sustainable,

affordable, and environmentally friendly strategy to help manage plastic

pollution in aquatic and terrestrial systems (215–217). Microbes,

including several bacteria and fungi, can enzymatically (through

hydrolysis, oxidation, and hydroxylation) break down MPs into

monomers that can be further metabolized or mineralized into CO2,

nitrogen, methane, and water molecules, monomers, dimers, and

oligomers (218). Biofilms are also considered potential candidates as

they create an environment that protects microorganisms from

harsh environmental conditions while promoting plastic degradation

(219, 220). In contrast, microalgae-based bioremediation relies on

adsorptive actions and physical entanglement (221). Phytoremediation

is a plant-based bioremediation strategy, involving the uptake and

accumulation of MPs in the tissues of plants such as seagrass and

macrophytes (222). Although bioremediation is feasible, significant

challenges remain that limit its practical application (223, 224). The

main ones are low efficiency (slow pace and often incomplete

mineralization), substrate specificity exhibited by microorganisms,
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optimization of environmental conditions, scalability, potential

ecotoxicity, lack of standard methodologies/metrics, and an evolving

regulatory landscape. Technological advances such as gene-editing tools

(e.g., introducing or enhancing specific enzymes) and synthetic biology

(e.g., creating novel organisms specifically tailored to degrade certain

types of MPs) continue apace, however, offering potential enhancement

in the plastic-degrading capabilities of naturally occurring organisms.
Future research directions

The full scope of the forms and exposure concentrations of

small plastic particles that induce harmful effects in aquatic,

terrestrial, and atmospheric environments is unknown:

nonetheless, these pollutants may have already exceeded impact

thresholds in sensitive hotspots. Challenges to our understanding

arise from the heterogeneity and chemical complexity of naturally

aged MPs and their ability to interact with physical stressors. In

addition, an accurate assessment of exposure concentrations is

compounded by the continuous fragmentation of plastics in the

environment—it is predicted that even if the emission of larger

plastic items to the environment were to stop immediately, we

would likely still see an increase in the quantity of microplastics as a

consequence of the fragmentation of larger items that are already in

the environment (225). Since the influence of climate change has

the potential to be significant, more realistic exposure scenarios are

needed to better understand the threat posed by plastic pollution in

the environment owing to the impacts of weathered plastics on

biogeochemical cycling and its ecotoxicity (6). Many of the studies

identified in this review utilized pristine macro/nanoplastic particles

purchased from suppliers. It remains to be seen whether similar
FIGURE 4

Policies and principles for the transition from a linear to a circular plastic economy.
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results will be generated in carefully designed laboratory and field

studies that use real-world particles. A greater understanding of the

mechanisms and products of polymer degradation under different

climate conditions is needed to detect and ultimately predict

environmental hazards. Approaches that can successfully

extrapolate from short-term experiments to forecast long-term

degradation pathways will be particularly valuable given the

longevity of plastics (226). In situ experimental studies and

observations carried out over long periods of time could supply

modeling tools with the means to project future scenarios of the

interactive effects in complex, multi-stressor environments.
Public understanding

Education and awareness of the problems produced by plastic

pollution are important steps toward shifting behavior from using

and throwing away to reducing, reusing, repurposing, and recycling.

Therefore, it is encouraging that the public views plastics to be not

only a serious issue for the environment but also for health, despite

the risks to humans from MPs having not yet been demonstrated

(227, 228). In a survey conducted in Australia to examine beliefs

and attitudes, 80% of respondents showed a desire to reduce plastic

use, and issues relating to plastics in the oceans and waste

production/disposal received the highest mean rating for

seriousness out of nine environmental issues (229). Reasons for

this sensitivity may relate to several factors. For example, the view

that plastic pollution is unequivocally due to human actions,

decisions, and behavior (230), and that marine debris is clearly

visible in coastal areas and has a measurable negative effect on

people’s well-being (231, 232) spurs increasing concern over

exposure to plastic-associated chemicals (233). This creates fewer

“plastic pollution deniers” compared to “climate change deniers.”

Largely missing from the public understanding of plastic pollution

are more granular issues such as the effects of a warming climate on

the abundance, distribution, exposure, and hazards of plastics in the

environment, along with the potential for delayed ecotoxicological

effects due to weathering-related degradation. Issues such as those

discussed in this review may generate new opportunities by building

on the success of mobilizing action on plastics in a way that acts as a

gateway to the issue of climate change. However, awareness alone of

the magnitude of the problems produced by plastic debris is

unlikely to change individual behavior. Firsthand access to the

issue is key since from access comes attention, from attention comes

engagement and this is what galvanizes society to take an interest in

the world. Further encouragement therefore stems from citizen

science and outreach activities that are focused on plastic pollution

(234) and successful educational initiatives with children (235) who,

being the next generation of consumers, will face the long-term

consequences of our current actions. Public participation can also

collect data for research, one example being the lightweight, low-
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cost paddle trawl towed behind paddle surfers and designed to

collect samples to characterize and quantify MPs in the marine

environment (236).
Conclusion

A warming climate has consequences for the abundance,

distribution, exposure, hazards, and impacts of plastics in the

environment. Further examination of these links will help our

understanding of and ability to manage the risks. The integration of

micro- and nanoplastic pollution with climate stressors offers a way to

steer, coordinate, and prioritize research andmonitoring, in addition to

policy and action. While comparability of methods is critical, and

rigorous examination of the science being published is critical in all

fields of research, it is of particular importance in this complex and

evolving field because policy around plastic pollution is being

developed in tandem. The future will not be free of plastics but

going forward, it must become free of further microplastic pollution.

The prospect that the plastics we produce, use and discard today could

have global-scale, poorly reversible impacts in the future is compelling

motivation to take the appropriate action now.
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104. Andriolo U, Gonçalves G. Is coastal erosion a source of marine litter pollution?
Evidence of coastal dunes being a reservoir of plastics. Mar pollut Bull (2022)
174:113307. doi: 10.1016/j.marpolbul.2021.113307

105. Welden NAC, Lusher AL. Impacts of changing ocean circulation on the
distribution of marine microplastic litter. Integr Environ Assess Manag (2017)
13(3):483–7. doi: 10.1002/ieam.1911
Frontiers in Science 15
106. Van Sebille E, Aliani S, Law KL, Maximenko N, Alsina JM, Bagaev A, et al. The
physical oceanography of the transport of floating marine debris. Environ Res Lett
(2020) 15(2):023003. doi: 10.1088/1748-9326/ab6d7d
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